
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Searching for explanations of black-box
classifiers in the space of semantic queries
Jason Liartis *, Edmund Dervakos, Orfeas Menis-Mastromichalakis, Alexandros Chortaras and
Giorgos Stamou
Artificial Intelligence and Learning Systems Laboratory, School of Electrical and Computer Engineering, National
Technical University of Athens, Greece
E-mails: jliartis@ails.ece.ntua.gr, eddiedervakos@islab.ntua.gr, menorf@ails.ece.ntua.gr, achort@cs.ntua.gr,
gstam@cs.ntua.gr

Abstract. Deep learning models have achieved impressive performance in various tasks, but they are usually opaque with regards
to their inner complex operation, obfuscating the reasons for which they make decisions. This opacity raises ethical and legal
concerns regarding the real-life use of such models, especially in critical domains such as in medicine, and has led to the
emergence of the eXplainable Artificial Intelligence (XAI) field of research, which aims to make the operation of opaque AI
systems more comprehensible to humans. The problem of explaining a black-box classifier is often approached by feeding it
data and observing its behaviour. In this work, we feed the classifier with data that are part of a knowledge graph, and describe
the behaviour with rules that are expressed in the terminology of the knowledge graph, that is understandable by humans.
We first theoretically investigate the problem to provide guarantees for the extracted rules, in particular their consistency and
understandability. Then, we investigate the relation of "explanation rules for a specific class" with "semantic queries collecting
from the knowledge graph the instances classified by the black-box classifier to this specific class", thus approaching the problem
of extracting explanation rules as a semantic query reverse engineering problem. We develop algorithms for solving this inverse
problem as a heuristic search in the space of semantic queries and we evaluate the proposed algorithms on three simulated
use-cases and discuss the results.

Keywords: Explainable AI (XAI), opaque machine learning classifiers, knowledge graphs, description logics, semantic query
answering, reverse query answering, post-hoc explainability, explanation rules

1. Introduction

The opacity of deep learning models raises ethical and legal [1] concerns regarding the real-life use of such mod-
els, especially in critical domains such as medicine and judicial, and has led to the emergence of the eXplainable
Artificial Intelligence (XAI) field of research, which aims to make the operation of opaque AI systems more com-
prehensible to humans [2, 3]. While many traditional machine learning models, such as decision trees, are inter-
pretable by design, they typically perform worse than deep learning approaches for various tasks. Thus, in order
to not sacrifice performance for the sake of transparency, a lot of research is focused on post hoc explainability, in
which the model to be explained is treated as a black-box. Approaches to post hoc explainability vary with regard to
data domain (images, text, tabular), form of explanations (rule-based, counterfactual, feature importance etc.), scope
(global, local) [4] and application domain [5]. In this work we focus on global explanations, which attempt to explain

*Corresponding author. E-mail: jliartis@ails.ece.ntua.gr.

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:jliartis@ails.ece.ntua.gr
mailto:eddiedervakos@islab.ntua.gr
mailto:menorf@ails.ece.ntua.gr
mailto:achort@cs.ntua.gr
mailto:gstam@cs.ntua.gr
mailto:jliartis@ails.ece.ntua.gr

2 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the general function of a black-box regardless of data, as opposed to local explanations which attempt to explain
the prediction of a classifier on a particular data sample. Specifically, we attempt to extract rules which simulate the
behaviour of a black-box by considering semantic descriptions of samples, in addition to external knowledge. For
example such a rule might be “Images depicting animals and house-hold items are classified as domestic animals”,
where the semantic description of an image might be “This image depicts an elephant next to a chair” and external
knowledge might contain information such as “elephants are animals” and “chairs are household items”. We do this
by utilizing terminological, human-understandable knowledge expressed in the form of ontologies and knowledge
graphs, taking advantage of the reasoning capabilities of the underpinning description logics [6]. Such extracted
rules might be very useful for an end user to understand the reasons behind why an opaque model is making its
decisions, especially when combined with other forms of explanations, such as local contrastive explanations [7].

There are many related rule-based global explanation methods in recent literature. Many approaches rely on
statistics in order to generate lists of IF-THEN rules which mimic the behaviour of a classifier [8, 9], while others
extract rules in the form of decision trees [10–12]. Closer to our proposed approach are works which extract rules
based on logics [13, 14], for which there are arguments that they should be the desireable form of explanations
[15, 16]. The above approaches generate rules in terms of the feature space of the black-box classifier which is a
key difference with our work, in which we consider rules in terms of semantic descriptions and external knowledge
instead of features. More closely related to this work are approaches such as the one presented by Ciravenga et al.
[17], in which the authors utilize additional information about the data (such as objects depicted in an image), in
terms of which they provide explanations. This approach, however, is not a post hoc method as the explainer module
is a neural network which is jointly trained with the classifier. Furthermore, the terms in which they provide the
explanations are not linked to external knowledge. Another related approach to ours, in the sense that it makes use
of external semantic information for the data in order to provide rule-based explanations is presented by Panigutti
et al. [18]. However, the rules that are generated are local, which means that they explain a prediction on a specific
sample, similarly to other local rule-based model agnostic approaches [19, 20], while our approach leads to global
rules which give a more general overview of why the black-box might be making its decisions. In addition, the rules
generated by that approach concern numerical features, while ours are presented by using the terminology of the
underlying knowledge. For further reading, we refer to literature surveys on explainable AI, which include analyses
of rule-based approaches [4, 21].

Utilizing external knowledge to boost transparency of opaque AI is an active research area which has produced
important results in recent years [5, 22]. Specifically, knowledge graphs [23] as a scalable common understandable
structured representation of a domain based on the way humans mentally perceive the world, have emerged as a
promising complement or extension to machine learning approaches for achieving explainability. A particular aspect
which might be improved by utilizing knowledge graphs, especially for generalized global explanations, is the form
of the produced explanations. When the feature space of the classifier is sub-symbolic raw data, then providing
explanations in terms of features might lead to unintuitive, or even misleading results [24, 25]. On the other hand,
if there is underlying knowledge of the data, then explanations can be provided by using the terminology of the
knowledge. For example, if a black-box classified every image depicting wild animals in the class zoo, a rule of
the form “If an image depicts a giraffe or a zebra or . . . then it is classified as a zoo”, might be more intuitive
than for example sets of pixel importances. Furthermore, by exploiting external knowledge, the form can be further
condensed and lead to simpler explanations which are semantically identical, such as “If an image depicts a wild
animal then it is classified as a zoo”.

There are multiple approaches in recent literature, which utilize knowledge graphs for explainability. For instance,
Daniels et al. [26] propose exploiting the WordNet hierarchy as an external knowledge graph in order to perform
scene classification from images with neural networks in an explainable fashion. Alirezaie et al. [27] utilize external
ontological knowledge in order to explain the errors of a satelite image classifier. Wang et al. [28] propose a neural
network which makes use of knowledge graph embeddings for content-based news recommendation, improving on
the state-of-the-art while simultaneously offering a layer of explainability, in the form of KG entities linked to text.
Ai et al. [29] construct a unified knowledge graph of users and items which is utilized in their collaborative filtering
recommendation approach, and provide explanations for recommendations in the form of paths on the knowledge
graph. Silva et al. [30] successfully use knowledge graphs such as WordNet and Wikipedia for achieving explainable

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

text entailment. For further reading on the role of knowledge graphs in explainable AI, we refer to the recent survey
by Tiddi et al. [31].

Following this line of work, our approach to global rule-based explanations assumes that we are given a set
of data samples with semantic descriptions linked to external knowledge, in terms of which the explanations will
be presented (data that are part of a knowledge graph). We call such a set of samples an explanation dataset.
For example, a semantic description for an image might refer to the objects it depicts and relationships between
them, such as scene graphs from visual genome [32], or COCO [33]. In the general case, a semantic description
is also linked to external knowledge graphs, for example WordNet [34], ConceptNet [35], DBpedia [36], and even
domain specific knowledge such as SNOMED-CT [37] for the medical domain. Given such a set of semantically
described data, we then compute global rule-based explanations as if they were semantic queries over the explanation
dataset (knowledge), characterizing the output of the classifier by computing the queries that collect the items of the
explanation dataset which are classified (by the unknown classifier) in a specific class, by making use of theoretical
and practical results in the area of semantic query answering [38–41]. Thus, in practice, the problem of computing
explanations is approached here as a query reverse engineering (QRE) problem, which has been extensively studied
both for traditional databases [42] and for knowledge bases [43–45]. In the general case, semantic query answering
involves reasoning on the facts of the knowledge and allows for highly expressive queries, thus highly expressive
explanations. This makes the semantic QRE problem theoretically difficult and computationally demanding. For this
reason, we develop heuristic algorithms for semantic QRE, which are also able to provide approximate solutions,
even when an exact solution does not exist. Summarizing:

– Following our previous work in the area [[46]], we here present a framework for representing global rule-based
explanations for black-box classifiers, using exemplar items, external terminology and underlying knowledge
stored in a knowledge graph and defining the problem of explanation rule extraction as a semantic query reverse
engineering problem over the knowledge graph (see section 3).

– We propose algorithms which approximate the semantic query reverse engineering problem by using heuristics,
which we then use to generate explanations in the context of the proposed framework (see section 4).

– We implement the proposed algorithms and show results from experiments explaining image classifiers on
CLEVR-Hans3 and MNIST. We also compare our work with existing post-hoc explanation methods on baseline
tabular data employing the Mushroom dataset (see section 5).

2. Background

Let V = 〈CN,RN, IN〉 be a vocabulary, where CN, RN, IN are mutually disjoint finite sets of concept, role and
individual names, respectively. Let also T and A be a terminology (TBox) and an assertional database (ABox),
respectively, over V using a Description Logics (DL) dialect L, i.e. a set of axioms and assertions that use elements
of V and constructors of L. The pair 〈V ,L〉 is a DL-language, and K = 〈T ,A〉 is a (DL) knowledge base (KB) over
this language. The semantics of KBs are defined in a standard model-theoretic way using interpretations [6]. Given
a non-empty domain ∆, an interpretation I = (∆I , ·I) assigns a set CI ⊆ ∆I to each concept C ∈ CN, a set of
pairs rI ⊆ ∆I ×∆I to each role r ∈ RN, and an element aI ∈ ∆ to each individual a ∈ IN. An interpretation I
is a model of a KB K iff it satisfies all assertions in A and all axioms in T . We will call an ABox containing only
assertions of the form C(a) and r(a, b), where C ∈ CN, r ∈ RN, a, b ∈ IN an atomic ABox.

The DL dialect L determines the expressivity ofK. Most DL dialects can be seen as fragments of first-order logic
by viewing atomic concepts and roles as unary and binary predicates respectively [6]. In this paper we refer only to
DL dialects that are fragments of first-order logic, and hence can be translated to first-order logic theories. We will
denote the translation of K to the respective first order logic theory by fol(K).

Given a vocabulary V , a conjunctive query (simply, a query) q is an expression of the form { 〈x1, . . . xk〉 |
∃y1 . . . ∃yl.(c1 ∧ . . . ∧ cn) }, where k, l > 0, n > 1, xi, yi are variable names, the cis are distinct, each ci is an atom
C(u) or r(u, v), where C ∈ CN, r ∈ RN, u, v ∈ IN ∪ {x1, . . . , xk} ∪ {y1, . . . , xl} and all xi, yi appear in at least one
atom. The vector 〈x1, . . . xk〉 is the head of q, its elements are the answer variables, and {c1, . . . , cn} is the body of
q (body(q)). The set var(q) is the set of all variables appearing in q.

4 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In this paper we focus on queries having one answer variable and in which all arguments of all ci are variables,
which are called instance queries. For simplicity, in the rest of the paper, by saying query we will mean instance
query, and we will write an (instance) query q as {c1, ..., cn}, considering always x as the answer variable, essentially
identifying the query by its body. This will allow us to treat queries as sets, and write e.g. q1 ∪ q2; this query
represents the query that has the same head as q1 and q2 (i.e. 〈x〉) and body the union of the bodies of q1 and q2.
Similarly, we will write e.g. q1 ⊆ q2, meaning body(q1) ⊆ body(q2), and c ∈ q meaning c ∈ body(q). We will
also assume that the DL dialect in use includes the top concept (>), a concept to which all individuals are assumed
to belong to, and that every instance query includes always in its body the atom >(x), although we will usually not
write it. Thus, the instance query q = {} is a shorthand for { 〈x〉 | >(x)}, and similarly for any q = {c1, ..., cn}.
Following the above assumptions, all definitions that follow will be stated only for instance queries, although more
general formulations for general conjunctive queries might exist.

An instance query q can be viewed as the directed labeled graph 〈V, E, `V , `E〉 (a query graph), where V = var(q)
is the set of nodes, E = {〈u, v〉 | r(u, v) ∈ q} ⊆ V × V is the set of edges, `V : V → 2CN with `V(u) = {C | C(u) ∈
q} is the node labeling function, and `E : E → 2RN with `E(u, v) = {r | r(u, v) ∈ q} is the edge labeling function.
The answer variable is not explicitly identified since it is assumed to be always x. An instance query is connected,
if the corresponding query graph is connected.

Given a KB K, an instance query q and an interpretation I of K, a match for q is a mapping π : var(q) → ∆I

such that π(u) ∈ CI for all C(u) ∈ q, and (π(u), π(v)) ∈ rI for all r(u, v) ∈ q. Then, a ∈ IN is a (certain) answer
for q over K if in every model I of K there is a match π for q such that π(x) = aI . The set of certain answers to q
is denoted by cert(q,K).

Let K be a knowledge base over a vocabulary V , and Q the (possibly infinite) set of all (instance) queries over
V . We can partially order Q using query subsumption: A query q2 subsumes a query q1 (we write q1 6S q2) iff
there is a substitution θ s.t. q2θ ⊆ q1. If q1, q2 are mutually subsumed, they are syntactically equivalent (q1 ≡S q2).
q 6S q′ implies cert(q,K) ⊆ cert(q′,K), since a match π for the variables of q can be composed with θ to produce
a match πθ for the variables of q′. Let q, q′ be queries s.t. q′ ≡ q. If q′ is a minimal subset of q s.t. q′ 6S q, then
q′ is a condensation of q. If that minimal q′ is the same as q, then q is condensed [47]. Intuitively, syntactically
equivalent queries have always the same answers, and a condensation of some syntactically equivalent queries is the
most compact query (not containing redundant atoms) that is syntactically equivalent to the rest.

Given the queries q1, q2, . . . , qn, a query least common subsumer QLCS(q1, q2, . . . , qn) of them is defined as a
query q for which q1, q2, . . . qn 6S q, and for all q′ s.t. q1, q2, . . . qn 6S q′ we have q 6S q′. The query least
common subsumer can be seen as the most specific generalization of q1, q2, . . . qn, and it is unique up to syntactical
equivalency. It exists always because it has been assumed that all instance queries include >(x) in their bodies. We
should note that this notion of query least common subsumer is different from the usual notion of least common
subsumer of concepts which has been extensively studied for various description logic expressivities [48–51].

In the following, it will be useful to treat atomic ABoxes as graphs. Similarly to the case of queries, an atomic
ABox A can be represented as the graph 〈V, E, `V , `E〉 (an ABox graph), where V = IN is the set of nodes, E =
{〈a, b〉 | r(a, b) ∈ A} ⊆ IN × IN is the set of labeled edges, `V : V → 2CN with `V(a) = {C | C(a) ∈ A} is the
node labeling function, and `E : E → 2RN with `E(a, b) = {r | r(a, b) ∈ A} is the edge labeling function.

Given two graphs G1 = 〈V1, E1, `V1 , `E1〉, G2 = 〈V2, E2, `V2 , `E2〉, a homomorphism h : G1 → G2 is defined
as a function from V1 to V2 that preserves edges and labels. More specifically it is such that: i) if 〈a, b〉 ∈ E1 then
〈h(a), h(b)〉 ∈ E2, ii) `V1

(a) ⊆ `V2
(h(a)), and iii) `E1

(a, b) ⊆ `E2
(h(a), h(b)). If there exists a homomorphism

from G1 to G2, we will write for simplicity G1 → G2. When G1 and G2 are query graphs we will make the
additional assumption that h preserves the answer variable, i.e. h(x) = x. If h is a bijection whose inverse is also a
homomorphism, then h is an isomorphism. It is easy to see that the query graph of q1 is homomorphic to the query
graph of q2 iff q2 6S q1.

A (definite) rule is a fol expression of the form ∀x1 . . . ∀xn (c1, . . . , cm ⇒ c0), where ci are atoms and x1, . . . , xn

are all the variables appearing in the several ci. The atoms c1, . . . cm are the body of the rule, and c0 its head. A rule
over a vocabulary V = 〈CN,RN, IN〉 is a rule where each ci is either C(u), where C ∈ CN, or r(u, v), where r ∈ RN.
Assuming that c0 is of the form D(x), and that x appears in the body of such a rule, we will say that the rule is
connected, if its body, seen as an instance query is connected. In the following we assume all rules are connected.
A rule is usually written as c1, . . . cm → c0.

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Finally, a classifier is viewed as a function F : D → C, where D is the classifier’s domain (ex. images, audio,
text), and C is a set of class names (ex. “Dog”,“Cat”).

3. Framework

3.1. A motivating example

Integration of artificial intelligence methods and tools with biomedical and health informatics is a promising
area, in which technologies for explaining machine learning classifiers will play a major role. In the context of
the COVID-19 pandemic for example, black-box machine learning audio classifiers have been developed, which,
given audio of a patient’s cough, predict whether the person should seek medical advice or not [52]. In order to
develop trust and use these classifiers in practice, it is important to explain their decisions, i.e. to provide convincing
answers to the question “Why does the machine learning classifier suggest to seek medical advice?”. There are
post hoc explanation methods (both global and local) that try to answer this question in terms of the input of the
black-box classifier, which in this case is audio signals. Although this information could be useful for AI engineers
and developers, it is not understandable to most medical experts and end users, since audio signals themselves are
obscure sub-symbolic data. Thus, it is difficult to convincingly meet the explainability requirements and develop the
necessary trust to utilize the black-box classifier in practice, unless explanations are expressed in the terminology
used by the medical experts (using terms like "sore throat", "dry cough" etc).

In the above context, suppose we have a dataset of audio signals of coughs which have been characterized by
medical professionals by using standardized clinical terms, such as “Loose Cough”, “Dry Cough”, “Dyspnoea”, in
addition to a knowledge base in which these terms and relationships between them are defined, such as SNOMED-
CT [37]. For example, consider such a dataset with coughs from five patients p1, p2, p3, p4, p5 (obviously in practice
we may need a much more extended set of patients) with characterizations from the medical experts: “p1 has a sore
throat”, “p2 has dyspnoea”, “p3 has a sore throat and dyspnoea”, “p4 has a sore throat and a dry cough”, “p5 has a
sore throat and a loose cough”. We also have available relationships between these terms as defined in SNOMED-CT
like “Loose Cough is Cough”, “Dry Cough is Cough”, “Cough is Lung Finding”, and “Dyspnoea is Lung Finding”.

Now assume that a black-box classifier predicts that p3, p4, and p5 should seek medical advice, while p1 and
p2 should not. Then we can say that: on this dataset, if a patient has a sore throat and a lung finding then it is
classified positively by the specific classifier, i.e. the classifier suggests "seek medical advice". Depending on the
characteristics of the dataset itself and its ability to cover interesting examples, such an extracted rule could help the
medical professional understand why the black-box is making decisions in order to build necessary trust, but also it
could help an AI engineer improve the model’s performance by indicating potential biases.

3.2. Explaining opaque machine learning classifiers

Explanation of opaque machine learning classifiers is based on a dataset that we call Explanation Dataset (see
Fig. 1), containing exemplar patterns, that are actually characteristic examples from the set of elements that the
unknown classifier takes as input. Machine learning classifiers usually take as input element features (like the cough
audio signal mentioned in the motivating example). The explanation dataset additionally contains a semantic de-
scription of the exemplars in terms that are understandable by humans (like "dry cough" mentioned in the motivating
example). Taking the output of the unknown classifier (the classification class) for all the exemplars, we construct
the Exemplar Data Classification information (see Fig. 1) thus we know the exact set of exemplars that are classi-
fied by the unknown classifier to a specific class (like the "seek medical advice" class mentioned in the motivating
example). Using the knowledge represented in the Exemplar Data Semantic Description (see Fig. 1), we define the
following reverse semantic query answering problem: "given a set of exemplars and their semantic description find
intuitive and understandable semantic queries that have as certain answers exactly this set out of all the exemplars
of the explanation dataset". The specific problem is interesting, with certain difficulties and computationally very
demanding [40, 43–46]. Here, by extending a method presented in [53] we present an Explainer (see Fig. 1) that
tries to solve this problem, following a Semantic Query Heuristic Search method, that searches in the Semantic

6 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Query Space (the set containing all queries that have non-empty certain answer set) for queries that are solutions to
the above problem, but additionally can lead to understandable explanation rules.

Fig. 1. A framework for explaining opaque machine learning classifiers

Introductory definitions and interesting theoretical results concerning the above approach are presented in [53].
Here, we reproduce some of them and introduce others, in order to develop the necessary framework for presenting
the proposed method.

A defining aspect is that the rule explanations are provided in terms of a specific vocabulary. To do this in practice,
we require a set of items (exemplar data) which can: a) be fed to a black-box classifier and b) have a semantic
description using the desired terminology. As mentioned before, here we consider that: a) the exemplar data has for
its items all the information that the unknown classifier needs in order to classify them (the necessary features), and
b) the semantic data descriptions are expressed as Description Logics knowledge bases (see Fig. 1).

Definition 1 ([46]). Let D be a domain of item feature data, C a set of classes, and V = 〈IN,CN,RN〉 a vocabulary
such that C ∪ {Exemplar} ⊆ CN. Let also EN ⊆ IN be a set of exemplars. An explanation dataset E in terms of D,
C, V is a tuple E = 〈M,S〉, whereM : EN → D is a mapping from the exemplars to the item feature data, and
S = 〈T ,A〉 is a DL knowledge base over V such that Exemplar(a) ∈ A iff a ∈ EN, the elements of C do not appear
in S, and Exemplar and the elements of EN do not appear in T .

Intuitively, an explanation dataset contains a set of exemplar data (i.e. characteristic items inD which can be fed to
the unknown classifier) semantically described in terms of a specific vocabulary V; the semantic descriptions are in
knowledge base S. Each exemplar data item is represented in S by an individual name; these individual names make
up the set of exemplars EN, and each one of them is mapped to the corresponding exemplar data item byM. Because
the knowledge encoded in S may involve also other individuals, the Exemplar concept exists to identify exactly those
individuals that correspond to exemplar data within the knowledge base. Given a classifier F : D → C and a set of
individuals I ⊆ EN, the positive set (pos-set) of F on I for class C ∈ C is pos(F, I,C) = {a ∈ I : F(M(a)) = C}.
Based on the classifier’s prediction on the exemplar data for a class (i.e. the pos-set) we can produce explanation
rules by grouping them according to their semantic description in the explanation dataset.

Definition 2 ([46]). Let F : D → C be a classifier, E = 〈M,S〉 an explanation dataset in terms of a domain D and
a set of classes C, and an appropriate vocabulary V = 〈CN,RN, IN〉 (with C ⊆ CN). Given a concept C ∈ C, the

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

rule

Exemplar(x), c1, c2, . . . , cn → C(x)

where ci is an atom D(u) or r(u, v), where D ∈ CN, r ∈ RN, and u, v are variables, is an explanation rule of F for
class C over E . We denote the rule by ρ(F, E ,C), or simply by ρ whenever the context is clear. We may also omit
Exemplar(x) from the body, since it is a conjunct of any explanation rule. The rule ρ is correct if and only if

fol(S ∪ {Exemplar v {a | a ∈ EN}} ∪ {C(a) | a ∈ pos(F,EN,C)}) |= ρ

where fol(K) is the first-order logic translation of DL knowledge base K.

Explanation rules describe sufficient conditions (the body of the rule) for an item to be classified in the class
indicated at the head of the rule by the classifier under investigation. The correctness of a rule indicates that the rule
covers every a ∈ EN, meaning that for each exemplar of S, either the body of the rule is not true, or both the body
and the head of the rule are true.

Example 1. Suppose we have the problem described in the motivating example of Section 3.1 with black-box
classifiers predicting whether a person should seek medical advice based on audios of their cough, and that we
are creating an explanation dataset in order to explain the respective classifiers. The vocabulary used should be
designed so that it will produce meaningful explanations to the end-user, which in our case would probably be
a doctor or another professional of the medical domain. In this case, it should contain concepts for the different
medical terms like the findings (cough, sore throat, etc.), and according to the definition of the explanation dataset,
the class categories (seek medical advice, or not) and the concept Exemplar as concept names (CN). Additionally,
a role linking patients to the respective findings should exist in the role names (RN), and the patients as well as
the findings themselves would be the individual names (IN). Following this, we create the vocabulary (V) as shown
below:

IN = {p1, p2, p3, p4, p5, s1, s2, s3, s4, s5, s6, s7, s8}

CN = {DryCough, LooseCough,Cough,SoreThroat, LungFinding, Finding,Dyspnoea,MedicalAdvice,

NoMedicalAdvice,Exemplar}

RN = {hasFinding}

Having the domain D (audio signals), the set of classes C (MedicalAdvice,NoMedicalAdvice), and the vocabulary
V we can now define the explanation dataset E = 〈M,S〉. The set of exemplars (EN) in our case contains the
patient individuals of IN, so EN = {p1, p2, p3, p4, p5}. The mapping M of the explanation dataset links these
exemplars to the respective audio of each patient. The only thing that is missing from our explanation dataset is the
knowledge base S consisting of an ABox A and a TBox T . The ABox contains information regarding the patient
audio characterizations from the medical professionals (“p1 has a sore throat”, “p2 has dyspnoea”, “p3 has a sore
throat and dyspnoea”, “p4 has a sore throat and a dry cough”, “p5 has a sore throat and a loose cough”) as well
as the assertions regarding the exemplar status of individuals, while the TBox contains relationships between the
medical terms as defined in SNOMED-CT, as shown below:

A = {Exemplar(p1),Exemplar(p2),Exemplar(p3),Exemplar(p4),Exemplar(p5), hasFinding(p1, s1),

hasFinding(p2, s2), hasFinding(p3, s3), hasFinding(p3, s4), hasFinding(p4, s5), hasFinding(p4, s6),

hasFinding(p5, s7), hasFinding(p5, s8),SoreThroat(s1),Dyspnoea(s2),SoreThroat(s3),

Dyspnoea(s4),SoreThroat(s5),DryCough(s6),SoreThroat(s7), LooseCough(s8)}

T = {LooseCough v Cough,DryCough v Cough,Cough v LungFinding, LungFinding v Finding,

Dyspnoea v LungFinding,SoreThroat v Finding}

8 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Now suppose that a black-box classifier F predicts that p3, p4, and p5 should seek medical advice, while p1 and p2
don’t need to (same as the motivating example of Section 3.1). The explanation rule

ρ1 : Exemplar(x), hasFinding(x, y),SoreThroat(y), hasFinding(x, z), LungFinding(z)→ MedicalAdvice(x)

for that classifier based on the explanation dataset E = 〈M,S〉 is a correct rule, as well as the explanation rule

ρ2 : Exemplar(x), hasFinding(x, y),Cough(y)→ MedicalAdvice(x),

while the rules

ρ3 : Exemplar(x), hasFinding(x, y),SoreThroat(y)→ MedicalAdvice(x) and

ρ4 : Exemplar(x), hasFinding(x, y),Dyspnea(y)→ MedicalAdvice(x)

are not correct, since fol(S ′) |= ρ1 and fol(S ′) |= ρ2, but fol(S ′) 6|= ρ3 and fol(S ′) 6|= ρ4, where S ′ = S ∪
{Exemplar v {a | a ∈ EN} ∪ {MedicalAdvice(a) | a ∈ pos(F,EN,MedicalAdvice)}.

As mentioned in Section 2, an instance query is an expression of the form {c1, . . . , cn}, an expression that resem-
bles the body of explanation rules. By treating the bodies of explanation rules as queries, the problem of computing
explanations can be solved as a query reverse engineering problem [46].

Definition 3 ([46]). Let F : D → C be a classifier, E = 〈M,S〉 an explanation dataset in terms of D, C and an
appropriate vocabulary V , and ρ(F, E ,C): Exemplar(x), c1, c2, . . . , cn → C(x) an explanation rule. The instance
query

qρ
.
= {Exemplar(x), c1, c2, . . . , cn}

is the explanation rule query of explanation rule ρ.

The relationship between the properties of explanation rules and the respective queries allows us to detect and
compute correct rules based on the certain answers of the respective explanation rule queries, as shown in Theorem
1.

Theorem 1 ([46]). Let F : D → C be a classifier, E = 〈M,S〉 an explanation dataset in terms of D, C and an ap-
propriate vocabulary V , ρ(F, E ,C): Exemplar(x), c1, c2, . . . , cn → C(x) an explanation rule, and qρ the explanation
rule query of ρ. The explanation rule ρ is correct if and only if

cert(qρ,S) ⊆ pos(F,EN,C)

Theorem 1 shows a useful property of the certain answers of the explanation rule query of a correct rule
(cert(q,S) ⊆ pos(F,EN,C)) that can be utilized in order to identify and produce correct rules. Intuitively, an expla-
nation rule is correct, if all of the certain answers of the respective explanation rule query are mapped byM to data
which is classified in the class indicated at the head of the rule. However, it is obvious that according to the above
we can have correct rules that barely approximate the behaviour of the classifier (e.g. an explanation rule query with
only one certain answer that is in the pos-set of the classifier), while other correct rules might exactly match the
output of the classifier (e.g. a query q for which cert(q,S) = pos(F,EN,C)). Thus, it is useful to define a recall
metric for explanation rule queries by comparing the set of certain answers with the pos-set of a class C:

recall(q, E ,C) =
|cert(q,S) ∩ pos(F,EN,C)|

|pos(F,EN,C)|
,

assuming that pos(F,EN,C) 6= ∅.

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Example 2. Continuing Example 1, we can create the explanation rule queries of the respective explanation rules of
the example as follows: q1(x) = {Exemplar(x), hasFinding(x, y),SoreThroat(y), hasFinding(x, z), LungFinding(z)}
as the explanation rule query of ρ1, q2(x) = {Exemplar(x), hasFinding(x, y),Cough(y)} as the explanation rule
query of ρ2, q3(x) = {Exemplar(x), hasFinding(x, y),SoreThroat(y)} as the explanation rule query of ρ3, and
q4(x) = {Exemplar(x), hasFinding(x, y),Dyspnoea(y)} as the explanation rule query of ρ4.

For the above queries we can retrieve their certain answers over our knowledge base S, and get cert(q1,S) =
{p3, p4, p5}, cert(q2,S) = {p4, p5}, cert(q3,S) = {p1, p3, p4, p5}, and cert(q4,S) = {p2, p3}.

With respect to the classifier F of Example 1, for which pos(F,EN,MedicalAdvice) = {p3, p4, p5}, we see, as
the theorem states, that for the correct rules ρ1 and ρ2 it holds that cert(q1,S) ⊆ pos(F,EN,MedicalAdvice) and
cert(q2,S) ⊆ pos(F,EN,MedicalAdvice), while for rules ρ3 and ρ4 that are not correct, it holds that cert(q3,S) 6⊆
pos(F,EN,MedicalAdvice), and cert(q4,S) 6⊆ pos(F,EN,MedicalAdvice), respectively.

The explanation framework described in Section 3.2 provides the necessary expressivity to formulate accurate
and understandable rules even for complex problems [46]. However, some limitations of the framework, like only
working with correct rules, can be a significant drawback for explanation methods built on top of that. An explana-
tion rule query might not be correct due to the existence of individuals in the set of certain answers which are not
in the pos-set. By viewing these individuals as exceptions to a rule, we are able to provide as an explanation a rule
that is not correct, along with the exceptions which would make it correct if they were omitted from the explana-
tion dataset; the exceptions could provide useful information to an end-user about the classifier under investigation.
Thus, we extend the existing framework by introducing correct explanation rules with exceptions, as follows:

Definition 4. Let F : D → C be a classifier, E = 〈M,S〉 an explanation dataset in terms of D,C where S is a
knowledge S = 〈A, T 〉, EN the set of exemplars of E , and let EX be a subset of EN. An explanation rule ρ(F, E ,C)
is correct with exceptions EX for class C if the rule ρ(F, E ′,C) is correct for class C, where E ′ = 〈M,S ′〉, and S ′
is the knowledge S ′ = 〈A′, T 〉, and A′ = A \ {Exemplar(a)|a ∈ EX}.

Since we allow exceptions to explanation rules, it is useful to define a measure of precision of the corresponding
explanation rule queries as

precision(q, E ,C) =
|cert(q,S) ∩ pos(F,EN,C)|

|cert(q,S)|
.

if cert(q,S) 6= ∅ and precision(q, E ,C) = 0 otherwise.
Obviously, if the precision of a rule query is 1, then it represents a correct rule, otherwise it is correct with

exceptions. Furthermore, we can use the Jaccard similarity between the set of certain answers of the explanation
rule query and the pos-set, as a generic measure which combines recall and precision to compare the two sets of
interest as:

degree(q, E ,C) =
|cert(q,S) ∩ pos(F,EN,C)|
|cert(q,S) ∪ pos(F,EN,C)|

.

Example 3. The rules ρ3 and ρ4 of Example 2 that are not correct; they are correct with exceptions. Table 1 shows
the precision, recall, and degree metrics of the explanation rule queries of Example 2 along with the exceptions EX
of the respective rules.

10 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Metrics and Exceptions of the example Explanation Rules and the respective Explanation Rule Queries.

Rule Query Recall Precision Degree Exceptions (EX)

ρ1 q1 1.0 1.0 1.0 {}
ρ2 q2 0.67 1.0 0.67 {}
ρ3 q3 1.0 0.75 0.75 {p1}
ρ4 q4 0.33 0.5 0.25 {p2}

4. Computation of Explanations

From section Section 3, we understand that the problem that we try to solve is closely related to the query reverse
engineering problem, since we need to compute queries given a set of individuals. However, since in most cases there
is not a single query that fits our needs (have as certain answers the pos-set of the classifier), we need to find (out
of all the semantic queries that have a specific certain answer set) a set of queries that nicely describe the classifier
under investigation (approximate its output) in an understandable and intuitive way. Therefore, the problem can also
be seen as a heuristic search problem. The duality of rules and queries within our framework, reduces the search of
correct rules (with exceptions) to the search of queries that contain elements of the pos-set in their certain answers.
Reverse engineering queries for subsets of EN is challenging for the following reasons:

– The subsets of EN for which there exists a correct rule query ({I | I ⊆ EN, there exists q s.t. cert(q,S) = I})
can potentially be exponentially many (2|EN|).

– The Query Space i.e. the set containing all queries that have non-empty certain answer set ({q | cert(q,S) ∩
EN 6= ∅}) can potentially be infinite [46].

– For any subset I of EN, the number of queries s.t. cert(q,S) = I can be zero, positive or infinite.
– Computing the certain answers of arbitrary queries can be exponentially slow, so it is computationally pro-

hibitive to evaluate each query under consideration while exploring the query space.

The difficulties described above are addressed in the following ways:

– In this paper, we only consider knowledge bases of which the TBox can be eliminated (such as RL [54]; see
also the last paragraph of this section). This enables us to create finite queries that contain all the necessary
conjuncts to fully describe each individual. We are then able to merge those queries to create descriptions of
successively larger subsets of EN.

– We do not directly explore the subsets of EN for which there exists a correct rule query, and the computation
of certain answers is not required for the algorithms. Instead, we explore the Query Space blindly, but heuris-
tically. We create queries that are guaranteed to be within the Query Space and are also guaranteed to contain
heuristically selected individuals in their certain answers, without knowing their exact certain answers. The
heuristic we employ, aids us in selecting similar individuals to merge. Intuitively, this helps us create queries
that introduce as few as possible unwanted certain answers.

– We are not concerned with the entire set of queries with non-empty sets of certain answers, but only with
queries which have specific characteristics in order to be used as explanations. Specifically, the queries have
to be short in length, with no redundant conjuncts, have as certain answers elements of the pos-set of the class
under investigation, and as few others as possible.

– The proposed algorithms guarantee that given a set I, if a query q exists s.t. cert(q,S) = I, then the algorithms
will find at least one such query. If there do not exist such queries then, since the computation of certain answers
is not involved in the algorithms, the result of the heuristic search will be a “good guess” of queries which have
similar answer sets to I. If there exist infinite such queries, then we do not have a guarantee that we have found
the shortest, most understandable one, however the proposed algorithms take care to create queries with few
variables (see Alg. 2 and section 4.3.2).

In the following we describe the proposed algorithms for computing explanations. The core algorithm, which is
outlined as Alg. 1 and we call KGrules-H, takes as input an atomic ABox A and a set of individual names I, and

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

produces a list of queries. It is assumed that both A and I are obtained from an explanation dataset E . In particular,
I is a subset of the respective EN corresponding to a pos-set of a classifier to F be explained for some class C, i.e.
pos(F,EN,C), and A is an atomic ABox containing all the available knowledge about the individuals in I encoded
in the knowledge base of E . The output queries are intended to serve as explanation rule queries for class C.

Algorithm 1: KGRULES-H
Input: An atomic ABox A and a set of individual names I.
Output: A list of queries S .

1 S ← []
2 L← {MSQ(a,A) | a ∈ I}
3 while |L| > 2 do
4 qA, qB ← arg minq,q′∈L, q 6=q′ QueryDissimilarity(q, q′)
5 q← Merge(qA, qB)
6 L← (L \ {qA, qB}) ∪ {q}
7 append q to S
8 end
9 return S

The algorithm starts by initializing an empty list of queries S , and by creating an initial description for each
individual in I in the form of a most specific query (MSQ). A detailed definition of a MSQ is given in Section 4.1;
intuitively, an MSQ of an individual a for an ABox A is an instance query q that captures the maximum possible
information about a and is such that a ∈ cert(MSQ(q,A)). Given these descriptions, one for each individual, which
are added in a set L, the algorithm then tries to combine the elements of L in order to generate more general
descriptions. In particular, at each iteration of the while loop, it selects two queries from L and merges them. The
queries to be merged are selected based on their dissimilarity; two least dissimilar queries are selected and merged.
The intuition is that by merging relatively similar queries, the resulting queries will continue to be “as specific as
possible” since they will generalize out the limited dissimilarities of the original queries. In Section 4.2 we discuss
how dissimilarity is estimated, and in Section 4.3 we describe two alternative approaches for merging queries.
Given two queries qA, qB that have been selected as least dissimilar, the algorithm merges them by constructing
a new instance query q = Merge(qA, qB) such that cert(q,A) ⊇ cert(qA,A) ∪ cert(qB,A). The newly created
query replaces the ones it was merged from in L, and is also appended to S . Once the queries to be merged have
been exhausted, Alg. 1 terminates by returning the list S which will contain |I| − 1 instance queries, the results of
each merging step in order of creation. Thus, the queries can be considered to be S in some decreasing order of
“specificness”, although the actual order depends on the order the elements in L are considered.

If the queries in S have subsets of I as their certain answers, given that we have assumed that I is the pos-set of
a classifier for some class C, the queries can be treated as candidate explanation rule queries for C. In this case, the
queries can be interpreted as explanation rule queries, converted to the respective explanation rules, and presented
as explanations. In general, however, there is no guarantee that the certain answers of a merged query will be a
subset of I. In this case, which is the typical case, the computed explanation rules will be rules with exceptions. In
Section 4.3 we prove some optimality results for one of the merging methods, the query least common subsumer
(QLCS). In particular, if there is a correct explanation rule (without exceptions), then we are guaranteed to find the
corresponding explanation rule query, using the QLCS.

As mentioned above, Alg. 1 works on the assumption that all available knowledge about the relevant individuals I
is encoded in a (finite) atomic ABoxA. This is essential for the computation of the MSQs. Given that the knowledge
base associated with an explanation dataset is in general of the form 〈T ,A〉, this assumption means that if the
original knowledge involves a non-empty TBox T , it has to be eliminated before applying Alg. 1. This poses certain
restrictions on the applicability of Alg. 1, namely that if the original knowledge of the explanation dataset is indeed
of the form 〈T ,A〉 with T 6= ∅, it should be possible to be transformed through TBox elimination to an equivalent
w.r.t. query answering finite assertional-only knowledge base A′, such that cert(q, 〈T ,A〉) = cert(q, 〈∅,A′〉) for

12 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

any q. For knowledge bases that this is possible, the standard approach for TBox elimination is materialization and
is typically performed by first encoding the axioms in T as a set of inference rules generating ABox assertions, and
then iteratively applying them on the knowledge base until no more assertions can be generated. Materialization is
possible, e.g. for Description Logic Programs and the Horn-SHIQ DL dialect. Finite materialization may not be
possible even for low expressivity DL dialects, such as DL-Lite. [55, 56]

4.1. Most Specific Queries

As mentioned above, intuitively, a most specific query (MSQ) of an individual a for an atomic ABox A encodes
the maximum possible information about a provided by A. It is defined as a least query in terms of subsumption
which has a as a certain answer; in particular, a query q is a MSQ of an individual a for an atomic ABox A iff
a ∈ cert(q,A) and for all q′ such that a ∈ cert(q′,A) we have q 6S q′.

Following the subsumption properties, MSQs are unique up to syntactical equivalence. In Alg. 1 it is assumed
that MSQ(a,A) represents one such MSQ of a forA. SinceA is finite, a MSQ is easy to compute. This can be done
by viewing A as a graph, taking the connected component of that graph that contains node a, and converting it into
a graph representing a query by replacing all nodes (which in the original graph represent individuals) by arbitrary,
distinct variables, taking care to replace node a by variable x.

Theorem 2. Let A be a finite atomic ABox over a vocabulary 〈CN,RN, IN〉, a an individual in IN, and conn(a,A)
the connected component of the ABox graph of A containing a. Let also q be an instance query with query graph
G. If there exists an isomorphism f : G → conn(a,A) such that f (x) = a, then q is an MSQ of a for A.

Proof. Let I be the interpretation such that ∆I = IN, aI = a for all a ∈ IN, CI = {a | C(a) ∈ A}, for all
C ∈ CN, and rI = {(a, b) | r(a, b) ∈ A} for all r ∈ RN. Clearly, I is a model of A, and it is easy to see that
cert(q,A) = ansI(q,A) for any query q, where ansI(q,A) are the answers to q under the interpretation I. Because
of this identity, we can, without loss of generality, restrict ourselves to this I w.r.t. cert(q,A).

Since f exists, we can construct for q the match π : var(q)→ IN, such that π(u) = f (u)
I . It follows that π(x) = a,

and so a ∈ cert(q,A). Let q′ be a query with query graph G′ such that a ∈ cert(q′,A). Since a is an answer of q′,
G′ must be homomorphic to A by a homomorphism g such that g(x) = a. Since homomorphisms preserve edges
and q′ is connected, the image of G′ under g is a subgraph of conn(a,A). Then h = g ◦ f−1 is a homomorphism
from G′ to G with h(x) = x. Thus, q 6S q′.

Since q 6S q′ implies that cert(q,A) ⊆ cert(q′,A), the MSQ of a has as few as possible certain answers other
than a. This is desired since it implies that the initial queries in Alg. 1 do not have any exceptions (certain answers
not in the pos-set), unless this cannot be avoided. Therefore, the iterative query merging process of constructing
explanations starts from an optimal standpoint.

Example 4. Continuing the previous examples, Fig. 2 shows the graphs of the MSQs of p3 and p4, constructed by
materializing the TBox, and then extracting the connected components of p3 and p4 from the new ABox.

For use with Alg. 1, we denote a call to a concrete function implementing the above described approach for
obtaining MSQ(a,A) by GRAPHMSQ(a,A). We should note that the result of GRAPHMSQ(a,A) will be a MSQ,
but in general it will not be condensed, and thus may contain redundant atoms and variables.

4.2. Query Dissimilarity

At each iteration, Alg. 1 selects two queries to merge in order to produce a more general description covering
both queries. To make the selection, we use a heuristic which is meant to express how dissimilar two queries are, so
that at each iteration the two least dissimilar queries are selected and merged, with the purpose of generating an as
least generic as possible more general description. Given two queries q1, q2 with respective graph representations

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

x

{Exemplar}

y11

{SoreThroat, Finding}
y12

{Dyspnoea, LungFinding,
Finding}

ha
sF

in
di

ng hasFinding

x

{Exemplar}

y21

{SoreThroat, Finding}
y22

{DryCough,Cough,
LungFinding, Finding}

ha
sF

in
di

ng hasFinding

Fig. 2. The MSQs of p3 and p4 represented as graphs

G1 = (V1, E1, `V1 , `E1) and G2 = (V2, E2, `V2 , `E2), we define the query dissimilarity heuristic between q1 and q2
as follows:

QueryDissimilarity(q1, q2) =
∑

v1∈V1

min
v2∈V2

dissq1q2(v1, v2) +
∑

v2∈V2

min
v1∈V1

dissq2q1(v2, v1)

where

dissq1q2(v1, v2) = |L1(v1) \ L2(v2)|

+
∑
r∈R

{max(indegreer
G1

(v1)− indegreer
G2

(v2), 0) + max(outdegreer
G1

(v1)− outdegreer
G2

(v2), 0)},

R is the set of all role names appearing in the edge labels of the two graphs, and indegreer
G(v) (outdegreer

G(v)) is
the number of incoming (outcoming) edges e in node v of graph G with r ∈ `(e).

The intuition behind the above dissimilarity measure is that the graphs of queries which are dissimilar consist
of nodes with dissimilar labels connected in dissimilar ways. Intuitively, we expect such queries to have dissimilar
sets of certain answers, although there is no guarantee that this will always be the case. In order to have a heuristic
that can be computed efficiently, we do not examine complex ways in which the nodes may be interconnected, but
only examine the local structure of the nodes by comparing their indegrees and outdegrees. The way in which we
compare the nodes of two query graphs is optimistic; we compare each node with its best possible counterpart —the
node of the other graph which it is the least dissimilar to. Note that dissq1q2(v1, v2) does not equal dissq2q1(v2, v1).
The first quantity expresses how many conjuncts of q1 containing v1 do not appear in q2 containing v2. This is best
illustrated using a short example.

Example 5. Let q1 = {C(x),D(x), r(x, y11), r(y12, x), s(x, y11)}, q2 = {C(x), E(x), r(x, y21), r(x, y23)} and as-
sume that we are comparing variable x of q1 with variable x of q2. As far as concepts are concerned, C(x) appears
in both q1 and q2, while D(x) only appears in q1, so one concept conjunct is missing from q2. Moreover, x appears
in one “outgoing” r conjunct in q1 and in two outgoing r conjuncts in q2, so no outgoing conjuncts are missing
from q2. Also, x appears in one “ingoing” r conjunct in q1 but in no “ingoing” r in q2 conjuncts, so one more
conjunct is missing. Finally, the s conjunct of x is missing from q2, giving us a total of three missing conjuncts from
q2, therefore dissq1q2(x1, x2) = 3.

Using an efficient representation of the queries, it is easy to see that QueryDissimilarity(q1, q2) can be computed
in time O(|var(q1)| · |var(q2)|).

4.3. Query Merging

The next step in Alg. 1 is the merging of the two least dissimilar queries that have been selected. In particular,
given a query qA for some individuals IA, i.e. a query such that IA ⊆ cert(qA,A), and a query qB for some individuals

14 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

∅
x, y21

∅
x, y22

{Exemplar}
x, x

∅
y11, x

∅
y12, x

{SoreThroat, Finding}

y11, y21

{Finding}

y11, y22

{Finding}

y12, y21

{LungFinding, Finding}

y12, y22

hasFinding

ha
sF

in
di

ng
hasFinding

hasFinding

Fig. 3. The Kronecker product of the MSQs of p3 and p4

IB, i.e. a query such that IB ⊆ cert(qB,A), the purpose is to merge the two queries to produce a more general query
q for IA ∪ IB. The necessary condition that such query must satisfy is IA ∪ IB ⊆ cert(q,A). In the context of Alg. 1
the queries qA, qB may be MSQs of some individuals, or results of previous query merges.

4.3.1. Query Least Common Subsumer
Our first approach for merging queries is using the query least common subsumer (QLCS). As mentioned in

Section 2, a QLCS is a most specific generalization of two queries. By choosing to use QLCS(qA, qB) (since QLCS
is unique up to syntactical equivalence, we assume that QLCS(qA, qB) represents one such QLCS for qA and qB) in
the place of Merge(qA, qB) in Alg. 1 , and assuming that the input set of individuals is I = {a1 . . . , an}, it should
be obvious that the last query computed by Alg. 1 will be q = QLCS(MSQ(a1,A),MSQ(a2,A), . . . ,MSQ(an,A)).
For any query q′ such that cert(q′,A) ⊇ I, it will by definition hold that MSQ(ai,A) 6S q′, i = 1, . . . , n. Therefore,
q 6S q′, which implies that cert(q,A) ⊆ cert(q′,A). This means that if there is an exact explanation rule query of
I, that will be a QLCS of its MSQs, while if there is not, the computed QLCS explanation rule query will have the
fewest possible exceptions. Thus, the main advantage of using the QLCS is that it guarantees “optimality” of the
computed explanations.

To compute a QLCS we use an extension of the Kronecker product of graphs to labeled graphs. Given two
labeled graphs G1 = (V1, E1, `V1

, `E1
) and G2 = (V2, E2, `V2

, `E2
) , which in our case will represent queries, their

Kronecker product G = G1 × G2 is the graph G = (V, E, `V , `E), where V = V1 × V2, E = {((u1, u2), (v1, v2)) |
(u1, u2) ∈ E1, (v1, v2) ∈ E2, and `E1

(u1, u2) ∩ `E2
(v1, v2) 6= ∅} ⊆ V × V , `V : V → 2CN with `V((v1, v2)) =

`V1
(v1) ∩ `V2

(v2), and `E : E → 2RN with `E((u1, u2), (v1, v2)) = `E1
(u1, u2) ∩ `E2

(v1, v2).

Example 6. Fig. 3 shows the Kronecker product of the query graphs of Example 4.

As with the Kronecker product of unlabeled graphs, for any graph H, we have that H → G1,G2 if and only if
H → G1 ×G2. Since we are interested in graphs representing instance queries, we can assume that H, G1, G2 are
connected. Assuming that G1,G2 represent two instance queries q1, q2 (with answer variable x), it will specifically
hold that H → G1,G2 if and only if H → conn((x, x),G1 × G2), where conn((x, x),G1 × G2) is the connected
component of G1 × G2 containing the pairs of answer variables node (x, x). Because homomorphisms between
query graphs correspond to subsumption relations between the respective queries, and vice versa, the connected
component of G1×G2 containing node (x, x), with node (x, x) replaced by x (the answer variable of the new query)
and all other nodes of that connected component replaced by distinct arbitrary variable names other than x, can be
viewed as the graph of an QLCS of q1 and q2.

For use with Alg. 1, we denote a call to the concrete function implementing that approach for computing
QLCS(q1, q2) by KRONECKERQLCS(q1, q2). The time complexity of KRONECKERQLCS(q1, q2) is O(|var(q1)|2 ·
|var(q2)|2), and the Kronecker product of the graphs G1, G2, contains |V1| · |V2| nodes. Therefore, the final query
constructed by Alg. 1 using KRONECKERQLCS(q1, q2) to implement Merge(q1, q2) will have O(mn) variables,
where m = maxi=1,...,n |var(qi)| is the maximum variable count of the MSQs, and n = |I| is the number of individ-
uals in I. Constructing this query is by far the most expensive operation of the algorithm and dominates the running
time with a complexity of O(m2n). This makes the use of the above procedure for computing QLCS’s prohibitive

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

x

{Exemplar}

y1

{SoreThroat, Finding}

y2

{Finding}

y3

{Finding}

y4

{LungFinding, Finding}

hasFinding

ha
sF

in
di

ng
hasFinding

hasFinding

Fig. 4. The QLCS of the MSQs of p3 and p4 produced by KRONECKERQLCS represented as a graph

for merging queries. However, the query obtained using the Kronecker product is in general not condensed, and in
general will contain many redundant atoms and variables.

Example 7. Fig. 4 shows the QLCS of the MSQs of Example 4, extracted from the Kronecker product of Exam-
ple 6. It is obvious that the nodes with label {Finding} are redundant due to the presence of the nodes with label
{SoreThroat, Finding} and {LungFinding, Finding}.

Removing the redundant parts of a query is essential not only for reducing the running time of the algorithm.
Since these queries are intended to be shown to humans as explanations, ensuring that they are compact is imper-
ative to improve comprehensibility. As mentioned in Section 2, the operation that compacts a query by creating a
syntactically equivalent query by removing all its redundant parts is condensation. However, condensing a query
is coNP-complete [47]. For this reason, we utilize Alg. 2, an approximation algorithm which removes redundant
conjuncts and variables without a guarantee of producing a fully condensed query.

Alg. 2 iterates through the variables of the input query, and checks if deleting one of them is equivalent to unifying
it with another one. In particular, at each iteration of the main loop, the algorithm attempts to find a variable suitable
for deletion. If none is found, the loop terminates. The inner loop iterates through all pairs of variables. At each
iteration, variable v′ is deleted if unifying it with v, by replacing all instances of v′ in the query with v, produces
no new conjuncts. By unifying variable v′ with v, all conjuncts of the form C(v′) become C(v) and all conjuncts
of the forms r(v′, v′′), r(v′′, v′), r(v′, v′) become r(v, v′′), r(v′′, v), r(v, v), respectively. If these conjuncts are already
present, then removing them is equivalent to unifying v′ with v. Alg. 2 is correct because removing a variable from
query q produces a query that subsumes q, while unifying two variables of q produces a query that is subsumed by
q. Therefore, Alg. 2 produces syntactically equivalent queries.

Algorithm 2: APPROXQUERYMINIMIZE

Input: A query represented as a graph q = 〈V, E, `V , `E〉.
Output: An approximately minimized query q′, also represented as a graph.

1 do
2 q′ ← q
3 foreach pair (v, v′), v, v′ ∈ V, v 6= v′ do
4 if `V(v′) ⊆ `V(v) and

〈v′, v′′〉 ∈ E ⇒ (〈v, v′′〉 ∈ E, `E(v′, v′′) ⊆ `E(v, v′′)), v′′ 6= v′ and
〈v′′, v′〉 ∈ E ⇒ (〈v′′, v〉 ∈ E, `E(v′′, v′) ⊆ `E(v′′, v)), v′′ 6= v′ and
〈v′, v′〉 ∈ E ⇒ (〈v, v〉 ∈ E, `E(v′, v′) ⊆ `E(v, v)) then

5 Delete variable v′ from q.
6 end
7 end
8 while q′ 6= q
9 return q′

16 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Example 8. We can showcase an example of Alg. 2 detecting an extraneous variable in the QLCS of q1 and q2 from
Example 7, running the main loop for v = y1 and v′ = y2. The condition at line 3 first checks if the label of node v′,
{Finding}, is a subset of the label of node v, {SoreThroat, Finding}, which is true. Then for every incoming edge to
v′ it checks if there is an edge incoming to v with the same label and origin. They both have one incoming edge from
node x labeled with hasFinding so the second condition will also evaluate to true. Node v′ has no incoming edges,
so the third condition will also evaluate to true. Therefore, Alg. 2 will detect node v′ as extraneous and delete it.
Running the entire algorithm for this query will result in the query represented in Fig. 5 as a graph.

x

{Exemplar}

y1

{SoreThroat, Finding}
y4

{LungFinding, Finding}

ha
sF

in
di

ng hasFinding

Fig. 5. The minimized graph of the QLCS of Fig. 4

The main loop of Alg. 2 is executed at most var(q) times, since at each loop either a variable is deleted or the
loop terminates. The inner loop checks all pairs of variables (O(|var(q)|2)), and the if condition requires O(var(q))
set comparisons of size at most |CN|, and 2|RN| comparisons of rows and columns of adjacency matrices. Treating
|CN| and |RN| as constants, the complexity of Algorithm 2 is O(|var(q)|4).

Given the above, our first practical implementation of Alg. 1, uses GRAPHMSQ(a,A) to implement MSQ(a,A),
and APPROXQUERYMINIMIZE(KRONECKERQLCS(qA, qB)) to implement Merge(qA, qB).

Regardless of the approximate query minimization described above, even if full query condensation could be
performed, there is no guarantee that condensing the queries computed by Alg. 1 using QLCS as the merge opera-
tion, have meaningfully smaller condensations. This led us to two different approaches for further dealing with the
rapidly growing queries QLCS produces.

The simplest approach to address this problem is to reject any queries produced by KRONECKERQLCS(q1, q2)
that, even after minimization, have variable counts higher than a pre-selected threshold. This strategy essentially
introduces a weaker version of Alg.1, without the guarantees of optimality, but with polynomial running time, which
is outlined in Alg. 3, which we call KGrules-HT.

Alg. 3 is the same as Alg. 1 except that q is not added to L and S unless its variable count is less than or equal to
an input threshold, t. This simple change reduces the complexity of the algorithm to polynomial in terms of |I| and
t. It should be noted that setting a very low threshold for t could potentially lead to all queries being rejected and the
algorithm returning an empty set, therefore t should be adjusted experimentally. It is also assumed that all MSQ’s
created when initializing L have less than t variables.

If we let n = |I|, calculating the query dissimilarity for all pairs of queries, costs O(n2t2) operations. Using
memoization limits the cost of calculating the dissimilarity through all iterations to O(n2t2). Each iteration of the
main loop involves O(n2) operations for selecting qA, qB, O(t4) operations for calculating their QLCS. Thus, in
total, Alg. 3 has a running time of O(n3 + n2t2 + nt4).

Our second approach to overcome the problem posed by the rapidly growing size of the queries produced by
QLCS was to consider a different merge operation, which is described in the following section.

4.3.2. Greedy Matching
As already mentioned, the above described procedure for merging queries by computing a QLCS, often introduces

too many variables that Alg. 2 can’t minimize effectively. A QLCS of q1, q2, if condensed, is optimal at producing
a query that combines their certain answers while introducing few as possible new variables. However, the new

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 3: KGrules-HT
Input: An atomic ABox A, a set of individual names I and a threshold t.
Output: A set of queries S .

1 S ← ∅
2 L← {GRAPHMSQ(a,A) | a ∈ I}
3 while |L| > 2 do
4 qA, qB ← arg minq,q′∈L, q 6=q′ QueryDissimilarity(q, q′)
5 q← APPROXQUERYMINIMIZE(KRONECKERQLCS(qA, qB))
6 L← (L \ {qA, qB})
7 if |var(q)| 6 t then
8 L← L ∪ {q}
9 append q to S

10 end
11 end
12 return S

variables that are introduced may still be too many. In practice, we may be able to afford some leniency in terms of
certain answers, so we can explore alternative methods of unifying queries without the cost of increased variables.

One such method, is finding a common subquery, i.e. finding the common conjuncts of two queries q1, q2. As-
suming that |var(q1)| > |var(q2)| and that q1, q2 are renamed apart except for the answer variable x, a matching θ
is a 1-1 mapping from the variables of q2 to the variables of q1. The common subquery q is formed by renaming the
variables of q2 according to the matching, and keeping the conjuncts also found in q1, i.e. q = q1 ∩ q2θ.

Example 9. Continuing the previous examples, we will find common subqueries of the MSQs of p3 and
p4. We can match the lung finding of p4 with the lung finding of p3 as well as their sore throat findings.
This would be done by renaming y21 to y11 and y22 to y12 and then keeping the common conjuncts re-
sulting in the query q(x) = {Exemplar(x), hasFinding(x, y11),SoreThroat(y11), Finding(y11), hasFinding(x, y12),
LungFinding(y12), Finding(y12)}. In our approach we evaluate the quality of matchings based on the number of
conjuncts in the query they induce, which in this case is 7.

Finding the maximum common subquery belongs to a larger family of problems of finding maximal common
substructures in graphs, such as the mapping problem for processors [57], structural resemblance in proteins [58]
and the maximal common substructure match (MCSSM) [59]. Our problem can be expressed as a weighted version
of most of these problems, since they only seek to maximize the number of nodes in the common substructure,
which, in our case, corresponds to the number of variables in the resulting subquery. Since we want to maximize the
number of common conjuncts, we could assign weights to variable matchings (y corresponds to z) due to concept
conjuncts, and to pairs of variable matchings (y corresponds to z and y′ corresponds to z′) due to role conjuncts. This
is an instance of the general graph matching problem. These problems are NP-hard and are therefore usually solved
with approximation algorithms [60] [61]. With Alg. 4, we introduce our own method for approximately solving
this problem since we need to impose the additional restriction that the resulting query must be connected. Any
conjuncts in the resulting query that aren’t connected to the answer variable do not influence the query’s certain
answers, so we consider them extraneous.

Alg. 4 initializes an empty variable renaming θ. V and U contain the variables that have not been matched yet. At
each iteration of the main loop, the algorithm attempts to match one of the variables of q2 with one of the variables
of q1. Only matches that conserve the connectedness of the induced query are considered (set S). If there are no such
matches the main loop terminates. Otherwise, the match that adds the largest number of conjuncts to the induced
query is selected. This match is added to θ and the corresponding variables are removed from V and U. Finally,
the query q which consists of the common conjuncts of q1 and q2 is constructed, by renaming the variables of q2
according to θ and keeping the conjuncts that also appear in q1.

18 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 4: GREEDYCOMMONCONJUNCTS

Input: Two queries q1, q2, with query graphs Gq1 = 〈V1, E1, `V1 , `E1〉,Gq2 = 〈V2, E2, `V2 , `E2〉.
Output: A query consisting of common conjuncts of q1 and q2.

1 if |var(q1)| < |var(q2)| then
2 Swap q1, q2
3 end
4 θ← {}
5 U ← var(q1) \ {x}
6 V ← var(q2) \ {x}
7 while true do
8 S ← {z 7→ y | z ∈ V, y ∈ U, (z, z′) ∈ E1, (y, y′) ∈ E2, `E1

(z, z′) ∩ `E2
(y, y′) 6= ∅, z′ 7→ y′ ∈ θ}

9 ∪{z 7→ y | z ∈ V, y ∈ U, (z′, z) ∈ E1, (y′, y) ∈ E2, `E1
(z′, z) ∩ `E2

(y′, y) 6= ∅, z′ 7→ y′ ∈ θ}
10 if S 6= ∅ then
11 ẑ 7→ ŷ← arg maxz 7→y∈S {|q1 ∩ q2(θ ∪ {z 7→ y})| − |q1 ∩ q2θ|}
12 θ← θ ∪ {ẑ 7→ ŷ}
13 V ← V \ {ẑ}
14 U ← U \ {ŷ}
15 else
16 break
17 end
18 end
19 q← q1 ∩ q2θ
20 return q

An efficient implementation of Alg. 4 will use a max-priority queue to select at each iteration the match that adds
the largest number of conjuncts to the induced query. The priority queue should contain an element for each pair of
variables that can be matched, with the priority of the element being either 0 if the pair is not in S , and otherwise
equal to the number of conjuncts it would add to the query. At each iteration some priorities may need to be updated.
The time complexity of priority queues varies depending on their implementation. Implementations such as Strict Fi-
bonacci Heaps have lower time complexity but perform worse in practice than simpler implementations with higher
time complexities such as Binary Heaps. A Strict Fibonacci Heap implementation would have a time complexity of
O(n2m2), where n = |var(q1)|, m = |var(q2)|, while a Binary Heap implementation O(n2m2 log(nm)).

5. Experiments

We evaluated the proposed algorithms and framework by generating explanations for various classifiers, comput-
ing the metrics presented in Section 3, comparing with other rule-based approaches where possible, and discussing
the quality and usefulness of the results. Specifically, we explored three use-cases: a) we are given a tabular dataset
which serves as both the features of the classifier and the explanation dataset, b) we are given raw data along with
curated semantic descriptions and c) we are only given raw data, so semantic descriptions need to be constructed
automatically. The first use-case facilitated comparison of the proposed KGRules-H algorithm with other rule-based
XAI approaches from literature, the second use-case was more suitable for validating the usefulness of the proposed
framework, while the third explored how KGRules-H could be utilized in a scenario in which semantic data de-
scriptions are not available. For the first use-case we experimented on the Mushroom1 dataset which involves only
categorical features. For the second use-case we used the CLEVR-Hans3 dataset [62] which consists of images of

1https://archive.ics.uci.edu/ml/datasets/mushroom

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3D geometric shapes in addition to rich metadata which we use as semantic data descriptions, while for the third we
used MNIST [63] which contains images of handwritten digits, and no metadata.

The components needed for each experiment, were: a) a black-box classifier for which we provide rule-based ex-
planations, b) an explanation dataset with semantic descriptions of exemplar data using the appropriate terminology
and c) reasoning capabilities for semantic query answering, in order to evaluate the generated rules. As classifiers
we chose widely used neural networks, which are provided as default models in most deep learning frameworks.

For constructing explanation datasets in practice, we identified two general approaches: a) the curated approach,
and b) the automated information extraction approach. For the manual approach, the semantic descriptions of exem-
plar data were provided. In an ideal scenario, curated explanation datasets are created by domain experts, providing
semantic descriptions which are meaningful for the task, and by using the appropriate terminology, lead to mean-
ingful rules as explanations. In our experiments, we simulated such a manually curated dataset by using CLEVR-
Hans3, which provides semantic descriptions for each image present in the dataset. Of course, using human labor
for the creation of explanation datasets in real-world applications would be expensive, thus we also experimented
with automatically generating semantic descriptions for exemplar data. Specifically, for the automated information
extraction approach we used domain specific, robust, feature extraction techniques and then provided semantic de-
scriptions in terms of the extracted features. In these experiments, we automatically generated semantic descriptions
for images in MNIST, by using ridge detection, and then describing each image as a set of intersecting lines.

For acquiring certain answers of semantic queries, which requires reasoning, we set up repositories on GraphDB.2

For the case of the Mushrooms dataset we used the certain answers to measure fidelity, number of rules and average
rule length and compared our approach with RuleMatrix [9] which implements scalable bayesian rule lists [8],
Skope-Rules3 and the closely related KGrules[46]. For CLEVR-Hans3, we mainly used the certain answers to
explore whether our explainability framework can detect the foreknown bias of the classifier, by observing the best
generated rule-queries with respect to precision, recall, and degree as defined in Section 3. Finally, for MNIST we
observed quality and usability related properties of generated rule queries and their exceptions.

5.1. Mushrooms

The purpose of the Mushroom experiment was to compare our results with other rule-based approaches from the
literature. Since other approaches mostly provide explanation rules in terms of the feature space, the explanation
dataset was created containing only this information. We should note that this was only done for comparison’s sake,
and is not the intended use-case for the proposed framework, in which there would exist semantic descriptions which
cannot be necessarily represented in tabular form, and possibly a TBox.

5.1.1. Explanation Dataset
The Mushroom dataset contains 8124 rows, each with 22 categorical features of 2 to 9 possible values. We

randomly chose subsets of up to 4000 rows to serve as the exemplars of explanation datasets. The vocabulary
〈CN,RN, IN〉 used by the explanation datasets consisted of: an individual name for each index of a row included in
the explanation dataset (in IN), and a concept name for each combination of categorical feature and value (in CN),
giving us a total of |CN| = 123. In this case, the set of exemplars (EN) coincided with the set of individual names.
Then, for each feature and for each row, we added an assertion to the ABox, representing the value of the feature
for the corresponding row. Thus, the knowledge base of an explanation dataset and its vocabulary had the form:

IN = {row1, row2 . . . rown}

CN = {CapShapeBell,CapShapeConical,CapShapeConvex, . . . ,HabitatGrass,HabitatLeaves, . . . }

RN = ∅

A = {CapShapeFlat(row1),CapSurfaceFibrous(row1), . . . ,HabitatPaths(rown)}

2https://graphdb.ontotext.com/
3https://github.com/scikit-learn-contrib/Skope-Rules

20 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5.1.2. Setting
For this set of experiments, we used a simple multi-layer perceptron with one hidden layer as the black-box

classifier. The classifier achieved 100% accuracy on train and test set in all experiments. After training, we generated
explanations with using Alg. 1 (in the case of tabular data, both merge operations outlined in section 4.3 are reduced
to a simple intersection of the concept assertions of the merged individuals), along with three other rule-based
approaches from related literature, and compared them.

We split the dataset into four parts: 1) a training set, used to train the classifier, 2) a test set, used to evaluate
the classifier, 3) an explanation-train set, used to generate explanation rules, and 4) an explanation-test set, used
to evaluate the generated explanation rules. When running KGrules-H and KGrules, the explanation dataset was
constructed from the explanation-train set. We experimented by changing the size of this dataset, from 100 to 4000
rows, and observed the effect it had on the explanation rules. On the explanation-test set, we measured the fidelity
of the generated rules which is defined as the proportion of items for which classifier and explainer agree. We also
measured the number of generated rules and average rule length. We used the proposed KGrules-H algorithm to
generate explanations, and we also generated rules (on the same data and classifier) with RuleMatrix, Skope-rules
and the closely related KGrules.

To compare with the other methods, which return a set of rules at their output, in this experiment we only consid-
ered correct rules we generated. To choose which rules to consider (what would be shown to a user), from the set
of all correct rule-queries generated, we greedily chose queries starting with the one that had the highest count of
certain answers on the explanation-train set, and then iteratively adding queries that provided the highest count of
certain answers, not provided by any of the previously chosen queries. This is not necessarily the optimal strategy
of rule selection for showing to a user (it never considers rules with exceptions), and we plan to explore alternatives
in future work.

Finally, for all methods except for the related KGrules we measured running-time using same runtime on Google
Colab 4, by using the “%%timeit” 5 magic command with default parameters. KGrules was not compatible with
this benchmarking test, since it is implemented in Java as opposed to Python which is the implementation language
provided for the other methods. In addition, KGrules implements an exhaustive exponential algorithm, so it is
expected to be much slower than all other methods.

5.1.3. Results
The results of the comparative study are shown in Table 2. A first observation is that for small explanation datasets,

the proposed approach did not perform as well as the other methods regarding fidelity, while for large ones it even
outperformed them. This could be because for small explanation datasets, when the exemplars are chosen randomly,
there are not enough individuals, and variety in the MSQs of these individuals, for the algorithm to generalize by
merging their MSQs. This is hinted also from the average rule length, which is longer for both KGrules-H and
KGrules for explanation dataset sizes 100 and 200, which indicates less general queries. Conversely, for explanation
datasets of 600 exemplars and larger, the proposed approach performs similarly, in terms of fidelity, with related
methods. Regarding running time, KGrules-H is the fastest except for the case of the largest explanation dataset, for
which Skope-rules is faster. However, in this case Skope-rules’s performance suffers with respect to fidelity, whereas
RuleMatrix and KGrules-H achieve perfect results. Furthermore, our proposed approach seems to generate longer
rules than all other methods which on the one hand means that they are more informative, though on the other hand
they are potentially less understandable by a user. This highlights the disadvantages constructing queries using the
MSQs as a starting point. This was validated upon closer investigation, where we saw that the rules generated from
the small explanation datasets were more specific than needed, as the low value of fidelity was due only to false
negatives, and there were no false positives. Detecting redundant conjuncts might be be done more efficiently for
rules concerning tabular data, but for general rules, on which our approach is based, this task is very computationally
demanding.

4https://colab.research.google.com/
5https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Size Method Fidelity Nr. of Rules Avg. Length Time (seconds)

10
0

KGrules-H 92.70% 4 14 0.15
KGrules 97.56% 11 5 -

RuleMatrix 94.53% 3 2 3.65
Skope-rules 97.01% 3 2 1.29

20
0

KGrules-H 93.40% 8 14 0.18
KGrules 98.37% 11 5 -

RuleMatrix 97.78% 4 2 3.65
Skope-rules 98.49% 4 2 1.47

60
0

KGrules-H 99.60% 10 13.3 0.61
KGrules 99.41% 13 4 -

RuleMatrix 99.43% 6 1 7.69
Skope-rules 98.52% 4 2 1.58

10
00

KGrules-H 100% 9 14.2 1.67
KGrules 99.58% 14 6.57 -

RuleMatrix 99.90% 6 1.33 11.1
Skope-rules 98.50% 4 2.25 2.95

40
00

KGrules-H 100% 10 14.2 34.30
KGrules 99.72% 16 5.81 -

RuleMatrix 100% 7 1.43 43.00
Skope-rules 96.85% 2 2 3.01

Table 2
Performance on the Mushroom dataset.

5.2. CLEVR-Hans3

The second set of experiments involved CLEVR-Hans3 [62], which is an image classification dataset designed to
evaluate algorithms that detect and fix biases of classifiers. This dataset provides sufficient and reliable information
to create an explanation dataset, while the given train-test split contains intentional biases, which was ideal as a
grounds for experimentation, as we could observe the extent to which the proposed explanation rules can detect
them.

5.2.1. Explanation Dataset
We created an explanation dataset E using the test set of CLEVR-Hans3, consisting of 750 images for each class.

By utilizing the descriptions of images provided as metadata, we defined a vocabulary 〈CN,RN, IN〉, in which there
was an individual name for each image and for each depicted object (in IN), a concept name for each size, color,
shape and material in addition to three concept names (Class1, Class2, Class3) corresponding to the set of classes C
and two indicative concept names Image and Object, as concept names (in CN), and the role name (in RN) contains
which was used to link images to objects it depicts. We used the (unique) names of the image files of the test set
as names for the exemplars (EN) of our explanation dataset, so the mappingM was straightforward (mapping the
file name to the respective image). We then created the knowledge base S over this vocabulary, with the ABox
containing the semantic description of all images and the respective objects, and the TBox containing certain rather
trivial inclusion axioms. The sets IN, CN, RN and the Tbox of our knowledge base and the respective vocabulary
were the following:

IN = {image1.png, object11, object21, . . . , objectN1, image2.png, object12, object22, . . . , image2250.png,

object12250, . . . , objectM2250}

CN = {Image,Object,Cube,Cylinder,Sphere,Metal,Rubber,Blue,Brown,Cyan,Gray,Green,Purple,Red,

22 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 6. Image samples of the three classes of CLEVR-Hans3 along with the class rules and the confounding factors in parentheses.

Yellow, Large,Small,Class1,Class2,Class3}

RN = {contains}

T = {C v Object | C 6∈ {Image,Object,Class1,Class2,Class3}}.

5.2.2. Setting
For the experiments on CLEVR-Hans3 we used the same ResNet34 [64] classifier and training procedure as

those used by the creators of the dataset in [62]. The performance of the classifier is shown in Table 3 and so is the
confusion matrix which summarizes the predictions of the classifier indicating the differences between the actual
and the predicted classes of the test samples. As expected, the classifier has lower values on some metrics regarding
the first two classes, and this is attributed to the confounding factors and not the quality of the classifier, since it
achieved 99.4% accuracy in the validation set. After training the classifier, we acquired its predictions on the test set
and generated explanations for each class with Alg. 1 with QLCS as the merge operation. Afterwards, utilizing the
reasoning capabilities of GraphDB, we loaded the knowledge base S of our explanation dataset, and obtained the
certain answers of the corresponding explanation rule queries in order to evaluate the produced explanation rules.
The evaluation was based on the metrics mentioned in Section 3, essentially comparing the certain answers of the
explanation rule queries, with the corresponding exemplars of the pos-set of the classifier.

Table 3
Performance of the ResNet34 model on CLEVR-Hans3.

Test set metrics Confusion matrix

True label Precision Recall F1-score Class 1 Class 2 Class 3

Class 1 0.94 0.16 0.27 118 511 121
Class 2 0.59 0.98 0.54 5 736 9
Class 3 0.85 1.00 0.92 2 0 748

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5.2.3. Results
The explanation rules generated for the ResNet34 classifier using KGrules-H and QLCS as the merge operation,

as outlined in section 4.3.1, are shown in Table 4, where we show the rule, the value of each metric and the numbers
of positive individuals. The term positive individuals refers to the certain answers of the respective explanation rule
query that are also elements of the pos-set (they are classified in the respective class).

In our representation of explanation rule queries in Tables 4,5 we have omitted the answer variable x,
along with all conjuncts of the form x contains y and conjuncts of the form Object(y), for brevity. In addi-
tion, the rules in the Table are not formally written, to make more visually clear the characteristics of the ob-
jects involved. For example, the rule of the first row (Best precision for class 1) would formally be written
Exemplar(x), contains(x, y1), contains(x, y2), contains(x, y3), Large(y1),Cube(y1),Gray(y1), Large(y2),Cylinder(y2),
Large(y3),Metal(y3)→ Class1(x).

The algorithm found a correct rule (precision = 1) for each class, in addition to a rule query with recall = 1,
whose certain answers are a superset of the positive set. The best degree was achieved for class 3, which lacks a
confounding factor, meaning the classifier is not expected to be biased. Correct rule queries are of particular interest
since they can be translated into guaranteed IF-THEN rules which the classifier follows on the particular dataset.
For instance the highest recall correct rule query for class 1 is translated into the rule “If the image contains a Large
Gray Cube, a Large Cylinder and a Large Metal Object then it is classified to class 1.". This rule clearly shows the
bias of the classifier, since it is the description of the class with the added confounding factor (the Large Cube is
Gray). Similarly the (not correct) rule query with recall = 1 for the same class can be translated into the rule “If the
image does not contain a Large Cube then it is not classified to class 1", since the set of certain answers is a super
set of the positive set. We observed that correct rule queries tend to be more specific than others, with the most
general rules with exceptions being those with recall = 1. Other rules which were correct with exceptions, tended to
lie somewhere in the middle with respect to how general or specific they are, but they were the ones which lead to
the highest values of degree. By observing these results, we concluded that in practice, a set of rules, both correct
and with exceptions, can give us a very clear picture of what the black-box classifier is doing. However, in order to
not overwhelm an end-user with a large number of rules, we should develop a strategy to select which rules to show
to the user. Here, as opposed to the Mushroom experiment (5.1) the strategy we used was to show the highest recall,
highest precision and highest degree rules, along with their exceptions if any, but as mentioned, we plan to explore
additional strategies in the future, such as showing disjunctions of correct rules.

It is interesting to note that the rule query with recall = 1 produced for class 1 contained a Large Cube but not a
Large Cylinder, which is also in the description of the class. This shows that in the training process the classifier
learned to pay more attention to the presence of cubes rather than the presence of cylinders. The elements of the
highest recall correct rule that differ from the true description of class 1 can be a great starting point for a closer
inspection of the classifier. We expected the presence of a Gray Cube from the confounding factor introduced in the
training and validation sets, but in a real world scenario similar insights can be reached by inspecting the queries.
In our case, we further inquired the role that the Gray Cube and the Large Metal Object play in the correct rule by
removing either of them from the query and examining its behavior. In Table 5 we can see that the gray color was
essential for the correct rule while the Large Metal Object was not, and in fact its removal improved the rule and
returned almost the entire class.

Another result that piqued our attention was the highest degree explanation for class 3 which is the actual rule
that describes this class. This explanation was not a correct rule, since it had two exceptions, which we can also see
in the confusion matrix of the classifier and we were interested to examine what sets these two individuals apart. We
found that both of these individuals are answers to the query “y1 is Large, Gray, Cube”. This showed us once again
the great effect the confounding factor of class 1 had on the classifier.

Our overall results show that the classifier tended to emphasize low level information such as color and shape
and ignored higher level information such as texture and the combined presence of multiple objects. This was the
reason why the confounding factor of class 1 had an important effect to the way images were classified, while
the confounding factor of class 2 seemed to have had a much smaller one. Furthermore, the added bias made the
classifier reject class 1 images, which however had to be classified to one of the other two classes (no class was not
an option). Therefore one of the other classes had to be “polluted” by samples which were not confidently classified

24 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Optimal explanations with regard to the three metrics on CLEVR-Hans3.

Metric Explanation Rules Precision Recall Degree Positives

Class 1

Best
Precision

y1 is Large, Cube, Gray.
y2 is Large, Cylinder.
y3 is Large, Metal.

1.00 0.66 0.66 83

Best
Recall

y1 is Large, Cube. 0.09 1.00 0.09 125

Best
Degree

y1 is Large, Cube, Gray.
y2 is Large, Cylinder.
y3 is Large, Metal.

1.00 0.66 0.66 83

Class 2

Best
Precision

y1 is Small, Sphere.
y2 is Large, Rubber.
y3 is Small, Metal, Cube.
y4 is Small, Brown.
y5 is Small, Rubber, Cylinder.

1.00 0.09 0.09 116

Best
Recall

y1 is Cube. 0.63 1.00 0.63 1247

Best
Degree

y1 is Metal, Cube.
y2 is Small, Metal.

0.78 0.8 0.65 1005

Class 3

Best
Precision

y1 is Metal, Blue.
y2 is Large, Blue, Sphere.
y3 is Yellow, Small, Sphere.
y4 is Small, Rubber.
y5 is Metal, Sphere.

1.00 0.42 0.42 365

Best
Recall

y1 is Large.
y2 is Sphere.

0.42 1.00 0.42 878

Best
Degree

y1 is Yellow, Small, Sphere.
y2 is Large, Blue, Sphere.

0.99 0.85 0.85 748

to a class. This motivates us to expand the framework in the future to work with more informative sets than the
pos-set, such as elements which were classified with high confidence, and false and true, negatives and positives.

Table 5
Two modified versions of the class 1 correct rule produced by removing conjuncts.

Query Positives Negatives

y1 is Large, Cube. y2 is Large, Cylinder. y3 is Large, Metal. 108 547
y1 is Large, Cube, Gray. y2 is Large, Cylinder. 93 0

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5.3. MNIST

For the third and final set of experiments we used MNIST, which is a dataset containing grayscale images of
handwritten digits [63]. It is a very popular dataset for machine learning research, and even though classification
on MNIST is essentially a solved problem, many recent explainability approaches experiment on this dataset (for
example [65]). For us, MNIST was ideal for experimenting with automatic explanation dataset generation by using
traditional feature extraction from computer vision. An extension to this approach would be using more complex in-
formation extraction from images, such as object detection or scene graph generation, for applying the explainability
framework to explain generic image classifiers. This however is left for future work.

5.3.1. Explanation Dataset
For creating the explanation dataset for MNIST, we manually selected a combination of 250 images from the test

set, including both typical and unusual exemplars for each digit. The unusual exemplars were chosen following the
mushroom experiment (5.1), in which we saw that small explanation datasets do not facilitate good explanation rules
when the exemplars are chosen randomly, so we aimed for variety of semantic descriptions. In addition, the unusual
exemplars tended to be misclassified, and we wanted to see how their presence would impact the explanations.

Since there was no semantic information available that could be used to construct an explanation dataset, we
automatically extracted descriptions of the images, by using feature extraction methods. Specifically, the images
were described as a collection of intersecting lines, varying in angle, length and location within the image. These
lines were detected using the technique of ridge detection [66]. The angles of the lines were quantized to 0, 45, 90 or
135 degrees, and the images were split into 3 horizontal (top, middle, bottom) and 3 vertical (left, center, right) zones
which define 9 areas (top left, top center, . . . , bottom right). For each line we noted the areas it passes through. In
Fig. 7 we show an example of an MNIST image, along with the results of the aforementioned information extraction
procedure using ridge detection.

Based on the selected images and the extracted information, we created our explanation dataset E . We constructed
a vocabulary 〈CN,RN, IN〉, with an individual for each image and each line therein as individual names (IN), the
concepts defining the angle, location and length of each line, two indicative concepts Image and Line, as well as ten
concepts (one for each digit) corresponding to the set of classes C, as concept names (CN), and the roles contains with
domain Image, and range Line, indicating the existence of a line in a specific image, and the symmetric intersects
with both domain and range Line, indicating that two lines intersect each other, as the role names (RN). To define
the mappingM of the explanation dataset, after extracting the images and separating them into digits, we numbered
them and named the Exemplars (and the corresponding file names) according to their digit and index. This also
makes the images easy to retrieve. We then created the knowledge base S over this vocabulary, with the ABox
containing the semantic description of all exemplar images and the respective lines, and the TBox containing certain
rather trivial inclusion axioms. The vocabulary IN,CN,RN and the Tbox of our knowledge base are the following:

IN = {test_zero1, test_zero1_line0, . . . , test_zero1_line7, test_zero6, test_zero6_line0, . . . , test_nine979,

test_nine979_line7, . . . , lineM250}

CN = {Image, Line, Line0deg, Line45deg, Line90deg, Line135deg, TopLeft, TopCenter, TopRight,MidLeft,

MidCenter,MidRight,BotLeft,BotCenter,BotRight,Short,Medium, Long}

RN = {contains, intersects}.

T = {C v Line | C 6∈ {Image, Line}}.

5.3.2. Setting
For MNIST we used the example neural network provided by PyTorch 6 as the classifier to be explained. The

classifier achieved 99.8% accuracy on the training set and 99.2% on the test set. On the explanation dataset, the
accuracy is 73%, and a confusion matrix for the classifier on the explanation dataset is shown in Table 8. The per-

6https://github.com/pytorch/examples/tree/master/mnist

26 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 7. An example of a digit, the results of ridge detection, and the corresponding description.

Fig. 8. Confusion matrix of the classifier on the explanation dataset for MNIST

formance of the classifier is poor when compared to the whole test set, due to the fact that we have included several
manually selected exemplars, which are unusually drawn, but still valid as digits (based on our own judgement).
Similarly to CLEVR-Hans3, we generated explanations for the predictions of the classifier on the exemplars using
KGrules-HT (Alg. 3) and KGrules-H (Alg. 1) with Alg. 4 as the merge operation, and loaded the explanation dataset
in GraphDB for acquiring certain answers. We also experimented with the QLCS as the merge operation, but the
resulting queries mostly contained a large number of variables which could not be effectively minimized, which
could be due to the complex connections between variables with a symmetric role.

5.3.3. Results
For MNIST there does not exist a ground truth semantic description for each class, as was the case for CLEVR-

Hans3, nor is there a pre-determined bias of the classifier, thus we could not easily measure our framework’s useful-

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ness in this regard. Instead, since the explanation dataset was constructed automatically, we explored quality related
features of the generated explanations.

For all digits the algorithm produced at least one correct rule (precision = 1) and a rule with exceptions with recall
= 1. The highest degree of rule queries for each digit are shown as a bar-plot in Fig. 9a. In general, the values of the
metric seem low, with the exception of digit 0, which would indicate that the algorithms did not find a single rule
which approximates the pos-set to a high degree. For some of the digits, including 0, the highest degree rule is also
a correct rule. For closer inspection, we show the best degree rule query for digit 0 which is the highest, and for
digit 5 which is the lowest.

(a) Best degree for each digit (b) Best recall of correct rule queries (c) Fidelity of set of correct rules

Fig. 9. Metrics of generated rule queries for MNIST

The explanation rule for digit 0 involved six lines, as indicated by the conjuncts contains(x, y1), contains(x, y2),
contains(x, y3), contains(x, y4), contains(x, y5), contains(x, y6). For five of the six lines, the explanation rule
query included their location in the image, indicated by the conjuncts TopCenter(y1), BotRight(y2), BotCenter(y2),
MidRight(y3), TopRight(y5), BotCenter(y6). For all six lines the explanation rule included information about
their orientation, indicated by the conjuncts Line45deg(y1), Line45deg(y2), Line90deg(y3), Line90deg(y4),
Line135deg(y5), Line135deg(y6). Finally, the rule-query included the following conjuncts which show which lines
intersect each other intersects(y1, y4), intersects(y2, y3), intersects(y3, y5), intersects(y4, y6). A rule query with so
many conjuncts could potentially be difficult for a user to decipher, so in this case we found it useful to visualize the
rules. The above rule is visualized in Fig. 10a. The visualization is clear and intuitive as an explanation for digits
classified as zeroes, however visualization of rules will not be possible in all applications. This shows the importance
of taking under consideration understandability when designing explaination pipelines, which in our case depends
mostly on the vocabulary and expressivity of the underlying explanation dataset. In this case, the vocabulary used
was itself somewhat obscure for users (sets of intersecting lines are not easy to understand by reading a rule), which
could have been mitigated if the explanation dataset had been curated by humans and not created automatically. In
this particular use-case it was not a problem however, since the visualization of rules was easy in most cases.

The highest degree explanation rule for digit 5, which was the lowest out of the best of all digits, again involved
six lines indicated by the conjuncts contains(x, y1), contains(x, y2), contains(x, y3), contains(x, y4), contains(x, y5),
contains(x, y6). This time however, only three lines had information about their location in the image, indicated
by the conjuncts BotCenter(y2), BotCenter(y4), MidCenter(y5), and five lines had information about their orienta-
tion Line0deg(y1), Line0deg(y2), Line45deg(y3), Line45deg(y4) Line135deg(y6). Furthermore, this rule-query in-
cluded information about the size of two lines, indicated by the conjuncts Medium(y4),Short(y6). Finally, as with
before, we get a set of conjuncts showing which lines intersect each other: intersects(y1, y3), intersects(y2, y4),
intersects(y3, y5). This rule query is not easy to understand and it is even difficult to visualize, since there is not
enough information about the location of each line, thus it is not actually usable. This was expected to an extent, due
to the low value of the degree metric, but again highlights the importance of taking usability under consideration
when choosing which rule-queries to show to a user.

Regarding correct rules, the algorithm produced several for each digit. Since the sets of certain answers of correct
rule queries are subsets of the pos-set of each class, we measured the per class fidelity of the disjunction of all correct

28 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) zero (b) one (c) three (d) four

(e) five (f) six (g) seven (h) nine

Fig. 10. Visualizations of best recall correct rules for digits

(a) 6 misclassified as 0 (b) 8 misclassified as 3 (c) 3 misclassified as 5 (d) 7 misclassified as 2

Fig. 11. Misclassified digits that follow the best recall correct rules.

rules, as if giving a user a rule-set, similarly to the Mushroom experiment (5.1). In Fig. 9c we show as a bar-plot the
fidelity for each class. With the exception of digit one, the pos-sets of all digits were sufficiently covered by the set
of correct rules. The failure for digit 1 was expected, since the descriptions of the exemplars classified as 1 contain
few lines (for example consisting of a single large line in the middle) which tend to be part of descriptions of other
digits as well (all digits could be drawn in a way in which there is a single line in the middle). This is a drawback of
the open world assumption of DLs since we cannot guarantee the non-existence of lines that are not provided in the
descriptions. The open world assumption is still desirable since it allows for incomplete descriptions of exemplars.
In cases such as the medical motivating example used throughout this paper, a missing finding such as “Dyspnoea”
does not always imply that the patient does not suffer from dyspnoea. It could also be a symptom that has not been
detected or has been overlooked.

The highest recall of a single correct rule for each digit is shown as a bar-plot in Fig. 9b. Since correct rules are
easily translated into IF-THEN rules, we expected them to be more informative than the highest degree ones, which
requires looking at the exceptions to gain a clearer understanding of the rule. We investigate closer by analyzing the
best correct rule for each digit.

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

For digit 0, the best correct rule rule was the same as the highest degree rule presented previously. In Fig. 11a
we provide an example of a six misclassified as a 0, which follows this correct rule. Comparing the misclassified 6
with the visualizations for rules of the digits 0 (Fig. 10a) and 6 (Fig. 10f) we can see that this 6 might have been
misclassified as a 0 because the closed loop part of the digit reaches the top of the image. According to the correct
rule for 0, an image that contains two vertical semicircles in the left and right sides of the image is classified as a 0,
and because of this peculiarity in the drawing of the misclassified six, the image (Fig. 10a) obeys this rule.

The best correct rule for digit 1 had the lowest recall out of all correct rules for other digits, which means that it
returned a small subset of the positives. Specifically, this rule returned only two of the 30 individuals classified as the
digit 1. It was still usable as an explanation however, as it only involved two lines contains(x, y1), contains(x, y2),
both of which were thoroughly described with regard to their location BotCenter(y1), MidCenter(y1), TopCenter(y1),
BotCenter(y2), their orientation Line90deg(y1), Line135deg(y2), their length Long(y1), Short(y2) and the fact that
they intersect intersects(y1, y2). This rule is visualized in Fig. 10b.

For digit 2, the best correct rule query returned nine out of the 25 positives, three of which were missclassified
by the classifier. This rule involved three lines, of which two had conjuncts indicating their location BotRight(y1),
BotLeft(y3), BotCenter(y3), MidCenter(y3), only one line contained information about its orientation and size
Line45deg(y3), Long(y3), and the only other information was that intersects(y2, y3). Note that for y2 the only avail-
able information was that it intersects y3. This query is difficult to visualize, due to the missing information about
two of the three lines, however it is still useful as an explanation. Specifically, y3 represents a long diagonal line
from the bottom left to the middle of the image, which is a characteristic of only the digits 2 and 7. Additionally,
there is a line of any orientation in the bottom right of the image, which would differentiate it from a typical 7, and
another line which intersects the long diagonal at any position. As is apparent also in the confusion matrix of the
classifier on the explanation dataset (Table 8), the black-box often mixed up sevens with twos, and this explanation
rule returns one of the sevens which is misclassified as a two, shown in Fig. 11d. This digit is not typically drawn,
and from the rule query the information we get is that it might have been misclassified because of the existence of a
line at the bottom right.

To investigate closer, the next correct rule which we analyze is that of highest recall for digit 7. This query returned
only three of the 24 images which were classified as sevens, and all three were correct predictions by the classifier.
The rule involved two intersecting lines (intersects(y1, y2)), of which the first is described as Line0deg(y1), Long(y1)
TopLeft(y1), TopCenter(y1), TopRight(y1) which is clearly the characteristic top part of the digit, while the second
line is described as Line45deg(y2)), BotCenter(y2), MidCenter(y2), MidRight(y2), Long(y2), which is the diagonal
part of the digit. The description of the diagonal has a different description than the diagonal line which was part of
the rule for digit 2. Instead of BotLeft(y), the rule contains a conjunct MidRight(y). This could be another hint as to
why the 7 shown in Fig. 11d was not classified as correctly, as the digit appears to be leaning slightly to the right,
which makes the diagonal pass through BotLeft, which is in the description of the diagonal for a digit 2 instead of
MidRight which is for digit 7. To conclude if this is the case however would require investigating more rules, since
the one presented covers only a subset of exemplars classified as digit 7.

For digit 3, the best correct explanation rule returned five of the 26 individuals which were classified as
3, including one misclassified 8. This rule involved seven different lines, thus it was not expected to be
understandable by a user at a glance. However, there was plentiful information for each line in the rule,
which made it possible to visualize. Specifically, regarding the location of the lines, the rule query con-
tained the conjuncts TopCenter(y1), BotCenter(y2), BotCenter(y3), BotRight(y4), MidRight(y4), TopCenter(y5),
MidCenter(y6), BotCenter(y7). Regarding orientation, five of the seven lines had relevant conjuncts: Line0deg(y2),
Line45deg(y3), Line90deg(y4), Line135deg(y6), Line135deg(y7). Additionally, three lines had information about
their size Short(y4), Short(y5), Medium(y6). Finally, the explanation rule contained conjuncts showing which lines
intersect each other: intersects(y1, y5), intersects(y2, y3), intersects(y2, y7), intersects(y3, y4), intersects(y4, y6).
This rule-query is visualized in Fig. 10c. An interesting aspect of this explanation, is that the two lines which are at
the top center (y1 and y5) do not have a specified orientation, while the other four lines are involved in more con-
juncts in the explanation rule query and are described in more detail. This could be an indication of the importance
of these lines for a digit to be classified as a 3. However, these lines could also be a part of other digits such as 5,
which is the next digit which we analyze.

30 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

For the digit 5, the best correct rule query returned four of the 31 positives for the class of which one
is a misclassified 3. It is a very specific query involving seven lines, all of which are described regarding
their orientation Line45deg(y1), Line135deg(y2), Line45deg(y3), Line0deg(y4), Line0deg(y5), Line135deg(y6),
Line90deg(y7), and their location BotCenter(y1), BotLeft(y2), BotCenter(y2), MidCenter(y3), BotCenter(y4),
TopRight(y5), TopCenter(y5), MidRight(y6), MidCenter(y6), MidRight(y7), BotRight(y7). There was no informa-
tion about lines’ sizes, and there are five line intersections intersects(y1, y4), intersects(y1, y7), intersects(y2, y4),
intersects(y3, y5), intersects(y6, y7). This query is visualized in Fig. 10e. An interesting aspect of this rule-query is
the fact that it contains a misclassified 3 in its set of certain answers, specifically the three shown in Fig. 11c. In
the context of the proposed framework, the 3 is misclassified because it obeys the correct rule for the digit 5. From
comparing the visualization of the correct rule for the digit 5, and the misclassified 3, we can see that the digit obeys
the rule because the top part of the three is vertically compressed, making it less distinguishable from a 5. This
clearly shows us a potential flaw of the classifier.

For the digit 4, the best correct rule query returned five of the 22 positives all of which were correct pre-
dictions. The query involved three lines which were all well described regarding their orientation Line0deg(y1),
Line45deg(y2), Line90deg(y3), and their location MidCenter(y1), MidCenter(y2), BotCenter(y3), MidCenter(y3),
TopCenter(y3). Two lines were also described with respect to their size Medium(y1), Long(y3), and there were two
intersections of lines intersects(y1, y2), intersects(y1, y3). This rule is visualized in Fig. 10d. This is a straight-
forward description of the digit four, and as expected it covers only true positives.

For the digit 6, the best resulting correct rule involved the most variables (each representing a line) out of all
correct rules. It returned four of the 18 positives for the class all of which were correct predictions. Of the eight lines
described in the query, seven had information about their orientation Line0deg(y1), Line45deg(y2), Line45deg(y3),
Line45deg(y4), Line90deg(y5), Line135deg(y7), Line135deg(y8). All lines were desribed with respect to their
position BotCenter(y1), TopCenter(y2), MidCenter(y3), BotRight(y4), MidCenter(y5), MidRight(y6), MidRight(y7),
BotCenter(y8), MidCenter(y8). Additionally four lines had a determined size Short(y1), Short(y6), Short(y7),
Medium(y8), and there were five intersections of lines intersects(y1, y4), intersects(y1, y8), intersects(y2, y5),
intersects(y5, y8), intersects(y6, y7). This rule is visualized in Fig. 10f, it is a straight-forward description of a digit 6.

For digit 8, the best correct rule query returned four of the 20 positives, all of which are classified correctly. It
involved seven lines, of which five were described with respect to their orientation Line45deg(y2), Line90deg(y3),
Line135deg(y5), Line45deg(y6), Line0deg(y7), six regarding their location MidCenter(y1), BotCenter(y2),
BotCenter(y3), MidCenter(y3), BotCenter(y4), TopCenter(y6), TopCenter(y7), and five regarding their size:
Medium(y1), Short(y3), Short(y4), Short(y5), Short(y7). Finally, the rule query involved four intersections of lines
intersects(y1, y3), intersects(y2, y4), intersects(y5, y7), intersects(y6, y7). This rule is difficult to visualize due to the
missing information (only four of the seven lines have information about both their location and orientation), and
thus is not really useful as an explanation.

Finally, the best correct rule query for digit 9 returned five of the 15 positives, of which all were correct
predictions by the classifier. It involved six lines which were all thoroughly described regarding their orien-
tation Line0deg(y1), Line0deg(y2), Line45deg(y3), Line90deg(y4), Line135deg(y5), Line135deg(y6), and their
location TopCenter(y1), MidCenter(y2), TopCenter(y3), MidCenter(y3), MidLeft(y3), MidRight(y4), BotRight(y4),
TopCenter(y5), MidRight(y5), MidLeft(y6). Additionally, two lines were described regarding their size Medium(y3),
Short(y6). The query also contained three conjuncts which indicated intersections of lines intersects(y1, y3),
intersects(y1, y5), intersects(y2, y6). This query is visualized in Fig. 10h, it is a straight-forward description of a
digit 9.

5.4. Discussion

The proposed approach seems useful in general, performing similarly with the state-of-the-art on tabular data,
being able to detect biases in the CLEVR-Hans case, and providing meaningful explanations even in the MNIST
case. The resulting explanations depend (almost exclusively) on the properties of the explanation dataset. In an
ideal scenario, end-users trust the explanation dataset, the information it provides about the exemplars and the ter-
minology it uses. It is like a quiz, or an exam, for the black-box, which is carefully curated by domain experts.
This scenario was simulated in the CLEVR-Hans3 use-case in which the set of rules produced by the proposed

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

algorithms clearly showed in which cases the black-box classifies items in specific classes, highlighting potential
biases acquired during training. The framework is also useful when the explanation dataset is created automatically
by leveraging traditional feature extraction, as is shown in the MNIST use-case. In this case, we found the resulting
queries to be less understandable than before, which stems mainly from the vocabulary used, since sets of inter-
secting lines are not easily understandable unless they are visualized. They are also subjectively less trustworthy,
since there are usually flaws with most automatic information extraction procedures. However, since sets of correct
rules sufficiently covered the sets of individuals, and rules with exceptions achieved decent performance regarding
precision, recall and degree, if an end-user invested time and effort to analyze the resulting rules, they could get a
more clear picture about what the black-box is doing.

We also found interesting the comparison of correct rules with those with exceptions. Correct rules are, in general,
more specific than others, as they always have a subset of the pos-set as certain answers. This means that, even
though they might be more informative, they tend to involve more conjuncts than rules with exceptions, which in
extreme cases could impact understandability. On the other hand, rules with exceptions can be more general, with
fewer conjuncts, which could positively impact understandability. However, utilizing these rules should involve
examining the actual exceptions, which could be a lot of work for an end-user. These conclusions were apparent in
the explanations generated for the class 3 of CLEVR-Hans3 (Table 4), where the best correct rule was very specific,
involved five objects and had a relatively low recall (0.42), while the best rule with exceptions was exactly the
ground truth class description and had very high precision (0.99). So in this case a user would probably gain more
information about the classifier if they examined the rule with exceptions along with the few false positives, instead
of examining the best correct rule, or a set of correct rules.

Another observation we made, is the fact that some conjuncts were more understandable than others when they
were part of explanation rules. For instance in MNIST, knowing a line’s location and orientation was imperative
for understanding the rule via visualization, while conjuncts involving line intersections and sizes seemed not that
important, regardless of metrics. This is something which could be leveraged either in explanation dataset construc-
tion (for example domain experts weigh concepts and roles depending on their importance for understandability),
or in algorithm design (for example a user could provide as input concepts and roles which they want to appear in
explanation rules). We are considering these ideas as a main direction for future work which involves developing
strategies for choosing which rules are best to show to a user.

Finally, in the first experiment (5.1), it is shown that KGrules-H can be used to generate explanations in terms
of feature data similarly to other rule-based methods, even if it is not the intended use-case. An interesting com-
parison for a user study would be between different vocabularies (for example using the features vs using external
knowledge). We note here that the proposed approach can always be applied on categorical feature data, since their
transformation to an explanation dataset is straight-forward. This would not be the case if we also had numerical
continuous features, in which case we would either require more expressive knowledge to represent these features,
or that the continuous features be discretized. Another result which motivates us to explore different knowledge
expressivities in the future, was the failure of the algorithms to produce a good (w.r.t. the metrics) explanation for
the digit 1 in the MNIST experiment (5.3). Specifically, it was difficult to find a query which only returns images
of this digit, since a typical description of a "1" is general and tends to always partially describe other digits. This
is something which could be mitigated if we allowed for negation in the generated rules, and this is the second
direction which we plan to explore in the future.

6. Conclusions and Future Work

In this work we have further developed a framework for rule-based post hoc explanations of black-box classifiers.
The explanations are expressed as Horn rules which use terms from a given vocabulary, instead of the classifier’s
features. This allows for intuitive explanations even when the feature space of the classifier is too complex to be used
within understandable rules (pixels, audio signals etc). The rules are also accompanied by theoretical guarantees
regarding their correctness for explaining the classifier, given what we call an explanation dataset. The idea of the
explanation dataset is at the core of our framework, as it is the probe we use to observe the black-box, by feeding
it exemplar data and finding rules which explain its output. The explanation dataset also contains the knowledge

32 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

from which the semantics of the rules are derived. The problem of finding such rules given an explanation dataset
was approached as a search problem in the space of semantic queries, by starting with the most specific queries
describing positively classified exemplars, and then progressively merging them using heuristic criteria. The queries
are then approximately condensed, converted to rules and are shown to the end-user.

There are multiple directions towards which we plan to extend the framework in the future. First of all, we are
currently investigating different strategies for choosing which explanation rules are best to show to a user such
that they are both informative and understandable. To do this, we also plan to extend our evaluation framework for
real world applications to include user studies. Specifically, we are focusing on decision critical domains in which
explainability is crucial, such as the medical domain, and in collaboration with domain experts, we are developing
explanation datasets, in addition to a crowd-sourced explanation evaluation platform. There are many interesting
research questions which we are exploring in this context, such as what constitutes a good explanation dataset, what
is a good explanation, and how can we build the trust required for opaque AI to be utilized in such applications.

Another direction which we are currently exploring involves ways in which we can extend the framework, both
in theory and in practice, to incorporate different types of explanations. This includes local explanations which
explain individual predictions of the black-box, and counterfactual or contrastive explanations which highlight how
a specific input should be modified in order for the prediction of the classifier to change. This extension is being
researched with the end-user in mind, and we are exploring the merits of providing a blend of explanations (global,
local, counterfactual) to an end-user.

A third and final direction to be explored involves extending the expressivity of explanation rules, in addition to
that of the underlying knowledge. Specifically, the algorithms developed in this work require that if the knowledge
has a non-empty TBox, it has to be eliminated via materialization before running the algorithms. Thus, we are
exploring ideas for algorithms which generate explanation rules in the case where the underlying knowledge is
represented with DL dialects in which the TBox cannot be eliminated, such as DL_Lite. Finally, regarding the
expressivity of explanation rules, we plan to extend the framework to allow for disjunction, which is a straight-
forward extension, and for negation, which is much harder to incorporate in the framework while maintaining the
theoretical guarantees, which we believe are crucial for building trust with end-users.

References

[1] B. Goodman and S.R. Flaxman, European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation", AI Mag.
38(3) (2017), 50–57.

[2] M. Turek, Explainable artificial intelligence (XAI), Defense Advanced Research Projects Agency. http://web.archive.
org/web/20190728055815/https://www.darpa.mil/program/explainable-artificial-intelligence (2018).

[3] W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl and B. Yu, Interpretable machine learning: definitions, methods, and applications,
CoRR abs/1901.04592 (2019).

[4] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti and D. Pedreschi, A Survey of Methods for Explaining Black Box Models,
ACM Comput. Surv. 51(5) (2019), 93:1–93:42.

[5] F. Lecue, On the role of knowledge graphs in explainable AI, Semantic Web 11 (2019), 1–11. doi:10.3233/SW-190374.
[6] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi and P.F. Patel-Schneider (eds), The Description Logic Handbook: Theory, Implemen-

tation, and Applications, Cambridge University Press, 2003.
[7] J. van der Waa, E. Nieuwburg, A. Cremers and M. Neerincx, Evaluating XAI: A comparison of rule-based and example-based explanations,

Artificial Intelligence 291 (2021), 103404.
[8] H. Yang, C. Rudin and M.I. Seltzer, Scalable Bayesian Rule Lists, in: Proceedings of the 34th International Conference on Machine

Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, 2017, pp. 3921–3930. http://proceedings.mlr.press/v70/yang17h.html.
[9] Y. Ming, H. Qu and E. Bertini, RuleMatrix: Visualizing and Understanding Classifiers with Rules, IEEE Trans. Vis. Comput. Graph. 25(1)

(2019), 342–352. doi:10.1109/TVCG.2018.2864812.
[10] M.W. Craven and J.W. Shavlik, Extracting Tree-Structured Representations of Trained Networks, in: Advances in Neural In-

formation Processing Systems 8, NIPS, Denver, CO, USA, November 27-30, 1995, 1995, pp. 24–30. http://papers.nips.cc/paper/
1152-extracting-tree-structured-representations-of-trained-networks.

[11] Y. Zhou and G. Hooker, Interpreting models via single tree approximation, arXiv preprint arXiv:1610.09036 (2016).
[12] R. Confalonieri, F.M. del Prado, S. Agramunt, D. Malagarriga, D. Faggion, T. Weyde and T.R. Besold, An Ontology-based Approach to

Explaining Artificial Neural Networks, CoRR abs/1906.08362 (2019). http://arxiv.org/abs/1906.08362.
[13] J. Lehmann, S. Bader and P. Hitzler, Extracting reduced logic programs from artificial neural networks, Appl. Intell. 32(3) (2010), 249–266.

doi:10.1007/s10489-008-0142-y.

http://proceedings.mlr.press/v70/yang17h.html
http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks
http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks
http://arxiv.org/abs/1906.08362

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[14] M.K. Sarker, N. Xie, D. Doran, M. Raymer and P. Hitzler, Explaining Trained Neural Networks with Semantic Web Technologies: First
Steps, in: NeSy, CEUR Workshop Proceedings, Vol. 2003, CEUR-WS.org, 2017.

[15] D. Pedreschi, F. Giannotti, R. Guidotti, A. Monreale, S. Ruggieri and F. Turini, Meaningful Explanations of Black Box AI Decision
Systems, in: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, 2019, pp. 9780–9784. doi:10.1609/aaai.v33i01.33019780.

[16] Y. Zhang, P. Tiño, A. Leonardis and K. Tang, A Survey on Neural Network Interpretability, IEEE Trans. Emerg. Top. Comput. Intell. 5(5)
(2021), 726–742. doi:10.1109/TETCI.2021.3100641.

[17] G. Ciravegna, F. Giannini, M. Gori, M. Maggini and S. Melacci, Human-Driven FOL Explanations of Deep Learning, in: Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, 2020, pp. 2234–2240. doi:10.24963/ijcai.2020/309.

[18] C. Panigutti, A. Perotti and D. Pedreschi, Doctor XAI: an ontology-based approach to black-box sequential data classification explanations,
in: Proceedings of the 2020 conference on fairness, accountability, and transparency, 2020, pp. 629–639.

[19] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini and F. Giannotti, Local rule-based explanations of black box decision systems,
arXiv preprint arXiv:1805.10820 (2018).

[20] M.T. Ribeiro, S. Singh and C. Guestrin, Anchors: High-precision model-agnostic explanations, in: Proceedings of the AAAI conference on
artificial intelligence, Vol. 32, 2018.

[21] A.B. Arrieta, N.D. Rodríguez, J.D. Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila
and F. Herrera, Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Inf.
Fusion 58 (2020), 82–115.

[22] G. Futia and A. Vetrò, On the integration of knowledge graphs into deep learning models for a more comprehensible AI—Three Challenges
for future research, Information 11(2) (2020), 122.

[23] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutiérrez, J.E.L. Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Nav-
igli, A.N. Ngomo, S.M. Rashid, A. Rula, L. Schmelzeisen, J.F. Sequeda, S. Staab and A. Zimmermann, Knowledge Graphs, CoRR
abs/2003.02320 (2020).

[24] B. Mittelstadt, C. Russell and S. Wachter, Explaining explanations in AI, in: Proceedings of the conference on fairness, accountability, and
transparency, 2019, pp. 279–288.

[25] V. Praher, K. Prinz, A. Flexer and G. Widmer, On the Veracity of Local, Model-agnostic Explanations in Audio Classification: Targeted
Investigations with Adversarial Examples, arXiv preprint arXiv:2107.09045 (2021).

[26] Z.A. Daniels, L.D. Frank, C.J. Menart, M. Raymer and P. Hitzler, A framework for explainable deep neural models using external knowl-
edge graphs, in: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II, Vol. 11413, International
Society for Optics and Photonics, 2020, p. 114131C.

[27] M. Alirezaie, M. Längkvist, M. Sioutis and A. Loutfi, A symbolic approach for explaining errors in image classification tasks, in: Working
Papers and Documents of the IJCAI-ECAI-2018 Workshop on, 2018.

[28] H. Wang, F. Zhang, X. Xie and M. Guo, DKN: Deep Knowledge-Aware Network for News Recommendation, in: Proceedings of
the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, 2018, pp. 1835–1844.
doi:10.1145/3178876.3186175.

[29] Q. Ai, V. Azizi, X. Chen and Y. Zhang, Learning heterogeneous knowledge base embeddings for explainable recommendation, Algorithms
11(9) (2018), 137.

[30] V.S. Silva, A. Freitas and S. Handschuh, Exploring knowledge graphs in an interpretable composite approach for text entailment, in:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 7023–7030.

[31] I. Tiddi and S. Schlobach, Knowledge Graphs as tools for Explainable Machine Learning: a survey, Artificial Intelligence (2021), 103627.
[32] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D.A. Shamma et al., Visual genome:

Connecting language and vision using crowdsourced dense image annotations, International journal of computer vision 123(1) (2017),
32–73.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C.L. Zitnick, Microsoft coco: Common objects in context,
in: European conference on computer vision, Springer, 2014, pp. 740–755.

[34] G.A. Miller, WordNet: a lexical database for English, Communications of the ACM 38(11) (1995), 39–41.
[35] R. Speer, J. Chin and C. Havasi, ConceptNet 5.5: An Open Multilingual Graph of General Knowledge, in: AAAI, AAAI Press, 2017,

pp. 4444–4451.
[36] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer et al., Dbpedia–a

large-scale, multilingual knowledge base extracted from wikipedia, Semantic web 6(2) (2015), 167–195.
[37] M.Q. Stearns, C. Price, K.A. Spackman and A.Y. Wang, SNOMED clinical terms: overview of the development process and project status,

in: AMIA, AMIA, 2001.
[38] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini and R. Rosati, Tractable Reasoning and Efficient Query Answering in Description

Logics: The DL-Lite Family, J. Autom. Reason. 39(3) (2007), 385–429.
[39] B.C. Grau, B. Motik, G. Stoilos and I. Horrocks, Computing Datalog Rewritings Beyond Horn Ontologies, in: IJCAI, IJCAI/AAAI, 2013,

pp. 832–838.
[40] A. Chortaras, M. Giazitzoglou and G. Stamou, Inside the Query Space of DL Knowledge Bases, in: Description Logics, CEUR Workshop

Proceedings, Vol. 2373, CEUR-WS.org, 2019.
[41] D. Trivela, G. Stoilos, A. Chortaras and G. Stamou, Resolution-based rewriting for Horn-SHIQ ontologies, Knowl. Inf. Syst. 62(1) (2020),

107–143.

34 J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[42] Q.T. Tran, C.Y. Chan and S. Parthasarathy, Query reverse engineering, VLDB J. 23(5) (2014), 721–746. doi:10.1007/s00778-013-0349-3.
[43] M. Arenas, G.I. Diaz and E.V. Kostylev, Reverse Engineering SPARQL Queries, in: Proceedings of the 25th International Conference on

World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016, J. Bourdeau, J. Hendler, R. Nkambou, I. Horrocks and B.Y. Zhao,
eds, ACM, 2016, pp. 239–249. doi:10.1145/2872427.2882989.

[44] A. Petrova, E.V. Kostylev, B.C. Grau and I. Horrocks, Query-Based Entity Comparison in Knowledge Graphs Revisited, in: The Semantic
Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I,
C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I.F. Cruz, A. Hogan, J. Song, M. Lefrançois and F. Gandon, eds, Lecture Notes in
Computer Science, Vol. 11778, Springer, 2019, pp. 558–575. doi:10.1007/978-3-030-30793-6_32.

[45] G. Diaz, M. Arenas and M. Benedikt, SPARQLByE: Querying RDF Data by Example, Proc. VLDB Endow. 9(13) (2016), 1533–1536–.
doi:10.14778/3007263.3007302.

[46] E. Dervakos, O. Menis-Mastromichalakis, A. Chortaras and G. Stamou, Computing Rule-Based Explanations of Machine Learning Clas-
sifiers using Knowledge Graphs, 2022.

[47] G. Gottlob and C.G. Fermüller, Removing Redundancy from a Clause, Artif. Intell. 61(2) (1993), 263–289.
[48] W.W. Cohen, A. Borgida and H. Hirsh, Computing Least Common Subsumers in Description Logics, in: Proceedings of the 10th National

Conference on Artificial Intelligence, San Jose, CA, USA, July 12-16, 1992, 1992, pp. 754–760. http://www.aaai.org/Library/AAAI/1992/
aaai92-117.php.

[49] R. Küsters and R. Molitor, Structural Subsumption and Least Common Subsumers in a Description Logic with Existential and Number
Restrictions, Stud Logica 81(2) (2005), 227–259. doi:10.1007/s11225-005-3705-5.

[50] F. Baader, B. Sertkaya and A. Turhan, Computing the least common subsumer w.r.t. a background terminology, J. Appl. Log. 5(3) (2007),
392–420. doi:10.1016/j.jal.2006.03.002.

[51] F.M. Donini, S. Colucci, T.D. Noia and E.D. Sciascio, A Tableaux-based Method for Computing Least Common Subsumers for Expressive
Description Logics, in: Proceedings of the 22nd International Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30, 2009,
2009. http://ceur-ws.org/Vol-477/paper_22.pdf.

[52] J. Laguarta, F. Hueto and B. Subirana, COVID-19 artificial intelligence diagnosis using only cough recordings, IEEE Open Journal of
Engineering in Medicine and Biology 1 (2020), 275–281.

[53] J. Liartis, E. Dervakos, O. Menis-Mastromichalakis, A. Chortaras and G. Stamou, Semantic Queries Explaining Opaque Machine Learning
Classifiers, in: Proceedings of the Workshop on Data meets Applied Ontologies in Explainable AI (DAO-XAI 2021) part of Bratislava
Knowledge September (BAKS 2021), Bratislava, Slovakia, September 18th to 19th, 2021, R. Confalonieri, O. Kutz and D. Calvanese, eds,
CEUR Workshop Proceedings, Vol. 2998, CEUR-WS.org, 2021. http://ceur-ws.org/Vol-2998/paper2.pdf.

[54] R. Kontchakov and M. Zakharyaschev, in: Reasoning Web. Reasoning on the Web in the Big Data Era: 10th International Summer School
2014, Athens, Greece, September 8-13, 2014. Proceedings, Springer International Publishing, Cham, 2014, pp. 195–244. ISBN 978-3-319-
10587-1. doi:10.1007/978-3-319-10587-1_5.

[55] R. Kontchakov, C. Lutz, D. Toman, F. Wolter and M. Zakharyaschev, The Combined Approach to Ontology-Based Data Access, in: IJCAI,
IJCAI/AAAI, 2011, pp. 2656–2661.

[56] B. Glimm, Y. Kazakov and T. Tran, Ontology Materialization by Abstraction Refinement in Horn SHOIF, in: AAAI, AAAI Press, 2017,
pp. 1114–1120.

[57] S.H. Bokhari, On the Mapping Problem 30(3) (1981). doi:10.1109/TC.1981.1675756.
[58] H.M. Grindley, P.J. Artymiuk, D.W. Rice and P. Willett, Identification of Tertiary Structure Resemblance in Proteins

Using a Maximal Common Subgraph Isomorphism Algorithm, Journal of Molecular Biology 229(3) (1993), 707–721.
doi:https://doi.org/10.1006/jmbi.1993.1074. https://www.sciencedirect.com/science/article/pii/S0022283683710740.

[59] J. Xu, GMA: A Generic Match Algorithm for Structural Homomorphism, Isomorphism, and Maximal Common Substructure Match and
Its Applications, Journal of Chemical Information and Computer Sciences 36(1) (1996), 25–34. doi:10.1021/ci950061u.

[60] A. Egozi, Y. Keller and H. Guterman, A Probabilistic Approach to Spectral Graph Matching, IEEE Transactions on Pattern Analysis &
Machine Intelligence 35(01) (2013), 18–27. doi:10.1109/TPAMI.2012.51.

[61] M. Leordeanu and M. Hebert, A spectral technique for correspondence problems using pairwise constraints, in: Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, Vol. 2, 2005, pp. 1482–1489 Vol. 2. doi:10.1109/ICCV.2005.20.

[62] W. Stammer, P. Schramowski and K. Kersting, Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their
Explanations, arXiv preprint arXiv:2011.12854 (2020).

[63] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-Based Learning Applied to Document Recognition, in: Proceedings of the IEEE,
86(11):2278-2324, 1998.

[64] K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, CoRR abs/1512.03385 (2015). http://arxiv.org/abs/
1512.03385.

[65] R. Poyiadzi, K. Sokol, R. Santos-Rodríguez, T.D. Bie and P.A. Flach, FACE: Feasible and Actionable Counterfactual Explanations, in:
AIES, ACM, 2020, pp. 344–350.

[66] T. Lindeberg, Scale-Space, in: Wiley Encyclopedia of Computer Science and Engineering, American Cancer Society, 2008, pp. 2495–2504.
ISBN 9780470050118. doi:https://doi.org/10.1002/9780470050118.ecse609.

[67] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L. Li, D.A. Shamma, M.S. Bernstein and L. Fei-Fei,
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations, Int. J. Comput. Vis. 123(1) (2017),
32–73.

[68] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C.L. Zitnick and R.B. Girshick, CLEVR: A Diagnostic Dataset for Compositional
Language and Elementary Visual Reasoning, CoRR abs/1612.06890 (2016). http://arxiv.org/abs/1612.06890.

http://www.aaai.org/Library/AAAI/1992/aaai92-117.php
http://www.aaai.org/Library/AAAI/1992/aaai92-117.php
http://ceur-ws.org/Vol-477/paper_22.pdf
http://ceur-ws.org/Vol-2998/paper2.pdf
https://www.sciencedirect.com/science/article/pii/S0022283683710740
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1612.06890

J. Liartis et al. / Searching for explanations of black-box classifiers in the space of semantic queries 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[69] F. Baader, I. Horrocks, C. Lutz and U. Sattler, An Introduction to Description Logic, Cambridge University Press, 2017.
doi:10.1017/9781139025355.

[70] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,
2019.

[71] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer and V. Stoyanov, RoBERTa: A Robustly Optimized
BERT Pretraining Approach, 2019.

[72] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C.H. So and J. Kang, BioBERT: a pre-trained biomedical language representation model for
biomedical text mining, Bioinformatics (2019). doi:10.1093/bioinformatics/btz682.

[73] G.A. Miller, WordNet: A Lexical Database for English, Commun. ACM 38(11) (1995), 39–41–. doi:10.1145/219717.219748.

	Introduction
	Background
	Framework
	A motivating example
	Explaining opaque machine learning classifiers

	Computation of Explanations
	Most Specific Queries
	Query Dissimilarity
	Query Merging
	Query Least Common Subsumer
	Greedy Matching

	Experiments
	Mushrooms
	Explanation Dataset
	Setting
	Results

	CLEVR-Hans3
	Explanation Dataset
	Setting
	Results

	MNIST
	Explanation Dataset
	Setting
	Results

	Discussion

	Conclusions and Future Work
	References

