
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Automatic Ontology Population from French
Classified Advertisements
Céline Alec
Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France
E-mail: celine.alec@unicaen.fr

Abstract. Artificial intelligence has become one of the most studied fields in computer science. It aims at building smart machines
capable of performing tasks that typically require human intelligence. One of the challenging tasks consists in understanding
texts written in natural language. Semantic Web technologies, in particular ontologies, can be used to help agents representing
knowledge from a specific domain and reasoning like a human would do. Ontology population from texts aims to translate
textual contents into ontological assertions. This paper deals with an approach of automatic ontology population from French
textual descriptions. This approach has been designed to be domain-independent, as long as a domain ontology is provided. It
relies on a text-based and a knowledge-based analysis, which are fully explained. Experiments performed on French classified
advertisements are discussed and provide encouraging results.

Keywords: Ontology population, Knowledge engineering, Knowledge graph, OWL, Semantic Web technologies

1. Introduction

Ontologies [1] are designed to store and share domain knowledge between humans and machines. They have
two main parts : TBox and ABox. TBox includes a hierarchy of classes and relationships between these classes,
called object properties, or relationships between a concept and a literal, called data properties. ABox is composed
of instances, which may be class assertions (instances of concept) or property assertions (instances of property).
The process of adding instances to an ontology is called ontology population. A populated ontology may also be
referred as a knowledge base or a knowledge graph. Ontologies are particularly popular in the context of the Linked
Open Data (LOD) cloud [2], which contains knowledge graphs, interlinked and openly available, like DBpedia [3],
Wikidata [4] or YAGO [5]. Knowledge graphs/ontologies can also be used outside of the LOD, for specific needs,
especially in industrial contexts [6–9].

The approach proposed in this paper is part of the DECA project (Detection of Errors and Correction of An-
notations). This project deals with annotated descriptions, i.e., descriptions that are in the form of texts, to which
annotations are appended. This is, for example, the case of news articles, annotated with their themes, or classifieds
advertisements, annotated with the criteria they meet. Annotations are theoretically meant to describe characteristics
of the object or event described in the description. However, this is not always the case. In fact, erroneous annota-
tions may be frequently observed, either because of typing errors or because of “misuse”: descriptions are deliber-
ately wrongly annotated in order to increase their visibility. For example, one can find a real estate advertisement
where the city annotation is a well-known city X, while the description states “30 minutes from X”; or where the
area annotation (in m2) is 150 while the description states “147 m2”. These wrongly annotated descriptions waste a
considerable amount of time for readers (or buyers in the case of classified ads) who must sort through the multiple
responses complying in theory with their search criteria. The DECA project deals with this problem. Its goal is to

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:celine.alec@unicaen.fr

2 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

detect and correct erroneous annotations thanks to the inconsistencies that can be detected according to the content
expressed in the textual description. The solution idea is based on the human process: first, (i) the text needs to be
understood, and then (ii) information from both text and annotations needs to be used in a reasoning step to be able
to detect and correct wrong annotations. In order to do this, a domain ontology will be used. The final proposition
has to be as generic as possible, in the sense that it should be applicable to different types of annotated descriptions
of objects, in particular classified ads (real estate ads for sale / rental / seasonal rental, sale of objects : vehicles /
fashion / furniture / etc., job offers), but also other types of annotated descriptions (like news articles or encyclope-
dic pages), on condition that an ontology, specific to the field being dealt with, is available. This paper focuses on
the sub-problem of understanding the text (i), that is, the goal is to represent the content of textual descriptions of
objects in a domain ontology. It is therefore a problem of ontology population from textual descriptions. Our first
use case concerns real estate house sales announcements, but the proposed approach has to be as generic as possible,
i.e., it should be able to populate a domain ontology from descriptions in many domains : whether it be a subcate-
gory of classified ads, or descriptions of a certain type of object. The only condition is to have an ontology whose
domain is the object’s type. Unlike texts from state-of-the-art approaches, descriptions have verbs that are not very
discriminating and few named entities, which makes our context original. Our contribution is a proper methodology
that integrates not only object properties but also data properties, taking ternary properties into consideration.

The rest of the paper is organized as follows: Section 2 presents the related work and positions our contribution.
Section 3 describes our approach. Experiments on our use case are explained and evaluated in Section 4. Section 5
concludes and suggests future work.

2. Related work

Ontologies have first been defined by [10] as specifications of a conceptualization, that is, an ontology is a de-
scription of the classes and relationships that can exist for an agent or a community of agents. Ontologies have
been widely studied since then. They provide a way to store semantic knowledge in a machine-readable format. In
particular, the development of the Web has lead to a considerable amount of data publicly available. The Web is full
of information but extracting it such that a machine could be able to automatically understand it is still a challenge
of the Semantic Web. Ontologies address the problem of representing semantic knowledge on a particular domain
or task. This knowledge may help, for example, to semantically annotate documents, or to deduce new facts based
on a reasoning.

Constructing ontologies is a time consuming task. The process of their automatic or semi-automatic construction,
enrichment and adaptation is known as ontology learning, which is a wide research area [11, 12] that includes
work on ontology enrichment, inconsistency resolution and ontology population. In this paper, we are interested in
ontology population, which is the task of adding new instances to an ontology.

Ontology population has been studied in various papers. An overview of related work can be found in the sur-
vey [13]. Some approaches [14–16] focus their work on automatic extraction of concept instances without consid-
ering relation instances. We focus only on approaches aiming at extracting information from unstructured or semi-
structured textual documents and a domain ontology given in input, allowing the addition of instances in the latter,
in particular the addition of property assertions. Existing systems are based on various rule-based methods using
lexico-syntactic patterns, such as ArtEquAKT [17] or SOBA [18]; or on methods based on machine learning, such
as Adaptiva [19], LEILA [20], Ontosophie [21] or Web→KG [22]; or even on hybrid methods, like BOEMIE [23].
Using machine learning techniques requires having a sufficient quantity of sentences and their ontology correspon-
dence upstream, which is not the case of our data. We therefore concentrate on approaches that exploit lexico-
syntactic patterns.

In [24], the authors use lexico-syntactic patterns (“such as”, “is a”) allowing them to identify hyponymy relation-
ships. More elaborate versions [25–27] are inspired by this idea. They assist an expert by providing candidate pat-
terns, based either on a sentence analyser or on examples. The expert validates the correct patterns. The ArtEquAKT
approach [17] deals with ontology population from the Web in the domain of artists. This approach populates the
ontology with property assertions. It uses the verb found in a sentence between two instances of concept from the
ontology. On the same principle, Makki [28] also focuses on verbs in order to populate the ontology with property

C. Alec / Automatic ontology population from French classified advertisements 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

assertions, but it is semi-automatic and domain independant. A list of verbs is extracted from the input corpus for
each property from the ontology using Wordnet. A set of seven manually written rules is used to recognise sub-
jects and objects of a potential property assertion. Results are then validated by an expert. In [29], a framework is
proposed. The goal is to instantiate a concept as well as the relationships that concern it. First, named entities are
identified in the text (exploiting also co-references). Second, triggers are considered, i.e., property names as well
as their synonyms; and rules are built based on noun phrases preceded or followed by a trigger. The application of
these rules leads to the population of the ontology. [9, 18] use structured data on top of texts, like tables or document
tags. In [18], manually written heuristics are used to extract soccer-specific entities, and extraction rules need to be
provided for relation instances. In [9], manually-defined mapping rules are exploited to link a tag from a structured
document to a concept from the ontology.

Our contribution aims at populating the ontology without using any domain-based patterns or rules. The idea
is to perform the population using only the input corpus and domain ontology. The domain terminology is used,
just like in related work. However, we need neither an expert, nor manual knowledge. The study of state-of-the-
art approaches shows several emerging scientific obstacles when trying to adapt them in the context of ontology
population from descriptions of objects.

First of all, the textual analysis to populate properties cannot follow the standard scheme of current approaches,
which are in a context where the expression “subject verb complement” in the text must become the triplet <subject>
<predicate> <object> in the ontology. Indeed, verbs that are used in the texts from related work are strongly char-
acteristic of a relationship (e.g., “is married to”), but they are not in object descriptions (e.g., “the good has” or “the
good possesses”). Sometimes, there is no verb at all (e.g., “2 bedrooms, 1 bathroom.”). This makes the population of
properties more difficult. Moreover, we also note that most approaches refer to named entities for subject and object
of property assertions, which is not, in general, the case in the context of object descriptions. Our context is quite
singular because the texts focus on a particular object. That means that this object, or sometimes things linked to this
object, are often the subject of the property assertions to be inserted. The ontology therefore follows a “star-shaped
model” where the major concept (i.e., the object type) is central and from which a whole set of properties starts.

Furthermore, most of existing approaches focus on the population of object properties and leave data properties
aside. Object properties are properties for which the object of the property is a resource while data properties have a
literal as their object (string, numeric value, etc.). Data properties are an important part of properties in the context
of classified advertisements. For example, in the case of real estate, there are many properties with a numerical
value: expression of areas, number of rooms, energy diagnosis, distance to points of interest, etc. The context of the
extracted numerical values must therefore be exploited to detect their precise semantics and populate the associated
properties. Units of measurement (m2, km, minutes, euros, etc. in the real estate case) are an important feature and
may constitute exploitable clues.

Finally, existing works focus on the population of binary properties allowing a subject to be associated with an
object. In our context, we have to deal with certain n-ary properties. For example, to represent the idea that a house
for sale is located at 10 km from Paris, we face a ternary property linking a house to a distance and a place. One can
imagine the modeling of a concept Distance making the representation of this ternary property possible, such that
a good for sale is located at a distance d, d concerns a location, and d is associated to a value corresponding to the
distance in kilometers. These kinds of ternary properties represent complex notions that are difficult to automatically
populate. Their population has, to our knowledge, never been studied.

3. The KOnPoTe approach

We present KOnPoTe (Knowledge graph/ONtology POpulation from TExts), an approach to populate a domain
ontology or a knowledge graph according to textual descriptions of elements of this domain. The initial knowledge
graph describes the domain with classes, properties and axioms (ontology), and may possibly contain initial indi-
viduals. The domain is represented via a concept named hereafter main class. We consider a corpus of documents
where each document describes an instance of the main class. Figure 1 shows the outline of the approach. The
knowledge graph (KG), as well as each document from the corpus, are used by a terminology matcher. This leads to

4 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

matchings between text mentions and entities from the KG (classes, properties and individuals). Then, a relatively
complicated population algorithm is applied, to get the final output knowledge graph (see top of Figure 1). This
population algorithm is a succession of several treatments (see middle of Figure 1): an initialisation of an object
called “Matching treatments” (MT); an instantiation of the main class of the KG; a text-based analysis, composed
of various treatments (see bottom of Figure 1); as well as an analysis based on the background knowledge from the
ontology. In this section, we explain each treatment and unfold them on an example.

Initial
KG

Document
Terminology

matcher
matchings Population

algorithm
Populated

KG

KG

matchings Init.
MT

MT Instantiate
main class

KG

MT Text-based
analysis

KG

MT

Lnk.

Knowledge-
based

analysis

KG

KG

MT

Treat
classes

KG

MT

Treat
indi-

viduals

KG

MT

Treat
prop-
erties

KG

MT

Init.
linka-
bilities

Lnk.

Treat
next

match-
ing

KG

MT

Treat
indiv.
w/o

prede-
cessors

KG

MT

Lnk.

Fig. 1. Outline of the KOnPoTe approach

As mentioned in Section 1, the proposed approach has to be generic. It might be a bit confusing to mention
genericity while dealing with a domain ontology, this is why we explain what being generic means in our context.
The proposed approach should be applicable to various domains. For a given domain, it is necessary to have as input
a KG or ontology of the domain, as well as a corpus of documents, where each document is a text that describes an
instance of this domain. Let us insist on the fact that we only want to apply the approach on texts that are descriptions
of one type of object, not on every kind of text. By generic, we mean that the proposed algorithm cannot depend
on domain-based linguistic rules or patterns. Hence, it can only used domain terminology (from the ontology),
syntactic indicators (like sentences, or order of expressions within the text) and knowledge indicators (like domains
and ranges of a property). Being able to create such an algorithm is not easy, we therefore put one constraint on the
input ontology: the domain is represented by a concept named main class. Intuitively, it is likely that the shape of
the ontology looks like a star, where the center is the main class, since all knowledge is supposed to describe the
main class. In other words, the main class is the domain of object properties whose range is the domain of other
object properties, and so on. Note that domains and ranges of properties may not only be explicit classes but also
class expressions, using all the expressiveness of OWL2 [30], like union, intersection, complement, etc.

3.1. Initial data

The KG is written in OWL1 language [31], defined as a standard by the World Wide Web Consortium. Initially,
it has a hierarchy of classes, object properties (linking classes together) and data properties (linking a class to a
literal). Axioms representable in OWL2 and SWRL2 rules [32] can be defined. Data properties that are considered
may use boolean, numerical (integer, double), or string values. The KG may also contain initial individuals, which
are generic. It describes the domain in a general way but does not initially describe any instance of this domain.

1Web Ontology Language
2Semantic Web Rule Language

C. Alec / Automatic ontology population from French classified advertisements 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In the following of this section, examples are given where the KG describes the house sales domain and where the
document is a house sale classified ad. In the context of house sales, the initial KG3 contains classes such as the
main class Property (denoting real estate); classes designating rooms like Room, Kitchen, Bedroom; etc. Among the
properties, we can cite the object property is located in linking a real estate property to the municipality in which
it is located, or the data property area in m2 connecting a property part (land, house, etc.) or a room to a numerical
value. The initial individuals are generic, e.g., instances of the class Municipality, or instances of the class Heating
system. The KG also contains axioms, for example, the fact that a Property can only be located in a maximum of
one Municipality, or the fact that a Bedroom is disjoint from a Kitchen. Finally, some SWRL rules are defined, for
example, to express the fact that the boolean property separate has to be populated with the opposite value of the
boolean property open.

Each element of this KG (classes, properties, individuals) has a Uniform Resource Identifier (URI) and possibly a
more advanced terminology: labels (rdfs:label, rdfs:isDefinedBy), units or unit expressions. For these last two cases,
a “unit” annotation property has been created, associating an ontological element respectively with its unit or with a
fill-in-the-blank expression (whose blank is represented by “xxx”). For example, we can associate the property area
in m2 with its unit m2, and the property feePercentage with a unit expression fees: xxx %. This representation of
units is currently simple. A change in the way of representing units (using, for example, a special unit class linked
to a unit name and a unit value) may be considered in a future version.

3.2. The terminology matcher

The terminology matcher is the first step of the approach. As it can be seen in Figure 1, it takes as inputs the initial
KG and a document, and outputs matchings between text mentions of the document and the KG. The text is split
into sentences and then lemmatized. Likewise, the ontology keywords (URI fragments, labels, units) are lemmatized
taking into account camelCase and snake_case syntaxes. Matchings between the text and the ontology keywords,
both with their non-lemmatized and lemmatized versions, are established. Matchings also concern unit expressions,
e.g., the mention fees: 4% matches the unit expression fees: xxx %. All included matchings are removed. For
example, if there is a matching on the mention “city center” and on its sub-mention “city”, only the one on “city
center” is considered.

Cormelles-le-Royal : Magnificent house located 15 min from the city center of Caen and 3 min walk from shops
and schools, 110 m2 on a land of 400 m2. The ground floor consists of a kitchen equipped with essential appliances,
a living room with fireplace, facing south-west, as well as a bedroom of 15 m2. First floor: 2 bedrooms and 1 bath-
room. Close to public transport. Wooded and enclosed land. Fees : 4%.

Fig. 2. Example of a document (translated from French to English) and its matchings

Figure 2 shows a translated example of a real estate advertisement4 as well as the matchings obtained with a KG
describing the domain. The matchings concern individuals (Cormelles-le-Royal, city center, etc.), classes (house,
land, etc.), object properties (located, close to) or data properties (min, min walk, etc.).

3.3. The population algorithm

The matchings obtained are then supplied as input to the population algorithm. As shown in Figure 1, the latter
has four main tasks. The first two are quite basic; they can be seen as pre-processing tasks. The third, called text-
based analysis, is a population task using an analysis of the matchings based on textual indicators (sentences, order
of matchings within the text). The last task, called knowledge-based analysis, assumes that the previous task tried
to link the individuals considered in the document as best as possible, but that there are possibly some gaps. It aims
to add missing property assertions based on knowledge from the KG. These tasks are described in the following of
this section.

3Our use case is in French but examples are translated into English in this paper.
4This example is fake but useful to explain our approach on a relatively small text. It is used throughout the paper.

6 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3.3.1. The two pre-processing tasks
Initialisation of the matching treatments The first task is to initialise the matching treatments MT . This consists
in creating a set of matching treatments, each of them corresponding to a matching. A matching treatment contains
several attributes:

– matching : the matching to be treated
– individuals : the individual(s) associated to this matching
– assertions : the assertion(s) created for this matching (class instantiations and/or property assertions)
– linkedPreviousIndividuals : the individual(s) ind representing the previous matching in the text such that there

is an object property property such that the assertion <ind, property, individuals> exists.

At initialisation, the last three attributes (individuals, assertions, linkedPreviousIndividuals) are empty. More
detail about each of these attributes is given in the following of the paper (whenever an attribute is modified).

Instantiation of the main class The next task consists in instantiating the main class. Indeed, a document describes
an instance of the KG’s main class. Therefore, a new individual is added to the KG to represent the document
being processed. In our example, the individual property1 is created with the assertion <property1, isA, Property>
(Property being the main class, representing a real estate property). If a document has matching(s) with the main
class, i.e., if matchings concern the mention of the main class name (or of its associated terminology), then this
assertion is added in the attribute assertions of the corresponding matching treatment(s), and the subject of the
assertion is added in the attribute individuals. This is, for example, the case when an ad states something like “this
property is ...”, which is not very common but plausible. Algorithm 1 details this task. In the example from Figure 2,
there is no mention of “property” in the text, so matching treatments are not updated at this stage.

In the following, this new instance of the main class is called the main instance. The next two tasks are relatively
complex and are explained in the next two subsections.

Algorithm 1: Instantiation of the main class
Input:
– The knowledge graph KG
– The set MT = {mt1,mt2, . . . ,mtn} of matching treatments

Output: KG and MT are modified
/* creation of an individual mainInstance and its class assertion */

1 assertion←<mainInstance,isA,mainClass>
2 KG.add(assertion)
/* update MT */

3 for mt ∈ MT do
4 matching← mt.getMatching()
5 if matching.concernsMainClass() then
6 mt.addAssertion(assertion)// will also add the subject of the assertion in

mt.getIndividuals()
7 end
8 end

3.3.2. Text-based analysis
This task analyses the matchings and aims to add individuals as well as class and property assertions by consid-

ering the text, especially by taking into account the sentence splitting and the order of the matchings. It is detailed
at the bottom of Figure 1.

Treatment of the class matchings In a first step, the matchings corresponding to a class from the KG are processed.
Each matching concerning a class (except the main class) is analysed, with the goal of creating a new individual,
instance of this class. The word(s) preceding the matching in the text are compared to a list of keywords express-

C. Alec / Automatic ontology population from French classified advertisements 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ing negation (for example, “no”), and the matching is ignored if a trace of negation is found. For example, in “no
garage”, the matching with “garage” is ignored, no instance of garage is created. If the word preceding the matching
corresponds to a number, as many individuals as the number found are created (or only one if there is no number).
The algorithm is given in Algorithm 2. Considering the example given in Figure 2, the update of the matching treat-
ments (individuals and assertions added) can be observed on the rows of type “class” in Table 1. These individuals
and assertions are added to the KG.

Algorithm 2: Treatment of the class matchings
Input:
– The knowledge graph KG
– The set MT = {mt1,mt2, . . . ,mtn} of matching treatments

Output: KG and MT are modified
1 for mt ∈ MT do
2 matching← mt.getMatching()
3 if matching.concernsClass() and !matching.concernsMainClass() then

/* check if the word(s) before are contained in a given list of
negation keywords */

4 if matching.tracesOfNegationBefore() then
5 continue
6 end
7 class← matching.getClass()
8 nb← matching.intWordBefore()// we try to parse the word before into an

int (otherwise it is 1)
9 for i← 1 to nb do

10 assertion←<newIndividual,isA,class>
11 KG.add(assertion)
12 mt.addAssertion(assertion)// will also add the subject of the assertion

in mt.getIndividuals()
13 end
14 end
15 end

Treatment of the individual matchings Then, the matchings of individuals from the KG are processed (cf. Algo-
rithm 3). Matching treatments are updated by adding the concerned individuals. It can be observed, for the studied
example, on the rows corresponding to the type “individual” in Table 1.

Algorithm 3: Treatment of the individual matchings
Input:
– The set MT = {mt1,mt2, . . . ,mtn} of matching treatments

Output: MT is modified
1 for mt ∈ MT do
2 matching← mt.getMatching()
3 if matching.concernsIndividual() then
4 mt.addIndividual(matching.getIndividual())
5 end
6 end

8 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Matching treatments of the example after dealing with class, individual and property matchings (translated from French to English)

Matching Type Individuals Assertions

Cormelles-le-Royal individual Cormelles-le-Royal

house class house1 <house1, isA, House>

located object property

min data property distance1 <distance1, isA, Distance>
<distance1, minCar, 15>

city center individual city_center

Caen individual Caen

min walk data property distance1 <distance1, minWalk, 3>
distance2 <distance2, isA, Distance>

<distance2, minWalk, 3>

shops individual shops

schools individual schools

m2 data property house1 <house1, area, 110>

land class land1 <land1, isA, Land>

m2 data property land1 <land1, area, 400>

ground floor individual groundFloor

kitchen class kitchen1 <kitchen1, isA, Kitchen>

equipped data property kitchen1 <kitchen1, equipped, true>

living room class livingRoom1 <livingRoom1, isA, LivingRoom>

fireplace class fireplace1 <fireplace1, isA, Fireplace>

facing data property livingRoom1 <livingRoom1, exposure, south-west>

bedroom class bedroom1 <bedroom1, isA, Bedroom>

m2 data property bedroom1 <bedroom1, area, 15>

First floor individual firstFloor

bedrooms class bedroom2 <bedroom2, isA, Bedroom>
bedroom3 <bedroom3, isA, Bedroom>

bathroom class bathroom1 <bathroom1, isA, Sdb>

Close to object property property1 <property1, isCloseTo, publicTransport>

public transport individual publicTransport
(property1 in linked previous individuals)

Land class land2 <land2, isA, Land>

Fees : 4% data property property1 <property1, feePercentage, 4>

Treatment of the property matchings The following step concerns property matchings and is described in Algo-
rithm 4. The goal is to create property assertions. To do this, the subject and the object of the assertion to create need
to be established. A list of possible subjects is considered. To instantiate it, candidate matchings are browsed, start-
ing from the one preceding the property matching being processed until the beginning of the considered sentence.
As soon as a candidate matching treatment has individuals that belong to the domain of the property matched, these
individuals constitute the list of possible subjects. For possible objects, it depends whether the property is an object
or a data property. In the case of an object property, the matching that directly follows the mention of the property
is considered. If such a matching exists, all the individuals of its matching treatment that are in the range of the
property are considered as possible objects. In the case of a data property, there are several possibilities:

– If the property matching is on a unit, then the previous word is taken. For example, if the property area in
m2 has m2 as unit, then the text “room of 15 m2” has a matching between “m2” and this property, which is
instantiated with the value 15.

C. Alec / Automatic ontology population from French classified advertisements 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– If the property matching concerns a unit expression, then the mention of the text that corresponds to the variable
is taken. For example, if the property fee percentage has fees: xxx% as unit expression, then the text “fees: 4%”
has a matching on this property, instantiated with the value 4.

– If the property is boolean, then false is taken if there is a trace of negation before or true otherwise. The same
list of negation keywords is used as in the treatment of class matchings. For example, the boolean property
convertible is instantiated with true for the text “the attic is convertible” and false for "the attic is not convert-
ible”.

– If the property range is a list of choices, i.e., an expression using owl:OneOf, then the next word(s) in the
text are compared with the possible choices. The corresponding choice is taken if it exists. For example, if the
property exposure has “north”, “south”, “east”, “west” as possible values, then the text “facing south”, having
a matching on “facing” with the property exposure, leads to an instantiation with the value “south”.

– In other cases, the next word is taken. For example, the text “property built in 2005” instantiates the property
built in with the value 2005.

In any case, for each possible subject and object, an assertion of the considered property is added, provided that
this one does not create an inconsistency into the KG. The matching treatment is updated: the new assertion(s) and
their subject individual(s) are added respectively to the attributes assertions and individuals. The matching treatment
of the matching representing the object is also updated: the subject of the assertion is added in its attribute linked
previous individuals. If no assertion can be added, then the process is repeated with a new instance of the property
domain as subject. Once all property matchings are processed, any individuals in the KG that are recognized as
equivalent are merged, and MT is updated w.r.t. this merger.

Let us explain a bit more line 18 from Algorithm 4. The idea is that, if the assertion already exists before the
matching is processed, we do not want this assertion to be linked with this matching, since there is probably another
missing assertion. This is particularly important for ternary properties. For example, in the sentence “20 min from
X and 20 min from Y”, the assertion <distance1,minCar, 20> is created when the matching about the first “min”
is treated. In that case, distance1 is a new instance of Distance, the domain of the property minCar, and represents
the distance from X. When the matching about the second “min” is being treated, the same assertion is considered
but is ignored. The process continues: a new assertion <distance2,minCar, 20> is created, distance2 being a new
instance of Distance, representing the distance from Y.

Table 1 shows the treatment of the property matchings on the example (cf. rows whose type is a property). First,
the mention “located” refers to the object property is located in whose range is a municipality. It is followed by a
numerical value and not by a matching corresponding to a municipality. As a result, the set of possible objects is
empty and the property cannot be instantiated. The matching on “min” refers to the property minCar associating
a distance to a numerical value. It is on a unit, so we consider the previous word as the object: 15. As there is no
instance of the class Distance at this stage, the set of possible subjects is initially empty, and a new instance of
Distance is considered, which is named distance1. For the matching on “min walk”, the process is the same, except
that the set of possible subjects considers distance1 since it is an individual resulting from a matching preceding
the one being processed, from the same sentence, and in the property domain. We therefore try to add an assertion
<distance1,minWalk, 3> but this one is inconsistent (because this distance already represents 15 min by car). Thus,
a new individual distance2 is created for the subject. For the three mentions “m2”, the possible objects are the
previous words, because the matching is on the unit of the property area. For the possible subjects, we look for
individuals belonging to its domain. The domain of area is the union of classes denoting a part of property or a
room. For the part about 110 m2, we have to go back quite far in the sentence to find such an individual (house1),
for the parts about respectively 400 and 15 m2, the individual from the previous matching (respectively land1 and
bedroom1) is directly suitable. For the mention “equipped”, the subject matches the previous matching (“kitchen”)
and, as the property is boolean and there is no trace of negation, the object is true. For “facing”, the subject is
livingRoom1 (the fireplace not being part of the property domain), and the object is the next word (“southwest”),
which belongs to the list (owl:oneOf) of possible ranges. Finally, for the last two property matchings (“close to”
and “Fees: 4%”), the first set of possible subjects is empty. The domain of these two properties being the main
class (Property), the main instance (property1) is considered as subject. For the object, we consider respectively
the matching that directly follows (“public transport”) and the value of the unit expression (4). Since the matching

10 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 4: Treatment of the property matchings
Input: The knowledge graph KG and the set MT = {mt1,mt2, . . . ,mtn} of matching treatments
Output: KG and MT are modified

1 for mt ∈ MT do
2 matching← mt.getMatching()
3 if matching.concernsProperty() then
4 prop← matching.getProperty()
5 domain← prop.getDomain()
6 range← prop.getRange()
7 possibleS ub jects← getClosestMatchedInstancesBeforeInDomain(matching,domain,MT)// We

look at the matching treatments before matching (by going backwards
to the beginning of the sentence). If a matching treatment has
individuals ∈ domain, we stop and get these individuals.

8 possibleOb jects← getPossibleObjects(matching,range,MT ,KG)// 2 cases. In case of
object property: we search if there is a matching directly after
the matching mention. If there is, we get all its individuals from
its treatment that are in range. In case of data property:
different treatments following range and type of matching.

9 if possibleOb jects.isEmpty() then
10 return// we do nothing
11 end
12 for i← 1 to 2/* 1 for an existing subject, 2 for a new subject */ do
13 atLeastOneAddition← f alse
14 for sub ject ∈ possibleS ub jects do
15 for ob ject ∈ possibleOb jects do
16 assertion←<sub ject,prop,ob ject>
17 if assertion ∈ KG then
18 continue// important for ternary properties
19 end
20 addition← KG.addIfConsistent(assertion)
21 if addition then
22 mt.addAssertion(assertion)
23 ob ject.getMatchingTreatment().addLinkedPreviousIndividual(sub ject)
24 atLeastOneAddition← true
25 end
26 end
27 end
28 if i=1 and atLeastOneAddition then
29 break// no need to try a new subject
30 end
31 if i=1 and !atLeastOneAddition then
32 possibleS ub jects← domainInstantiation(domain)// return a new instance of

domain (or the main instance if domain is the main class)
33 end
34 end
35 end
36 end
37 KG.mergeSameAsIndividuals(MT)// merges all sameAs individuals in KG and

update MT w.r.t. the merger

C. Alec / Automatic ontology population from French classified advertisements 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

with “Close to” leads to the assertion <property1, isCloseTo, publicTransport>, property1 is added as a linked
previous individual in the matching treatment of “public transport”.

Let us note that new individuals are named according to the class they are instances of (e.g., distance1 and
distance2 for the class Distance). If the domain or range to instantiate is not a named class but a class expression,
then new individuals are named indiv1, indiv2, etc.

Initialisation of the linkabilities Thanks to these first three steps (treatments of class/individual/property match-
ings), some information can be extracted. However, as mentioned in Section 2, verbs, in our context, are not very
meaningful, or are even absent. It is thus very likely to miss property assertions, due to an absence of property
matching. The remaining of the population algorithm aims at adding property assertions. The challenge here is to
add missing assertions (which would increase recall) without adding too many false assertions (which would de-
crease precision). In this context, we introduce an element that we call linkabilities (Lnk), which is exploited not
only in the last two steps of this process but also in the following task (knowledge-based analysis). The initialisation
of the linkabilities Lnk consists in creating for each individual i from MT , the sorted set of its linkabilities Lnk(i).
An element of Lnk(i) is a pair (property, range class expression), such that i is linkable, via the property, to an
individual belonging to the range class expression. In other words, for an individual i, we look for each property
prop for which i can be a subject. If i can be a subject of prop, we look for the range expression to which an object
ob j of a possible assertion <i,prop,ob j> must necessarily belong. More precisely, the following is performed:

First, for each class c from the KG, definitions, expressed via an equivalence or via a superclass expression, with
an object property p and a universal quantifier (owl:allValuesFrom) are considered. In other words, these definitions
are of the form “p ONLY classExpression” in the OWL Manchester syntax. If such definitions exist, the class
c, the object property p mentioned in its definition, and the class expression classExpression from this definition
are kept, in a triple that we call linkWithOnly(c, p, classExpression) in the following. If there are several definitions
for a same class and a same property, then the intersection of the class expression is taken.

Then, for each individual i ∈ MT :

1. Classes to which i belongs (including superclasses) are considered.
2. For each class c to which i belongs, and each object property p from the KG, the classExpression from

linkWithOnly(c, property, classExpression) is considered, if it exists.
3. For each object property in the KG, if i belongs to its domain, then a linkability is established. The range

class expression of this linkability is the intersection of the property range and the potential classExpression
from 2.

For instance, let us consider the main instance property1 of our studied example and its linkability regarding
the object property contains. The individual property1 belongs to the class Property and its superclass owl:Thing.
The class Property is, among other things, a subclass of contains ONLY PartOfProperty. This means
linkWithOnly(Property, contains, PartO f Property) is considered. The individual property1 belongs to the domain
of contains: a linkability is established. The range class expression is PartO f Property because it is the intersection
of the range of contains (i.e., PartOfProperty or Rooms) and the class PartO f Property (coming from the
linkWithOnly). In other words, the pair (contains, PartO f Property) is a linkability for property1.

For each individual i, the set of linkabilities Lnk(i) is sorted. The first elements are the linkabilities whose range is
the most specific, then those whose property domain is the most specific. Otherwise, the sorting is arbitrarily, accord-
ing to the property URI. For example, if an instance of Property has for linkability l1 = (isLocatedIn, Municipality)
and l2 = (isCloseTo, Location) such that Municipality is a subclass of Location, then they will be sorted in the
order l1 < l2. The intuition behind this sorted set Lnk(i) is that it will be used in the next steps to link i with an other
individual j. The set will be browsed until a linkability is found such that i is linkable to j, in other words, such
that j belongs to the range of the linkability. In case there are several candidate properties, we want to find the best
one, which is not an obvious task. We chose to give priority to specificity. Hence, if a link has to be added between
property1 and an instance of municipality, the chosen property will be isLocatedIn and not isCloseTo, since the
range of l1 is more specific than the one on l2.

In the example of this paper, the individual property1 has sorted linkabilities: (isLocatedIn, Municipality),
(isCloseTo, Location), (isS ituatedAtADistance, Distance), (contains, PartO f Property). The initialisation of the
linkabilities creates linkabilities for all the individuals mentioned in Table 1.

12 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Treatment of the next matching Once the linkabilities are created, they are exploited in the treatment of the next
matching. This treatment consists in checking if it is possible to link the individual(s) resulting from a matching
with the one(s) from the following matching in the text, coming from the same sentence. Property assertions are
added whenever it is possible. The algorithm also tries to consider n-ary properties (especially ternary ones). For
instance, a succession of matchings involving respectively individuals a, b and c may lead to property assertions of
the type <a,...,b> and <a,...,c>. In this example, the goal is to link a and b, which are from consecutive matchings in
the text, but also a and c, which are not. To be able to do this, linked previous individuals are exploited.

The treatment is described in Algorithm 5 and exploits Algorithms 6 and 7. The general idea is to look if an
individual (sub ject), coming from the current matching being examined, may be the subject of an assertion having
for object an individual from the next matching (ob ject). If the next matching has no associated individuals, then
the matching after si considered and so on. If sub ject and ob ject are not already connected together, we suppose
an assertion might be missing. We want to add an assertion <sub ject, property, ob ject> such that property will be
the best possible property. To choose it, we consider the sorted set of linkabilities of the subject and take the first
property from a linkability such that ob ject is in the range expression of the latter and such that it does not add any
inconsistency to the KG. The assertion is added to the matching treatment of sub ject, and sub ject is also added as
a linked previous individual of the object matching treatment. If no assertion is possible between the individuals
of two consecutive matchings, then we try to make an assertion with the linked previous individuals as subject, in
order to facilitate the population of the n-ary properties. Once all the text is examined, any individuals in the KG
that are recognized as equivalent are merged, and MT is updated w.r.t. this merger.

Algorithm 5: Treatment of the next matching
Input:
– The knowledge graph KG
– The set MT = {mt1,mt2, . . . ,mtn} of matching treatments
– The set Lnk of linkabilities

Output: KG and MT are modified
1 for mt ∈ MT do
2 link← f alse
3 for sub ject ∈ mt.getIndividuals() do
4 link← linkIndividualWithNextMatching(sub ject,mt,KG,MT ,Lnk(sub ject)) or link
5 end
6 if !link then

// If no assertion is possible between sub ject and at least one
individual from the next matching, then we look at the list of
linked previous individuals (in order), and we stop as soon as an
assertion is made: this is useful for n-ary properties.

7 for linkedPrevIndiv ∈ mt.getLinkedPreviousIndividuals() do
8 link← linkIndividualWithNextMatching(linkedPrevIndiv,mt,KG,MT ,Lnk(linkedPrevIndiv))
9 if link then

10 break
11 end
12 end
13 end
14 end
15 KG.mergeSameAsIndividuals(MT)

Table 2 shows the matchings treatments after this step. First, we try to connect Cormelles-le-Royal to house1
(impossible), then house1 to distance1 (impossible) and so on. We can connect distance1 to city center via the
property distanceFromPointOfInterest (1). The assertion is added in the subject (distance1) matching treatment, i.e.,

C. Alec / Automatic ontology population from French classified advertisements 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 6: Function linkIndividualWithNextMatching
Input:
– The individual sub ject to be used as the subject
– The matching treatment mt from which sub ject is considered
– The knowledge graph KG
– The set MT = {mt1,mt2, . . . ,mtn} of matching treatments
– The sorted set Lnk(sub ject) of linkabilities for the individual sub ject

Output: boolean indicating if there is an assertion linking sub ject to an individual from the next matching.
The assertion may exist before or be created within the function. (+ KG and MT are modified)

1 nextMT ← getClosestNextMatchingTreatmentWithinTheSameSentenceAndContainingIndividuals(mt,MT)
2 nextIndividuals← nextMT .getIndividuals()
3 link← f alse
4 for nextIndividual ∈ nextIndividuals do
5 addedLink← f alse
6 if KG.alreadyLinked(sub ject,nextIndividual) then
7 link← true// Assertion <sub ject,any_property,nextIndividual> already exists
8 else
9 addedLink← tryToLinkSubjectWithObject(sub ject,nextIndividual,KG,Lnk(sub ject), mt)

10 if addedLink then
11 nextMT .addLinkedPreviousIndividual(sub ject)// add sub ject to the list of

linked previous individuals of nextMT, only if sub ject is neither
already in it nor in the set of individuals of nextMT.

12 end
13 end
14 link← addedLink or link
15 end
16 return link

Algorithm 7: Function tryToLinkSubjectWithObject
Input:
– The individual sub ject to be used as the subject
– The individual ob ject to be used as the object
– The knowledge graph KG
– The sorted set Lnk(sub ject) of linkabilities for the individual sub ject
– (optional) mt the matching treatment from which sub ject is considered

Output: boolean indicating if an assertion between sub ject and ob ject is created (+ KG and MT are
modified)

1 assertion←<sub ject,bestAddableProperty(Lnk(sub ject)),ob ject>// The best property is the
first one from Lnk(sub ject) s.t. the object is in its range expression and
s.t. the ontology is still consistent with this new assertion.

2 if assertion != null then
3 KG.add(assertion)
4 mt.addAssertion(assertion)// only if mt is given as input
5 return true
6 end
7 return f alse

14 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Matching treatments of the example after the treatment of the next matching

Matching Individuals Assertions Linked previous individuals

Cormelles-le-Royal Cormelles-le-Royal

house house1 <house1, isA, House>

located

min distance1 <distance1, isA, Distance>
<distance1, minCar, 15>
<distance1, distFromPI, city center> (1)

city center city center <distance1, distFromCity, Caen> (2) distance1 (1)

Caen Caen distance1 (2)

min walk distance2 <distance2, isA, Distance>
<distance2, minWalk, 3>
<distance2, distFromPI, shops> (3)

shops shops <distance2, distFromPI, schools> (4) distance2 (3)

schools schools distance2 (4)

m2 house1 <house1, area, 110>

land land1 <land1, isA, Land>

m2 land1 <land1, area, 400>

ground floor groundFloor

kitchen kitchen1 <kitchen1, isA, Kitchen>

equipped kitchen1 <kitchen1, equipped, true>

living room livingRoom1 <livingRoom1, isA, LivingRoom>
<livingRoom1, hasForElement, fireplace1> (5)

fireplace fireplace1 <fireplace1, isA, Fireplace> livingRoom1 (5)

facing livingRoom1 <livingRoom1, exposure, south-west>

bedroom bedroom1 <bedroom1, isA, Bedroom>

m2 bedroom1 <bedroom1, area, 15>

First floor firstFloor

bedrooms bedroom2 <bedroom2, isA, Bedroom>
bedroom3 <bedroom3, isA, Bedroom>

bathroom bathroom1 <bathroom1, isA, Bathroom>

Close to property1 <property1, isCloseTo, publicTransport>

public transport publicTransport property1

Land land2 <land2, isA, Land>

Fees : 4% property1 <property1, feePercentage, 4>

in the one on the mention “min”. The next matching treatment (on the mention “city center”) is updated with the
linked previous individual distance1. Then, when we try to link the matching treatment on “city center” with the next
one (on “Caen”), we cannot link the associated individuals, i.e., we cannot link city center to Caen. Nevertheless,
we can link the linked previous individual of the “city center” matching treatment, i.e., distance1, to Caen. This is
what is done in (2). And so on, we obtain (3), (4) and (5).

Treatment of the individuals without predecessors The last step of the text-based analysis consists in dealing with
individuals having no predecessors. Indeed, each document describes an instance of the main class and we expect
this instance to be the starting point of property assertions. Therefore, it seems quite intuitive to think that every
individual considered, except the main instance, must be the object of at least one assertion. Thus, in this last step, we
try to find possible subjects and properties for individuals (except for the main instance) having for the moment no
predecessors, i.e., not being the object of a property assertion. To minimise the risk of linking individuals that have

C. Alec / Automatic ontology population from French classified advertisements 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

nothing to do with each other, we focus only on the individuals resulting from the matchings of a same sentence. This
means that, for each individual without predecessors (ob ject) of a sentence, we try to connect another individual
of this sentence (sub ject) to it, in order to obtain the assertion <sub ject, prop, ob ject>, where the property prop
chosen is the “best” in the sense of the linkabilities, just like in the previous step. Finally, any individuals in the KG
that are recognized as equivalent are merged, and MT is updated w.r.t. this merger. Details are given in Algorithm 8
that exploits Algorithm 7.

Algorithm 8: Treatment of the individuals without predecessors
Input:
– The knowledge graph KG
– The set MT = {mt1,mt2, . . . ,mtn} of matching treatments
– The set Lnk of linkabilities

Output: KG and MT are modified
1 individualsWithoutPred ← MT .getIndividualsWithoutPredecessors()
2 individualsWithoutPred.remove(KG.getMainInstance())
3 for sentenceNumber ← 1 to MT .getNumberOfSentences() do

/* get the matching treatments for sentence #sentenceNumber */
4 sentenceMatchingTreatments← MT .getMatchingTreatmentsFromSentence(sentenceNumber)

/* get all individuals resulting from sentence #sentenceNumber */
5 allIndividualsFromS entence← ∅
6 for mt ∈ sentenceMatchingTreatments do
7 allIndividualsFromS entence.addAll(mt.getIndividuals())
8 end

/* beginning of the process: try to add assertions linking an
individual from sentence #sentenceNumber (as subject) to an other
individual from the same sentence without predecessors (as object)

*/
9 for mt ∈ sentenceMatchingTreatments do

10 sentenceIndividualsWithoutPred ← mt.getIndividuals() ∩ individualsWithoutPred
11 for ob ject ∈ sentenceIndividualsWithoutPred do
12 for sub ject ∈ allIndividualsFromS entence \ ob ject do
13 tryToLinkSubjectWithObject(sub ject,ob ject,KG, Lnk(sub ject), mt)
14 end
15 end
16 end
17 end
18 KG.mergeSameAsIndividuals(MT)

On Figure 3, we can observe all the individuals and property assertions added before this step for the studied
example. Individuals without predecessors (except the main instance property1) are shaded. They are potential
object candidates. Table 3 shows the treatment done at this stage. Each row of the table corresponds to a sentence.
Individuals without predecessors are in italics. For each of them, we search if it is possible to add an assertion
having for subject an individual of the same sentence. For example, for Cormelles-le-Royal, we search if we can
add assertions <house1,...,Cormelles-le-Royal>, <distance1,...,Cormelles-le-Royal>, etc. The only two possibilities
for the first sentence are given in the last column but they are not added because they are inconsistent with respect
to the KG. Indeed, distance1 and distance2 already concern other places and cannot concern Cormelles-le-Royal.
There are no possibilities for the other object candidates from this sentence (house1, distance1, distance2, land1).
The same is repeated for each sentence. The assertions mentioned in Table 3 are obtained. They are added in the
KG and in the MT.

16 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Cormelle-
le-Royal house1 110

area
land1 400

area

distance1 15
minCar

city center
distFromPI

Caen

distFromCity

distance2 3
minWalk

shops
distFromPI

schools

distFromPI

groundFloor

bathroom1

land2

kitchen1 true
equipped

livingRoom1 southwest
exposure

fireplace1
hasForElement

firstFloor

bedroom2

bedroom3

property1 4
feePercentage

publicTransport
isCloseTo

bedroom1 15
area

Fig. 3. Individuals and property assertions from the studied example, before the treatment of the individuals without predecessors

Table 3
The treatment of the individuals without predecessors in the studied example

Sentence number Individuals from the sentence (object candidates
in italics)

Assertions added (<individual_of_the_sentence, property, ob-
ject>)

1 Cormelles-le-Royal, house1, distance1, city cen-
ter, Caen, distance2, shops, schools, land1

<distance1, distFromCity, Cormelles-le-Royal>
<distance2, distFromCity, Cormelles-le-Royal>
not added because inconsistent

2 groundFloor, kitchen1, livingRoom1, fireplace1,
bedroom1

<kitchen1, isOnFloor, groundFloor>
<livingRoom1, isOnFloor, groundFloor>
<bedroom1, isOnFloor, groundFloor>

3 firstFloor, bedroom2, bedroom3, bathroom1 <bedroom2, isOnFloor, firstFloor>
<bedroom3, isOnFloor, firstFloor>
<bathroom1, isOnFloor, firstFloor>

4 property1, publicTransport

5 land2

6 property1

3.3.3. Knowledge-based analysis
Once all the steps from the text-based analysis are performed, the next (and last) task of the population algorithm

is based on an analysis of the knowledge from the KG. This exploits the KG, the MT and the linkabilities. The
idea of this analysis is that, despite the efforts in the previous steps to add property assertions, it is possible that
some are still missing. Ideally, from the main instance, all the individuals concerned by the document should be
reachable via property assertions. Figure 4 shows, among other things, the set of individuals (nodes) and object
property assertions (edges) from the studied example. We can see that, from the main instance property1, we can
only access one individual, publicTransport. Our goal is to add assertions of object properties in order to obtain a
graph in the shape of a star, starting from property1.

Algorithm 9 explains the process used (using Algorithm 7). It exploits a process of batch splitting detailed in
Algorithms 10 and 11. The individuals and assertions are put into batches, each individual being in exactly one
batch. Each batch is created from an individual i, and contains all the individuals that are reachable from i (directly
or via a sequence of assertions). The first batch created is called the main batch. It is composed of the main instance
and all the individuals accessible through it, as well as the assertions linking them. Then, all the remaining assertions

C. Alec / Automatic ontology population from French classified advertisements 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 9: Knowledge-based analysis
Input:
– The knowledge graph KG
– The set MT = {mt1,mt2, . . . ,mtn} of matching treatments
– The set Lnk of linkabilities

Output: KG and MT are modified
1 distance← 0// distance from the main instance
2 do
3 individuals← MT.getAllIndividuals() ∪ KG.getMainInstance()// the main instance has

to be added in case it is not mentioned in MT
4 assertions← KG.getAllObjectPropertyAssertionsUsingReasoningBetween(individuals)
5 setO f Batches← creationOfBatches(assertions, individuals, KG.getMainInstance())

// Individuals are gathered into batches. One individual can only be
in one batch. We call mainBatch the batch containing the main
instance.

6 individualsFromMainBatchToBeLinked ← setO f Batches.getIndividualsFromDistance(distance)
// set of all the individuals that are at a distance distance from the
main instance (main instance if distance = 0). This is the set of
subject candidates.

7 if setO f Batches.size()=1 or individualsFromMainBatchToBeLinked.isEmpty() then
// stop case: either there is only one batch (no need to add any
new assertion), or we already tried to link every individual from
the main batch

8 break
9 end

/* try to link the subject candidates to object candidates from all
batches except the main batch */

10 for sub ject ∈ individualsFromMainBatchToBeLinked do
11 for batch ∈ setO f Batches \ mainBatch do
12 ob jects← batch.getIndividualsSortedByNumberOfPredecessors()
13 for ob ject ∈ ob jects do
14 addition← tryToLinkSubjectWithObject(sub ject,ob ject,KG,Lnk(sub ject))
15 if addition then
16 break// we manage to link sub ject to one individual from batch,

we do not look at other individuals from batch
17 end
18 end
19 end
20 end
21 distance← distance + 1
22 KG.mergeSameAsIndividuals(MT)
23 while true

are considered. Among their subject and object individuals, the one that has the least predecessors is taken; the
alphabetical order of URI is chosen in case of equality. Its batch is created, and the process continues until every
assertion has been treated. Finally, every individual left is put respectively into a new batch. Once all batches are
built, the first goal is to link the main instance to one individual of each batch (except the main batch). It will help
to get the “star-shaped” form. This linking can be seen as risky because no connection was made in the previous

18 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

steps of the population algorithm. This is why we try to link the main instance with only one individual from a same
batch. This is safer to avoid to add too many noisy assertions. Inside a batch, individuals are sorted according to
their number of predecessors (smallest number first), or alphabetically in case of equality. For every batch (except
the main batch), we try to make the connection following that order, and stop as soon as a property assertion can
be made between the main instance (as subject) and an individual (as object) from the batch being processed. Then,
any individuals in the KG that are recognized as equivalent are merged, and MT is updated w.r.t. this merger. The
process (creation of batches, try to add assertions, merger) is repeated, but considering as subjects all individuals
that are at a distance 1 of the main instance, i.e., all individuals for which there is an assertion between the main class
and them. In other words, the distance of an individual i can be defined as the minimal number of edges between
the main instance and i, i.e., the minimal number of assertions to go from the main instance to i, regardless of the
direction of the assertions. This distance is progressively incremented. We stop either when the main batch contains
all individuals or when we have already attempted to link every individual from the main batch.

Algorithm 10: Function creationOfBatches
Input:
– A set assertions of object property assertions
– A set individuals of individuals
– The main instance mainInstance

Output: A set of batches
1 setO f Batches← ∅
2 remainingAssertions← assertions
/* Creation of the main batch */

3 mainBatch←createBatchFromIndividual(mainInstance,remainingAssertions)
4 setO f Batches.add(mainBatch)
/* Creation of other batches */

5 while !remainingAssertions.isEmpty() do
6 indiv← remainingAssertions.getIndividualsSortedByNumberOfPredecessors().first()

// We take the individual with the smallest number of predecessors
(sorted by IRI in case of a same number)

7 setO f Batches.add(createBatchFromIndividual(indiv,remainingAssertions))
8 end
/* Creation of a batch for each remaining individual */

9 treatedIndividuals← setO f Batches.getAllIndividuals()
10 for ind ∈ individuals \ treatedIndividuals do
11 setO f Batches.add(new Batch(ind))
12 end
13 return setO f Batches

city center Caen shops schools fireplace1

bedroom2 distance1 distance2 house1 livingRoom1

bathroom1 firstFloor property1 publicTransport groundFloor

bedroom3 Cormelles land1 land2 kitchen1 bedroom1

Fig. 4. First division into batches of the studied example

C. Alec / Automatic ontology population from French classified advertisements 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 11: Function createBatchFromIndividual
Input:
– The individual ind from which the batch has to be created
– A set assertions of object property assertions that are not considered in any batch yet

Output: A batch containing ind, every individual reachable from ind, and all the assertions between them (+
assertions is modified)

/* Creation of the batch */
1 batch← new Batch(ind)
2 change← true
3 while change do
4 change← f alse
5 for assertion ∈ assertions do
6 if batch.contains(assertion.getSubject()) then
7 batch.add(assertion)// add the assertion, its subject and its object
8 change← true
9 assertions.remove(assertion)

10 end
11 end
12 end

/* Update of assertions: assertions that have an object in batch are removed
from the remaining assertions to deal with */

13 for assertion ∈ assertions do
14 if batch.contains(assertion.getObject()) then
15 assertions.remove(assertion)
16 end
17 end
18 return batch

In the studied example, the first division into batches is represented in Figure 4 via frames. The main batch
is composed of property1, publicTransport and the assertion between them. Afterwards, among the remaining
assertions, the individual that has the least predecessors (first in the alphabetical order) is bathroom1. The next batch
is thus made of bathroom1, f irstFloor and the assertion between them. The assertion between bedroom2 (resp.
bedroom3) and f irstFloor is ignored because f irstFloor is already placed in a batch (cf. line 15 of Algorithm 11).
Then, the next individual that is considered is bedroom1. The next batch is composed of bedroom1, groundFloor,
as well as the assertion between them. The assertion between kitchen1 (resp. livingRoom1) and groundFloor is
ignored. The next batches include distance1 and its two successors, then distance2 and its two successors, then
livingRoom1 and its successor f ireplace1. The remaining individuals are each in one batch.

We consider a distance from the main instance, which will be incremented as we go along. We want to con-
nect the individuals from the main batch that are at this distance from the main instance. At first, the distance
is 0, so we try to connect the main instance to each of the other batches. Let us take for example the sorted
batch (distance2, schools, shops), where distance2 is first because it has no predecessors. We check, using
the linkabilities, if the main instance property1 can be linked to distance2. It is possible here via the property
isS ituatedAtDistance. If it had not been possible, we would have tried to link the main instance property1 with
the next individual of the batch: schools. We do the same for each batch. This allows us to add six assertions vis-
ible on Figure 5: <property1, isS ituatedAtDistance, distance1>, <property1, isS ituatedAtDistance, distance2>,
<property1, contains, house1>, <property1, isLocatedIn, Cormelles-le-Royal>, <property1, contains, land1> and
<property1, contains, land2>. Afterwards, the equivalent individuals are merged. Since the KG expresses the fact
that a property can contain only one land, land1 and land2 are seen as equivalent by a reasoner. They are merged

20 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

city center Caen shops schools fireplace1

bedroom2 distance1 distance2 house1 livingRoom1

bathroom1 firstFloor property1 publicTransport groundFloor

bedroom3 Cormelles land1 land2 kitchen1 bedroom1

Fig. 5. Additions with distance 0 in the studied example

into land1. Then, the batch splitting algorithm is reapplied, leading to the batches of Figure 6. The main batch is
bigger than the first time, and there is only six other batches. We now try to link to other batches (as objects) the
elements of the main batch that are at a distance of 1 from the main class (as subjects), i.e., Cormelles-le-Royal,
distance1, distance2, house1, land1 and publicTransport. The algorithm allows us to obtain <house1, contains,
bathroom1>, <house1, contains, bedroom1>, <house1, contains, bedroom2>, <house1, contains, bedroom3>,
<house1, contains, kitchen1> and <house1, contains, livingRoom1>. Afterwards, there is only one batch left; in
other words, all elements are accessible starting from the main instance. The process is therefore stopped.

city center Caen shops schools fireplace1

bedroom2 distance1 distance2 house1 livingRoom1

bathroom1 firstFloor property1 publicTransport groundFloor

bedroom3 Cormelles land1 kitchen1 bedroom1

Fig. 6. Second division into batches of the studied example

The example unfolded in this paper is an illustration where our algorithm populates the KG with the desired
individuals and assertions. More generally, the algorithm can generate wrong individuals and/or assertions and miss
correct ones. The following section details some evaluation results of the algorithm.

4. Evaluation

This section reports an evaluation of the proposed approach on one use case: house sale classified ads. The
experimental protocol, the tools used and the results obtained are discussed.

4.1. Experimental protocol

The KOnPoTe approach has been tested on a corpus automatically extracted from a website5. This corpus focuses
only on ads annotated as sales of a house in Caen. It has been cleaned: the ads that do not really correspond to
standard sales of houses (like mills, buildings, etc.) have been removed. It contains 78 ads, written in French. All
information from the ads (date of extraction, seller’s name, annotations, etc.) have been extracted in the XML format,
but we focus only on the textual description of each ad. A knowledge graph (KG) has been built. It describes the

5https://www.lecoindelimmo.com/

https://www.lecoindelimmo.com/

C. Alec / Automatic ontology population from French classified advertisements 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

domain of house sales, with a French terminology, in the OWL language, and exploits the unit annotation to express
units and unit expressions, as mentioned in Section 3.1. It initially contains a few generic individuals, such as double
glazing, public transport, etc., as well as named entities corresponding to city or village names. On a large scale,
we would need a large list of cities, but for this experiment, we decided to represent only those mentioned in the
corpus. A Gold Standard knowledge graph (GS) has been constructed. This GS is the initial KG manually populated
with assertions representing the descriptions from the corpus. We applied the approach on the initial KG and each
description from the corpus, and we sought to compare the obtained KG with the GS, computing precision, recall
and F-measure.

Precision =
T P

T P + FP
Recall =

T P
T P + FN

F-measure =
2× Precision× Recall

Precision + Recall

In order to compute these metrics, we define property assertions as true positives (TP), false positives (FP) or
false negatives (FN). A TP is an assertion present in both the GS and the output KG. A FP is an assertion present in
the output KG but absent in the GS. A FN is an assertion present in the GS but absent in the output KG. To be as
fair as possible in our results:

(i) class assertions are not taken into account (only property assertions);
(ii) inferred assertions are taken into account;

(iii) properties that lead us to count several times a same element are ignored.

Indeed, (i) class assertions are often redundant with property assertions. For example, with the assertion
<distance1, distanceFromCity, Caen>, we know via the domain definition of distanceFromCity that distance1
belongs to the class Distance. (ii) We consider the set of assertions obtained directly and those obtained by applying
a reasoner. Otherwise, the comparison would not make sense. For example, if the GS contains the assertion <a,
prop, b> and the resulting KG contains <b, prop−1, a>, prop−1 being the inverse of the property prop; then we
want to be able to realize that these two assertions amount to the same thing. (iii) We ignore properties that lead us
to count several times a same element. For example, if there is a property and its inverse, a reasoner translates an
assertion of one into an assertion of the other. We end up with two assertions designating the same thing. One of the
two properties is therefore ignored; in other words, all assertions of this property are ignored. As another example,
we may cite the case where a super-property is never populated by itself but only through its sub-properties. In that
case, we ignore this property, so that a correct (resp. wrong) assertion does not count twice, since inferred assertions
are considered.

The studied example from the previous section only considers one ad. In our experiments, since several ads are
studied, names of individuals are actually advertisementX_IndividualName (X being the ad number in the corpus).
Note also that KOnPoTe creates some URIs that are not necessarily the same as the ones from the GS. For example,
advertisement61_House1 corresponds to advertisement61_Townhouse1 in the GS. To be able to correctly classify
an assertion into TP, FP or FN, we manually define equivalences between GS individuals and result individuals
representing the same thing. Moreover, our approach may generate equivalent individuals, without detecting that
they are equivalent. In this case, we suppose an equivalence axiom (owl:sameAs) is missing and count it as a missing
assertion (thus a FN). This avoids counting many wrong errors. For example, let us suppose an individual i is subject
of 10 assertions in the GS, and is seen as two individuals i and j in our approach results, each respectively subject
of 5 of these 10 assertions. This allows us to consider 10 TP (all the assertions) and 1 FN (the sameAs assertion
between i and j), instead of considering 5 TP (the assertions of i), 5 FP (the assertions of j) and 5 FN (the assertions
of j that are missing for i).

Finally, although the corpus corresponds to house sales annotated as being in Caen, these real estate properties
are often in cities outside of Caen. Sometimes, the city is not explicitly mentioned (for example, “in a searched mu-
nicipality”). In such a case, KOnPoTe creates an individual advertisementX_municipality1 and locates the property
in it. This does not seem wrong to us. On the opposite, such an assertion seems more interesting than an absence of
assertion, in particular in the context of the DECA project, mentioned in Section 1, where wrong annotations need
to be corrected. This kind of assertions are therefore also in the GS.

22 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.2. Tools used

We tested the approach using Java. We use the following dependencies:

– OWL API [33] to handle the KG;
– Stanford NLP [34] to split the texts into sentences;
– two French lemmatizers : the one from Ahmet Aker6 (denoted as Aker) and TreeTagger7 [35] (denoted as TT);
– Openllet reasoner8 (Pellet).

Note also that some small adjustments were made on the results of the tokens from the lemmatizers when we try
to take the previous or following words within the text. For example, 10 000 becomes 10000, 3 . 4 becomes 3.4, etc.

All experimental files (input, outputs for all tested approaches, and gold standard) are available9.

4.3. Results and discussion

As mentioned in Section 2, our problematic differs from related work, so there are no existing baselines that can be
considered as a fair comparison. We chose to compare KOnPote with three baselines, all with the two lemmatizers.
They use the same first steps as KOnPoTe: the terminology matcher, the initialisation of the matchings treatments
and the instantiation of the main class. The most basic baseline that we use (Baseline) consists in treating only the
class, individual and property matchings. In other words, it performs the first three steps of the text-based analysis.
Another one (Baseline+next) consists in adding the treatment of the next matching (and obviously the initialisation
of the linkabilities). Finally, the last one (Text-based analysis) consists in doing the complete text-based analysis
(but not the knowledge-based analysis).

Table 4 shows the results. Precision, recall and F-measure are computed both macroscopically and microscopi-
cally. The macro-computation is the average of the metrics of each add, whereas the micro-computation considers
the sum of all VP, FP, FN of each add. Basically, in the macro-average, each add has the same weight; and in the
micro-average, each assertion has the same weight.

Table 4
Results on KOnPoTe and three baselines on macro-average (macro) and micro-average (micro) using lemmatizers Aker and TT

Approach Precisionmacro Recallmacro F-measuremacro Precisionmicro Recallmicro F-measuremicro

KOnPoTeAker 0.9516 0.8740 0.9079 0.9465 0.8606 0.9015
KOnPoTeTT 0.9496 0.8681 0.9039 0.9446 0.8545 0.8973

Text-based analysisAker 0.8989 0.4648 0.5994 0.8956 0.4726 0.6188

Text-based analysisTT 0.8964 0.4579 0.5929 0.8937 0.4662 0.6127

Baseline+nextAker 0.8911 0.3138 0.4440 0.8741 0.3085 0.4561

Baseline+nextTT 0.8879 0.3081 0.4377 0.8732 0.3036 0.4505

BaselineAker 0.9234 0.1922 0.3099 0.9135 0.1926 0.3182

BaselineTT 0.9230 0.1888 0.3054 0.9138 0.1892 0.3135

We can see that the difference of performance between the two lemmatizers is relatively small. Nevertheless,
Aker outperforms TreeTagger. We also notice that the added modules have a good contribution on the results, since
the addition of each module (treatment of the next matching, treatment of the individuals without predecessors,
knowledge-based analysis) generates a relatively high gain of F-measure. First, we can see that the baseline, com-
posed of the basic treatments for classes, individuals and properties, gives a relatively high score in precision (> 0.9)

6http://staffwww.dcs.shef.ac.uk/people/A.Aker/activityNLPProjects.html
7https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
8https://github.com/Galigator/openllet
9Experimental files are available at https://doi.org/10.5281/zenodo.5776752. A zip file with a runnable jar for KOnPote with Aker’s lemmatizer

is available at https://alec.users.greyc.fr/research/konpote/.

http://staffwww.dcs.shef.ac.uk/people/A.Aker/activityNLPProjects.html
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
https://github.com/Galigator/openllet
https://doi.org/10.5281/zenodo.5776752
https://alec.users.greyc.fr/research/konpote/

C. Alec / Automatic ontology population from French classified advertisements 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

but a low score in recall (< 0.2). This means that most of the assertions that are made are correct, but a lot of asser-
tions are missing. The addition of modules allows us to add assertions, which are mostly correct. Indeed, as modules
are added, we are able to increase the recall without losing to much precision. More precisely, the treatment of the
next matching adds some noise (small loss of precision) but increases the recall by half (from ∼ 0.2 to ∼ 0.3). The
treatment of the individuals without predecessors increases the recall by half too (from ∼ 0.3 to ∼ 0.45), without
decreasing the precision (by increasing it slightly). Finally, the knowledge-based analysis adds a considerable con-
tribution. Both precision and recall increase, leading to an increase of F-measure by half (from ∼ 0.6 to ∼ 0.9).
These three modules are therefore essential: they insert a lot of missing assertions without adding too many wrong
assertions.

5. Conclusion and future work

This paper presents KOnPoTe, an approach to populate a domain ontology, or a knowledge graph, from textual
descriptions of objects from this domain. The problem studied differs from the state of the art: named entities are
not the main features, verbs are not very meaningful, properties are not necessarily only object properties, and
can be non-binary. In this context, KOnPoTe presents a processing chain, whose results are promising on a first
experimentation. The intuition behind the creation of KOnPoTe is to propose a population algorithm that is not
based on a particular domain. The ideas of the algorithms of each module are only linked to the context of the
problem, and not to a specific domain.

Many perspectives are open to us. We would like to experiment the approach on other domains. Of course, such
experiments are relatively costly: it requires textual descriptions of each object and a knowledge graph describing
the domain. To be able to correctly assess the results, the most laborious part is the manual work: creation of a
gold standard, as well as potential equivalences between this gold standard and the output knowledge graph, and
potential missing sameAs links in the output. We have several domains in mind, first of all still with classified ads:
sales (or rentals) of apartments, or of certain types of objects (cars, clothes, etc.); but also in other domains, in
particular advertising descriptions: vacation spots, hotels, restaurants, etc. Another idea is to test KOnPoTe on the
same domain and corpus but with different domain ontologies (different choices of representation). A deep analysis
of such an experiment could lead to a set of constraints or advice to follow in the knowledge representation of the
input ontology.

Another future work would be to adapt and test the approach on other languages. Indeed, this approach should be
easily adaptable, the only elements specific to French are the list of words evoking negation, and a system translating
a possible number described in letters into its correspondence in numbers. However, some parts of the algorithm
may have to be adapted with respect to the new language: for instance, in French, an adjective is usually after the
noun to which it refers, whereas it is not the case in English (e.g., “kitchen equipped” vs “equipped kitchen”). When
this adjective designates a property, the treatment of the property matching will check possible subjects for this
property in the matchings before this adjective. In English, this may not be a good solution. For that problem, a use
of the Part-Of-Speech tags, instead of our current solution, might be helpful.

Another perspective is to improve the algorithm when a matching concerns several entities of the knowledge
graph. As of now, the algorithm considers all entities that are matched. In the current experiment, there is only
one case where this happens: the energy consumption. Indeed, the energy consumption can be expressed either
via a numerical value, or via a letter. In our ontology, this is represented via two properties, both using the same
terminology. This means that a matching on a keyword from this terminology considers both of these properties,
so the algorithm tries to instantiate both. Since ranges are different, the instantiation fails for at least one of them,
solving the problem. However, we can easily imagine some use cases where this is a real issue. For example, a
unit (or a unit expression) is currently associated with only one property (e.g., “m2” for area, “Fees: xxx%” for fee
percentage, etc). In particular, we can mention the fact that “C” is too much general and should correspond to several
properties (price with fees, price without fees, property tax). As of now, we use different unit or unit expressions to
distinguish these price properties (like “C without fees”, “property tax is xxx C”). Otherwise, the algorithm should
be improved to be able to make a choice between all the entity candidates.

Finally, our main final goal is to use KOnPoTe as a first step to deal with the problem of erroneous annotations of
classified advertisements, as mentioned in Section 1.

24 C. Alec / Automatic ontology population from French classified advertisements

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Acknowledgements

We would like to acknowledge Quentin Leroy and Jean-Philippe Kotowicz for their participation in the elabo-
ration of a first version of the initial knowledge graph, as well as Enor-Anaïs Carré and Morgan Gueret for the
constitution of the corpus.

References

[1] S. Staab and R. Studer, Handbook on ontologies, Springer, 2009. ISBN 9783540926733 3540926739.
[2] C. Bizer, T. Heath and T. Berners-Lee, Linked Data - The Story So Far, International Journal on Semantic Web and Information Systems

5(3) (2009), 1–22.
[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and Z. Ives, DBpedia: A Nucleus for a Web of Open Data, in: Proceedings of

the 6th International Semantic Web Conference (ISWC), Lecture Notes in Computer Science, Vol. 4825, Springer, 2008, pp. 722–735.
[4] D. Vrandecic and M. Krötzsch, Wikidata: a free collaborative knowledgebase, Commun. ACM 57 (2014), 78–85.
[5] F.M. Suchanek, G. Kasneci and G. Weikum, YAGO: A Large Ontology from Wikipedia and WordNet, J. Web Semant. 6 (2008), 203–217.
[6] P. Buche, B. Cuq, J. Fortin and C. Sipieter, Expertise-based decision support for managing food quality in agri-food companies, Comput.

Electron. Agric. 163 (2019).
[7] C. Alec, C. Reynaud-Delaître and B. Safar, An Ontology-driven Approach for Semantic Annotation of Documents with Specific Concepts,

in: Extended Semantic Web Conference, ESWC, Lecture Notes in Computer Science, Springer, 2016, pp. 609–624.
[8] C. Alec, C. Reynaud-Delaître, B. Safar, Z. Sellami and U. Berdugo, Automatic Ontology Population from Product Catalogs., in: Interna-

tional Conference on Knowledge Engineering and Knowledge Management, EKAW, Vol. 8876, Springer, 2014, pp. 1–12. ISBN 978-3-319-
13703-2.

[9] F. Amardeilh, P. Laublet and J.-L. Minel, Document annotation and ontology population from linguistic extractions, in: K-CAP ’05: Pro-
ceedings of the 3rd international conference on Knowledge capture, ACM, New York, NY, USA, 2005, pp. 161–168. ISBN 1-59593-163-5.

[10] T.R. Gruber, A Translation Approach to Portable Ontology Specifications, Knowl. Acquis. 5(2) (1993), 199–220.
doi:10.1006/knac.1993.1008.

[11] G. Petasis, V. Karkaletsis, G. Paliouras, A. Krithara and E. Zavitsanos, Ontology Population and Enrichment: State of the Art, in:
Knowledge-Driven Multimedia Information Extraction and Ontology Evolution, 2011, pp. 134–166.

[12] P. Cimiano, Ontology Learning and Population from Text: Algorithms, Evaluation and Applications, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006. ISBN 0387306323.

[13] M. Lubani, S.A.M. Noah and R. Mahmud, Ontology population: Approaches and design aspects, Journal of Information Science 45 (2019),
502–515.

[14] D. Maynard, Y. Li and W. Peters, NLP Techniques for Term Extraction and Ontology Population, in: Ontology Learning and Population,
P. Buitelaar and P. Cimiano, eds, Frontiers in Artificial Intelligence and Applications, Vol. 167, IOS Press, 2008, pp. 107–127. ISBN
978-1-58603-818-2.

[15] H. Tanev and B. Magnini, Weakly Supervised Approaches for Ontology Population, in: Ontology Learning and Population, P. Buitelaar and
P. Cimiano, eds, Frontiers in Artificial Intelligence and Applications, Vol. 167, IOS Press, 2008, pp. 129–143. ISBN 978-1-58603-818-2.

[16] H.-G. Yoon, Y.-J. Han, S.-B. Park and S.-Y. Park, Ontology Population from Unstructured and Semi-structured Texts, in: International
Conference on Advanced Language Processing and Web Information Technology, 2007, pp. 135–139. ISBN 978-0-7695-2930-1.

[17] H. Alani, S. Kim, D.E. Millard, M.J. Weal, P.H. Lewis and N.R. Shadbolt, Automatic Ontology-based Knowledge Extraction and Tailored
Biography Generation from the Web, IEEE Intell Syst (2003), 14–21.

[18] P. Buitelaar, P. Cimiano, S. Racioppa and M. Siegel, Ontology-based Information Extraction with SOBA, in: Proceedings of the Fifth
International Conference on Language Resources and Evaluation (LREC’06), European Language Resources Association (ELRA), Genoa,
Italy, 2006.

[19] C. Brewster, F. Ciravegna and Y. Wilks, User-Centred Ontology Learning for Knowledge Management, in: NLDB ’02: Proceedings of
the 6th International Conference on Applications of Natural Language to Information Systems-Revised Papers, Springer-Verlag, 2002,
pp. 203–207. ISBN 3-540-00307-X. http://portal.acm.org/citation.cfm?id=666125.

[20] F.M. Suchanek, G. Ifrim and G. Weikum, LEILA: Learning to Extract Information by Linguistic Analysis, in: Proceedings of the 2nd Work-
shop on Ontology Learning and Population: Bridging the Gap between Text and Knowledge, Association for Computational Linguistics,
Sydney, Australia, 2006, pp. 18–25. https://aclanthology.org/W06-0503.

[21] D. Celjuska and D.M. Vargas-vera, Ontosophie: A Semi-Automatic System for Ontology Population from Text, in: International Confer-
ence on Natural Language Processing (ICON), 2004.

[22] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam and S. Slattery, Learning to construct knowledge bases
from the World Wide Web, Artificial Intelligence 118(1) (2000), 69–113. doi:https://doi.org/10.1016/S0004-3702(00)00004-7. https:
//www.sciencedirect.com/science/article/pii/S0004370200000047.

[23] S. Castano, I.S.E. Peraldi, A. Ferrara, V. Karkaletsis, A. Kaya, R. Möller, S. Montanelli, G. Petasis and M. Wessel, Multimedia Interpretation
for Dynamic Ontology Evolution, Journal of Logic and Computation 19(5) (2008), 859–897. doi:10.1093/logcom/exn049.

http://portal.acm.org/citation.cfm?id=666125
https://aclanthology.org/W06-0503
https://www.sciencedirect.com/science/article/pii/S0004370200000047
https://www.sciencedirect.com/science/article/pii/S0004370200000047

C. Alec / Automatic ontology population from French classified advertisements 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[24] M.A. Hearst, Automatic Acquisition of Hyponyms from Large Text Corpora, in: COLING 1992 Volume 2: The 15th International Confer-
ence on Computational Linguistics, 1992. https://www.aclweb.org/anthology/C92-2082.

[25] M. Finkelstein-landau and E. Morin, Extracting Semantic Relationships between Terms: Supervised vs. Unsupervised Methods (1999).
[26] R. Yangarber and R. Grishman, NYU: Description of the Proteus/PET System as Used for MUC-7 ST, in: Seventh Message Understanding

Conference (MUC-7): Proceedings of a Conference Held in Fairfax, Virginia, April 29 - May 1, 1998, 1998. https://aclanthology.org/
M98-1011.

[27] Z. Ibrahim, S.A. Noah and M.M. Noor, Rules for Ontology Population from Text of Malaysia Medicinal Herbs Domain, in: Rough Set and
Knowledge Technology, J. Yu, S. Greco, P. Lingras, G. Wang and A. Skowron, eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
pp. 386–394. ISBN 978-3-642-16248-0.

[28] J. Makki, A.-M. Alquier and V. Prince, Ontology Population via NLP Techniques in Risk Management, Int J Hum Soc Sci (2009), 212–217.
[29] C. Faria, I. Serra and R. Girardi, A domain-independent process for automatic ontology population from text, Science of

Computer Programming 95 (2014), 26–43, Special Issue on Systems Development by Means of Semantic Technologies.
doi:https://doi.org/10.1016/j.scico.2013.12.005. http://www.sciencedirect.com/science/article/pii/S0167642313003419.

[30] B. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider and U. Sattler, OWL 2: The next step for OWL, Web Semantics: Science,
Services and Agents on the World Wide Web (2008).

[31] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneijder and L.A. Stein, OWL Web Ontology Language
Reference, Recommendation, World Wide Web Consortium (W3C), 2004, See http://www.w3.org/TR/owl-ref/.

[32] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, SWRL: A Semantic Web Rule Language Combining OWL
and RuleML, W3C Member Submission, World Wide Web Consortium, 2004. http://www.w3.org/Submission/SWRL.

[33] M. Horridge and S. Bechhofer, The OWL API: A Java API for Working with OWL 2 Ontologies, in: Proceedings of the 6th International
Conference on OWL: Experiences and Directions - Volume 529, OWLED’09, CEUR-WS.org, Aachen, DEU, 2009, pp. 49–58–.

[34] C.D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S.J. Bethard and D. McClosky, The Stanford CoreNLP Natural Language Processing
Toolkit, in: Association for Computational Linguistics (ACL) System Demonstrations, 2014, pp. 55–60. http://www.aclweb.org/anthology/
P/P14/P14-5010.

[35] H. Schmid, Probabilistic Part-of-Speech Tagging Using Decision Trees, 1994.

https://www.aclweb.org/anthology/C92-2082
https://aclanthology.org/M98-1011
https://aclanthology.org/M98-1011
http://www.sciencedirect.com/science/article/pii/S0167642313003419
http://www.w3.org/TR/owl-ref/
http://www.w3.org/Submission/SWRL
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

	Introduction
	Related work
	The KOnPoTe approach
	Initial data
	The terminology matcher
	The population algorithm
	The two pre-processing tasks
	Text-based analysis
	Knowledge-based analysis

	Evaluation
	Experimental protocol
	Tools used
	Results and discussion

	Conclusion and future work
	Acknowledgements
	References

