o J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Semantic Web 0 (0) 1 1
10S Press

Deriving Semantic Validation Rules from
Industrial Standards: an OPC UA Study

Yashoda Saisree Bareedu ©*, Thomas Frithwirth °, Christoph Niedermeier ¢, Marta Sabou ?,
Gernot Steindl ®, Aparna Saisree Thuluva®, Stefani Tsaneva ® and Nilay Tufek Ozkaya

& Institute of Information Systems Engineering, Technical University of Vienna, Vienna, Austria
E-mails: marta.sabou@ifs.tuwien.ac.at, stefani.tsaneva @ tuwien.ac.at

b Institute of Computer Engineering, Technical University of Vienna, Vienna, Austria

E-mails: thomas.fruehwirth@tuwien.ac.at, gernot.steindl@tuwien.ac.at

¢ Corporate Technology, Siemens AG, Munich, Germany

E-mails: yashoda.bareedu.ext@siemens.com, christoph.niedermeier @ siemens.com,
aparna.thuluva @ siemens.com, nilay.tuefek-oezkaya @ siemens.com

Abstract. Industrial standards provide guidelines for data modeling to ensure interoperability between stakeholders of an in-
dustry branch (e.g., robotics). Most frequently, such guidelines are provided in an unstructured format (e.g., pdf documents)
which hampers the automated validations of information objects (e.g., data models) that rely on such standards in terms of their
compliance with the prescribed guidelines. This increases the risk of costly interoperability errors induced by the incorrect use of
the standards. There is therefore an increased interest in automatic semantic validation of information objects based on industrial
standards. In this paper we focus on an approach to semantic validation by formally representing the modeling constraints from
unstructured documents as explicit rules (to be then used for semantic validation) and (semi-)automatically extracting such rules
from pdf documents. We exemplify an adaptation of this approach in the context of the OPC UA industrial standard and conclude
that (i) it is feasible to represent modeling constraints from the standard specifications as rules, which can be organized in a
taxonomy and represented using Semantic Web technologies such as OWL and SPARQL; (ii) we could automatically identify
constraints in the specification documents by inspecting the tables (P=87%) and text of these documents (F1 up to 94%); (iii)
the translation of the modeling constraints into rules could be fully automated when constraints were extracted from tables and
required a Human-in-the-loop approach for constraints extracted from text.

Keywords: Semantic Validation, Information extraction, Natural Language Processing, SPARQL, Human-in-the-loop, OPC UA

1. Introduction domain by providing shared guidelines for data rep-
resentation and exchange. For example, the Interna-
Interoperability in the industry has been a research tional Electrotechnical Commission’s (IEC) Common

topic since the 1970s [1] and became even more
relevant during the fourth industrial revolution, as
Cyber-Physical Production Systems (CPPS) rely on
networked manufacturing equipment that needs to
be seamlessly integrated, often in run-time, dynamic
workflows [2]. To ensure such interoperability, indus-
trial standards are core to many industries and repre- technical, syntactical, and semantic level: while the
sent vital elements in the ecosystem of that industrial transport protocols and payload formats are defined
on the technical and syntactical levels, semantic inter-
*All authors have contributed with equal effort to the work and operability is achieved through extensible information
therefore are listed in alphabetical order. models, which capture domain-specific knowledge.

Information Model (CIM) provides a data model for
standardised information exchange of energy grid de-
scriptions [3]. Another example is OPC Unified Ar-
chitecture (OPC UA) - an industrial standard that en-
sures interoperability between industrial devices on the

1570-0844/$35.00 © 0 — I0S Press and the authors. All rights reserved

=W N

©w o g o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

mailto:marta.sabou@ifs.tuwien.ac.at
mailto:stefani.tsaneva@tuwien.ac.at
mailto:thomas.fruehwirth@tuwien.ac.at
mailto:gernot.steindl@tuwien.ac.at
mailto:yashoda.bareedu.ext@siemens.com
mailto:christoph.niedermeier@siemens.com
mailto:aparna.thuluva@siemens.com
mailto:nilay.tuefek-oezkaya@siemens.com

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

2 Y. Bareedu et al. / Deriving semantic validation rules

OPC UA
Foundation

OFC UA
> Basa
Bpeciication

follows

Informal Rules

ER N

engineer <

informsi ! Hﬂ

guidelines from

shown to \ Malidation

""""""" ~" 7| Report
OPC UA Device Descriptions L

1\ 4 describes

- issues
@ in the
TS

A

duscrines

duscrives
duscr

generated after applying

Fig. 1. Standard development, standard usage and the need for semantic validation (shown in red) in the case of OPC-UA.

We distinguish two core stages in the life-cycle of an
industrial standard, which we depict in Fig. 1 and dis-
cuss in the context of OPC UA. First, standard devel-
opment is undertaken by an industrial standardization
body. In the case of OPC UA, standard development is
performed by the OPC Foundation which involves ex-
perts from the industry and academia around the world
(left part of see Fig. 1). The OPC Foundation has de-
fined rich domain independent semantics for OPC UA
information models captured in one of the OPC UA
base specifications. Several domain specific working
groups are part of the OPC Foundations. Their role is
to issue domain specific information models, compli-
ant with the meta-model defined in the base specifica-
tion, in the form of OPC UA companion specifications,
e.g., in the domains of Robotics, Machinery etc.

A second key stage is the standard usage, when
stakeholders in the domain pertinent to the standard
create information objects that follow the guidelines
proposed by the standard, thus achieving interoperabil-
ity in that industrial domain. In the case of OPC UA,
several manufacturers around the world rely on this
standard to ensure interoperability of their devices with
the devices from other manufacturers. To that end, en-
gineers employed by these manufacturers need to write
OPC UA information models of such devices. These
models are serialized as structured, XML-based docu-
ments (also referred to as NodeSet files) capturing the
structure and functionality of the device by following
the OPC UA standard laid out in the base and (rele-
vant) companion specifications (right side of Fig. 1).

Provided that the information objects fully com-
ply to the guidelines of the standard, interoperabil-
ity across stakeholders subscribing to the standard is
achieved. However, the semantics defined by (most
of) the standards (and by OPC UA in particular) are
only available as unstructured (pdf) documents. Cur-
rently the assumption is that the engineer creating in-
formation models has a thorough understanding of the
base/companion specifications and has correctly ap-
plied all pertinent guidelines described in several hun-
dred pages. In practice, this is unrealistic and often
leads to the incorrect application of the standard which
triggers costly interoperability errors. There is a need
for automatic semantic validation, in order to easily
and reliably check the compliance of an (OPC UA) in-
formation model with relevant standard specifications.

In this work, we address this common pattern in the
landscape of industrial standards, with a special focus
on OPC UA. In particular, we propose an approach
to semantic validation in which modeling guidelines
available in non-structured specifications are translated
into formally represented rules that can be used to au-
tomatically validate the correctness of the information
models in terms of their compliance with the specifi-
cations (red elements in Fig. 1). To that end we inves-
tigate the following research questions:

— RQI: To what extent can informal modeling
guidelines be captured into formal rules? 1s it
possible to identify such rules? Can they be orga-
nized in a taxonomy? What is the best way to rep-

Sw N

© 0 9 o u

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

Y. Bareedu et al. / Deriving semantic validation rules 3

resent them? If capturing informal guidelines into
formal rules is possible, it is unfeasible to expect
that this process will be performed manually by
interested stakeholders, such as the specification
authors. Therefore, this process should be auto-
mated as much as possible, as addressed by the
next two RQs.

— RQ2: To what extent can modeling guidelines be
automatically identified in the specification doc-
uments? How complex is the task of identifying
constraints in specifications? What information
extraction methods are amenable for this task?

— RQ3: To what extent can informal modeling
guidelines be automatically mapped to formal
rules? What methods can be used to map between
unstructured constraints and formal rules?

We answer these research questions through the fol-
lowing methodology leading to several contributions:

— We propose a high-level approach for the extrac-
tion of modeling constraints from specifications
and their formal representation, e.g., as SPARQL
constraints. The proposed technical solution has
several core components: (1) a catalogue of ma-
jor rule types and their corresponding representa-
tions as SPARQL query (templates); (2) a compo-
nent to automatically identify constraints in spec-
ification documents; (3) methods for generating
rules from textual constraints identified in stage
(2) according to templates proposed in stage (1).

— We apply the steps of this approach in the con-
crete case of OPC UA specifications, resulting
in contributions such as: (a) an OPC UA specific
rule catalog and classification including the cor-
responding SPARQL representations; (b) OPC
UA specific semi-automatic methods for extract-
ing rules from pdf documentations.

— We evaluate the performance of the technical
components individually. Then we provide a fea-
sibility evaluation of the proposed method for one
concrete OPC UA specification in the Machinery
domain and perform an evaluation campaign in-
volving Machinery working group experts.

We continue by providing further motivation for our
work and background related to OPC UA in Sect. 2.
Then the proposed high-level approach is described in
Sect. 3, and the following sections investigate one of
the research questions within the context of OPC UA,
including the rule taxonomy (Sect. 4), methods for au-
tomated constraint extraction (Sect. 5) and methods for

generating rules from constraints (Sect. 6). These in-
dividual components are evaluated in Sect. 7. We dis-
cuss related work and concluding remarks in sections
8 and 9 respectively.

2. Background and motivation
2.1. Background: OPC UA

Basic OPC UA Notions. OPC UA is a framework for
industrial communication that additionally provides
information modeling capability. The communication
of OPC UA is based on the client/server principle,
but part 14 of the specification also introduces a pub-
lish/subscribe communication paradigm.

OPC UA information modeling provides structure
and context to the data of a production facility. It al-
lows the description of devices, such as sensors, ac-
tuators, as well as whole production machines, in an
object-oriented and semantically meaningful way [4].

The basic elements of the information model are:
(1) nodes that represent objects, variables, methods,
etc. and (2) references which are used to model rela-
tions between nodes. Eight different node classes are
defined by OPC UA: ObjectType, Object, DataType,
VariableType, Variable, ReferenceType, Method, and
View. Depending on the node class, a set of attributes
is defined for each node. One of the most important
attributes, which is supported by every node class, is
the Nodeld. The Nodeld is used to unambiguously
identify each node by a so-called Namespacelndex
and an Identifier. Some other attributes are the Node-
Class itself, the DisplayName (a human-readable name
for the node), Description (a human-readable descrip-
tion of the purpose of the node), maybe a Value, and
many more. Nodes can be instantiated based on the de-
fined OjectTypes or VariableTypes, similarly to object-
oriented programming. These objects, variables, and
methods are called instance Nodes.

The OPC UA information model is extensible, and
it is used by domain experts for certain domains (e.g.,
machinery) to create Companion Specifications. The
experts agree upon the modeling and release it as an
industry-standard model, which can be used free of
charge by anyone, e.g., other machine vendors. Thus,
these OPC UA Companion Specifications facilitate in-
teroperability at the semantic level.

Fig. 2 shows an example of an information model
from the Machinery Companion Specification using
the graphical notation defined in the OPC UA base

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4 Y. Bareedu et al. / Deriving semantic validation rules

MachineryltemidenificationType

R

2:ManufacturerUri

YearOfConstruction

MachineldentificationType

Fig. 2. Part of the OPC UA information model as it is defined in the
Machinery Companion Specification.

specification part 3. The abstract ObjectType Machin-
eryltemldentificationType has two variables Manufac-
turerUri and YearOfConstruction. These variables are
related to the ObjectType via a HasProperty refer-
ence. The HasSubType reference is used to specify
another ObjectType called MachineldentificationType
which inherits the properties from Machinerylteml-
dentificationType. As this ObjectType is not defined as
abstract, instances of this type (Objects) can be cre-
ated. Even if no instance is shown in this example, and
not every aspect of the model is explained, it provides
some insight into the OPC UA information modeling
concepts. More details can be found in [5].

OPC UA specifies an XML Schema, which defines
the information model as an XML serialization. Such
XML files are called OPC UA NodeSet files and can
be generated with both open-source and commercial
tools. The NodeSet file can be loaded and instantiated
by an OPC UA server to make the information avail-
able to other clients. This exposed information model
is the server’s address space.

Need for semantic validation. Even if OPC UA pro-
vides sophisticated information modeling possibilities,
it lacks the ability of defining restrictions on the model.
Such restrictions could be beneficial to enforce se-
mantic interoperability when applying the information
model in a certain use case. Currently, constraints on
the model have to be documented in text, using natural
language. Thus, currently they cannot be checked au-
tomatically. As an example, the Machinery companion
specification states, that the property variable YearOf-
Construction, as shown in Fig. 2, shall be a four-digit
number, such as "2022" or "2023". However, this con-
straint is only specified in the companion specification
(textual) and not in the information model. Thus, noth-

ing prevents a machine manufacturer from incorrectly
using the information model as defined in the compan-
ion specification and assigning the value "22" instead
of "2022". The problem occurs when a system in the
factory tries to automatically schedule maintenance ac-
tions based on the age of the machine. The system will
not be able to interpret "22" as the year "2022" and will
fail. This shows that the semantic validation of ma-
chine information models against the standard is cru-
cial to ensure interoperability between machines and
thus avoid costly errors and malfunctioning due to the
incorrect use the standard.

Such errors could be avoided by ensuring that the
NodeSet correctly follows the specification guideline.
This "validation" process is currently the task of the
engineer that creates such NodeSets and it is unrealis-
tic since the OPC UA base specification itself contains
about one thousand pages and the number of com-
panion specifications is rapidly increasing yearly to
address demand for ensuring interoperability between
machines from different domains.

[RuleType J

Fy
ry

Some ObjectType SomeRule

——hasRu IEA{

Fig. 3. Rules defined in the OPC UA information model.

There is therefore a need of a paradigm shift towards
automated, semantic validation of OPC UA informa-
tion models. To that end, the OPC Foundation already
investigates the possibility of incorporating rules in the
OPC UA NodeSet files in the future. Figure 3 depicts
how this could be modeled in OPC UA in a very ab-
stract way using thee graphical OPC UA notation. The
exact implementation is still subject to debate and not
the focus of this paper. However, the figure illustrates
the basic idea, which is specifying rules for individual
nodes within the OPC UA information model. Gener-
ally speaking, these rules express restrictions on the
node or instances of the node.

To enable such a paradigm shift within OPC UA mo-
tivated our work towards a (semi-)automated approach
for extracting the constraints from the specifications,
organizing them into a rule taxonomy and formaliz-
ing them into Semantic Web form such as OWL and
SPARQL queries that can achieve automated semantic
validation (a technical realisation of such a validation
process is reported in Sect. 7.2).

=W N

o 0 g o

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49
50
51

Y. Bareedu et al. / Deriving semantic validation rules 5

2.2. Motivation: stakeholders use case

Several stakeholder groups can benefit from our
work that support this paradigm shift towards seman-
tic validation. Firstly, users of the Companion Specifi-
cations, e.g., a machine vendor will be able to check
the conformance of the created address space of, e.g.,
a machine with the applied Companion Specification.
As a result, plant operators can rely on conformance
with companion specifications and simplify integra-
tion procedures.

Secondly, Companion Specification creators (i.e.,
members of the OPC UA working groups) will be able
to check consistency between their companion specifi-
cation and NodeSet files created in terms of this speci-
fication. They will also be able to provide a mechanism
to enforce semantic interoperability (by providing for-
mal rules in addition to the pdf-based companion spec-
ification). Capturing the informal specification of stan-
dards in formal rules will make sure that the standards
are correctly applied, thus supporting interoperability.
This stakeholder group requires automated support for
the process of creating formal rules.

On a long term, work on formal verification of
compliance with standard specifications addresses the
needs of all stakeholder groups. This paper primar-
ily focuses on supporting companion specification cre-
ators in turning their specifications into formal rules.

3. Overall approach: Deriving rules from
industrial standard specifications

‘We propose a high-level approach for (semi-)automatically

translating modeling guidelines expressed in specifi-
cation documents into formal rules (that can be used
for semantic validation). To that end, we introduce the
following terminology:

— Constraints represent concrete snippets in the
standard specifications that express modeling
constraints which are candidates for being for-
malized into rules. Constraints can be speci-
fied either in an unstructured (textual) or semi-
structured (tabular, list) form.

— Rules are formally represented constraints for-
mulated in a Semi-Formal Notation (SFN), as
SPARQL queries, or in any other suitable lan-
guage. They are applied on the information mod-
els created by end users in order to verify that they
comply to the constraints expressed in the speci-

fication. More complex constraints might require
representation through multiple rules, that we re-
fer to as Rule Sets.

— Rule Templates are generalized versions of rules
that use variables. Rules are derived from tem-
plates by replacing the variables with specific
values. Templates are an important mechanism
for supporting automatic rule extraction by being
populated with automatically extracted values.

The overall approach for rule extraction encom-
passes several key stages:

1. Stage 1: Rule taxonomy creation: a first stage
is understanding whether constraints described
in a standard’s specification are amenable to be
represented as formal rules. If this is feasible,
rules that can capture such constraints need to be
identified, represented in a formal language (e.g.,
SPARQL) and organized in a taxonomy.

2. Stage 2: Constraint extraction from specification
documents, identifies those snippets in the spec-
ifications that contain information which should
be represented as formal rules. Such information
could be present through multiple modalities in-
cluding textual descriptions, tables or images. In
principle, these different modalities can be used
individually or in tandem to increase the perfor-
mance of the extraction process.

3. Stage 3: Rule generation represents making the
transition from the constraints extracted from the
specification document (in Stage 2) into formally
represented rules as identified in Stage 1. Rule
templates can be used to automate this process
when a clear mapping can be established be-
tween automatically extracted information and
the template variables. In other cases, human in-
tervention might be needed.

4. Stage 4: Constraint and rule validation. Al-
though the aim is to automate the constraint ex-
traction and rule generation, automated methods
rarely provide perfect results. Therefore, a con-
cluding stage in this pipeline involves domain
experts who validate (and if needed correct) the
outputs of stages 2 and 3 above. With this pro-
cess, ground truth data is collected from experts
to inform the further development and extension
of the existing methods.

The concrete techniques used to implement the
stage of our approach highly depend on the charac-
teristics of the concrete standard. Therefore, in the

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

6 Y. Bareedu et al. / Deriving semantic validation rules

Rule Taxanomy
Creation

~ | Standard
Specification

Conslramt Extraxman
fram specification
documents

“ Standard
as PDF

Rule Taxonomy
and Templates

./l - l\.

M /I

Constraint and Rule
Validation

(SPARQL)

Rule Generation Rules

'Y 'Y
constraints —+ \—-[ruli(—f

S—

Training
)

Fig. 4. Overall approach for deriving rules from specifications of industrial standards.

next sections, we describe how we implemented these
stages in the context of the OPC UA specification.

4. Stage 1: Rule taxonomy creation

The creation of a rule taxonomy and corresponding
rule templates addresses RQ1. The process involved
the following four steps (see Fig. 5):

— Step 1: Identify constraint types. First, we eval-
uated whether the tables present in the OPC UA
companion specifications represent constraints
with regard to the OPC UA information model.
The core specification was not considered, be-
cause a preliminary analysis showed that it con-
tains unique rules and, therefore, provide little
potential for identifying rule templates. The out-
put of this step was the identification of various
constraint types, e.g., ObjectTypeDefinition con-
straint. Examples of identified constraints can be
found in Sect. 5.

— Step 2: Structure rule taxonomy. As stated above,
constraints can be verified by checking one or of-
ten multiple rules. The different rules were struc-
tured in a taxonomy (see Sect. 4.1) but not yet
formulated.

— Step 3: Formulate rules in SFN/SPARQL. An ex-
ample for each rule within the taxonomy was for-
mulated in SFN. In addition, some rules were
also expressed in SPARQL, which allows them to
be verified against existing OPC UA companion
specifications (see Sect. 4.2).

— Step 4: Create rule templates. Finally, the constraint-

specific information of each rule was replaced by
template variables, resulting in rule templates. Fi-

nally, the rule templates were also organized in a
taxonomy (see Sect. 4.2).

L
|

PDF

OPC UA
Companion
Specification

Identify constraint| | »| Listof

RN types constraint
S types

A

51
;

; Structurerulesin| » Rule

a rule taxonomy taxonomy

|
,

' Formulate rules in
------------ > SFN and ------->» Rule
SPARQL example

Y

Create SFN and
SPARQL rule [-------1) » Rule
templates template

;

Fig. 5. Process for creating the rule taxonomy and templates.

Additional information about each step and interme-
diate results are provided in the following sections.

4.1. Step 2: Structure rule taxonomy

Based on the constraint types identified in Step 1,
a number of individual rules were derived and subse-
quently classified into a rule taxonomy. The top-level
hierarchy of this taxonomy (Fig. 6) distinguishes be-
tween (1) Global Rules, (2) Node Rules, and (3) Type
Rules based on the scope of the rule application.

— Global Rule - A Global Rule is not associated
with a specific node but expresses some gen-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Y. Bareedu et al. / Deriving semantic validation rules 7

eral rule to be fulfilled within the NodeSet (e.g.,
within the entire device description). For exam-
ple, the following rule expressed in SFN checks
that the node MotionDeviceSystemType exists in
the information model (see also Fig. 7).

Example in SFN: The node MotionDeviceSystem-
Type exists.

— Node Rule - A Node Rule only applies to the node
that the rule is associated with.

Example in SFN: The node MotionDeviceSystem-
Type references a node MotionDevices. This node
has ModellingRule Mandatory.

— Type Rule - A Type Rule applies to all nodes de-
rived from the type node that the rule is associ-
ated with.

Example in SEN: For all instances of MotionDe-
viceSystemType: The instance references exactly
1 MotionDevices node.

v v v
[GlobalRule] [NodeRule] [TypeRule }

Fig. 6. Top-level rule classes.

These three basic top-level categories are refined, as
shown in Fig. 25 - 27 (Appendix A), resulting in 3
Globale Rules, 24 Node Rules and 18 Type Rules.

Currently, there exist only three different types of
Global Rules (Fig. 25). The most important one is to
check if a specific node exists in the information model
or not. The other two are concerned with the initial-
ization of read-only and write variables. As they can-
not be associated with a specific node, such rules are
defined globally on the entire NodeSet file.

Restrictions regarding the attributes of a node, the
references between them, and a referenced node have
to be checked at the type level as well as on node in-
stances of an OPC UA information model. Thus, these
classes can be found in the taxonomy for NodeRules
and TypeRules.

Additionally, Node Rules have restrictions on gen-
eral Data Type Structures and Enumerations. These
rules and the further refinement of these rule classes
are depicted in Fig. 27.

For TypeRules, an addional rule is needed to check
that an abstract ObjectType is not instantiated as an
Object (Fig. 26).

4.2. Step 3-4: Rule examples and templates.

The rules present in the taxonomy were formu-
lated in SFN and SPARQL using examples from the
companion specifications. These rules were then gen-
eralized into rule templates by replacing constraint-
specific information with template variables.

The rules and rule templates are not presented as
a whole here, but the following examples should pro-
vide an impression of general concepts and the gen-
eral form of rules formulated in SFN and as SPARQL
queries. In general, SPARQL rules produce an error
message if the rule is violated, and otherwise, they re-
turn no result. The rule, presented in Fig. 7, checks the
existence of a node MotionDeviceSystemType on the
global, NodeSet file level. The SPARQL query results
in a message if no such node could be found and re-
turns no results otherwise.

SFN:

The node MotionDeviceSystemType exists.

SPARQL:

PREFIX ta: <http://opcfoundation.org/UA/Meta/TA/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?msg
WHERE {
FILTER NOT EXISTS { ?s ta:browseName
"http://opcfoundation.org/UA/Robotics/MotionDeviceSystemType" " xsd:anyURI }
BIND (STR('Node http://opcfoundation.org/UA/Robotics/MotionDeviceSystemType
does not exist') as ?msg)

)

Fig. 7. SFN and SPARQL rule examples.

The SFN and SPARQL rule templates, depicted in
Fig. 8, are generalized versions of the rule which is de-
picted in Fig. 7. They verify that a node with a spe-
cific browse name, provided via the template variable
@ @BrowseName @ @, exists in the ontology repre-
senting the NodeSet file. Such templates are important
because they can be used as basis for automatic rule ex-
traction processes that can generate concrete rules by
replacing the template variables with concrete values.

SFN:

The node @@BrowseName@@ exists.

SPARQL:

PREFIX ta: <http://opcfoundation.org/UA/Meta/TA/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?msg
WHERE {
FILTER NOT EXISTS { 25 ta:browseName "@@BrowseName@@"~“xsd:anyURI }
BIND (STR('Node @@BrowseName@@ does not exist') as ?msg)
}

Fig. 8. SFN and SPARQL rule template examples.

=W N

o 0 g o

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37

39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

8 Y. Bareedu et al. / Deriving semantic validation rules

5. Stage 2: Constraint extraction from
specifications

To address RQ2, we investigated various methods to
support the automatic detection of constraints in OPC
UA specifications. The OPC UA industrial standards,
published in PDF format, convey information by rely-
ing on three modalities: (i) tables capturing in a struc-
tured way modeling guidelines pertinent for the cor-
responding domain; (ii) graphical charts depicting the
components of the information model (see example in
Fig. 2); (iii) textual descriptions explaining the infor-
mation represented in tables and graphical charts. We
investigate to which extent information related to mod-
eling constraints can be extracted automatically from
tables (Sect. 5.1) and text (Sect. 5.2) in OPC-UA spec-
ification documents.

5.1. Constraint extraction from tables

We report an initial study to clarify whether tables
are a good source for constraint extraction (Sect. 5.1.1),
the creation of a data set as a basis for this process
(Sect. 5.1.2), as well as an approach for extracting con-
straints from tables (Sect. 5.1.3).

5.1.1. Preparatory Study: which tables are useful for
constraint extraction?

To extract all relevant constraints from specification
documents an understanding of the information struc-
tured in tables is needed and whether tables contain
information that is relevant for the constraint extrac-
tion. Three of the authors performed an analysis of 543
tables from 10 different companion specifications and
concluded that:

— tables are a rich and structured source of con-
straints;

— there are several table types, and each table type
conveys specific OPC UA constraint types. For
instance, a Reference TypeDefinition table can in-
clude a symmetric constraint and an inverse name
constraint while an Object TypeDefinition table
contains among others cardinality and existence
constraints.

As part of the conducted table analysis, 42 table types
are identified, 9 of which (e.g., Example, Common-
terms table types, etc.) are considered irrelevant for
the constraint extraction task. Based on the number of
instances (e.g., concrete tables) a table type has and
the number of specification documents that used this

Object TypeDefinition (43.05%)

Other (25.44%)

Enumeration (8.81%)

Method Parameters Definition (6.75%)
Method AddressSpace Definition (4.32%)
Method ResultCode Definition (3.39%)
DataType Structure (2.94%)
Reference TypeDefiniton (2.05%)
NamespaceURI (1.08%)

ProfileURI (0.9%)
NamespaceMetadata (0.82%)
Transition (0.41%)

Fig. 9. Distribution of table types in 28 preselected OPC UA compan-
ion specifications.

table type, the top most frequent 11 table types are
selected and used as input to the automated extrac-
tion process described in Sect. 5.1.3. These table types
are: Object TypeDefinition, Enumeration, Method Pa-
rameters Definition, Method AddressSpace Definition,
Method ResultCode Definition, DataType Structure,
Reference TypeDefiniton, NamespaceURI, ProfileURI,
NamespaceMetadata, Transition.

5.1.2. Data set creation

For the task of automatically extracting constraints
from tables, 28 companion specification PDF docu-
ments are considered. Fig. 9 visualizes the distribution
of the selected table types in those 28 documents. It
shows that Object TypeDefinition type tables appear
most frequently and account for 43% of all tables in
the inspected specifications. Enumeration type tables
make up 9% percent of all the tables in these specifi-
cations. The tables from the 11 table types selected as
most frequent during the analysis phase (Sect. 5.1.1)
cover almost 75% of all occurring tables. The rest of
25.5% tables (shown as Other in Fig. 9) belong to table
types that are very infrequent or are specific to only a
single document.

5.1.3. Approach for constraint extraction from tables

In this section we focus on the process of automati-
cally extracting OPC UA constraints from tables. Fig-
ure 10 shows an overview of the approach and each
step of the process is explained next.

Step 1 - Table detection and extraction. This step
takes as input a PDF companion specification docu-
ment and returns a set of tables. It relies on Camelot
(https://camelot-py.readthedocs.io), an open-source
python library, specialised in the automatic detection
and individual extraction of different tables from PDF
documents.

Sw N

© 0 9 o u

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://camelot-py.readthedocs.io

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Y. Bareedu et al. / Deriving semantic validation rules 9

Exdracted Tables

Table

OPCUA L.-- Detection &
Companion Extraction .
Specification 4

¥ 9
e -

Table
Categorization

emplates

Constraint Detection | |
& Rule Formulation

Fig. 10. Process of extracting constraints from tables.

Step 2 - Table categorization. In this step, the set of
tables from the previous step is processed and each ta-
ble is categorized into its corresponding table type.

We apply a heuristics based approach which relies
on making use of two types of manually specified lists
of terms: (i) the first list contains terms that indicate
that a table is of a certain type; and (ii) the second list
contains terms that are not specific to that table type.

Fig. 11 shows an example of a filter used to iden-
tify whether a table is of type Object TypeDefinition.
Strings such as "TypeDefinition" and "isAbstract False
True" indicate that the table is of type Object TypeDef-
inition, while the keywords "ToState" and "FromState"
refer to a Transition table and would thus classify a ta-
ble as not-ObjectTypeDefinition. Using this technique
to further filter out the table types results in the extrac-
tion of their exact types.

The main challenge in this step remains the incon-
sistencies in the appearance of a specific table type in
the companion specification documents. Since not all
tables are compliant with the defined OPC UA com-
panion specification template, a table could sometimes
have different structural formats with new or varying
column names, new positioning of the columns in the
table, missing or misaligned rows and columns, as well
as typographical errors. Therefore, the classification of
the table types had to be further customized to increase
the correctness in table extraction. Since only known
inconsistencies among the same table type were con-
sidered, the results of the algorithm might vary when
applied to new specification documents.

objtypdef = ["IsAbstract False True","” HasComponent
HasProperty Requires”, "NodeClass Object Variable",
"TypeDefinition", "ModellingRule MandatoryPlaceholder
OptionalPlaceholder”, "OrganizedBy", "Organized by",
"Powerlink Attributes”, "Details", "DisplayName", "Access
level”, "ValueRank"]

nonobjtypedef = ["InverseName","Symmetric”, "Subtype of
HierarchialReferences defined"”, "Argument[]",
"InputArguments”, "OutputArguments”, "Namespace ", "Conf
ormanceUnit”, "Conformance Unit","ToState ", "FromState”,
"HasEffect"”, "Notes — Notes referencing footnotes of the
table content.”, "NOTE WNotes referencing footnotes of the
table content.”,"SourceBrowsePath ", "Source Path"]

for table in tables:
if any(s in table.df.to_string() for s in objtypdef):
if not any(s in table.df.to_string() for s in nonobjtypedef):

Fig. 11. Filtering Objct TypeDefinition table types by using lists
of indicative/non-indicative strings.

Step 3 - Constraint detection & rule formulation.
Once the types of the extracted tables are known, for
each table type a set of its respective type-specific
constraints are extracted. Constraints are detected in
the tables by iterating through the respective rows
and columns. Subsequently, rules that verify each con-
straint can be automatically extracted by filling in the
values extracted from the tables into predefined rule
templates (rule templates are explained in detail in
Sect. 4). This is feasible because the Rule Taxonomy
contains a constraint taxonomy which maps constraint
types to individual rule templates. An example of the
constraint extraction is illustrated in Fig. 15. In the ex-
ample, SPARQL templates are populated with the ta-
ble values. An evaluation of tabular constraint extrac-
tion is provided in Sect. 7.3.

5.2. Constraint extraction from text

OPC UA companion specification documents in-
clude large amounts of tables and figures. Neverthe-
less, it can be observed that the text surrounding the
tables can extend the constraints defined in the tables
or introduce new constraints. Therefore, the extraction
of constraints from text is an important task. While
extracting constraints from tables is a straightforward
process, extractions from text require a well-trained al-
gorithm and a human-in-the-loop for verification.

We investigate two different approaches - a machine
learning based classification and a lexical pattern-
based extraction, introduced in the next sections.

Sw N

© 0 9 o u

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

10 Y. Bareedu et al. / Deriving semantic validation rules

v
PDF

OPC VA
Companion
Specification

Binary Classification

Fig. 12. Process of extracting constraints from text.

5.2.1. Machine learning based approach

The first approach frames the constraint identifi-
cation as a binary classification problem. It involves
training a classification model using labeled sentences
and then classifying new text inputs as constraints or
not-constraints.

Training set. A prerequisite for this approach is the
availability of an annotated data set for the training of
the classification algorithm. For this purpose one com-
panion specification (PackML) was analyzed by the au-
thors of this paper (who are also OPC UA members)
and constraints were manually identified. The result-
ing training data set includes 198 text snippets which
consist of either a single sentence or several sequen-
tial sentences extracted from the specification and their
binary classification as constraint (approx. 20% of the
data) or not-constraint (80%). A sample of the data can
be seen in Table 1.

Fig. 12 shows an overview of the extraction process
as discussed next.

Step 1 - Model training. By using the pre-annotated
text snippets 8 scikit-learn based machine learning
models (Nearest Neighbors, Linear SVM, RBF SVM,
SGD, Decision Tree, Random Forest and Neural Net-
work, AdaBoost) are trained to recognize different
types of output - in our context, to differentiate be-
tween constraints and not-constraints. The annotated

sentences from the PackML training data were split
into Train and Test sets with a ratio of 4:1. When
trained with enough example data, the models can then
predict the type of new text inputs.

Step 2 - Sentence extraction. The next step is to ex-
tract all sentences from the PDF specification docu-
ment from which the constraints should be derived.

Since the first chapters of each companion speci-
fication include general information about OPC UA,
terms explanations as well as introductory examples,
they are not considered for this task. For the extraction
of the rest of the sections, Spacy (https://spacy.io) and
PyPDF2 (https://pypi.org/project/pyPdf/), Python li-
braries supporting various Natural Language Process-
ing tasks such as information extraction, are used.

Step 3 - Binary classification. After a set of sen-
tences is extracted, each sentence needs to be cate-
gorized as constraint or not-constraint. First, the ex-
tracted sentences, as well as the training data, are pre-
processed using stop word removing, lemmatization
and tokenization. Second, each of the trained models
is applied to the extracted sentences and their results
are compared. The results are discussed in Sect. 7.4.1.

5.2.2. Lexical pattern-based approach

In the English language, a sentence can be consid-
ered a rule if it conveys a semantic meaning of some
function or some property or something that "has to
be present" in some entity or needs to be necessarily
followed. Such sentences have a syntactical structure
that contain representative words such as must, have
to, should, will, etc. Such words are called auxiliary
verbs and play a key role in identifying if a statement
is a "compulsory condition" and thus a constraint. This
observation prompted us to experiment with a lexical-
pattern based constraint extraction, depicted in Fig. 13
and explained next.

Step 1 - Linguistic patterns identification. The first
step of the approach is to analyze the structure of con-
straints. For instance, a constraint could be expressed
with a auxiliary verb in a lexical pattern structure
such as pronoun/noun/(proper noun) + auxiliary verb
+ verb. An example is: "At least one instance of a
MotionDeviceSystemType must be instantiated in the
DeviceSet.". The word MotionDeviceSystemType is a
proper noun and vocabulary belonging to the OPC UA
context, must be is a auxiliary verb and these words are
followed by the verb instantiated. Subsequently, the
following lexical patterns are formulated:

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://spacy.io
https://pypi.org/project/pyPdf/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Y. Bareedu et al. / Deriving semantic validation rules 11

Table 1

A sample of the gold standard data for the PackML companion specification.

Text Snippet isConstraint
UnitCurrentMode - is used to display the current mode of the instance of this type. The DataType is Enumeration which is yes
abstract, but an instance shall be assigned a concrete enumeration, which corresponds to the enumeration listed in Support-

edModes.

EquipmentInterlock.Blocked - If TRUE, then processing is suspended because downstream equipment is unable to receive no

material (e.g. downstream buffer is full).

Linguistc Pattern
Identification

lexical
patterns

¥ 2

POF

QPC UA Linguistc Pattern |
Companion Matehing
Specificaon | | |

Fig. 13. Rule-based approach for extracting constraints from text.

1. patternl =[’POS’’SCONJ’,;’OP’:’?*,"POS’’DET’,

"POS’: 'NOUN’;OP’: ’?°, ’POS’: ’PROPN’]

2. pattern2 =[’POS’: ’PROPN’, ’POS’: "'NOUN’,’OP’:

7, ’POS’: ’PUNCT’,OP’: *?°, ’POS’: "AUX’,
"POS’: "PUNCT’,’OP’: ’?7’, ’POS’: " DET’,’OP’:
*?7,’POS’: ’ADV’, ’OP’: ’?’,’POS’: "VERB’]

Here POS is a linguistic attribute that defines the
parts of speech of the word in our pattern. Opera-
tors and quantifiers define how often the token must
be matched. In the above pattern the operator OP:
‘?” makes the Parts of speech or POS token with the
AUX or auxiliary verb matching, optional, by allow-
ing to match O or 1 times. Similarly, PROPN - repre-
sents a proper noun, PUNCT - represents punctuation,
DET - represents determiner, ADV - represents adverb,
SCONIJ - represents subordinating conjunction (e.g. if,
while, that).

Step 2 - Linguistic patterns matching. For this task,
we use Spacy and its Matcher object, which allows for
the specification of linguistic patterns and leads to ex-
tracting only sentences structured according to the pre-
assigned pattern, which are likely to be constraints. We
evaluate this method in Sect. 7.4.2.

6. Stage 3: Rule generation and validation

Our third research question focuses on the feasibil-
ity of mapping constraints specified in the tables and
text of specification documents to rules. In the case of
OPC UA, there is a strong link between table types and
rule types, and rules can be generated automatically
from tables as we describe in Sect. 6.1. As it is more
difficult to connect textual constraints to rules, we rely
on a Human-in-the-loop approach to identify correct
rules for constraints extracted from text (Sect. 6.2).

6.1. Generating rules from tables

All tables found in the companion specifications
are classified as NonCheckableConstraint, Runtime-
Constraint, or OfflineCheckableConstraint. The con-
straint classes are depicted in Fig. 14, which shows
a snippet of the created ontology that explicitly de-
fines the constraint and rule types. NonCheckableCon-
straints are tables with information that can not be
checked on the information model. An example would
be the description of parameters. RuntimeConstraints
can only be checked on a running instance of an OPC
UA server because the information is not directly avail-
able in a NodeSet file. Examples would be Server Pro-
files or Namespace URIs. Our work focuses on the
so-called OfflineChechableConstraints, which are con-
cerned with information about the structure of the in-
formation model.

To automate the generation of rules from tabular
data, we relate each one of an OfflineChechableCon-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

12 Y. Bareedu et al. / Deriving semantic validation rules

Annctation properties Datatypes | Individuals | = @ ObjectTypeDefinition_Constraint
Classes | Object praperties Data properties

Equivalert To
Asserted ~
v ® owiThing Subclass Gf
Constraint ‘consistsOf min 0 AbstractObjectTypelsNofinstantiated_TR
¥ @ NonCheckableConstraint
- @ OffineCheckabreConstraint ConsistsOf min 0 AttributeExists_NR
‘consistsOf min 0 AttributeExists_TR
‘consistsOf min 0 AttributeHasSpecificvalue_NR
consistsOf min 0 AttributeHasSpecificValue_TR
consistsOf min 0 NodeHasReferenceOTType_NR
consistsOf min 0 Nodels SubtypeOf_NR
consistsOf min 0 ReferenceCardinality_TR
consistsOf min 0 ReferencedNodeExists_NR
consistsOf min 0 ReferencedNodeHasModellingRule_NR
consistsOf min 0 ReferencedNodeHasTypeDefinition_NR
consistsOf min 0 ReferencedNodeHasTypeDefinition_TR
consistsOf min 1 NodeExists_GR
foundinSpecification some Specification
foundOnPage some xsd:string
OffineCheckableConstraint

DataTypeStructure_Constraint
Enumeration_Constraint
MethodAddress SpaceDefinition_Constraint
MethodParametersDefinition
NamespaceMetadata_Constraint
ObjectDefinition_Constraint
ParameterSetDefinition_Constraint
ReferenceTypeDefinition_Constraint
StateDefinition_Constraint
Transition_Constraint
TypeMethodEventSubtype_Constraint
VariableTypeDefinition_Constraint
b @ RuntimeConstraint

Rule

Specification

Templatevariable

Fig. 14. Snippet of the Rule Taxonomy, which is an ontology de-
scribing the types of constraints, types of rules as well as the map-
pings from constraint types to rules.

straint to a set of possible rules via an OWL class def-
inition. If a table is found in a companion specifica-
tion, the first step is to look up if the table represents
an OfflineChechableConstraint. If so, the information
from the table is parsed (using techniques described in
Sect. 5.1), and the applicable rule (based on the con-
straint to rule mappings provided) is retrieved from the
set. Afterward, the rule template is filled with the re-
trieved information from the table. This procedure is
repeated untill all necessary rules are created for the
particular constraint.

As an example, the ObjectTypeDefinition constraint
is related to a set of 12 rules (Fig. 14). The needed in-
formation, e.g., that a node has a certain attribute value
or the reference is of a certain type, is extracted from
the tables and used to fill in the variables in the related
SPARQL rule templates. These completed rule tem-
plates can now be executed on the SPARQL endpoint,
which has loaded the OPC UA information model. Vi-
olations of the rules are reported as error messages.

Fig. 15 shows an example of this procedure. In the
upper part of Fig. 15, a snippet of the ObjectType-
Definiton table is shown for the WidgetType, as de-
fined in the Machinery companion specification. It
shows the part of the table where it is stated that the
WidgetType is not abstract. This is done by setting the
value of the IsAbstract attribute to False.

Among others, the ObjectTypeDefinition constraint
is related to the AttributeHasSpecificVale_NR rule tem-
plate, which checks if a certain attribute has a specific
value. In this case, it checks if the attribute IsAbstract
has the value “False”. The template of the A#tribute-
HasSpecificVale_NR rule is depicted in the lower part
of Fig. 15. The template variables are now assigned
with the values from the table to make the SPARQL
rule executable. The SPARQL rule will lead to the er-

Table:
Attribute Value.....
BrowseName*~] WidgetType -
fTsAbstract x| Falsé N
""" NodeClass | BrowseName
Subtyp of the BaseObjectType fromi*QPC 10000-5.
1 1

! \

I PREFIX ta} <http://opcfoundation.érg/lUA/Metal TA/> |
| PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#> I
I \ 1
| SELECT 7msg i |
IWHERE{ », v I
| ?s tatbrowseName "@@BrowseName@@"*xsd:anyURI . [
I FILTER NOT EXISTS"3s ta: @ @AttributeName@@ " "} I
|BIND(STR(@@BrowseName@@ @@AttributeName@@ is not 1
| ') as ?msg) :
|

SPARQL Rule:

e R R e ———————
| PREFIX ta: <http://opcfoundation.org/UA/Meta/TA/> I

: PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#=>

|
| |
| SELECT ?msg :
| WHERE { |
| ?s tatbrowseName "WidgetType"**xsd:anyURI . :
| FILTER NOT EXISTS { ?s ta:IsAbstract " "} |
BIND(STR(,WidgetType IsAbstarct is not ') as ?msg) 1

|

—

Fig. 15. Procedure of generating SPARQL rules from tables.

ror message if the WidgetType is defined as abstract in
the OPC UA information model.

6.2. Generating rules from text with
Human-in-the-loop

While the types of constraints expressed in certain
table types can be mapped to suitable rule templates
thus enabling the automated generation of rules from
tabular data (Sect. 6.1), generating rules from text is
a much harder process. As currently there is insuf-
ficient training data to train automatic classifiers for
this task, we propose a Human-in-the-loop approach
to map textual constraints to rules. The approach in-
volves three tasks in order to (1) verify the correct-
ness of textual constraints to remove noise introduced
by the automated extraction modules; (2) classify con-
straints into categories linked to rules; (3) validate the
resulting rules. As such, these tasks also serve as an ap-
proach to implement Stage 4: Constraint and Rule Val-
idation of the overall approach presented in this paper
(see Sect. 3, Fig. 4).

We rely on Human Computation (HC) techniques
for the Human-in-the-loop approach. HC implies out-
sourcing specific tasks of a system, which cannot be
fully automated, to human participants and leverag-
ing the human processing power to solve those tasks.
HC has been already successfully applied in a variety

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Y. Bareedu et al. / Deriving semantic validation rules 13

Task 1: Constraint Verification

Sentence ta sheck | 1

The s a subtype of the

The sentence was extracted from the paragraph below.

The is 2 subtype of the
mandatory. It is formally defined in Table 17.

it makes one Property

PG Ui Crine Raference Link: foundation org/Mach

‘Comment an Constraint Verification (optional) (5

in case you hive any remarks pleass add them here

Fig. 16. HC task designed for constraint verification.

of domains for verification tasks [6] and we believe
it is an important building block of a semi-automated
method to support the steps needed for the deriva-
tion of formal rules from PDF-based specifications.
Next, the designed HC approach is explained and later
in Sect. 7.5 a discussion of the results of an expert-
sourcing validation campaign are presented.

Human Computation task design. The HC solution
consists of three tasks. In a first task, as shown in Fig.
16, the evaluators are asked to verify whether an ex-
tracted sentence (1 in Fig. 16) represents a constraint.
To provide enough background information for the de-
cision the task includes additional context (2) such as
the paragraph from which the sentence is extracted as
well as relevant materials from the OPC UA Online
Reference tool (https://reference.opcfoundation.org).
To further support the experts, Instructions (3) are
available in which nomenclature is explained and de-
tailed task explanations with examples are provided.
To allow for easy aggregation of responses provided by
multiple experts, the task is designed as closed-ended
(4). In case the evaluator is unsure whether the sen-
tence refers to a constraint they can select the Uncer-
tain option. A comment field (5) is also available for
remarks that the experts would like to share.

When the evaluator selects that the sentence is a
constraint, Task 1b, shown in Fig. 17, is displayed. The
goal is to classify the constraint (1 in Fig. 17) into
the class to which it refers to (2). For instance, the
constraint can be related to an Object TypeDefinition
or an Enumeration. To support the generation of rules

Task 1b: Constraint Classification

the constraint? (multpe values can be selected) (3

i (optonay | 4

Fig. 17. HC task designed for constraint classification.

the user is also asked what restrictions (e.g., cardinal-
ity)(3) are defined in the constraint. As with a previous
task, a comment field (4) is available as well.

Once the constraint is classified, Task 2, shown in
Fig. 18, follows. Here the participant’s role is to val-
idate whether the shown rule (set) (2 in Fig. 18) cor-
rectly and completely reflects the constraint expressed
in the extracted sentence (1). The form in which the
rules are shown is a variable and should be decided
based on the evaluation population. In the shown ex-
ample in Fig. 18 a formal natural language was se-
lected, however, a rule language like SPARQL could
be used as well. As with Task 1 Instructions (3) are
available and a Yes/No/Uncertain answer (4) is ex-
pected. In case the person does not agree with the pro-
posed rule (set) they are asked to select whether the
rule (set) is incorrect, incomplete, incorrect and in-
complete or superfluous. A comment filed (5) is in-
cluded in case the evaluator wants to share some fur-
ther insights regarding the rule.

7. Evaluation

Evaluation primarily focused on assessing the per-
formance and quality of individual elements of the
proposed approach including: (i) the rule taxonomy
and rules defined in Stage 1 (Sect. 7.1 and 7.2); (ii)
the methods for extracting constraints from tables and
text (Sect. 7.3 and 7.4) and (iii) the feasibility of
HC tasks for constraint and rule validation as envi-
sioned in Stage 4 by performing an evaluation cam-
paign with OPC-UA experts from the Machinery do-
main (Sect. 7.5).

7.1. Evaluation of rule taxonomy

As described in Section 5.1, the rule taxonomy was
created based on the analysis of the constraints re-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://reference.opcfoundation.org

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

14 Y. Bareedu et al. / Deriving semantic validation rules

Task 2: Rule Validation

Constraint {1

The s a subtype of the

Rue eet) (2

Rule (set) derived from the constraint:

The nade IMachineVendorNameplateType exists.

The nade IMachineryltemvendorNameplateType exists.

is a subtype of |

5

n Rule Valldation (optional)

ny remarics please ada them here

Fig. 18. HC task designed for rule validation.

lated to a type of fable in a companion specification.
Therefore, the question arose whether and to what ex-
tent this rule taxonomy would enable expressing con-
straints present in the fextual part of specifications.

To validate the coverage of the rule taxonomy, we
manually identified the textual constraints in the Ma-
chinery companion specification. Afterward, the tex-
tual constraints were analyzed to see if the already
identified rules could also be used to express these tex-
tual constraints. We found that the rule taxonomy can
already cover the vast majority of these textual con-
straints. Only two global rules had to be added, which
are concerned with instantiating variables. This seems
reasonable as this kind of information can hardly be
expressed in a table and needs additional context.

We conclude that, although the rule taxonomy was
created based on constraints expressed in tables, it is
sufficiently complete to also express constraints de-
scribed in the textual part of the specifications. Hav-
ing said that, the rule taxonomy is by no means a final
collection of rules, but a core set of rules that can (and
should) be extended as required.

7.2. Evaluation of SPARQL rules

Another important question to clarify was whether
the SPARQL rules created as part of the rule taxonomy
could be applied successfully on a concrete informa-
tion model.

To that end, in conformance with the Robotics com-
panion specification, an information model was cre-

ated, including instance nodes. These instance nodes
are needed for evaluating some of the rules. Figure 19
illustrates the applied process. As SPARQL cannot
be executed directly on the OPC UA NodeSet file,
a transformation from an OPC UA NodeSet to an
OWL ontology was required. More details about the
OPC UA to OWL transformation can be found in [7].
Afterward, the resulting ontology was loaded into a
triplestore (Apache Jena Fuseki) to execute 14 spec-
ified SPARQL rules. These rules were evaluated by
checking the rules’ outputs against the expected re-
sults. As the information model provides only a lim-
ited amount of possible ObjectTypes, Objects, Vari-
ables, etc., only a subset of the defined rules was im-
plemented in SPARQL. The other rules were only for-
mulated in SNF. However, the approach’s feasibility
and the correctness of the implemented SPARQL rules
are demonstrated.

Transform OPC
UA NodeSetto |[€--------
OWL ontology

Trans-
formation
Rules

Robotics
OPC UA
NodeSet

Robotic
OPC UA
OWL File

Load ontology file
into SPARQL

Server

Fuseki Server with
loaded Robotics
OPC UA ontology

Formulate rule as
SPARQL query

Results

Fig. 19. Process for evaluating SPARQL rules.

7.3. Evaluation of constraint extraction from tables

To assess the performance of the constraint extrac-
tion from tables (described in Sect. 5.1), we compute:
(i) True Positives (TP) which occurs when a table of a
certain type (e.g., Enumeration) is extracted and classi-
fied correctly as its type; (ii) False Positives (FP) for ta-
bles of a specific type (e.g., Reference TypeDefinition)
that are extracted and classified as a table of a differ-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Y. Bareedu et al. / Deriving semantic validation rules 15

0.8

o
o
2

Precision

o
S

02

0.0

FDT
IEC61850

injection Moulding
PLC

CNC
Powerlink

Commercial Kitchen Equipment
MDIS

10Link
MachineTools
MT Connect

Machine Vision
PADIM

AutolD

Basic Buildng Blocks
ProfitEnergy
Robotics

Serco Devices
PackML

Profitnet
Serialization Model

Amendments
Analyser Devices
CSP+4M

Devices

Extrusion

Tobacco Machines
Weighing Technology

Companion Specification

Fig. 20. Precision of table extraction per companion specification.

ent, incorrect type (e.g., Enumeration); (iii) Precision
as formalized in Eq. (1). Due to the nature of the input
sources and the implemented solution False Negative
and True Negative situations arise very rarely and are
not considered the purpose of this task.

TP
Precision = ——— (1)
TP+ FP

Since the constraints are formulated using the val-
ues obtained from the tables, it can be stated that once
a table is extracted correctly, the constraints associated
with it will also be properly extracted. In the majority
of cases, the constraint extraction is directly propor-
tional to the correctness of the table extraction as con-
straints are derived from the table values. Therefore,
the main focus of the evaluation is on table extraction
and categorization, also as a proxy for the correctness
of constraint extraction.

7.3.1. Table extraction and categorization

Fig. 20 shows the precision of extraction from each
of the 28 selected companion specifications, thereby
resulting in an average precision of 0.87 and standard
deviation of 0.134. As mentioned in Step 2 some cus-
tomization of the algorithm is needed for documents
that do not follow the guidance and template provided
by OPC UA exactly. The more inconsistencies in the
layout the lower the precision scores are. In section
7.3.2 a more detailed error analysis is provided.

Fig. 21 illustrates the Recall analysis. There are a
total of 1998 target tables (tables of the types selected

400
I overall present tables

W correctly extracted tables

number of tables
BB 8 &
o o o o

o
=]

1<)
=]

g

o
FDT
IEC61850

Injection Moulding
PLC

CNC
Powerlink

AutolD

Basic Building Blocks
Commerecial Kitchen Equipment
IOLink

MachineTools
Machine Vision

MDIS

MT Connect

PADIM

ProfiEnergy

Profinet

Robotics

Serco Devices

Serialization Model
PackML

Amendments
Analyser Devices
CSP+4M

Devices

Extrusion

Tobacco Machines
Weighing Technology

Companion Specification

Fig. 21. Comparison between the total number of tables and the
correctly extracted tables for each companion specification.

for the extraction) in the considered companion spec-
ification documents. With the used algorithms 1357
True Positive table extractions were possible thereby
also leading to proper constraint extractions for those
tables. This results in a recall of approx. 68% for the
automatic extraction of tables and constraints. How-
ever, True Positive extractions are in some cases higher
in numbers than the actual number of tables present.
This can occur when a large table split on several pages
is perceived as multiple tables in the extraction algo-
rithm. Another case where a single table is extracted
as multiple smaller tables is when there is irregular
spacing or positioning of columns in the table. In some
other scenarios a single table is extracted twice be-
cause it fits to the conditions of more than one table
type. Such special scenarios that lead to some chal-
lenges or complexities in extraction are discussed in
detail in the following section.

7.3.2. Error analysis

We hereby discuss the difficulties in the extrac-
tion of tables (and constraints) from PDF-documents.
Overall six different error types were identified which
led to challenges or imperfections in extraction. Fig. 22
shows an overview of the occurrence of those errors in
the processing of each companion specification.

— Error 1: Error due to fixed line-scale value. The
line-scale value is a feature in Camelot and plays
a key role in the proper extraction of data in tab-
ular format from a PDF document. It has the pur-
pose of a line-size scaling factor. After testing dif-

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

16 Y. Bareedu et al. / Deriving semantic validation rules

Error 1 M

Eror2- HEl H H H_ HE
Error3- W |]
Eror4- HHNEENE =N

Error 5
Error 6

[L[] =I I=I present

-not present

FDT
IEC61850 -

CNC -
injection Moulding

Commercial Kitchen Equipment

Amendments- [l
Analyser Devices-Jli|
AutolD [l
Basic Buildng Blocks -
CSP+4M -l
Devices -l
Extrusion -
Serco Devic
Serialization Mo

Companion Specification

Fig. 22. Error types encountered during the processing of each
companion specification.

ferent values on the companion specification, we
empirically determined a line-scale value of 80.
Nevertheless, the fixed value becomes an issue for
tables on which the algorithm has not been trained
and which are not defined in the OPC UA speci-
fication templates.

— Error 2: Error due to intersection of words in
table-type-specific vocabulary lists. In Step 2
from Sect. 5.1.3 the usage of table-type-specific
vocabulary lists for table categorization is dis-
cussed. While in most cases the keywords inside
the table are specific to a single table type, there
are few cases where the same identification words
are included in several table types. This causes
some tables to be classified incorrectly (False
Positive).

— Error 3: Error due to page-breaks. Page-breaks
are observed in many companion specifications
documents and become an issue for the extrac-
tion when a table is split into multiple pages. In
cases where the table continuation does not in-
clude headings, it does not get extracted and a loss
of constraints can be observed. On the other hand,
when the split table includes a heading on each
page, this can result in the extraction of several
tables instead of one, which is not an issue for
the correct extraction of constraints, however, the
performance metrics get affected.

— Error 4: Error due to improper alignment of
columns and table structures. Improper align-
ment of columns inside the tables also leads to
incorrect or missing constraint extractions even
when the table extraction is correct. Such prob-
lems are mainly observed in NamespaceMetadata
and NamespaceURI tables.

— Error 5: Typographical errors or unexpected spe-
cial characters. Other factors that can negatively
influence table extractions are typographical er-

rors or misprints. Newline characters in unex-
pected positions in tables or incorrect column
names also lead to errors in the extraction of con-
straints.

— Error 6: Error due to some unique structure of
a table type that is not covered within the algo-
rithm. In a few cases no particular error in the al-
gorithm was found causing the incorrect or miss-
ing extractions. A possible explanation could be
the nonconformity of some tables to the standard
companion specification template structures.

To conclude, the approach for the automatic extrac-
tion of tables and constraints from OPC UA PDF spec-
ification documents achieves a Recall of 68% and an
average Precision of 87%. Customizing the algorithm
to the unique structures in different documents could
result in better performance, however, it would also re-
duce the dynamic nature of the algorithm and would
not improve extractions from future documents if they
use incompatible structures. Moreover, the currently
used software Camelot has some limitations as dis-
cussed above for extracting information from tables in
textual documents. This software should be improved
in order to improve the overall performance of infor-
mation extraction from tables. On the other hand, the
structuring of tables in the OPC UA documents and the
correct usage of table templates provided by the OPC
Foundation while creating the companion specification
documents could further contribute to increased qual-
ity of the information extraction algorithms.

7.4. Evaluation of constraint extraction from text

For the evaluation of the constraint extraction from
text, one further companion specification document
(Machinery) was selected, for which a gold standard
was manually created. The data set was retrieved semi-
automatically by using an automatic extraction method
and the expertise of the authors for corrections and ex-
tensions of the extracted data. In total the gold stan-
dard data set includes 44 constraints and 229 not-
constraints.

7.4.1. Machine learning based approach

The machine learning based approach was first
tested on the 20% of PackML gold-standard which
was not used for the training of the algorithms. The
8 supervised machine-learning-based models (Near-
est Neighbors, Linear SVM, RBF SVM, SGD, De-
cision Tree, Random Forest, Neural Network, Ad-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Y. Bareedu et al. / Deriving semantic validation rules 17

aBoost) prevously trained with 80% of the PackML
gold-standard data are evaluated by testing the perfor-
mance of each classifier in terms of precision, recall,
F1 score, and accuracy. The results are shown in Table
2. Due to the imbalance of the data weighted average
is used for the evaluation metrics. Results indicate that
Neural Network (Multi-layer Perceptron) outperforms
the rest of the models and produces the best results
with a recall of 0.95.

Table 2
PackML test results in weighted average.

Table 3

Machinery test results on the entire data.

Classifier Precision Recall Fl-score Accuracy
Nearest Neighbors ~ 0.79 0.83 0.81 0.83
Linear SVM 0.74 0.86 0.80 0.86
RBF SVM 0.80 0.77 0.78 0.77
SGD 0.79 0.76 0.77 0.77
Decision Tree 0.80 0.81 0.80 0.81
Random Forest 0.74 0.86 0.80 0.86
Neural Network 0.79 0.83 0.81 0.83
AdaBoost 0.79 0.79 0.79 0.79

Classifier Precision Recall Fl-score Accuracy
Nearest Neighbors ~ 0.93 0.93 0.93 0.93
Linear SVM 0.76 0.87 0.81 0.87
RBF SVM 0.93 0.92 0.93 0.92
SGD 0.90 0.90 0.90 0.90
Decision Tree 0.92 0.92 0.92 0.92
Random Forest 0.76 0.87 0.81 0.87
Neural Network 0.95 0.95 0.94 0.95
AdaBoost 0.90 0.90 0.90 0.90

Recall indicates how many relevant items are re-
trieved. In other words, how many constraints are de-
tected correctly by the algorithms. It can be formal-
ized in terms of True Positive and False Negative as
expressed in Eq. (2).

TP
Recall = ————)
TP+ FN

Among the evaluation metrics shown in Table 2, we
chose to focus on recall due to the unbalanced data
set consisting of only a small number of constraints,
each of which is highly valuable for the extraction. Ad-
ditionally, we consider False Positives as less impor-
tant than False Negatives because for the validation ap-
proach, it is important that no constraints are missed.

To further asses the constraint extraction approach,
the PackML trained models are tested on the Machin-
ery specification document as well. The results are
shown in Table 3 and indicate that the best perfor-
mance is achieved using Linear SVM and Random
Forest. The recall values reach 86% which is suffi-
ciently good for such an experiment (training with one
document and testing on another one).

In the light of these experiments, we conclude that,
when the training and test data are similar (from the
same set), Neural Networks work very well. However,
Linear SVM and Random Forest achieve more consis-

tent results, even if there is a considerable difference
between the training and test set. Therefore, we can in-
terpret that, Neural Networks might have the problem
of overfitting while Linear SVM and Random Forest
can be generalized to new data more easily.

7.4.2. Lexical pattern-based approach

The evaluation of the lexical pattern-based approach
consists in comparing the performance of the linguis-
tic pattern matching to a manually curated gold stan-
dard. Using the Machinery companion specification as
an input document, the linguistic patterns defined in
Sect. 5.2.2 are applied. As a result all sentences are
extracted which fit the constraint patterns, which leads
to (i) 26 True Positives (extracted sentences labeled as
constraints in the gold standard); (ii) 131 False Posi-
tives (extracted sentences labeled as not-constraints in
the gold standard); (iii) 18 False Negatives (sentences
that did not get extracted but are labeled as constraints
in the gold standard). Using Eq. 1 and Eq. 2 we cal-
culate a precision score of approximately 0.17 and a
recall of 0.59.

In comparison to the ML-based approach evaluated
in the previous section, the constraints extracted based
on linguistic patterns do not achieve good results.
Since the OPC UA data is large, natural-language-
based and diverse, OPC UA constraints can be ex-
pressed in different structures. Nevertheless, formulat-
ing a higher number of linguistic patterns would results
in a higher number of False Positives. To conclude, the
ML-based extraction proved to be more flexible and
thus outperformed the lexical pattern-based approach.
However, training an ML-model that offers high accu-
racy predictions is a more complex and expensive ap-
proach. Therefore, based on the requirements and de-
sired results one should make a trade-off between high
accuracy and low resource extraction.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

18 Y. Bareedu et al. / Deriving semantic validation rules

7.5. Feasibility evaluation with domain experts

To evaluate the usefulness and clarity of the de-
signed HC Tasks for the verification of automatically
extracted constraints and generated rules (Stage 4 of
our approach) an expert-sourcing validation campaign
was conducted in the concrete context of the OPC UA
Machinery specification.

7.5.1. Expert validation campaign of the Machinery
specification

From the gold-standard Machinery data created by
the authors we selected: (i) 60 sentences, 70% of which
were considered by authors to represent modeling con-
straints; and (ii) the rules that could be formulated
for the constraints expressed by these sentences. Six
OPC UA experts involved in the creation of the chosen
companion specification document (Machinery) were
asked to perform the validation tasks. The rules in Task
2 (Fig. 18) were shown in a structured natural lan-
guage, rather than SPARQL, so that they are under-
stood also by experts not familiar with the SPARQL.

The validation campaign was run on Amazon Me-
chanical Turk (https://www.mturk.com) - a crowd-
sourcing platform that offers the possibility to imple-
ment HC processes. The platform allows for easy re-
sults aggregation and makes it possible to avoid se-
quence bias by showing the tasks in a random order to
each of the evaluators.

For the campaign, the extracted sentences were split
into two batches of 30 sentences (and their correspond-
ing rules) and 3 experts were assigned to each batch.
The evaluators completed the tasks within two weeks
and each of them submitted 25-30 responses. This
setup allowed for the collection of 3 responses on aver-
age per sentence and provided 168 judgments in total.

Since there was no variety in the classes to which the
selected sentences referred to (e.g. Object TypeDefini-
tion), Task 1b (Constraint Classification) was not in-
cluded in the validation campaign. In the next subsec-
tions the results of both HC tasks are analyzed to iden-
tify areas for improvement of the approach.

7.5.2. Constraint extraction from text (Task 1)

Fig. 23 shows an overview of the results of the con-
straint classification task. Based on the experts judg-
ments a majority vote could be calculated for almost
90% of the sentences, however, a complete agreement
among the experts was not achieved on over 50% of
the data items as it is seen in Fig. 23a. Since for each
task a variable number of evaluation were collected,
Krippendorff’s alpha coefficient was used to calculate

the inter-rater agreement among the experts. The alpha
score of 0.19 indicates very low agreement and shows
that the identification of constraints is a difficult task.

In Fig. 23b a comparison between the classification
proposed by the authors and the classification resulting
from the experts validations is shown. Sentences, for
which a majority vote could not be established, have
been added to the category "Uncertain". When com-
paring the majority vote of the experts against the au-
thors’ classification there is an overlap on less than
60% of the sentences. These results add to the state-
ment that identifying constraints in OPC UA docu-
ments is a complex problem and textual definitions are
open to interpretation. Therefore identifying textual
constraints and defining formal rules to verify them
is an important task for ensuring the conformity of
OPC UA Nodeset files to the OPC UA base/companion
specifications, which can be enabled by the proposed
validation approach.

7.5.3. Rule validation (Task 2)

In this section, the ability of the proposed rules to
completely and correctly capture textual constraints is
examined. Because of the low agreement among the
experts on the constraint verification task, rules were
not validated by all participants and a majority voting
was not feasible for all judgments. Moreover 45% of
the rule validations were evaluated only by a single ex-
pert and for 67% of the rules defects were identified
by one evaluator only. Since an inter-rater agreement
score is not meaningful considering the gathered data,
we compute for each expert to what percentage they
agree with the proposed rules.

The expert scores vary from 33% to 100% and result
in an average of 68% acceptance of the proposed rules.
The frequency of found defects for the 18 rules, for
which a defect was selected by at least one evaluator,
can be seen in Fig. 24. While no rule set was found to
be superfluous, 8 rules were judged as incomplete and
6 as incorrect. In 4 of the rule sets both defects (incom-
pleteness and incorrectness) were found, where each
have been selected by at least one expert. In the com-
ments added by the experts for this task, exact mistakes
and proposals for improvements were identified.

To conclude the campaign results show that (i) the
tasks of constraint identification is difficult even for
experts and (ii) the Human-in-the-loop approach en-
ables the successful identification and classification of
invalid constraints and rules which is essential for im-
proving the automatic algorithms.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.mturk.com

O O d o U W N

g g s s D s R R R D D W W W W W W W W W W NN NDNDNNDNNN R R R R R e e
H O W 0w J o LB W N E O W 0 Jd o s W NP O VW 0 d oYy s W NN O VW T Yy U W NP O

Y. Bareedu et al. / Deriving semantic validation rules 19

I Expert Agreement - 27 (45.00%)
I Expert Disagreement - 31 (51.67%)
Il Single Judgement - 2 (3.33%)

Constraint (34)

Constraint (43)

Mot-Constraint (18)

-

Uncertain (8)'

-

Mot-Constraint (17)

(a) Overview of the agreement among experts on the classification of (b) Overview of the classification of the input sentences by the authors

the input sentences in absolute numbers and in percentages.

and by the experts in absolute numbers.

Fig. 23. Results of the constraint classification task in terms of (a) agreement among experts on the classifications, and (b) alignment between
the classification proposed by the authors (left) and by the experts’ majority vote (right).

incomplete - 8
44 44%

incorrect and
incomplete - 4
22.22%

incorrect - 6
33.33%

Fig. 24. Frequency of the defects identified by the experts for rules
that were marked as invalid in absolute numbers and in percentages.

8. Related work

Application of Semantic Web in industrial settings.
Semantic Web technologies have been extensively ap-
plied to support various industrial applications in the
last decade ranging from combining sensor networks
with the Web [8], augmenting products with seman-
tic descriptions [9], or enabling smart city infrastruc-
tures [10]. The application of these technologies has
been taking place in a variety of (mission-critical)
domains, such as manufacturing [11, 12], electric

grids [13], or buildings [14] and addressed tasks both
during the engineering (e.g., engineering model inte-
gration, digital twin model consistency management)
and operation&maintenance (monitoring and anomaly
detection, optimization and reconfiguration) phases of
cyber-physical systems in such domains [15]. Further-
more, an important task is the verification of techni-
cal information objects (e.g., ontologies, semantic data
sets) in terms of complying to constraints specified in
languages such as SHACL, SWRL or SPARQL.
Against this backdrop, in this paper we investigate a
novel setting for the application of Semantic Web tech-
nologies in the context of industrial standards, in par-
ticular as a solution option for automating validation
processes of information models based on standards.
Our work is in line with the current paradigm shift in
such standards towards automatic standard validations.
In particular, the OPC Foundation' has started an OPC
UA Semantic Validation Working Group in July, 2019
with OPC UA experts and Semantic experts as mem-
bers with the primary goal to provide the foundation
to create valid, consistent NodeSets. As a part of this
goal, the OPC UA experts identified the constraints in
the OPC UA core specifications manually by reading
the specification documents and understanding them.
Semantic experts are working towards formal repre-

!https://opcfoundation.org/

O o J o s W N

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

20 Y. Bareedu et al. / Deriving semantic validation rules

sentation of the constraints as rules in order to vali-
date them on the nodesets. However, we observed that
this process of manually collecting the constraints and
formalizing them is a tedious and time consuming ac-
tivity. Therefore, in this study we worked towards a
(semi-) automatic approach to validate the OPC UA in-
formation models and to the best of our knowledge we
are the first to work on such an approach.

Semantic information extraction. A core part of our
work is proposing methods to (semi-)automatically ex-
tract validation rules from the standard specifications,
thus being related to the large body of work on infor-
mation extraction (IE) in the context of the Semantic
Web recently reviewed in [16]. This review identified
that IE systems have been applied in numerous do-
mains and have been developed for different types of
sources - structured text, semi-structured text, unstruc-
tured text, images and tables or mixed multi-modal
forms [17]. While many studies focus on text-based
sources, there are other modalities in textual inputs like
tables and schema used for information extraction as
well. In [18] the authors aim to make a classification of
information, structured in tables, and define the rela-
tions between cell information. In a few studies, multi
modalities such as either graph and text together or a
combination of table and text are used for information
extraction. In those studies, the main goal is to extract
semantic and well-formed machine-readable data from
huge online or offline data [19].

An important distinction also refers to the extracted
information which can be entities, concepts or n-ary
relations (e.g., triples). As the focus of our work
is on extracting rules, which can be seen as com-
plex n-ary relations, we identified the following ex-
amples of works focused on extracting n-ary relations.
In [20], semantic relations between concepts are ex-
tracted from medical semi-structured text based on be-
lief states. The use of IE for the generation of triples
from documents is discussed in [21]. A more com-
plex problem is acquiring rules, which often can con-
tain several triples. Rules have been acquired from web
content [22], [23] or textual content, e.g., in the medi-
cal domain [24].

There are also approaches where the output of IE
results in a complex knowledge structure such as a
knowledge graph. For example, in [25] the main goal
is the creation of a legal knowledge graph based on
the Austrian platform RIS 2. For the population of the

Zhttps://www.ris.bka.gv.at

knowledge graph legal entities (such as legal rules, ref-
erences, contributors, etc.) are extracted from struc-
tured resources and from text. For the extraction both
machine and deep learning techniques are used as well
as a rule-based approach.

Related to this area, our work focuses on technical
documents, explores both textual and tabular modali-
ties and aims to extract rules (e.g., complex n-ary re-
lations). To the best of our knowledge, this is the first
effort to perform this complex information extraction
task in the context of OPC UA specifications.

9. Conclusions and future work

The use of industrial standards is core to indus-
trial engineering across application domains to in-
troduce cannons for digital communication, data ex-
change, etc. that ensure interoperability across domain
stakeholders. However, a commonly taken approach is
that standard specifications are provided in non/semi-
structured documents which makes it difficult to auto-
mate compliance checks of information artifacts rely-
ing on them, as demonstrated by the concrete use case
of OPC UA. Therefore, a paradigm shift in the area of
industrial standards is needed towards more machine-
processable, explicitly represented standard specifica-
tions, additionally to textual specifications, so that the
validation of information artifacts can be automated.

To support such a paradigm shift towards automated
semantic validation, we proposed a high-level ap-
proach for representing and (semi-)automatically ex-
tracting formal rules from unstructured standard doc-
uments and then instantiated this approach in the case
of OPC UA and reached the following conclusions.

In terms of RQI, we found that it was feasible to
represent modeling guidelines from the specifications
as formal rules. Furthermore, these rules could be or-
ganised in a taxonomy represented by means of an
OWL ontology, thus benefiting from the capabilities
of explicit semantic representation of the Semantic
Web technologies. We used SPARQL to provide rule-
templates that can be instantiated into concrete rules
and also tested a subset of these rules on the Robotics
companion specification. We found that the current
taxonomy of rules could express constrains available
both in tabular and textual format, and can be easily
extended if needed.

Related to RQ2, as a first step towards automating
the derivation of rules from specifications, in the con-
text of OPC UA, both tabular and textual information

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.ris.bka.gv.at/

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

Y. Bareedu et al. / Deriving semantic validation rules 21

can be processed to identify modeling constraints with
a high precision (P=87%) for tables and high perfor-
mance (F1 up to 94%). In terms of methods, although
they require training data, Machine learning methods
lead to more promising results that approaches rely-
ing on lexico-syntactic patterns, which are hampered
by the high variety in the style of the text across do-
mains as well as specification creators. Furthermore,
the evaluation campaign with the Machinery experts
showed that the way constraints are expressed in text
is often highly ambiguous and leads to low agreement
even across experts. This further motivates the needs
for methods as presented in this paper where a combi-
nation of techniques are used to identify, verify and ex-
plicitly define such constraints to reduce the ambiguity
of the textual specifications.

Related to RQ3, generating rules based on automat-
ically identified modeling constraints in the specifica-
tions could be solved in two ways in the OPC UA con-
text. Firstly, fully-automated generation was possible
based on information available in tables as the table
types are already indicators of types of rules that are
expressed; pre-requisites were a clear understanding
of constraint and rule types, a mapping between these
as well as the use of rule templates as defined in the
rule taxonomy. Second, to connect textual constraints
to rules a Human-in-the-loop approach was proposed,
given the lack of training data for automating this task.

Future work includes:

— Improve rule taxonomy. It was found that both
the taxonomy and rule template definitions heav-
ily depend on the language used to express the
rules and, in the case of SPARQL, also on the spe-
cific OPC UA NodeSet to OWL Ontology trans-
formation. Thus, if the OPC UA NodeSet to OWL
Ontology transformation changes, the SPARQL
rules may also require adaptations. Also, a two
step approach for rules, separating the navigation
to the focus node from the actual rule applica-
tion would help to reduce the amount of needed
rules. Therefore, we will investigate alternative
approaches for representing the rule taxonomy in
order to reduce the complexity of the taxonomy
and provide simpler rule templates.

— Explore multi-modal constraint extraction. While
constraints could be identified both in tables and
text, we observed an overlap of content across the
information expressed in these modalities. There-
fore, we wish to advance the constraint extraction
methods by leveraging this overlap as a signal of

which information is a constraint (e.g., strong sig-
nal is when mentioned in both modalities).

— Provide rule explanations through provenance in-
formation. The multi-model extraction will lead
towards a more complex rule extraction work-
flow. Therefore, providing traces on how a rule
was derived and what it means (e.g., based on the
originating part of a specification) is important
for OPC UA Specification authors and end-users
of these specifications that want to validate their
files. Ideally, if a rule identifies an issue in a file, it
is important to provide rule provenance informa-
tion in terms of tables, text snippets that lead to its
derivation as well as the version of specification it
was derived from as a first immediate documen-
tation for the end-user to debug/improve his files.
To achieve such features, we will enable the au-
ditability of the rule extraction process by provid-
ing a provenance tracing and representation mid-
dleware.

— Extend to other OPC UA specifications beyond
those considered as part of current work.

— Apply methods to other industrial standards
While the points above deepen the work in the
context of the OPC UA standard, an orthogo-
nal effort will be investigating to what extent the
methods and algorithms developed for OPC UA
are applicable in the context of other industrial
standards.

With the future work mentioned above, this work
has the potential to bring a major contribution towards
automatic, semantic validation within the widely used
OPC UA standard, as well as other industrial stan-
dards, thus leading to improved interoperability in in-
dustrial engineering settings and exploring the capabil-
ities of Semantic Web technologies for this novel and
important problem.

Acknowledgements

We thank the six OPC UA Machinery working
group experts (Sebastian Friedl, Gotz Gorisch, Tonja
Heinemann, Timo Helfrich, Heiko Herden and Wolf-
gang Mahnke) for taking part in the feasibility eval-
uation campaign. We also thank the experts from the
OPC UA Semantic Validation working group, who
helped us pilot the Human Computation Tasks and
provided feedback on possible improvements. Parts of
this work related to Human Computation were funded
through the FWF HOnEst project (V 745-N).

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

22 Y. Bareedu et al. / Deriving semantic validation rules

References

[1] Y. Liao, L.EP. Ramos, M. Saturno, F. Deschamps, E. de
Freitas Rocha Loures and A.L. Szejka, The Role of Inter-
operability in The Fourth Industrial Revolution Era, IFAC-
PapersOnLine 50(1) (2017), 12434-12439, 20th IFAC World
Congress. doi:https://doi.org/10.1016/j.ifacol.2017.08.1248.
https://www.sciencedirect.com/science/article/pii/
52405896317317615.

[2] H. da Rocha, A. Espirito-Santo and R. Abrishambaf, Seman-

tic Interoperability in the Industry 4.0 Using the IEEE 1451

Standard, in: JECON 2020 The 46th Annual Conference of

the IEEE Industrial Electronics Society, 2020, pp. 5243-5248.

doi:10.1109/IECON43393.2020.9254274.

B. Wollenberg, J. Britton, E. Dobrowolski, R. Podmore, J. Re-

sek, J. Scheidt, J. Russell, T. Saxton and C. Ivanov, A Brief

History: The Common Information Model [In My View],

IEEE Power and Energy Magazine 14(1) (2016), 128-126.

doi:10.1109/MPE.2015.2481787.

[4] W. Mahnke and S.-H. Leitner, OPC Unified Architecture - The
future standard for communication and information modeling
in automation, ABB Review 3 (2009), 2009.

[5] W. Mahnke, S.-H. Leitner and M. Damm, OPC Unified Ar-
chitecture, Springer, Berlin, 2009. ISBN 978-3-540-68898-3.
doi:10.1007/978-3-540-68899-0.

[6] M. Sabou, L. Aroyo, K. Bontcheva, A. Bozzon and
R.K. Qarout, Semantic Web and Human Computation: The sta-
tus of an emerging field, Semantic Web 9(3) (2018), 291-302.

[7] R. Schiekofer, S. Grimm, M. Milicic Brandt and M. Weyrich,
A formal mapping between OPC UA and the Semantic Web,
2019, pp. 33-40. doi:10.1109/INDIN41052.2019.8972102.

[8] O. Corcho and R. Garcia-Castro, Five challenges for the Se-
mantic Sensor Web, Semantic Web 1(1-2) (2010), 121-125.
doi:10.3233/SW-2010-0005.

[9] M. Sabou, Smart objects: Challenges for Semantic
Web research, Semantic Web 1(1-2) (2010), 127-130.
doi:10.3233/SW-2010-0011.

[10] I. Celino and S. Kotoulas, Smart Cities [Guest editors’ in-
troduction], IEEE Internet Computing 17(6) (2013), 8-11.
doi:10.1109/MIC.2013.117.

[11] S. Biffl and M. Sabou, Semantic Web Technologies for Intel-
ligent Engineering Applications, Springer, 2016, pp. 1-405.
doi:10.1007/978-3-319-41490-4.

[12] F. Ocker, C.J.J. Paredis and B. Vogel-Heuser, Applying knowl-
edge bases to make factories smarter, at - Automatisierung-
stechnik 67(6) (2019), 504-517. doi:10.1515/auto-2018-0138.

[13] S. Howell, Y. Rezgui, J.-L. Hippolyte, B. Jayan and H. Li, To-
wards the next generation of smart grids: Semantic and holonic
multi-agent management of distributed energy resources, Re-
newable and Sustainable Energy Reviews 77 (2017), 193-214.
doi:10.1016/j.rser.2017.03.107.

[14] B. Butzin, F. Golatowski and D. Timmermann, A sur-
vey on information modeling and ontologies in building
automation, in: Proc. of Annual Conf. of the IEEE In-
dustrial Electronics Society, 1IEEE, 2017, pp. 8615-8621.
doi:10.1109/IECON.2017.8217514.

[15] M. Sabou, S. Biffl, A. Einfalt, L. Krammer, W. Kastner and
F.J. Ekaputra, Semantics for cyber-physical systems: A cross-
domain perspective, Semantic Web 11(1) (2020), 115-124.

3

—

[16] J.L. Martinez-Rodriguez, A. Hogan and I. Lopez-Arevalo, In-
formation extraction meets the semantic web: a survey, Seman-
tic Web 11(2) (2020), 255-335.

[17] L. Eikvil, Information extraction from world wide web-a sur-
vey, Technical Report, Citeseer, 1999.

[18] H. Dong, S. Liu, Z. Fu, S. Han and D. Zhang, Semantic struc-
ture extraction for spreadsheet tables with a multi-task learn-
ing architecture, in: Workshop on Document Intelligence at
NeurIPS 2019, 2019.

[19] P. Dolog and W. Nejdl, Challenges and benefits of the se-
mantic web for user modelling, in: Proceedings of the Work-
shop on Adaptive Hypermedia and Adaptive Web-Based Sys-
tems (AH2003) at 12th International World Wide Web Confer-
ence, Budapest, 2003.

[20] T. Goodwin and S.M. Harabagiu, Automatic generation of a
qualified medical knowledge graph and its usage for retriev-
ing patient cohorts from electronic medical records, in: 2013
IEEE Seventh International Conference on Semantic Comput-
ing, IEEE, 2013, pp. 363-370.

[21] R. Upadhyay and A. Fujii, Semantic knowledge extraction
from research documents, in: 2016 Federated Conference on
Computer Science and Information Systems (FedCSIS), IEEE,
2016, pp. 439-445.

[22] J. Kang and J.K. Lee, Rule identification from Web pages by
the XRML approach, Decision Support Systems 41(1) (2005),
205-227.

[23] S. Schoenmackers, J. Davis, O. Etzioni and D. Weld, Learning
first-order horn clauses from web text, in: Proceedings of the
2010 Conference on Empirical Methods on Natural Language
Processing, 2010, pp. 1088—1098.

[24] A. Boufrida and Z. Boufaida, Rule extraction from scien-
tific texts: Evaluation in the specialty of gynecology, Journal
of King Saud University-Computer and Information Sciences
(2020).

[25] E.Filtz, S. Kirrane and A. Polleres, The linked legal data land-
scape: linking legal data across different countries, Artificial
Intelligence and Law 29(4) (2021), 485-539.

[26] D. Senkyi, SHACL Shapes Generation from Textual Docu-
ments, in: Workshop on Enterprise and Organizational Model-
ing and Simulation, Springer, 2019, pp. 121-130.

[27] J. Dibie-Barthélemy, O. Haemmerlé and E. Salvat, A seman-
tic validation of conceptual graphs, Knowledge-Based Systems
19(7) (2006), 498-510.

[28] O. Lassila, R.R. Swick et al., Resource description framework
(RDF) model and syntax specification (1998).

[29] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler and N. Lind-
strom, JSON-LD 1.0, W3C recommendation 16 (2014), 41.

[30] D. Beckett and B. McBride, RDF/XML syntax specification
(revised), W3C recommendation 10(2.3) (2004).

[31] D.L. McGuinness, F. Van Harmelen et al., OWL web ontol-
ogy language overview, W3C recommendation 10(10) (2004),
2004.

[32] X. Yao and B. Van Durme, Information extraction over struc-
tured data: Question answering with freebase, in: Proceedings
of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 2014, pp. 956—
966.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.sciencedirect.com/science/article/pii/S2405896317317615
https://www.sciencedirect.com/science/article/pii/S2405896317317615

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Y. Bareedu et al. / Deriving semantic validation rules
Appendix A. Rule Taxonomies

Figures in this appendix depict the created rule tax-

onomies.
| GlobalRule I
» NodeE: GR
»| NoR yVari ithoutValue
v _GR

NoUni i i iables
_GR

Fig. 25. Identified Global Rules.

23

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

o J o s w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

24

Y. Bareedu et al. / Deriving semantic validation rules

TypeRule I

AbstractObjectTypelsNotinstantiated
_TR
_P[AttributeRestriction_TR]

AttributeExists_TR]
AttributeHasType_TR]
AttributeValue_TR]

AttributeHasSpecificValue_TR

AttributelsinRange_TR

AttributelsMatchedByRegex_TR

AttributelsinSet_TR]

4444

hb[ReferencedNodeRestriction_TR]
> T

)

ReferencedNodeAttributeExists_TR]

Ed

ReferencedNodeAttributeHasType]
TR

ReferencedNodeAttributeValue_TR]

ReferencedNodeAttribute
HasSpecificValue_TR

IsinRange_TR

ReferencedNodeAttribute
IsinSet_TR

ReferencedNodeAttribute
MatchedByRegex_TR

R

ReferencedNodeAttribute]

1asTypeDefiniti
_TR
_P[ReferenceRestriction_TR]

CondiotionalReferenceExists_TR]

ReferenceCardinality_ TR]

ReferenceCardinality_GEQ_TR]

ReferenceCardinality LEQ_TR

ReferenceCardinalityExactly_TR]

Fig. 26. Identified Type Rules.

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Y. Bareedu et al. / Deriving semantic validation rules

NodeRule

_V[AttributeRestriction_NI

]

AttributeExists_NR]

_,[

AttribtuteValue_NR]

—P[AttributeMatchedByRegEx_NR

—»[AttributelnSet_NR

—b[AttributelnRange_NR

—»[Enumeration_NR

] _b[AttributeHasSpecificValue_NR

)
)
]
)

EnummerationFieldExists_NR]

EnumerationFieldValue_NR]

~—>[DataTypeStructure_NR]

DataTypeStructureEntryExists]
_NR

4

DataTypeStructureEntryHasType_| NR]

‘—}[ReferencedNodeRestrictit

ion_TLR]

MethodlnputArgumenlExlsts

|npuwgumemsAmyEnnyEx.szs

ReferencedNodeExists_NR

ReferencedNodeHasModelllngRule

A N R

ReferencedNndeHasTypeDeﬂnlllon

)
)
—
)
)
)

4

ReferencedNodeAnributeRestriction]
_NR

ReferencedNodeAitribnteExists_NRJ

ReferencedNodeAttributeHasType]
_NR

> [ReferenceRestriction. NR] Re’erencedNodeAmlbukeVaIue_NR]

AbstractReferenceNotUsed_NR]

ReferencedNodeAttribute
HasSpecificValue_NR

v bl

NodelsSubtypeOf_NR

I

MatchedByRegex_NR

ReferencedNodeAttribute
NodeHasReferenceOfType_NR IsinRange_NR
ReferencedNodeAttribute
NodellemctOrIndlreclthtypnOf] IsinSet_NR
] ReferencedNodeAttribute

Fig. 27. Identified Node Rules.

25

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	Introduction
	Background and motivation
	Background: OPC UA
	Motivation: stakeholders use case

	Overall approach: Deriving rules from industrial standard specifications
	Stage 1: Rule taxonomy creation
	Step 2: Structure rule taxonomy
	Step 3-4: Rule examples and templates.

	Stage 2: Constraint extraction from specifications
	Constraint extraction from tables
	Preparatory Study: which tables are useful for constraint extraction?
	Data set creation
	Approach for constraint extraction from tables

	Constraint extraction from text
	Machine learning based approach
	Lexical pattern-based approach

	Stage 3: Rule generation and validation
	Generating rules from tables
	Generating rules from text with Human-in-the-loop

	Evaluation
	Evaluation of rule taxonomy
	Evaluation of SPARQL rules
	Evaluation of constraint extraction from tables
	Table extraction and categorization
	Error analysis

	Evaluation of constraint extraction from text
	Machine learning based approach
	Lexical pattern-based approach

	Feasibility evaluation with domain experts
	Expert validation campaign of the Machinery specification
	Constraint extraction from text (Task 1)
	Rule validation (Task 2)

	Related work
	Conclusions and future work
	Acknowledgements
	References
	Appendix A. Rule Taxonomies

