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Abstract. Artificial intelligence applications are not built on single simple datasets or trained models. Instead, they are complex
data science workflows involving multiple datasets, models, preparation scripts and algorithms. As these workflows increasingly
underpin applications, it has become apparent that we need to be able to understand workflows comprehensively and provide
explanations at higher levels of abstraction. To tackle this problem, we focus on the extraction and representation of data journeys
specifically from data science code. A data journey is a multi-layered semantic representation of data processing activity linked
to data science code and assets. We propose an ontology to capture the essential elements of a data journey and an approach
to extract such data journeys. Using a corpus of python notebooks from Kaggle, we show that we are able to capture high-
level semantic data flow that is more compact than using the code structure itself. Furthermore, we show that introducing an
intermediate knowledge graph representation outperforms models that rely only on the code itself. Finally, we reflect on the
challenges and opportunities presented by computational data journeys.

Keywords: data science analysis, transparency, data provenance, workflows

1. Introduction

As we increasingly rely on artificial intelligence applications built using complex data science workflows, it has
become apparent that we need to understand, integrate, and explain such workflows comprehensively and at a higher
level of abstraction. The ACM Principles for Algorithmic Transparency and Accountability [1] emphasise the no-
tions of awareness, audibility, data provenance, and explanation. These principles reflect the idea that stakehold-
ers should have access to and understand what is going on in data science workflows and the AI modesl that are
part of them at the appropriate level of abstraction. Fortunately, the Semantic Web community developed a vari-
ety of knowledge representation formalisms to capture fundamental elements of data science workflows, such as
provenance, data flows, and high-level activities. Unfortunately, data science workflows are very complex and, al-
though models and techniques for representing code as a data graph exist [2, 3], generating automatically high-level,
compact representations is still an open, complex problem.

This article focuses on extracting and representing data journeys, specifically from data science code. Inspired
by the social sciences and, in particular, the work of Leonelli [4, 5], we define a data journey as a multi-layered,
semantic representation of a data processing activity, linked to the digital assets involved (code, components, data).
We propose an ontology for data journeys to capture the essential elements of a data science pipeline and explain it
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in terms of a graph of high-level activities. Similar abstract representations of a data flow have been used to perform
data debugging [6], to extract common motifs in workflows [7], to determine the provenance of data [8], reason on
the relation between policies and process [9], and to support transparency in clinical analysis [10].

Thus, our work aims: (a) to produce a definition of data journey that can be supported computationally, and
a first ontology that reflects such definition; (b) to effectively extract representations of data journeys from data
science pipelines. Our methods do so without the need to execute the pipeline itself, which allows for extensive
scale analysis in, for example, data practices research and empirical software analysis. We show that we can capture
high-level semantic data flow that is more compact than using the code structure itself. Furthermore, we show that
introducing an intermediate graph representation of the data flow outperforms models that rely only on the code
itself.

Specifically, the contributions of the article are as follows:

– a definition of data journey suitable for computational approaches;
– a rich ontology for representing data journeys, mapped to existing, state of the art, relevant ontologies;
– an approach for knowledge extraction from Python-based notebooks to generate a compact, high-level expla-

nation of the data journey;
– experiments demonstrating how a graph-based representation of the data science code outperforms one based

on the code syntax in a machine learning pipeline supporting the extraction process.

The rest of the article is structured as follows. We begin with a discussion of related work (Section 2). Next, we
look at our definition of a data journey and the associated ontology (Section 4). In Section 5, we detail our approach
for knowledge extraction. We report on the application of the method and its evaluation in Section 6. Finally, we
reflect on paths forward for further research around computational data journeys.

2. Related Work

We introduce the background around data journeys and then discuss related work in provenance, workflows, and
methods for capturing the data flow from programs. The larger field of explainable AI has been covered compre-
hensively by multiple recent surveys [11, 12]. Here, we focus on how AI/data science algorithms and systems can
be understand through the flow of data. As others have argued [13], this is a critical and under-studied area.

Data journeys The broad notion of data journeys have been discussed in the data studies literature. In particular,
with the recent edited volume by Leonelli and Tempini, which brings together different case studies from plant phe-
nomics to climate data processing and studies them through the lens of data journeys [4]. Fundamentally, they argue
that the journey a dataset goes through, its lineage or provenance, is a powerful unit of analysis for understanding it.

Provenance and provenance representations The need to understand the provenance of data has been well docu-
mented in the data management [14] and web [15] literature, which has investigated approaches for representing,
extracting, querying, and analysing provenance information. Indeed, the importance of understanding provenance
for web information led to the W3C Prov standard for provenance interchange [16] as well as the recent Coalition
for Content Provenance and Authenticity1. We refer to the two surveys cited above for more information about
provenance systems. Our work, in particular, builds upon these existing representations in order to provide a multi-
layered view of a data journey allowing different levels of abstraction to sit alongside one another. Specifically, we
build on the notion of datanode as specified in the Datanode Ontology [17], developed to express complex data
pipelines to reason upon the propagation of licences and terms and conditions in distributed applications [18].

Workflow abstractions The need to tie data to the workflow that generated it has been recognised in the scientific
workflow community [19]. An essential contribution of this work is that, for workflow analytics and reusability, dif-
ferent granularity levels of workflow representations and associated provenance (e.g. high-level tasks in the domain
vs command-line tool parameters) should be captured [7, 20]. These representations can then be bundled together

1https://c2pa.org

https://c2pa.org
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with the corresponding data assets and other documentation, creating a research object [21] that can be published
using web standards [22]. However, most data science programs are not expressed with such workflow formalisms.

Capturing dataflow from programs While these approaches work for workflow systems where tasks and their
dependencies are systematically defined, and most applications use flexible programming languages. It is the case
for data science methods [23]. To perform analytic and assistance, a variety of work has looked at extracting high-
level workflow-like representations from code or logging information. Tessera, for example, has looked at extracting
high-level tasks from logs of exploratory data analysis [24].

Furthermore, in work most closely related to ours, researchers have investigated extracting provenance repre-
sentations from programs’ abstract syntax trees (AST). CodeBreaker constructs a machine-interpretable knowledge
graph from program code to support end-user tasks such as code search and recommendation [3]. noWorkflow [8]
uses the AST of a program to automatically instrument code during execution to capture provenance. Similarly,
mlinspect [6] extracts a provenance representation during the execution of python code. It, however, uses a higher-
level representation designed for data science code, which allows for richer data dataset debugging capabilities.
ProvenanceCurious [25], and Vamsa [26] also use the python AST, but instead of instrumenting at runtime, they use
static analysis to infer a provenance graph. We adopt a similar approach of using static analysis. However, unlike
these approaches, we use a hybrid method based on knowledge engineering and machine learning to infer high-level
semantic types over a resulting graph. Additionally, our approach tackles the need to maintain multiple levels of
abstraction.

3. Definition

In this section, we provide a definition of Data Journey. The notion of data journey has been discussed in the data
studies literature. Specifically, [4] defined it as the “movement of data from their production site to many other
sites in which they are processed, mobilised and re-purposed.”. The work in data studies emphasises the difficulty
of understanding data journeys empirically because of a multitude of perspectives. Our definition has the objective
of being consistent with the one of [4] but also to relate with the literature from Web semantics, specifically, data
provenance [27]. Hence, we introduce a layered semantics perspective to the definition of data journeys:

A Data Journey is a multi-layered, semantic representation of a data processing activity, linked to the digital
assets involved (code, components, data).

Thus, a journey is multi-layered, as to allow a multiplicity of perspectives that can be overlaid to describe the
process. This multiplicity can help to capture (parts of) the context around a data journey while still allowing for
computational analysis to be performed. Hierarchical, because any useful representation needs to be linked to the
concrete assets involved, either directly or via intermediate abstractions.

Although our definition is open-ended and allows for multiple (even alternative) perspectives to co-exist, in this
work, we conceptualise data journeys in the following layered structure:

– Resources: resources used in the data journey such as source code files, software libraries, services, or data
sources.

– Source Code: human readable and machine executable instructions, for human authoring, such as a Python
script.

– Machine Representation: any machine interpreted representation of the instructions, such as an Abstract Syntax
Tree (AST) or a query execution plan.

– Datanode Graph: as defined in [28], a graph of data-to-data relationships, such as variables, imported libraries,
and input and output resources. Such abstraction provides a structure of the data flows, abstracting from issues
such as control flow, and focusing on data-to-data dependencies.

– Activity Graph: a graph of high-level activities, inspired by the notion of Workflow Motifs [7].

While the first three components pre-exist the data journey, i.e. they do not pertain to the knowledge level [29],
the remaining represent two distinct, although interconnected, representation layers. Here, we aim at automatically
constructing such a layered representation, to demonstrate that data journeys can be automatically identified from
the source code of a data science pipeline.
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4. Ontology

We build on previous work and design an ontology as the reference knowledge model of a data journey, satisfying
our definition. Our methodology is based on reusing successful, relevant models, completing them with concepts
derived from the data used in this work. Specifically, we reuse concepts from three approaches: the W3C Provenance
Ontology PROV-O [30], the Workflow Motifs Ontology [7] and the Datanode ontology [17]. Compared to the pre-
existing models, DJO provides a unified view of the data journey, linking the two layers (the data flow layer and the
activity layer). In addition, it extends the Datanode Ontology by specifying node types.

The Data Journey Ontology (DJO) reuses fundamental concepts from those three ontologies into a new concep-
tual model with layered semantics. The namespace of the DJO is http://purl.org/datajourneys/, the
preferred prefix is djo. The design rationale of DJO is one of layered semantics. The ontology should be able to
capture fine-grained data flows but also high-level activities, as super-imposed abstractions. The core components
are three classes: Datanode, Activity, and Journey.

Datanode The Datanode class represents a data object. We performed a thematic analysis of 20 randomly chosen
notebooks from the dataset collected for the experiments (more about it in Section 6) in order to identify possible
data node types, depending on the role they have in the process. The result is as follows:

– Constant: a value hard-coded in the source code, for example, the value of an argument of a machine learning
instruction

– Input: a pre-existing data object served to the program for consumption and manipulation.
– Output: a data node produced by the program
– Parameter: any data node which is not supposed to be modified by the program but is needed to tune the

behaviour of the process. For example, the process splits the data source into two parts, 20% for the test set
and 80% for the training set. 2, 20%, and 80% are all parameters.

– Support: any data node pre-existing the program, which is used without manipulation. Includes:

* Reference: any datanode used as background knowledge by the program, for example, a lookup service
or a knowledge graph. Such datanode pre-exists the program and is external to the program.

* Capability: any datanode which provides capabilities to the program, including pre-existing modules,
functions, and imported libraries.

* Documentation: any datanode which does not affect the operation of the program, such as source code
comments and documentation.

– Temporary: any datanode produced and then reused by the program that is not intended to be the final output

The following groups of classes are mutually disjoint:

– Input, Output, Support, and Temporary
– Capability, Documentation, and Reference

Datanodes are connected to each other in a data flow akin to a provenance graph. Possible relationships subsume
the provenance notion of derivation. Table 1 shows the hierarchy of object properties, with references to the notions
reused from existing sources, and documented in the ontology with a rdfs:seeAlso relation.

Activity In a Data Journey, sibling datanodes are supposed to be grouped together in activities, in order to provide
a more abstract representation of the data journey. The activities included in DJO are mutually disjoint sub-classes
of Activity: Analysis, Cleaning, Movement, Preparation, Retrieval, Reuse, and
Visualisation. Except for Reuse, the other classes are derived from concepts defined by the Workflow Motifs
ontology. Activities instances are connected to each other in a sequence, using the object property previous (and
its inverse next. We note that the semantics of these two properties does not imply derivation but merely states the
succession of activities in a data journey. Each activity instance is then connected to the involved datanodes through
the property includesDatanode (and its inverse inActivity).

Journey Finally, both activities and Datanodes are meant to be connected to one data journey via the functional
property inJourney.
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Table 1
List of object properties connecting instances of class Datanode in the Data Journey Ontology. Sources: PROV-O (PO), Datanode Ontology
(DN), and Workflow Motifs (WM).

Property PO DN WM
derivedFrom ✓ ✓

analysedFrom ✓ ✓

cleanedFrom ✓ ✓

computedFrom ✓

copiedFrom ✓

movedFrom ✓ ✓

optimizedFrom ✓

preparedFrom ✓

augmentedFrom ✓

combinedFrom ✓ ✓

extractedFrom ✓ ✓

filteredFrom ✓ ✓

formatTransformedFrom ✓

groupedFrom ✓

sortedFrom

splitFrom

refactoredFrom ✓

remodelledFrom ✓

retrievedFrom ✓

visualisedFrom ✓

5. Extracting data journeys

In this section, we describe our approach to extracting data journeys. Specifically, we examine the problem of
automatically deriving data journeys from source code, focusing on identifying activities and their composition. We
ground our method on the following hypothesis:

– Given a data science program, it is possible to automatically extract a data journey from the code (a) by
generating a datanode graph from the code; (b) making use of machine learning techniques to classify high-
level activities in such graphs automatically; and (c) collapsing adjacent activity nodes involved in the same
activity

The method assumes source code as input (e.g. a python notebook), then generates a data node graph reusing
symbols from the code (variable names, functions, operators, etc...). It then uses this information to train a classifier
for identifying activity types. We note that we only focus on the generation of the data node graph structure and
on the activity types, leaving the automatic support for the remaining features of the ontology (e.g. data node arc
labelling and node types) to future work.

We divide the approach into four steps: (i) data node graph extraction, (ii) knowledge expansion, and (iii) knowl-
edge compression.

In the first step - data node graph extraction - the method traverses the code Abstract Syntax Tree (AST) and
transforms the structure into a Datanode graph. In such a graph, nodes represent data elements (such as files, vari-
ables, constants, and libraries), while arcs represent relationships, labelled with operations derived from the code –
e.g. importing a library or assigning a variable – or with names of functions, method calls, or operators.

In the second step - knowledge expansion - we aggregate the data node graphs into a knowledge graph and derive
frequent relationships (arcs in the graph) in a Frequent Activity Table (FAT). The most frequent activities are then
annotated with the Data Journey Ontology (limited to Activity types in our experiments). The FAT allows us: (a)
to generate automatically a set of rules encoded in SPARQL CONSTRUCT queries, to materialise the annotations,
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and (b) to produce a dataset of annotated data node graphs for training a classifier able to assign an Activity to each
node in the data node graph. Furthermore, the classifier is applied to derive DJO activities automatically.

In the last step – data journey generation, adjacent nodes with the same activity types are collapsed, producing a
summarised semantic representation of the data science pipeline – completing the Data Journey.

In the following sections, we describe each step in the abstract, leaving the details of the execution to the evalu-
ation section, where we apply it to Python notebooks [31]. While we use Python here, the approach applies to any
programming language that can be expressed as an AST.

5.1. Datanode graph extraction

We describe deriving a data node graph from a Python notebook. The algorithm implements heuristics, trans-
forming the code structures into a graph. We organise the process in three steps: (a) first, we extract the source
code from the notebook into a single python script; (b) second, an algorithm traverses the code and generates a
directed, labelled graph from the source, serialised in DOT format2; then, (c) the directed graph is re-engineered into
RDF, applying namespaces and generating entity names. Listing 1 (in the appendix) illustrates the algorithm which
generates the directed graph in pseudo-code. The process starts with traversing the Abstract Syntax Tree (AST) to
build a directed graph where the nodes are data objects, such as libraries, files, constant values, and occurrences of
variables, and arcs are dependency relationships, in the spirit of provenance models. The algorithm assigns unique
identifiers (and human-readable labels) to graph nodes and assigns relationships applying an initial semantic layer
derived from the code syntax (e.g. considering elements such as import, assignment operators, or function calls).
The output of this step is a directed graph where nodes are data objects and arcs are relationship types derived from
the code syntax.

The resulting directed graph is re-engineered into RDF. The direction of the arcs is reversed in the spirit of
provenance graphs. In addition, we generate links from the notebook entity to each of the variable nodes. In addition,
we add namespaces and use an entity function, which returns an RDF resource from the node label, applying the
appropriate conversions to valid URI strings. The result is a data node graph, the first layer of our Data Journey.

5.2. Knowledge expansion

The previous section described obtaining a data node representation from the source code. This section will use
the data node graph to derive background knowledge for training a Machine Learning algorithm able to annotate
nodes with data journeys activities. Background knowledge includes the following components:

– The Data Journeys Ontology (DJO), introduced in Section 4, which specifies the following activity types:
Reuse, Movement, Preparation, Analysis, and Visualisation

– A dataset of (frequent) data node arcs, manually annotated with DJO Activities – Frequent Activity Table (FAT)
– A set of rules (encoded as SPARQL construct queries) mapping frequent arcs in the data node graphs to DJ

Activities, using the FAT – Frequent Activity Rules (FAR)
– Training dataset for the machine learning model, to predict Activities of unknown data node nodes – Machine

Learning Training Dataset (MLTD)

Frequent Activity Table (FAT) From a statistical analysis of the data node graphs produced, one can determine
the more frequent arcs types than others. Such arcs are manually annotated with activity types. For example, nodes
receiving an arc named "dj:importedBy" can be associated to a Reuse activity, or an arc derived from a popular
function such as read_csv to a Movement activity. Similarly, a print arc demonstrates a Visualisation
activity, and so forth. The objective is to have sufficient coverage of activity types in the table to use the annotation
for training a machine learning model able to automate such annotations on all nodes in the data node graphs.

Frequent Activity Rules (FAR) From the FAT, we build rules to materialise the annotations. These are encoded as
SPARQL CONSTRUCT queries to apply to the dataset of data node graphs.

2DOT: https://graphviz.org/doc/info/lang.html

https://graphviz.org/doc/info/lang.html
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Machine Learning Training Dataset (MLTD) We derive a training dataset from the table of annotated data node
arcs. The input data includes a set of data nodes annotated with activity types (derived from the FAT). We can then
enhance the activity types with background knowledge from existing knowledge models such as CodeBERTa or
produce RDF2Vec embeddings directly from the data node graphs.

Machine Learning Application We use the dataset to evaluate the performance of potential ML approaches. Specif-
ically, we evaluate a set of machine learning methods to automatically annotate the missing nodes with activity
types in this phase. The most promising method is selected and applied to predict the activities of remaining and
less frequent nodes.

5.3. Knowledge compression

We annotated the data node graph with activity types in the knowledge expansion phase. In this phase, we aim at
obtaining a summarised view of the data journey. The knowledge compression task has the objective of generating
activity instances by analysing sibling data nodes annotated with the same activity type. Activities may span multiple
adjacent data nodes. For example, a Reuse activity applies to all imported libraries. Therefore, a better representation
would generate a single instance of Reuse’s activity type, grouping all the import data nodes under a shared activity
instance. The output is an Activity graph, whose nodes are instances of activities and arcs the previous relation.
Crucially, activities may occur multiple times in different parts of the data node graph.

The process applies the components described so far through the algorithm illustrated in Listing 2. The process
implements the following recursive pipeline, starting from the root node (the program):

1. Focus on a node and collect the set of previous nodes. Then, group those nodes by activity type, relying on the
annotation property hasActivity, produced in the previous phase.

2. If the focus node was already linked to an activity instance in a previous iteration (property inActivity),
link previous nodes having the same activity type to that activity instance with an inActivity property.

3. Generate a new activity instance for each remaining group, linking the related nodes with an inActivity
relation.

4. Link the new activity instances to the focus node activity instance with a previous relation
5. Repeat for each previous node

The resulting graph is, therefore, a compressed view of the data science pipeline in the form of an activity graph.
Such graph data is overlaid on the data node graph, completing the task of building a data journey, a layered,
semantic representation of the data science program.

6. Evaluation

This section evaluates our hypothesis that it is possible to automatically derive a data journey by applying a com-
bination of methods that abstract the source code into a layered, semantic representation. Specifically, we perform
experiments to evaluate the effectiveness of classifying nodes within the program with higher-level semantics as
expressed in the Data Journeys Ontology. Crucially, we aim to verify whether the graph structure is helpful in this
classification process over just the use of the code itself. We evaluate:

1. the feasibility of automatically generating a graph representation, anchored to the source code,
2. the ability of data node graphs to support the automatic classification of activity types, and
3. the ability of activity graphs to offer a representation that is substantially more compact than the data node

graph.

In the remainder of the section, we follow the approach introduced in Section 5, and we apply it to Python
notebooks. Our dataset consists of the 1000 most popular python3 notebooks from Kaggle4 as of April 2020. Kaggle
is one of the main hosts for data science competitions. Data node graphs are constructed for each notebook.

3As measured by the ‘hotness’ parameter of the API.
4kaggle.com

kaggle.com
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1 algorithm extract-directed-graph is
2 input: notebook
3 output: graph
4

5 graph ← []
6 ast ← AST(notebook)
7

8 visit ast components:
9 when is import:

10 ?var ← the library handler in the code
11 ?library ← the python imported module
12 graph ∪ { ?var assignedFrom ?library }
13 when is Module:
14 visit ast components
15 when is Class:
16 visit ast components
17 when is Function:
18 for each argument:
19 ?arg ← reference to the function argument
20 ?var ← handle to the local variable
21 graph ∪ { ?var _argToVar ?arg }
22 when is Expression:
23 if object method call:
24 ?source ← object variable before method call
25 ?target ← object variable after method call
26 ?method ← method name as arc label
27 graph ∪ { ?target ?method ?source }
28 for each argument:
29 ?source ← reference to argument variable
30 digraph ∪ { ?target ?method ?source }
31 if function call:
32 for each argument:
33 ?target ← the variable passed as argument
34 ?source ← reference to the function argument
35 ?method ← function name as arc label
36 graph ∪ { ?target ?function ?source }
37 when is Assignment:
38 for each left-hand variable:
39 ?source ← reference to the function argument
40 for each right-hand variable:
41 ?target ← the variable passed as argument
42 if augmented assignment:
43 ?operation ← the operation of the augmented assignment
44 graph ∪ { ?target ?operation ?source }
45 else:
46 graph ∪ { ?target assignedFrom ?source }
47 when For:
48 ?target ← iterating upon variable
49 ?source ← local iterator
50 graph ∪ { ?target iteratorOf ?source }
51

52 for any node without an incoming arc:
53 ?notebook ← the passed notebook
54 graph ∪ { ?notebook appearsIn ?node }
55

56 return graph

Listing 1 Pseudocode of the algorithm to extract a directed graph from the Python code.
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1 algorithm compress-datanode-graph is
2 input: ?datanode-graph
3 output: ?activity-graph
4

5 ?node ← root of ?datanode-graph
6 ?activity-graph ← []
7

8 focus-on ?node:
9 ?previous ← collect nodes from any incoming arc

10 ?activity-map ← {}
11 for each ?prev-node in ?previous:
12 ?activity-type ← from datanode-graph: { ?prev-node hasActivity ? }
13 ?activity-map[?activity-type] ∪ ?prev-node
14

15 if ?activity-graph has { ?node inActivity ?activity }:
16 ?activity-type ← from ?activity-graph: ?activity a ?
17 for each ?prev-node in ?activity-map[?activity-type]:
18 ?activity-graph ∪ { ?prev-node inActivity ?activity}
19 ?activity-map ← remove ?activity-type
20

21 for each ?activity-type in ?activity-map:
22 ?new-activity ← generate new activity instance
23 ?activity-graph ∪ { ?new-activity a ?activity-type }
24 for each ?prev-node in ?activity-map[?activity-type]:
25 ?activity-graph ∪ { ?prev-node inActivity ?new-activity }
26 if ?activity-graph has { ?node inActivity ?activity }:
27 ?activity-graph ∪ { ?activity previous ?new-activity }
28 focus-on ?prev-node
29

30 return activity-graph

Listing 2 Pseudocode of the algorithm to compress the datanode graph and generate an activity graph.

The implementation of the approach and all data assets used in the evaluation are provided as supplementary
material to this submission for review is available for auditing and reproducibility [32].

6.1. Datanode graph extraction

In this step, we apply the algorithm described by Listing 1, which generates the directed graph. For example,
given the following python code snippet (Kaggle: https://www.kaggle.com/dansbecker/random-forests):

1 import pandas as pd
2 # Load data
3 melbourne_file_path = ’../input/melbourne-housing-snapshot/melb_data.csv’
4 melbourne_data = pd.read_csv(melbourne_file_path)
5 # Filter rows with missing values
6 melbourne_data = melbourne_data.dropna(axis=0)

the algorithm generates the following directed graph, represented here in DOT format:

1 strict digraph "" {
2 pandas -> "random-forest.ipynb" [label=importedBy];
3 "pd(0)" -> pandas [label=assignedFrom];
4 "pd(0)" -> "random-forest.ipynb" [label=appearsIn];
5 "../input/melbourne-housing-snapshot/melb_data.csv(0)" -> "random-forest.ipynb" [label=

appearsIn];

https://www.kaggle.com/dansbecker/random-forests
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6 "melbourne_file_path(0)$0" -> "../input/melbourne-housing-snapshot/melb_data.csv(0)" [
label=assignedFrom];

7 "melbourne_data(0)$0" -> "pd(0)" [label=read_csv];
8 "melbourne_data(0)$0" -> "melbourne_file_path(0)$0" [label=read_csv];
9 "melbourne_data(0)$1" -> "melbourne_data(0)$0" [label=dropna];

10 "melbourne_data(0)$1" -> "0(0)" [label=dropna];
11 "0(0)" -> "random-forest.ipynb" [label=appearsIn];
12 }

The arcs of the graph incorporate semantics derived from the code structure, partly assigned from heuristics in the al-
gorithm, and partly derivable from the names of operators used in the code. For example, the relation importedBy
links a library to the python script; the relation add links a variable (or constant) to its target variable; the rela-
tion print links a processing node to an output node; the relation assignedFrom is applied to local handlers
of imported libraries as well as regular variable assignment operations. In addition, the example shows how the im-
plementation takes care of linking multiple occurrences of the same variable together, generating a new node every
time the variable value changes (for example, when re-assigned or when a method is called on a variable object,
assuming the internal state of the data object is affected by the method call). Finally, the implementation ensures
that variables are interpreted in the context of their scope. The number in parenthesis represents the outer scope,
while the dollar sign distinguishes different instances of the same variable name. For example, it is distinguishing
a variable name used within the context of a function from the same variable name used in the outer scope (e.g.
melbourne_data, lines 7-10).

The resulting directed graph is re-engineered into RDF. In particular, the direction of the arcs is reversed. Then,
we add links from the notebook entity to each one of the nodes. In addition, we add namespaces and use an entity
function which returns an RDF resource from the node label, applying the appropriate conversions to valid URI
strings. In the implementation, we use the following namespaces:

1 @prefix dj: <http://purl.org/dj/> .
2 @prefix k: <http://purl.org/dj/kaggle/> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
4 @prefix nb: <http://purl.org/dj/kaggle/random-forest#>
5 @prefix lib: <http://purl.org/dj/python/lib/>

The k: namespace prefix is used for naming notebooks, the lib: namespace prefix is applied to python libraries,
while the default namespace is used for any other entity generated. The above code generates the following data
node graph in RDF:

1 nb:1257244313 rdfs:label "melbourne_data(0)$1" ;
2 dj:dropna nb:1257178776,
3 nb:29687986 .
4

5 nb:1257178776 rdfs:label "melbourne_data(0)$0" ;
6 dj:read_csv nb:2019035306,
7 nb:80085334 .
8

9 nb:2019035306 rdfs:label "melbourne_file_path(0)$0" ;
10 dj:assignedFrom nb:58004286 .
11

12 nb:29687986 rdfs:label "0(0)" ;
13 dj:appearsIn k:random-forest .
14

15 nb:58004286 rdfs:label "../input/melbourne-housing-snapshot/melb_data.csv(0)" ;
16 dj:appearsIn k:random-forest .
17

18 nb:80085334 rdfs:label "pd(0)" ;
19 dj:appearsIn k:random-forest ;
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20 dj:assignedFrom nb:144966264 .
21

22 nb:144966264 rdfs:label "pandas" ;
23 dj:importedBy k:random-forest .
24

25 k:random-forest a k:Notebook ;
26 rdfs:label "random-forest.ipynb" .

The execution of the process produces 804 data node graphs. The remaining notebooks either included syntax errors,
they did not include any source code, or the process took more than 10 minutes to complete. We leave the study of
possible optimisations to future work.

6.2. Knowledge expansion

The output of the previous phase are data node graphs expressed in RDF. Such representation has the benefit to
be directly linked to the source code, to enable us to overlay a graph representation on the program code. In this
phase, we aim at identifying activities for each one of the node. Data node arcs are labelled according to clues
derivable from the code (e.g. import statements and assignments, see Listing 1) or by reusing code elements (e.g.
object methods, function names, ...).

Frequent Activity Table (FAT) Following our method, we compute statistics of data node arcs and focus on the
most frequent relationships in a Frequent Activity Table (FAT). The dataset includes 3384 distinct relations, from
the more frequent ones (the most frequent being assignedFrom, 90370 occurrences) to relations occurring less
frequently. We manually annotated the arcs occurring at least 2000 times in the dataset with data journey activities.
The intended meaning is that when a given relation occurs, the target node can be qualified as being the result of the
specified activity. Table 2 shows the relations occurring at least 1000 times in the dataset and related annotations.
However, we observed that the Movement activity was underrepresented in the table; therefore, we selected two
more arcs mapped to that activity.

Frequent Activity Rules (FAR) From the FAT, rules are derived and encoded as SPARQL CONSTRUCT queries.
Listings 3 and 4 show examples of such rules. The rules materialise a new statement using the DJO annotation
property hasActivity, connecting data node entities to subclasses of Activity. We apply the rule sets to the
data node graphs and materialise the new triples. An excerpt related to the guide example can be seen in Listing 5.

1 PREFIX dj: <http://purl.org/dj/>
2 PREFIX : <http://purl.org/datajourneys/>
3 CONSTRUCT { ?s :hasActivity :Reuse }
4 WHERE { ?s dj:importedBy ?o . }

Listing 3: We can infer from the datanode arc importedBy that the target node relates to a Reuse activity

1 PREFIX dj: <http://purl.org/dj/>
2 PREFIX : <http://purl.org/datajourneys/>
3 CONSTRUCT { ?s :hasActivity :Visualisation }
4 WHERE { ?s dj:print ?o . }

Listing 4: We can infer from the datanode arc print that the target node relates to a Visualisation activity

1 djo:2019035306 rdfs:label "melbourne_file_path(0)$0" ;
2 djo:hasActivity djo:Reuse ;
3 dj:assignedFrom djo:58004286 .
4
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Table 2
Frequent Activity Table (FAT). Relations occurring at least 1000 times in the datanode dataset and related annotations. The table also distin-
guishes relations explicitly asserted by the AST traversal algorithm and the ones that are implicitly derived from the code.

Datanode arc Occurrences Asserted Annotation
print 16888 :Visualisation

iteratorOf 11825 Y :Preparation

importedBy 10855 Y :Reuse

_argToVar 9713 Y :Reuse

Add 7334 + :Preparation

append 6840 :Preparation

subplots 6128 :Visualisation

apply 5471 :Preparation

Div 5115 / :Preparation

fit 4415 :Analysis

read_csv 4412 :Movement

astype 4191 :Preparation

plot 4036 :Visualisation

train_test_split 3667 :Preparation

tanh 3546 :Analysis

DataFrame 3494 :Preparation

title 3243 :Preparation

mean 3200 :Preparation

add 2843 :Preparation

subplot 2545 :Visualisation

drop 2527 :Preparation

predict 2483 :Analysis

merge 2404 :Preparation

map 2345 :Preparation

head 2314 :Preparation

[ ...]

to_csv 1033 :Movement

[ ...]

copy 678 :Movement

5 djo:1257178776 rdfs:label "melbourne_data(0)$0" ;
6 djo:hasActivity djo:Movement ;
7 dj:read_csv djo:2019035306, djo:80085334 .
8

9 djo:1013384666 rdfs:label "forest_model(0)$1" ;
10 djo:hasActivity djo:Analysis ;
11 dj:fit djo:1013319129,
12 djo:477168555, djo:490144716 .

Listing 5: Example of data nodes annotated with activity types.

Machine Learning Training Dataset (MLTD) We create a training dataset from the table of annotated data node
arcs. The input data includes a set of data nodes annotated with activity types (derived from the FAT). These can be
enhanced with background knowledge, such as from existing knowledge models such as BERTcode or producing
RDF2VEC embeddings from the data node graphs. Activities in the FAT are not equally represented. For example,
Reuse, Preparation, and Visualisation have many more nodes than Analysis and Movement. Therefore, we select
four arcs for each activity to give more balanced coverage to the training data. These are highlighted in Table 2.
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The resulting dataset includes the following information: the notebook, the graph node, the arc used to derive
the annotation, and the annotated activity. The data includes 802 notebooks and 29282 nodes. Statistics of arcs,
activities, and number of nodes in the training dataset are reported in Table 35.

Table 3
ML Training Dataset, statistic of activity types and nodes.

Arc Activity Nodes
fit :Analysis 1316

tanh :Analysis 299

predict :Analysis 959

read_csv :Movement 1727

copy :Movement 431

to_csv :Movement 490

Add :Preparation 2078

append :Preparation 2111

iteratorOf :Preparation 4499

importedBy :Reuse 1622

_argToVar :Reuse 9709

plot :Visualisation 1408

subplots :Visualisation 1705

print :Visualisation 6405

Machine Learning Application In this phase, we train an ML model to annotate the missing nodes with activity
types automatically. In the next section, we will report on experiments with multiple machine learning algorithms.
We select the most promising method and use it to predict the activities of remaining non-frequent nodes. The output
of the learned classifier is a data node graph whose nodes are all annotated with activity types, using the DJO OWL
annotation property :hasActivity.

6.3. ML classification experiments

We train classifiers that, given a node representing an Activity from a notebook, predict its high-level semantic
type - one of Analysis, Movement, Preparation, Reuse, Visualisation. We tested standard
classifiers available in scikit-learn, specifically Logistic Regression, Decision Trees, Gaussian Naive Bayes, Linear
Support Vector Machine and a Multi-layer Perceptron.

We develop tests using two different methods for representing nodes as input to the classifiers:

1. CODEBERTA - In this setting, we embed the code string associated with a node using CodeBERTa6 a pre-
trained transformed based language model trained on a large corpus of the programs from the CodeSearchNet
[34]. The corpus used contains roughly 6 million functions spanning six programming languages.

2. RDF2VEC - In this setting, we use RDF2Vec [35] to embed each node based on its structural position in
a knowledge graph constructed from the RDF representation of the notebooks used during the experiment.
RDF2Vec is set to use the following parameters: the node is represented based on its context, i.e. a continuous
bag of words (CBOW). The context is determined by extracting paths in a random walk around the node. A
maximum of 100 paths are extracted with a maximum depth of 10.

For each setting, we employ two testing regimes:

R1 Nodes are randomly split between training and testing sets.

5The data in the table was produced by querying the training dataset (CSV) using SPARQL Anything [33]
6https://huggingface.co/huggingface/CodeBERTa-small-v1

https://huggingface.co/huggingface/CodeBERTa-small-v1
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R2 Nodes are randomly split between training and testing sets but the train and test sets do not share notebooks.

A 70/30 train test split is used. Hyperparameters are as detailed above. R1 simulates the behaviour where one
wants to classify other (e.g. long-tail) nodes from within a codebase, which contains some already classified nodes.
Whereas R2 aims to simulate an environment in which one is trying to classify nodes from a notebook that has not
been seen before. For each classifier, setting and regime combination, we use 10, 100 and 200 notebooks randomly
sampled from the corpus. Experiments are repeated 10 times for each combination. Table 4 shows the average
knowledge graph size across experimental runs.

The experiments showed an increasing accuracy when providing a larger set of notebooks. Table 5 presents the
best results achieved when training with 200 notebooks. We report on two metrics: Accuracy and Matthews corre-
lation coefficient7. The best results are achieved by the Multi-Layered Perceptron classifier using the RDF2Vec em-
beddings method. With these results, we demonstrate that using a data node graph as an intermediate representation
of the program improves the prediction accuracy systematically across all machine learning algorithms.

Notebook Average KG Size
Count (Nodes)

10 8885
100 89202
200 186457

Table 4
The size of knowledge graphs per number of notebooks used across experiments.

6.4. Knowledge compression

The output of the machine learning application phase is a datanode graph whose nodes are all annotated with
activity types. However, such representation does not allow us to see the intended activities at a higher level of
abstraction. In this final phase, we apply the algorithm described in Listing 2 in order to generate a summarised view
of the program by creating instances of activities in our ontology, absorbing adjacent data nodes annotated with the

7https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html

Table 5
Results for test regime R1 for multiple classifiers using a KG based on 200 notebooks

Method Accuracy Matthews
mean std mean std

CodeBERTa

Decision Tree 0.49 0.36 0.32 0.48
GaussianNB 0.66 0.25 0.61 0.25
LinearSVC 0.43 0.45 0.25 0.58
LogisticRegression 0.05 0.00 0.00 0.00
MLPClassifier 0.40 0.40 0.30 0.45
RandomForestClassifier 0.52 0.31 0.33 0.45

RDF2Vec

Decision Tree 0.68 0.06 0.58 0.07
GaussianNB 0.84 0.02 0.79 0.02
LinearSVC 0.95 0.01 0.93 0.02
LogisticRegression 0.95 0.01 0.93 0.02
MLPClassifier 0.96 0.01 0.95 0.01
RandomForestClassifier 0.85 0.01 0.80 0.02

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
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Fig. 1. Datanode graph of the random-forests data journey.

same activity type. Here, we evaluate the ability of the approach to generate a more abstract representation of the
process, by reducing the number of nodes required to express the data science pipeline. Specifically, we compare
the size (number of arcs) of the data node layer with the one of the activity layer of the data journeys produced.
Figures 2 displays the distribution of this compression factor, computed as the ration between the number of arcs
of the data node graph and the ones of the activity graphs. The numbers demonstrate that our approach provides an
effective way of summarising the data science pipelines, with almost all of the activity graphs being more than half
of the size of the respective data node ones. Crucially, there has been a reduction of a 0.8 factor in about 3/4 of the
cases.

Fig. 2. Compression factor

Following the example introduced at the beginning of this section, the random-forests data journey contains 84
entities in the data node layer and only 18 in the activity graph layer, for a compression factor of .78. Figure 3
shows the activity graph (the equivalent data node graph is in Figure 1). The first representation accurately describes
the data flow, but it is also very difficult to explore. The second, is a much more compact representation of core
activities. Crucially, our layered approach allows us to use the more synthetic representation as a proxy to the
underlying one and, indirectly, to the actual source code.

7. Conclusion

In this article, we proposed a rich ontology for representing Data Journeys. Using a corpus obtained from the
1000 most popular python notebooks on Kaggle, we showed how data journeys can be automatically identified from
source code. The abstract representations that are generated are in many cases 80% the size of the original graphs.
Additionally, our experiments show that an intermediate (datanode) graph representation (via RDF2Vec) improves
performance over the use of just the code itself (via CodeBERTa) on the task of identifying high-level datascience
activity. There are several limitations to our current approach. First, the current implementation is limited to Python
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Fig. 3. Activity graph of the random-forests data journey.
code, although the approach is portable to other languages. In addition, the implementation can be improved as there
were notebooks could not be properly processed. Here, we focused on the Activity Graph layer of the data journey.
We plan to expand our approach to include also the other components of the Data Journey ontology, specifically, by
decorating the datanode layer with the the richer types and relations specified in the Data Journey Ontology.

Importantly, we believe that data journeys are an exciting foundation for further work. In terms of use cases,
data journeys, can provide a mechanism to more easily audit the data science models that are behind many web
applications. They can provide a foundation for compliance checking in terms of correct licensing, data privacy and
attribution. In terms of open science, data journeys can provide the possibility to wire in expertise and explanation
at different levels of abstraction.

On a technical front, it would be interesting to develop methods that use data journeys to more effectively perform
data and algorithm debugging. Likewise, developing more sophisticated abstraction models that can take advantage
of both the code and graph representations is an exciting avenue of research.

We see a potential future in which data journeys with multiple layers of information about tasks, data, expertise,
bias, can be used to build rich environments for transparency.

References

[1] A.U.P.P. Council, Statement on algorithmic transparency and accountability (2017).
[2] E. Daga, A. Gangemi and E. Motta, Reasoning with data flows and policy propagation rules, Semantic Web 9(2) (2018), 163–183.
[3] I. Abdelaziz, K. Srinivas, J. Dolby and J.P. McCusker, A Demonstration of CodeBreaker: A Machine Interpretable Knowledge Graph for

Code, in: ISWC (Demos/Industry), 2020.
[4] S. Leonelli and N. Tempini (eds), Data Journeys in the Sciences, Springer International Publishing, Cham, 2020. ISBN 9783030371760

9783030371777. doi:10.1007/978-3-030-37177-7.
[5] S. Leonelli, Learning from Data Journeys, in: Data Journeys in the Sciences, S. Leonelli and N. Tempini, eds, Springer International

Publishing, Cham, 2020, pp. 1–24. ISBN 978-3-030-37177-7. doi:10.1007/978-3-030-37177-7_1.
[6] S. Grafberger, J. Stoyanovich and S. Schelter, Lightweight Inspection of Data Preprocessing in Native Machine Learning Pipelines, in: 11th

Conference on Innovative Data Systems Research, CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings, www.cidrdb.org,
2021. http://cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf.

[7] D. Garijo, P. Alper, K. Belhajjame, O. Corcho, Y. Gil and C. Goble, Common motifs in scientific workflows: An empirical analysis, Future
Generation Computer Systems 36 (2014), 338–351.

[8] L. Murta, V. Braganholo, F. Chirigati, D. Koop and J. Freire, noWorkflow: Capturing and Analyzing Provenance of Scripts, Springer
International Publishing, 2015, pp. 71–83. doi:10.1007/978-3-319-16462-5_6.

[9] E. Daga, M. d’Aquin, A. Gangemi and E. Motta, Propagation of policies in rich data flows, in: Proceedings of the 8th International
Conference on Knowledge Capture, 2015, pp. 1–8.

http://cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf


E. Daga and P. Groth / Data journeys 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[10] S. Al Manir, J. Niestroy, M.A. Levinson and T. Clark, Evidence Graphs: Supporting Transparent and FAIR Computation, with Defeasible
Reasoning on Data, Methods, and Results, in: Provenance and Annotation of Data and Processes, Springer, 2020, pp. 39–50.

[11] X.-H. Li, C.C. Cao, Y. Shi, W. Bai, H. Gao, L. Qiu, C. Wang, Y. Gao, S. Zhang, X. Xue et al., A survey of data-driven and knowledge-aware
explainable ai, IEEE Transactions on Knowledge and Data Engineering (2020).

[12] S. Mohseni, N. Zarei and E.D. Ragan, A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems,
ACM Trans. Interact. Intell. Syst. 11(3–4) (2021). doi:10.1145/3387166.

[13] J. Stoyanovich, B. Howe and H.V. Jagadish, Responsible Data Management, Proc. VLDB Endow. 13(12) (2020), 3474–3488–.
doi:10.14778/3415478.3415570.

[14] M. Herschel, R. Diestelkämper and H.B. Lahmar, A survey on provenance: What for? What form? What from?, The VLDB Journal 26(6)
(2017), 881–906.

[15] L. Moreau, The foundations for provenance on the web, Now Publishers Inc, 2010.
[16] L. Moreau and P. Groth, PROV-Overview, W3C Note, W3C, 2013, https://www.w3.org/TR/2013/NOTE-prov-overview-20130430/.
[17] E. Daga, M. d’Aquin, A. Gangemi and E. Motta, Describing semantic web applications through relations between data nodes, Technical

Report kmi-14–05, Knowledge Media Institute, The Open University, Walton Hall, Milton Keynes (2014).
[18] E. Daga, M. d’Aquin, A. Adamou and E. Motta, Addressing exploitability of smart city data, in: 2016 IEEE International Smart Cities

Conference (ISC2), IEEE, 2016, pp. 1–6.
[19] W. Oliveira, D.D. Oliveira and V. Braganholo, Provenance Analytics for Workflow-Based Computational Experiments: A Survey, ACM

Comput. Surv. 51(3) (2018). doi:10.1145/3184900.
[20] F.Z. Khan, S. Soiland-Reyes, R.O. Sinnott, A. Lonie, C. Goble and M.R. Crusoe, Sharing interoperable workflow provenance: A review of

best practices and their practical application in CWLProv, GigaScience 8(11) (2019), giz095.
[21] K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K. Hettne, R. Palma, E. Mina, O. Corcho, J.M. Gómez-Pérez, S. Bechhofer et al., Using a

suite of ontologies for preserving workflow-centric research objects, Journal of Web Semantics 32 (2015), 16–42.
[22] S. Soiland-Reyes, P. Sefton, M. Crosas, L.J. Castro, F. Coppens, J.M. Fernández, D. Garijo, B.A. Grüning, M.L. Rosa, S. Leo, E.Ó. Car-

ragáin, M. Portier, A. Trisovic, R. Community, P. Groth and C.A. Goble, Packaging research artefacts with RO-Crate, CoRR abs/2108.06503
(2021). https://arxiv.org/abs/2108.06503.

[23] K. Subramanian, N. Hamdan and J. Borchers, Casual Notebooks and Rigid Scripts: Understanding Data Science Pro-
gramming, in: 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2020, pp. 1–5.
doi:10.1109/VL/HCC50065.2020.9127207.

[24] J.N. Yan, Z. Gu and J.M. Rzeszotarski, Tessera: Discretizing Data Analysis Workflows on a Task Level, in: Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, NY, USA, 2021. ISBN
9781450380966. https://doi.org/10.1145/3411764.3445728.

[25] M.R. Huq, P.M.G. Apers and A. Wombacher, ProvenanceCurious: A Tool to Infer Data Provenance from Scripts, in: Proceedings of the
16th International Conference on Extending Database Technology, EDBT ’13, Association for Computing Machinery, New York, NY,
USA, 2013, pp. 765–768–. ISBN 9781450315975. doi:10.1145/2452376.2452475.

[26] M.H. Namaki, A. Floratou, F. Psallidas, S. Krishnan, A. Agrawal, Y. Wu, Y. Zhu and M. Weimer, Vamsa: Automated Provenance
Tracking in Data Science Scripts, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 1542–1551–. ISBN 9781450379984.
doi:10.1145/3394486.3403205.

[27] L. Moreau, P. Groth, S. Miles, J. Vazquez-Salceda, J. Ibbotson, S. Jiang, S. Munroe, O. Rana, A. Schreiber, V. Tan et al., The provenance
of electronic data, Communications of the ACM 51(4) (2008), 52–58.

[28] E. Daga, M. d’Aquin and E. Motta, Propagating Data Policies: a User Study, in: Proceedings of the Knowledge Capture Conference, 2017,
pp. 1–8.

[29] A. Newell, The knowledge level, Artificial intelligence 18(1) (1982), 87–127.
[30] T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame, J. Cheney, D. Corsar, D. Garijo, S. Soiland-Reyes, S. Zednik and J. Zhao, Prov-o: The

prov ontology (2013).
[31] F. Pérez and B.E. Granger, IPython: a System for Interactive Scientific Computing, Computing in Science and Engineering 9(3) (2007),

21–29. doi:10.1109/MCSE.2007.53. https://ipython.org.
[32] E. Daga and P. Groth, enridaga/data-journeys: v1 (2021). doi:10.5281/zenodo.5770310.
[33] E. Daga, L. Asprino, P. Mulholland and A. Gangemi, Facade-X: An Opinionated Approach to SPARQL Anything, in: Volume 53: Further

with Knowledge Graphs, Vol. 53, M. Alam, P. Groth, V. de Boer, T. Pellegrini and H.J. Pandit, eds, IOS Press, 2021, pp. 58–73. http:
//oro.open.ac.uk/78973/.

[34] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis and M. Brockschmidt, CodeSearchNet Challenge: Evaluating the State of Semantic Code
Search, arXiv:1909.09436 [cs, stat] (2019), arXiv: 1909.09436. http://arxiv.org/abs/1909.09436.

[35] P. Ristoski and H. Paulheim, Rdf2vec: Rdf graph embeddings for data mining, in: International Semantic Web Conference, Springer, 2016,
pp. 498–514.

[36] A. Bilgin, E.T.K. Sang, K. Smeenk, L. Hollink, J. van Ossenbruggen, F. Harbers and M. Broersma, Utilizing a Transparency-
Driven Environment Toward Trusted Automatic Genre Classification: A Case Study in Journalism History, IEEE, 2018.
doi:10.1109/escience.2018.00137.

https://arxiv.org/abs/2108.06503
https://doi.org/10.1145/3411764.3445728
https://ipython.org
http://oro.open.ac.uk/78973/
http://oro.open.ac.uk/78973/
http://arxiv.org/abs/1909.09436

	Introduction
	Related Work
	Definition
	Ontology
	Extracting data journeys
	Datanode graph extraction
	Knowledge expansion
	Knowledge compression

	Evaluation
	Datanode graph extraction
	Knowledge expansion
	ML classification experiments
	Knowledge compression

	Conclusion
	References

