
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Morph-KGC: Scalable Knowledge Graph
Materialization with Mapping Partitions
Julián Arenas-Guerrero a,*, David Chaves-Fraga a, Jhon Toledo a, María S. Pérez a and Oscar Corcho a

a Ontology Engineering Group, Universidad Politécnica de Madrid, Spain
E-mails: julian.arenas.guerrero@upm.es, david.chaves@upm.es, ja.toledo@upm.es, maria.s.perez@upm.es,
oscar.corcho@upm.es

Abstract. Knowledge graphs are often constructed from heterogeneous data sources, using declarative rules that map them to a
target ontology and materializing them into RDF. When these data sources are large, the materialization of the entire knowledge
graph may be computationally expensive and not suitable for those cases where a rapid materialization is required. In this work,
we propose an approach to overcome this limitation, based on the novel concept of mapping partitions. Mapping partitions are
defined as groups of mapping rules that generate disjoint subsets of the knowledge graph. Each of these groups can be processed
separately, reducing the total amount of memory and execution time required by the materialization process. We have included
this optimization in our materialization engine Morph-KGC, and we have evaluated it over three established benchmarks. Our
experimental results show that, compared with state-of-the-art techniques, Morph-KGC presents the following advantages: i) it
decreases significantly the time required for materialization, ii) it reduces the maximum peak of memory used, and iii) it scales
to data sizes that other engines are not capable of processing currently.

Keywords: Knowledge Graphs, R2RML, RML, Scalability

1. Introduction

The amount of data that is being published in RDF
has been steadily increasing in recent years. The gen-
eralized acceptance and use of knowledge graphs
(KGs) [1] in a wide range of domains and organiza-
tions has contributed to this increase. Given that most
of the data available inside organizations are structured
in heterogeneous data formats, data integration tech-
niques are often used in the data transformation and
homogenization process required for knowledge graph
construction (KGC).

KGC engines can be considered as data integra-
tion systems DIS = 〈O, S ,M〉 where O is the global
schema expressed in terms of an ontology (or network
of ontologies), S is a set of input data sources and M
are the mapping rules describing the relationships be-
tween O and S [2]. Mappings are usually expressed as
declarative rules, using standard specifications such as

*Corresponding author. E-mail: julian.arenas.guerrero@upm.es.

the W3C Recommendation R2RML [3] and its well-
known extension for data sources beyond relational
databases (RDBs), RML [4]. The construction of KGs
can be done using a materialization process or by vir-
tualization [5]. Materialization (also known as seman-
tic extract-transform-load) uses the rules in M to trans-
form all the data into RDF. Virtualization uses M to
translate SPARQL queries into the native query lan-
guage of S , i.e., data integration is performed on-the-
fly during query processing [6].

There are many techniques and associated imple-
mentations that can be used to create knowledge
graphs integrating heterogeneous data sources using
declarative mapping rules [7–14]. In the specific case
of materialization, different optimizations have been
proposed to speed up the materialization process in
complex data integration scenarios (e.g., high rate of
duplicates, large data sources, or transformation func-
tions). Approaches such as SDM-RDFizer [15], RML-
Streamer [16] and FunMap [17] propose optimizations
to enhance the performance of the materialization pro-
cess. In our previous work [18], in which we analyzed

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:julian.arenas.guerrero@upm.es
mailto:david.chaves@upm.es
mailto:ja.toledo@upm.es
mailto:maria.s.perez@upm.es
mailto:oscar.corcho@upm.es
mailto:julian.arenas.guerrero@upm.es

2 J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

several KGC engines, the experimental evaluation sug-
gests that more efficient solutions are still needed, es-
pecially when the volume of data is large.
Problem and objectives: We address the problem of
scalability in knowledge graph construction from het-
erogeneous data sources using declarative mapping
rules. Our main objective is to propose the theoreti-
cal background and a set of techniques that can en-
hance the process of KGC in complex data integration
systems, increasing the performance in both time and
memory consumption.
Proposed approach: We present the novel concept of
mapping partitions, which can be used to reduce the
time required for the materialization of a knowledge
graph and the peak amount of memory required in the
process. Mapping partitions group rules in the input
mapping documents ensuring the generation of disjoint
sets of RDF triples by each of them. The experimental
evaluation reveals that our proposal outperforms state-
of-the-art engines significantly in terms of execution
time and memory consumption, as well as our own im-
plementation in the absence of this optimization.
Contributions: i) The novel concept of mapping par-
tition, which allows the identification of rules that
produce disjoint sets of RDF triples; ii) algorithms
to find a partition of a set of mapping documents
and to remove self-joins within mapping documents;
iii) Morph-KGC, a scalable interpreter of R2RML
and RML that implements mapping partition-based
construction of the knowledge graph; iv) an empir-
ical evaluation of our approach and a comparison
against four well-known KGC engines using three dif-
ferent benchmarks (Madrid-GTFS-Bench [19], COS-
MIC [15], and NPD [20]).

The remainder of the article is structured as follows.
Section 2 introduces R2RML and RML, and presents
a set of concepts, notations, and conventions that will
be used throughout the rest of the paper. In Section 3
we delve into the foundations of mapping partitions.
Section 4 presents the experimental evaluation com-
paring Morph-KGC with other R2RML and RML en-
gines. Finally, Section 5 summarizes the related work
and Section 6 wraps up and outlines future work.

2. Preliminaries

In this section, we first provide some background by
introducing R2RML and RML, the mapping languages
that this work focuses on. Then, we present some con-
cepts, notations, and conventions that will be used in
the following sections.

2.1. R2RML and RML

R2RML [3] is the W3C Recommendation declara-
tive mapping language that links relational databases
to the RDF data model. RML [4] is a well known ex-
tension of R2RML that supports input data formats
beyond RDBs (e.g. CSV, JSON or XML). As RML
is a superset of R2RML, in this section we present
the main notions of these mapping languages focusing
solely on RML.

An RML mapping document consists of one or more
triples maps. A triples map has one logical source
and contains the rules to generate the RDF triples.
A triples map consists of one subject map and one
or more predicate-object maps. Each predicate-object
map has in turn, one or more predicate maps and ob-
ject maps. Subject, predicate, and object maps are term
maps specifying how to generate the RDF terms in the
homonymous positions of the triples. Term maps can
be constant-valued (always generate the same value),
reference-valued (the values are obtained directly from
the input data source, e.g., a column in a table of a
RDB), or template-valued (which generate data values
with some parts given by constants and others given
by references). Referencing object maps allow to gen-
erate triples in which the object maps are given by the
subject map of another triples map. A join condition is
used when the logical sources of both triples maps are
different.

2.2. Assumptions, Notation and Conventions

In our work, we rely on the normalization of map-
ping rules as defined in [21], i.e., triples maps contain
a single predicate-object map. This is not restrictive as
any R2RML or RML document can be normalized.

We target KGC where the resulting RDF graph does
not contain duplicated triples, as assumed by most en-
gines [7, 13, 15]. Because of the RDF set semantics,
the presence of duplicated triples in the serialization of
the RDF graph does not affect the final result, but we
add this restriction as it has an impact on memory and
time consumption, as well as on the size of the result-
ing files.

We use [R2]RML to refer to R2RML and RML. Our
proposal may be easily extended to other R2RML-
based mapping languages. We refer to R2RML columns
and RML references indistinctly as references. We re-
fer to RDF triples and quads indistinctly. TM, SM,
POM and OM denote triples map, subject map, predicate-
object map and object map respectively.

J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Two mapping documents or triples maps are defined
to be equivalent when they always generate the same
set of triples from any given data source independently
of the order in which they are serialized. Similarly, two
term maps are equivalent when they always generate
the same set of RDF terms from any given data source.

Let T be a term map, and let P be the set of posi-
tions that the RDF terms generated by T can occupy
in a quad, i.e., {sub ject, predicate, ob ject, graph}.
We consider the position of T to be a distinctive
property of it, i.e., two equivalent term maps with
different positions are not equal. We then define
position(T) as a function mapping T to P. As-
sume T to be the set of possible types of a term
map T , i.e., {IRI, Literal, BlankNode}, then type(T)
is a function mapping T to T. Assume V to be
the set of possible values of a term map T , i.e.,
{constant, re f erence, template}, then value(T) is a
function that maps T to V. Let L be the set of possible
types a literal can take, i.e., {datatype, languagetag, ∅}
and let I be the set of all possible values that L can take,
then we define literaltype : T → I∀T | type(T) =
Literal.

3. The Morph-KGC Approach

In this section we introduce the foundations of
Morph-KGC, an [R2]RML engine for constructing
knowledge graphs at scale. First, we introduce self-
join elimination at the mapping level. Next, we formal-
ize the novel concept of mapping partitions. After that,
we propose two algorithms to generate mapping par-
titions of [R2]RML documents and tackle KGC based
on them. Finally, we validate the feasibility of this ap-
proach over different benchmarks and real use cases.

3.1. Self-Join Elimination in Materialization

Most Virtualization engines in the state of the art
(e.g. [13, 22]) remove self-joins in the resulting SQL
queries, so as to make them more efficient. However,
most materialization engines do not address self-joins,
which in most cases are executed locally by the engine.
Nonetheless, mapping documents provide enough in-
formation to remove joins at the mapping level in some
cases.

Example 1. Consider the mapping rules with a self-
join taken from the GTFS-Madrid-Bench benchmark [19]:

<#shapes>
rr:logicalTable [rr:tableName "SHAPES"];
rr:subjectMap [

rr:template "metro:shape/{shape_id}"
];
rr:predicateObjectMap [

rr:predicate gtfs:shapePoint;
referencing object map (self-join)
rr:objectMap [

rr:parentTriplesMap <#shapePoints> ;
rr:joinCondition [

rr:child "shape_id";
rr:parent "shape_id";

];
];
object map (no join)
rr:objectMap [

rr:template "metro:shape_point/
{shape_id}-{shape_pt_sequence}"

]
].

<#shapePoints>
rr:logicalTable [rr:tableName "SHAPES"];
rr:subjectMap [

rr:template "metro:shape_point/
{shape_id}-{shape_pt_sequence}"

].

Both triples maps use the same database table, and
the referencing object map uses the same column to
join both triples maps. This can be transformed into
an equivalent object map without a join condition (the
second object map in Triples Map #shapes).

The impact of self-joins in materialization engines
has been previously reported by us in [18]. We propose
to remove self-joins within the mapping documents
to improve the performance of KGC engines without
the need to modify their current materialization proce-
dures. This self-join elimination approach is indepen-
dent from the underlying data format, as opposed to
the previous techniques (e.g., [13, 22] address RDBs
only)
Definition 1 (Canonical [R2]RML document w.r.t.
joins). Let M be an [R2]RML document, then its
canonicalization is the equivalent normalized [R2]RML
document without those self-joins that can be elimi-
nated based on the information encoded in the map-
ping document.

Algorithm 1 obtains the canonicalization of any
mapping document. First, it normalizes the document
(see [21]). Next, it discards referencing object maps
with different logical sources in the triples map and the
parent triples map (lines 4-6). After that, the algorithm
checks that the fields in all join conditions match (lines
7-11). When that happens, the self-join can finally be

4 J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 1: Canonicalization of an
[R2]RML document,M.

Result: CanonicalM
1 M = normalize(M) // see [21]
2 for T M ∈M do
3 for OM ∈ T M do
4 if isRe f OM(OM) then
5 parentT M = OM.parentT M
6 if

T M.source == parentT M.source
then

7 removeJoin = True
8 for joinCond ∈ OM do
9 if joinCond.child 6=

joinCond.parent then
10 removeJoin = f alse
11 end
12 if removeJoin then
13 OM = parentT M.S M
14 end
15 end

removed, and the object map is replaced by the subject
map of the parent triples map (lines 12-13).

3.2. Mapping Partitions

Given an initial set of mapping rules, we aim at
identifying those that produce disjoint sets of triples,
i.e., the initial mapping rules will be grouped so that
those in different groups generate sets of triples that
do not overlap. In the following, when we refer to the
sets of generated triples, we consider them to be com-
posed of all the triples that a mapping rule, group of
mappings rules, or mapping document generate given
a data source.

Definition 2 (Mapping Partition of an [R2]RML docu-
ment). LetM be a canonical [R2]RML document with
mapping rules m1, m2, ..., mn that generates the triple
set T . Then, a mapping partition P ofM is a disjoint
union of groups of mapping rules G1, G2, ..., Gk that
generate the triple sets t1, t2, ..., tk, and satisfy the fol-
lowing conditions:

•
⋂k

i=1 ti = ∅, i.e., the triple sets generated by each
mapping group are disjoint.

•
⋃k

i=1 ti = T , i.e., the union of the triple sets gen-
erated by all the mapping groups is equal to T .

Multiple partitions can exist forM. The trivial map-
ping partition is the one with only one mapping group,

and we denote it with P∅. Mind that this definition
of mapping partition does not entail that a mapping
group can be considered as a new mapping document.
A mapping rule in a mapping group can still have a
join condition involving a rule from a different group
of mappings.

Example 2. Consider the canonical mapping rules
(taken from [3]):

<#TM1>
rr:logicalTable [rr:tableName "DEPT"];
rr:subjectMap [

rr:template "ex:department/{DEPTNO}";
];
rr:predicateObjectMap [

rr:predicate ex:name;
rr:objectMap [rr:column "DNAME"];

].
<#TM2>

rr:logicalTable [rr:tableName "EMP"];
rr:subjectMap [

rr:template "ex:employee/{EMPNO}";
];
rr:predicateObjectMap [

rr:predicate ex:department;
rr:objectMap [

rr:parentTriplesMap <#TM1> ;
rr:joinCondition [

rr:child "DEPTNO";
rr:parent "DEPTNO";

];
];

].

Both mapping rules can be assigned to different map-
ping groups as they do not generate common triples,
given that the predicates are constants and that they are
different. Nonetheless, the mapping rule in #T M2 is
dependent on #T M1, since the object map of the for-
mer is given by the subject map of the latter, and this
results in a join dependency between those mapping
groups. This prevents both mapping groups from be-
coming independent mapping documents.

Figure 1 depicts an example of mapping partition-
ing that involves three initial mapping documents with
eleven canonical mapping rules in total. Six map-
ping groups are formed, which have between one and
three mapping rules. As can be seen, there are join
dependencies between different groups of mappings,
nonetheless, they are still disjoint in terms of the set of
triples that they generate.

We now delve into the rationale to obtain partitions
of a mapping documentM. This is done incrementally

J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

g1

d1

g2 g3 g4 g5 g6

d3 d2

m1 m2

m3
m4

m5

m6
m7

m8

m9

m10
m11

Mapping Document Mapping Group Mapping Rule Parent Join DependencydX gy mx

Fig. 1. Mapping Partition. Mapping partition of three mapping documents with eleven canonical mapping rules in total. The mapping partitions
is composed of six mapping groups, which have between one and three mapping rules. In addition, there are two join dependencies among
different groups of mappings.

by first examining the disjointness of term maps, next
of mapping rules, and finally of mapping groups.

Definition 3 (Prefix of a template). We define the pre-
fix of a template as the constant (or immutable) part of
a template preceding the first reference in it. If a tem-
plate starts with a reference, then its prefix is empty
(∅). Note that this is different to the notion of prefix
declaration in RDF documents.

Example 3. Consider the following templates along
with their prefixes:

Template:
ex:employee={EMPNO}/department={DEPTNO}

Prefix: ex:employee=

Template: ex:roles/{ROLE}
Prefix: ex:roles/

Template: {EMPNO}-{DEPTNO}
Prefix: Ø

The prefixes are obtained by eliminating the first refer-
ence and what follows. The beginning of the latter tem-
plate is data source-dependent and therefore its prefix
is ∅.

Definition 4 (Invariant of an [R2]RML term map).
The invariant I, of a term map T , is the longest com-
mon initial part of all the RDF terms that can be gen-
erated by T . I is an intrinsic property of T and re-
mains immutable regardless of the data coming from
the input sources. I depends on V, and it is obtained
as follows:

• I = T , if value(T) = constant.

• I = pre f ix(T), if value(T) = template.
• I = ∅, if value(T) = re f erence.

Notation 1 (Invariants). For simplicity and clarity, we
define the following notation for the invariants of term
maps:

• I∅ denotes the empty invariant.
• I1 < I2, denotes that the length of I1 is shorter

than I2, with the length given by the number of
characters of the invariants.

• I1 ⊂ I2, denotes that I1 matches the beginning
of I2. This entails I1 < I2.

Example 4. Consider the three templates in Example
3 and their invariants I1, I2 and I3 respectively (given
by their prefixes). Then, the following applies:

• I3 = I∅.
• I3 < I2 < I1.
• I3 ⊂ I1, I3 ⊂ I2, I2 6⊂ I1 and I1 6⊂ I2.

Definition 5 (Disjoint Term Maps). Let T1 and T2 be
two term maps and I1, I2 their respective invariants.
T1 and T2 are disjoint, T1

⋂
T2 = ∅, iff the sets of RDF

terms that they can generate are in turn disjoint, regard-
less of the input data. The disjoint property for T1 and
T2 applies iff at least one of the following conditions
hold:

1. type(T1) 6= type(T2).
2. I1 6= I2, I1 6⊂ I2 and I2 6⊂ I1.
3. I1 < I2, type(T1) = constant, or vice versa.
4. type(T1) = type(T2) = Literal,

and literaltype(T1) 6= literaltype(T2).

Disjointness of term maps depends on: T, invariants,
and I. Term maps with different T enforces the gener-

6 J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ation of distinct (disjoint) RDF terms (first condition).
We focus now on term maps with similar T. For term
maps with distinct invariants, the generated triple sets
are disjoint if none of the invariants matches the begin-
ning of the other (second condition). The latter is nec-
essary to not make any assumptions on the data com-
ing from the sources. Note that in this case I∅ prevents
term map disjointness to apply. When the value of the
term map with the shortest invariant is constant, the
second condition can be relaxed, and it is only neces-
sary that the invariant of this term is shorter than the
other invariant (third condition). This is because the
term map with the shortest invariant is not dependent
on data and the RDF terms will always be shorter (and
therefore distinct) than those generated by the other
term map. For the specific case that two term maps
generate literals, they are disjoint if they have distinct
I (fourth condition). This is because RDF literals with
different datatypes or language tags are different. This
is also true for the empty literal type, e.g., a typed lit-
eral will always be different from a non-typed literal.

Definition 6 (Disjoint Mapping Rules). Two mapping
rules m1, m2 that generate triple sets t1, t2 respectively,
are disjoint iff they do not generate common triples,
i.e., t1

⋂
t2 = ∅, regardless of the input data sources.

Disjointness of m1 and m2 can be determined as fol-
lows:

∃T1 ∈ m1,∃T2 ∈ m2 | T1
⋂
T2 = ∅,

position(T1) = position(T2)

For two mapping rules to be disjoint, it is required
that at least two position-wise term maps are disjoint.
This is true because once two triples have a different
subject, predicate, object or graph then the triples are
immediately distinct.

Definition 7 (Disjoint Mapping Groups of an [R2]RML
document). Disjointness for two mapping groups G1
and G2 ofM applies when the groups generate disjoint
sets of triples. This property holds when all the map-
ping rules in G1 are disjoint of all the mapping rules in
G2. As a consequence, a mapping rule cannot belong
simultaneously to disjoint mapping groups. Formally:

∀m1 ∈ G1,∀m2 ∈ G2 | m1

⋂
m2 = ∅

Definition 8 (Maximal Mapping Partition of an [R2]RML
document). The maximal mapping partition (denoted
with Pmax) is the one with the largest number of map-
ping groups. Given a mapping document, its maximal
mapping partition is not necessarily unique, i.e., there
may be several maximal mapping partitions for the
original mapping document.

3.3. Mapping Partition-Based Knowledge Graph
Construction

Knowledge graph construction can leverage map-
ping partitions to reduce execution time and mem-
ory consumption. Before this, a partition of the map-
ping needs to be performed. We propose Algorithm 2,
which generates partial mapping partitions by P, and
aggregates them for further partitioning. The purpose
of this algorithm is to find a good partition (i.e., with
a high number of mapping groups) while keeping it
simple and with a low computational cost.

Algorithm 2: Partial-Aggregations Partition-
ing of an [R2]RML document,M.
Result: P ofM

1 M = canonicalize(M)
2 // Repeat for subj., pred., obj., and graph
3 for p ∈ P do
4 // Lexicographic sort
5 M =

sortByTermTypeAndLitTypeAndInv(M, p)
6 curLitType = ∅
7 curTermType = ∅
8 curGroup = 0
9 // Iterate over TMs inM with a certain P

10 for T ∈ M[p] do
11 I = invariant(T)
12 if type(T) 6= curTermType then
13 curTermType = type(T)
14 curInv = ∅
15 curGroup ++

16 if type(T) = Literal then
17 if literaltype(T) 6= curLitType

then
18 curLitType = literaltype(T)
19 curGroup ++

20 else if
allT MsConstants(M, p) ∧ (curInv <
I) then

21 curGroup ++
22 else if curInv 6⊂ I then
23 curGroup ++
24 curInv = I
25 T .group = curGroup
26 end
27 end
28 P = aggregatePartialPartitions(M)

J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The outer for-loop (line 3) of Algorithm 2 iterates
four times to retrieve partial mapping partitions by sub-
ject, predicate, object and graph. The canonical map-
pings are sorted lexicographically by their T, I and
their invariants (line 5). Term maps for each P are then
iterated (line 10). The first condition in Definition 5 is
fulfilled with lines 12-15, that create a new G when a
T with a different T is reached. When processing lit-
eral term maps (lines 16-19), if I coincides with that
of the previous T , then they are assigned the same
G, otherwise, a new G is generated according to the
fourth condition in Definition 5. If T is an IRI or a
blank node, we proceed to partition by invariant. When
all the term maps in a specific P have constant values
(line 20), the third condition in Definition 5 can be ap-
plied. Otherwise, it is checked if condition 2, which
is more restrictive, is fulfilled (line 22). The final P
is the result of aggregating the partial mapping par-
titions by P (line 28), e.g., a mapping rule with par-
tial mapping partitions subject(4), predicate(23), ob-
ject(11) and graph(1) would be assigned the final par-
tition 4-23-11-1.

We also propose Algorithm 3 which generates the
maximal mapping partition of an [R2]RML document.
To do so, it considers all orderings of P (line 3) and it-
erates over them (line 4). Partitioning is done indepen-
dently by G (lines 6-7), thus the aggregation of the par-
tial partitions is done before (line 5) to generate these
groups. Once the full partition has been created for an
order of P (line 10), it is checked whether it has more

Algorithm 3: Maximal Partitioning of an
[R2]RML document,M.

Result: Pmax ofM
1 M = canonicalize(M)
2 Pmax = ∅
3 for order ∈ permutations(P) do
4 for p ∈ order do
5 P = aggregatePartialPartitions(M)
6 for G ∈ P do
7 Apply lines 4-26 of Algorithm 2 to

mapping rules in G
8 end
9 end

10 P = aggregatePartialPartitions(M)
11 if size(P) > size(Pmax) then
12 Pmax = P
13 M = resetPartition(M)

14 end

groups than any other previously created. Finally, the
partial mapping partitions are reset (line 13) to prepare
them for the next order processing. This algorithm is
computationally more expensive than Algorithm 2, as
it considers every order of P. Nonetheless, it can be
parallelized by independently processing each order-
ing (this is done by our implementation in Section 4).

The construction of a knowledge graph based on a
mapping partition can be done in two different ways.
The first one (Figure 2a) processes each mapping
group sequentially. Hence, only the triples of a single
mapping group are kept in memory simultaneously to
remove duplicated triples. Memory usage is bounded
by the largest group of mappings (in terms of the num-
ber of triples that it generates). The second one (Fig-
ure 2b) processes each group of mappings in parallel.
As a consequence, the execution time is reduced at the
cost of increasing the maximum memory required, as
multiple triple sets of different groups of mappings are
maintained in memory at the same time.

3.4. Significance of Mapping Partitions

The performance of partition-based KGC strongly
depends on the ability to partition mapping documents.
If the conditions required to generate mapping parti-
tions are not generally met, then mapping partition-
ing would not be feasible in practice (for instance,
I∅ prevents partitioning in the general case). In addi-
tion, the ability to generate a high number of mapping
groups affects the improvement in the performance. In
general, a higher number of mapping groups entails a
higher parallelization capacity (bounded by the num-
ber of CPU cores), and a lower number of mapping
rules in each of the groups, and therefore less memory
consumption in the case of sequential processing.

We have compiled information on mapping parti-
tioning for several well-known benchmarks (namely,
NPD [20], BSBM [23], GTFS-Madrid-Bench [19] and
LSLOD [24]), the DevOps ICT knowledge graph [25],
and other real uses cases from the KGC W3C Com-
munity Group1 in Table 1. We have included whether
all the predicates maps are constant-valued, so that the
third condition in Definition 5 applies. We select pred-
icate maps for this purpose because in real settings
constant-valued term maps usually appear in this posi-
tion (and in graph maps, but they are not used in the se-
lected cases). The number of mapping groups and the

1https://github.com/kg-construct/use-cases

https://github.com/kg-construct/use-cases

8 J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

g5 g6

m3
m4

m5

m6

m7

m8

m9
m10

m11

g1 g4

m1

m2

g2 g3

Mapping Group Mapping Rule Parent Join Dependency In-Memory KG Pyshical KGgy mx

Sequential Processing

KG1 KG2 KG3 KG4 KG5 KG6

KG1 KG1:2 KG1:3 KG1:4 KG1:5 KG1:6

(a) Sequential KG construction

g5 g6

m3
m4

m5

m6

m7

m8

m9
m10

m11

g1 g4

m1

m2

g2 g3

Parallel Processing

KG1 KG2 KG3 KG4 KG5 KG6

KG1:6

Mapping Group Mapping Rule Parent Join Dependency In-Memory KG Pyshical KGgy mx

(b) Parallel KG construction

Fig. 2. Mapping partition-based KGC. Example of sequential and parallel processing of mapping partitions for constructing a knowledge
graph. While the former creates the KG by processing one mapping group at a time, reducing memory consumption, the latter generates triples
for several mapping groups simultaneously, reducing execution time.

maximum number of mapping rules in a group have
been obtained using Algorithms 2 and 3. In all cases it
has been possible to obtain a mapping partition beyond
P∅. In most of the cases the partitioning conditions
are very advantageous, and low # mapping rules

groups ratios as
well as small groups of mappings (with few mapping
rules) are obtained. It can also be observed that both al-
gorithms obtain a similar number of mapping groups in
many cases. The most significant difference is found in
the case of Data Hub - Ontopic, for which Algorithm 3
obtains a partition with a number of groups more than
three times higher and drastically reduces the number
of mapping rules in the largest group.

4. Empirical Evaluation

In this section, we experimentally evaluate our pro-
posal. The research questions that we aim to answer
are: RQ1: What is the impact of mapping partitions in
the execution time and the memory consumption dur-
ing the materialization of KGs?; RQ2: How does the
number of groups in a mapping partition affect the ma-
terialization process?; RQ3: What are the benefits of
this approach for constructing KGs at scale w.r.t. state-
of-the-art techniques?.

We evaluate our proposal on three different testbeds.
First, we use GTFS-Madrid-Bench [19], a benchmark
in the transport domain, for testing the performance
and scalability of our proposal over different tabular
data formats and sizes. After that, we use the COS-
MIC testbeds [15] from the biomedical domain to eval-
uate our proposal over different mapping configura-
tions. Finally, we use the Norwegian Petroleum Di-
rectorate (NPD) benchmark [20], from the energy do-
main, to compare different configurations of Morph-
KGC. In the following we describe the setup of the
evaluation.
Engines. We use Morph-KGC v1.1.02 and consider
five configurations of it: i) Morph-KGC as the base-
line (without mapping partitioning); ii) Morph-KGCp,
which uses partial-aggregations for mapping parti-
tioning and sequential processing; iii) Morph-KGCp

+,
which uses partial-aggregations for mapping partition-
ing and parallel processing, iv) Morph-KGCm which
uses maximal partitioning and sequential processing;
and v) Morph-KGCm

+ which uses maximal partitioning
and parallel processing. We also compare our proposal
against state-of-the-art KGC engines. Based on the re-

2https://github.com/oeg-upm/morph-kgc

J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Mapping partitioning of benchmarks and real use cases.

Benchmark all pred. # mapping partial-aggregations (Alg. 2) maximal (Alg. 3)
or Real Use Case constants rules # G max # rules in G # G max # rules in G

GTFS-Madrid-Bench yes 86 83 2 84 2

LSLOD - Bio2RDF yes 182 117 37 117 37

LSLOD - Linkedct yes 143 126 14 126 14

LSLOD - TCGA yes 2450 388 380 409 55

LSLOD - Dailymed yes 261 212 18 212 18

NPD yes 1177 477 116 745 14

BSBM yes 75 57 4 62 3

Open Cities - UPM yes 122 99 6 99 6

Btw Our Worlds - IDLab yes 62 47 4 47 4

Genomics - TIB yes 169 105 8 105 8

Drugs4Covid - UPM yes 75 27 29 38 19

Data Hub - Ontopic yes 270 69 83 232 6

DevOps ICT KG yes 326 299 3 299 3

sults reported in [18], we select two R2RML engines,
Ontop v4.1.0 and R2RML-F v1.2.3, and two others
that parse RML, Chimera v2.1 and SDM-RDFizer
v3.6. It is important to mention that both selected RML
processors parallelize by default the execution of the
mappings and we maintain this behavior in all the ex-
periments.
Metrics. Execution time: Elapsed time spent by an en-
gine to complete the construction of a KG; it is mea-
sured as the absolute wall-clock system time as re-
ported by the time command of the Linux operating
system. Memory consumption: The memory used by
an engine to construct the KG measured in time slots
of 0.1 seconds. In addition, we have verified that the
generated RDF are the same for all engines in terms
of the number of triples and its correctness. All exper-
iments were executed three times and the average ex-
ecution time and memory consumption are reported.
A timeout of 24 hours is used. The experiments are
run on a CPU Intel(R) Xeon(R) Silver 4216 CPU @
2.10GHz, 20 cores, 128 Gb RAM, and a SSD SAS
Read-Intensive 12 Gb/s.

4.1. GTFS-Madrid-Benchmark

We consider two distributions of the GTFS-Madrid-
Bench benchmark based on the data format: GTFScsv

and GTFSrdb. We have also generated different data
sizes of these distributions considering the scaling fac-
tors: 1, 10, 100, and 1000. We have used MySQL 8.0

as DBMS for RDB. As reported in Table 1, the partial-
aggregations and maximal partitioning algorithms re-
turn very similar mapping partitions (differing only
in one mapping group). Thus, in this experiment we
only take into account partial-aggregations for map-
ping partitioning, avoiding the extra computational
cost of maximal partitioning. While the performance
of Morph-KGC and Ontop are not impacted by self-
joins because they remove them, the rest of the consid-
ered engines are extraordinarily affected by them. For
this reason, we have manually transformed the original
mappings into their equivalent without self-joins.

The impact of mapping partitions on the material-
ization of large input data sources can be observed in
Figure 3. Regarding memory consumption, we can ob-
serve that the baseline, Morph-KGC, follows a grow-
ing trend over time. The reason is that it keeps the en-
tire KG in memory to avoid the generation of dupli-
cate triples. Indeed, Figure 3b shows that this approach
produces an out-of-memory issue due to the size of the
final KG. In the case of Morph-KGCp, it is observed
how the memory is freed every time a group of map-
pings is materialized. In this configuration, the maxi-
mum peak of memory is given by the largest group of
mapping rules (in terms of the total number of triples
generated), and it is significantly lower than the other
two configurations. However, this comes at the cost of
a small overhead in the execution time w.r.t. the base-
line. Morph-KGCp

+ demonstrates a great improvement
w.r.t. the baseline regarding execution time, although

10 J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) Memory over time GT FS rdb
100

(b) Memory over time GT FS rdb
1000

Fig. 3. Morph-KGC over GTFS-Madrid-Bench. Memory over time in the materialization of GT FS rdb for three different configurations of the
Morph-KGC engine: without mapping partitions (Morph-KGC), with mapping partitions and sequential processing (Morph-KGCp), and with
mapping partitions and parallel processing (Morph-KGCp

+).

the maximum peak of memory used is similar due to
Morph-KGCp

+ maintaining multiple groups of map-
pings in memory at the same time, as they are being
processed concurrently. Note that mapping partition-
based KGC is bounded by the parallelization capac-
ity of the processor and by the mapping partition itself
(e.g., the number of mapping groups or the differences
in size among them).

Figure 4a shows the total execution time of Morph-
KGCp

+ compared to the rest of the selected engines.
Our proposal clearly outperforms the rest of the en-
gines for all data formats and data scaling factors. In-
deed, it is the only engine able to generate the KG
for GTFS1000. Figure 4b depicts the maximum peak
of memory used by each engine. In this case we con-
sider Morph-KGCp, as it is the configuration that im-
proves the memory consumption. While the rest of the
engines have to keep the entire KG in memory to ad-
dress duplicate elimination, mapping partitioning re-
duces the maximum peak of memory used to that of
the largest mapping group.

4.2. COSMIC Testbeds

The COSMIC testbeds3 provide a set of configura-
tions taking into account different parameters that are
relevant for constructing knowledge graphs [26] such
as the type of mappings, the number of duplicates, and
the data size. More in detail, regarding the latter, four
different datasets are provided with different number
of rows: 10K, 100K, 1M, and 10M. Although sim-
pler configurations are also provided in terms of the
number of duplicates, for this experimental evaluation
we select the most complex one, i.e., 75% of dupli-
cates with each duplicated value repeated 20 times.
In addition, three mapping files with different types
of predicate-object maps are considered: simple ob-
ject map (POM), referencing object map with self-
reference (REF), and referencing object map (JOIN).
A number is used together with the name of each
mapping type to specify the number of rules (e.g., 4-
POM indicates 4 object maps). The testbeds provide

3https://github.com/SDM-TIB/SDM-RDFizer-Experiments/tree/
master/cikm2020/experiments

https://github.com/SDM-TIB/SDM-RDFizer-Experiments/tree/master/cikm2020/experiments
https://github.com/SDM-TIB/SDM-RDFizer-Experiments/tree/master/cikm2020/experiments

J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) Total execution time in GTFS-Madrid-Bench. The absence of the bar indicates an out-of-memory issue. The bars reaching
the top means a timeout issue.

(b) Memory consumption peak in GTFS-Madrid-Bench. The absence of the bar indicates a timeout issue. The bars reaching
the top means an out-of-memory issue.

Fig. 4. Total execution time and memory consumption peak in GTFS-Madrid-Bench. KGC time in seconds and memory consumption time
in kB (logarithmic scale) of the tabular datasets from the GTFS-Madrid-Bench benchmark with data scaling factors 1, 10, 100 and 1000.

the mappings in RML and the data is in the form of
CSV files. For this reason, we do not consider the
R2RML processors in this experiment. In the same
manner as for GTFS-Madrid-Bench benchmark, we
only report the time and memory consumption for the
case of partial-aggregations partitioning as the max-
imal partitioning algorithm generates the same parti-
tion.

The total execution time and the maximum peak
in memory consumption are reported in Figure 5. We
can clearly observe that Morph-KGCp

+ outperforms
the rest of the engines in terms of execution time for
most of the configurations (Figure 5a). As Morph-
KGCp

+ and Morph-KGC perform a self-join elimina-
tion over the REF mappings, they obtain similar re-
sults as in the POM ones, which is not the case of
SDM-RDFizer and Chimera. Morph-KGCp

+ is only
outperformed by the SDM-RDFizer in the configura-
tion 1M rows with 5-JOIN mapping. The main reason
is that SDM-RDFizer implements the Predicate Join
Tuple Table as a specific physical data structure for
improving the join conditions during the construction
of the KG. We observe that in scenarios with several
types of mappings (POM+REF+JOIN) (e.g. GTFS-
Madrid-Bench or NPD), Morph-KGCp

+ obtains bet-

ter results than SDM-RDFizer. Figure 5b shows that
Morph-KGCp outperforms its baseline and Chimera
regarding memory consumption, and obtains similar
results as SDM-RDFizer for small data sizes (10K and
100K). For larger volumes of data (1M and 10M rows),
Morph-KGCp obtains better results than the SDM-
RDFizer for all mapping configurations. The main rea-
son is that while Chimera and SDM-RDFizer maintain
the entire KG in memory, our proposal does not require
to do so to remove duplicated triples.

4.3. Norwegian Petroleum Directorate Benchmark

The NPD benchmark [20] presents a comprehen-
sive evaluation system for virtual KGC engines. It pro-
vides a set of SPARQL queries, a scalable instance
of an RDB from the energy domain, and the corre-
sponding mapping rules in R2RML. Although it has
not been previously used for testing the performance
of materialization engines, we notice that it is the
only benchmark among those considered in Table 1 in
which the difference in the number of mapping groups
obtained by the partial-aggregations and the maxi-
mal partitioning algorithms is significant. This will al-
low us to compare the impact of maximal partition-

12 J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) Total execution time in COSMIC testbeds. The absence of the bar indicates an out-of-memory issue. The bars reaching the
top means a timeout issue.

(b) Memory consumption peak in COSMIC testbeds. The absence of the bar indicates a timeout issue. The bars reaching the
top means an out-of-memory issue.

Fig. 5. Total execution time and memory consumption peak in COSMIC. KGC time in seconds and memory consumption time in kB
(logarithmic scale) of the COSMIC testbed with data scale factors 10K, 100K, 1M and 10M rows.

ing when it achieves a mapping partition with more
groups. To further evaluate mapping partitions with
different number of groups, we also include the config-
urations Morph-KGCm

+-s and Morph-KGCm
+-p which

means that only subject and predicate, respectively,
are taken into account to perform mapping partitioning
(instead of every P). We use the data generator of the
benchmark [27] to obtain three different distributions
with data scaling factors: 1, 10 and 100. Apart from our
proposal, the unique engine able to parse the R2RML
mappings and generate the correct KG is R2RML-F.

The results obtained are shown in Figure 6. We ob-
serve that the best performance regarding execution
time is obtained by Morph-KGCp

+. Surprisingly, the
partition generated by Morph-KGCp

+ reports better re-
sults than the Morph-KGCm

+ one, showing that a higher
number of mapping groups does not always entail a
better execution time in the construction of the KG. A
possible reason for this could be that the parallel pro-
cessing is bounded by the number of cores of the ma-
chine (20 in our case), and increasing the number of
mapping groups (477 for Morph-KGCp while there are
745 for Morph-KGCm) does not result in a higher par-
allelization rate. Moreover, a higher number of map-
ping groups introduces an overhead as we saw previ-

ously in Figure 3, and maximal partitioning is compu-
tationally more expensive. However, we observe that
the materialization time of Morph-KGCm

+ is very close
to Morph-KGCp

+, and that these two perform signifi-
cantly better than Morph-KGCm-s and Morph-KGCm-
p, with a lower number of mapping groups (17 and
327 respectively). This indicates that in general, it is
desirable to have a high number of mapping groups
to increase the parallelization rate. Regarding memory
consumption, we see that Morph-KGCp and Morph-
KGCm obtain similar results. Note that in sequential
processing, the peak in the amount of memory used is
determined by the largest mapping group. If maximal
partitioning is not able to further partition that specific
mapping group, then a reduction in the peak of mem-
ory consumption is not expected.

5. Related Work

Ontology-based data integration [5, 6] systems dif-
ferentiate between the data layer, composed of the data
sources, and the conceptual layer, in which an ontology
or network of ontologies are used to abstract the het-
erogeneity of the former. Mappings are used to specify

J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) Total execution time in NPD Benchmark. The absence of the bar indicates an out-of-memory issue. The bars reaching the
top means a timeout issue.

(b) Memory consumption peak in NPD Benchmark. The absence of the bar indicates a timeout issue. The bars reaching the
top means an out-of-memory issue.

Fig. 6. Total execution time and memory consumption peak in NPD. KGC time in seconds and memory consumption time in kB (logarithmic
scale) of the NPD benchmark with data scaling factors 1, 10, 100.

how to populate entities and relationships in the ontol-
ogy with data from the underlying data sources, i.e.,
mappings are the link mechanism between both layers.

Several languages have been proposed to define
mappings [28–30], but the one that stands out most
notably is R2RML [3], the W3C Recommendation to
map relational databases to RDF. However, R2RML
does not generalize the underlying data model and can-
not deal with heterogeneous data formats. RML [4] is
a well-known superset of R2RML that removes spe-
cific references to the relational data model and en-
ables data formats beyond RDBs. In addition, other
R2RML-related proposals have addressed transforma-
tion functions [7, 31], mixed content and RDF collec-
tions [11], usability [32] or scalability [33].

There are two approaches to process the mappings:
virtualization (or query translation) and materializa-
tion (or data translation). Virtualization uses mappings
to translate SPARQL queries into the native query
languages of the underlying data sources. Research
around this technique has focused primarily on rela-
tional databases and on efficiently processing the gen-
erated SQL queries. We refer the interested reader on
virtualization to [8, 12, 13, 22, 34]. Materialization

uses the mappings to transform all data in the underly-
ing data sources to the corresponding RDF.

There are several solutions targeting the materializa-
tion of knowledge graphs [18]. For the specific case
of RDBs, Ontop [13, 35] leverages the fact that predi-
cates maps are generally constant-valued. It generates
one SPARQL query for each predicate with unbounded
subject and object. These queries are then translated to
SQL and optimized by applying a set of structural op-
timizations (e.g., subqueries elimination) and seman-
tic query optimizations (e.g., redundant self-joins re-
moval). It also avoids to retrieve large query result sets
at once by doing it in chunks.

The work presented in [36] exploits knowledge en-
coded in the mapping documents to project the at-
tributes appearing in a triples map, reducing the size
of the data sources that need to be processed. Simi-
larly, to diminish the impact of duplicates in the eval-
uation of join conditions, it also pushes down projec-
tions into joins. SDM-RDFizer [15] proposes physical
data structures to store the knowledge graph in mem-
ory in a way that allows to efficiently remove dupli-
cates and avoid unnecessary operations. Specifically, it
uses one hash table for each predicate, where the hash

14 J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

key combines the subject and the object of the triple,
and the value is the triple itself. It also proposes to
speed up joins by creating a hash table using the val-
ues matching the join condition as the hash key, and
being the values of the hash the set of the generated
values by the parent triples map. These hash tables are
checked every time a new triple is to be generated, in
the case that the triple already exists, it is discarded,
otherwise it is added to the knowledge graph and the
corresponding hash table is updated.

Parallelization has also been proposed to speed
up the materialization process. The work presented
in [16] divides this process in three tasks following the
producer-consumer paradigm: ingestion of data from
the sources, mapping to RDF, and combination of the
RDF. Parallelization is done up to the data record level.
Nevertheless, the proposed approach does not tackle
duplicate elimination. [15, 37] also parallelize at the
triples map level.

All the current approaches addressing duplicate
elimination store the entire KG in memory [18], so that
its size is limited by the available memory. Mapping
partitioning can be used together with the current opti-
mizations to enhance the scalability of these systems.

6. Conclusions and Future Work

We address the problem of scalability in the mate-
rialization of knowledge graphs from heterogeneous
data sources using declarative mapping rules. We
present the novel concept of mapping partitions, which
consists in grouping mapping rules that generate dis-
joints sets of RDF triples. Mapping partitions can be
used to reduce memory consumption in KG material-
ization by processing each mapping group in a parti-
tion sequentially, or to decrease the execution time by
processing multiple mapping groups in parallel. We
implement this novel approach in an [R2]RML engine,
Morph-KGC, and we empirically demonstrate that it
outperforms state-of-the-art proposals in terms of the
total execution time and the amount of memory re-
quired in the materialization process.

Our future lines of work include the extension of
Morph-KGC and mapping partitions to RML-star [38],
which poses the challenge of recursive and more com-
plex mapping rules. We also plan to address the limita-
tion of the current approach that prevents minimizing
materialization time and memory consumption at the
same time, by using standards such as MPI [39].

References

[1] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G.D. Melo,
C. Gutierrez, S. Kirrane, J.E.L. Gayo, R. Navigli, S. Neu-
maier, A.-C.N. Ngomo, A. Polleres, S.M. Rashid, A. Rula,
L. Schmelzeisen, J. Sequeda, S. Staab and A. Zimmer-
mann, Knowledge Graphs, ACM Comput. Surv. 54(4) (2021).
doi:10.1145/3447772.

[2] M. Lenzerini, Data Integration: A Theoretical Perspective, in:
Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS, Associ-
ation for Computing Machinery, 2002, pp. 233–246–. ISBN
1581135076. doi:10.1145/543613.543644.

[3] S. Das, S. Sundara and R. Cyganiak, R2RML: RDB to RDF
Mapping Language, W3C Recommendation, W3C, 2012, http:
//www.w3.org/TR/r2rml/.

[4] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Man-
nens and R. Van de Walle, RML: A Generic Language for Inte-
grated RDF Mappings of Heterogeneous Data, in: Proceedings
of the 7th Workshop on Linked Data on the Web, CEUR Work-
shop Proceedings, Vol. 1184, CEUR-WS.org, 2014. ISSN
1613-0073.

[5] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenz-
erini and R. Rosati, Linking Data to Ontologies, Journal on
Data Semantics X (2008), 133–173. ISBN 978-3-540-77688-8.
doi:10.1007/978-3-540-77688-8_5.

[6] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi,
R. Rosati and M. Zakharyaschev, Ontology-Based Data Ac-
cess: A Survey, in: Proceedings of the 27th International Joint
Conference on Intelligence, IJCAI, International Joint Confer-
ences on Artificial Intelligence Organization, 2018, pp. 5511–
5519. doi:10.24963/ijcai.2018/777.

[7] C. Debruyne and D. O’Sullivan, R2RML-F: Towards Sharing
and Executing Domain Logic in R2RML Mappings, in: Pro-
ceedings of the 9th Workshop on Linked Data on the Web,
CEUR Workshop Proceedings, Vol. 1593, CEUR-WS.org,
2016.

[8] J.F. Sequeda and D.P. Miranker, Ultrawrap: SPARQL execu-
tion on relational data, Journal of Web Semantics 22 (2013),
19–39. doi:10.1016/j.websem.2013.08.002.

[9] M.N. Mami, D. Graux, S. Scerri, H. Jabeen, S. Auer and
J. Lehmann, Squerall: Virtual Ontology-Based Access to Het-
erogeneous and Large Data Sources, in: Proceedings of the
18th International Semantic Web Conference, ISWC, Springer
International Publishing, 2019, pp. 229–245. ISBN 978-3-030-
30796-7. doi:10.1007/978-3-030-30796-7_15.

[10] J.F. Sequeda, M. Arenas and D.P. Miranker, OBDA: Query
Rewriting or Materialization? In Practice, Both!, in: Pro-
ceedings of the 13th International Semantic Web Con-
ference, ISWC, Springer International Publishing, 2014,
pp. 535–551. ISBN 978-3-319-11964-9. doi:10.1007/978-3-
319-11964-9_34.

[11] F. Michel, L. Djimenou, C.F. Zucker and J. Montagnat, Trans-
lation of Relational and Non-Relational Databases into RDF
with xR2RML, in: Proceedings of the 11th International Con-
ference on Web Information Systems and Technologies, Vol. 1,
SciTePress, 2015, pp. 443–454. ISSN 2184-3252. ISBN 978-
989-758-106-9. doi:10.5220/0005448304430454.

http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/

J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[12] K.M. Endris, P.D. Rohde, M.-E. Vidal and S. Auer, Ontario:
Federated Query Processing Against a Semantic Data Lake, in:
Proceedings of the 30th International Conference on Database
and Expert Systems Applications, DEXA, Springer Interna-
tional Publishing, 2019, pp. 379–395. ISBN 978-3-030-27615-
7. doi:10.1007/978-3-030-27615-7_29.

[13] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov,
D. Lanti, M. Rezk, M. Rodriguez-Muro and G. Xiao, Ontop:
Answering SPARQL queries over relational databases, Seman-
tic Web 8(3) (2017), 471–487. doi:10.3233/SW-160217.

[14] C.A. Knoblock and P. Szekely, Exploiting Semantics for
Big Data Integration, AI Magazine 36(1) (2015), 276–293.
doi:10.1609/aimag.v36i1.2565.

[15] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana and
M.-E. Vidal, SDM-RDFizer: An RML Interpreter for the Ef-
ficient Creation of RDF Knowledge Graphs, in: Proceedings
of the 29th ACM International Conference on Information
and Knowledge Management, CIKM, Association for Comput-
ing Machinery, 2020, pp. 3039–3046. ISBN 9781450368599.
doi:10.1145/3340531.3412881.

[16] G. Haesendonck, W. Maroy, P. Heyvaert, R. Verborgh
and A. Dimou, Parallel RDF Generation from Hetero-
geneous Dig Data, in: Proceedings of the International
Workshop on Semantic Big Data, Association for Com-
puting Machinery, 2019, pp. 1–6. ISBN 9781450367660.
doi:10.1145/3323878.3325802.

[17] S. Jozashoori, D. Chaves-Fraga, E. Iglesias, M.-E. Vidal and
O. Corcho, FunMap: Efficient Execution of Functional Map-
pings for Knowledge Graph Creation, in: Proceedings of the
19th International Semantic Web Conference, ISWC, Springer
International Publishing, 2020, pp. 276–293. ISBN 978-3-030-
62419-4.

[18] J. Arenas-Guerrero, M. Scrocca, A. Iglesias-Molina, J. Toledo,
L. Pozo-Gilo, D. Doña, O. Corcho and D. Chaves-Fraga,
Knowledge Graph Construction with R2RML and RML: An
ETL System-based Overview, in: Proceedings of the 2nd Inter-
national Workshop on Knowledge Graph Construction, CEUR
Workshop Proceedings, Vol. 2873, CEUR-WS.org, 2021.

[19] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo,
E. Ruckhaus and O. Corcho, GTFS-Madrid-Bench: A Bench-
mark for Virtual Knowledge Graph Access in the Trans-
port Domain, Journal of Web Semantics 65 (2020), 100596.
doi:10.1016/j.websem.2020.100596.

[20] D. Lanti, M. Rezk, G. Xiao and D. Calvanese, The NPD
Benchmark: Reality Check for OBDA Systems, in: Pro-
ceedings of the 18th International Conference on Extend-
ing Database Technology, EDBT, OpenProceedings.org, 2015,
pp. 617–628. doi:10.5441/002/edbt.2015.62.

[21] M. Rodríguez-Muro and M. Rezk, Efficient SPARQL-to-SQL
with R2RML Mappings, Journal of Web Semantics 33 (2015),
141–169. doi:10.1016/j.websem.2015.03.001.

[22] F. Priyatna, O. Corcho and J. Sequeda, Formalisation and ex-
periences of R2RML-based SPARQL to SQL query translation
using morph, in: Proceedings of the 23rd International Confer-
ence on World Wide Web, WWW ’14, Association for Comput-
ing Machinery, 2014, pp. 479–490–. ISBN 9781450327442.
doi:10.1145/2566486.2567981.

[23] C. Bizer and A. Schultz, The Berlin SPARQL Benchmark, In-
ternational Journal on Semantic Web and Information Systems,
IJSWIS 5(2) (2009), 1–24. doi:10.4018/jswis.2009040101.

[24] A. Hasnain, Q. Mehmood, S. Sana e Zainab, M. Saleem,
C. Warren, D. Zehra, S. Decker and D. Rebholz-Schuhmann,
BioFed: federated query processing over life sciences linked
open data, Journal of Biomedical Semantics 8 (2017), 13.
ISBN 2041-1480. doi:10.1186/s13326-017-0118-0.

[25] O. Corcho, D. Chaves-Fraga, J. Toledo, J. Arenas-Guerrero,
C. Badenes-Olmedo, M. Wang, H. Peng, N. Burrett, J. Mora
and P. Zhang, A High-Level Ontology Network for ICT
Infrastructures, in: Proceedings of the 20th International
Semantic Web Conference, ISWC, Springer International
Publishing, 2021, pp. 446–462. ISBN 978-3-030-88361-4.
doi:10.1007/978-3-030-88361-4_26.

[26] D. Chaves-Fraga, K.M. Endris, E. Iglesias, O. Corcho and
M.-E. Vidal, What are the Parameters that Affect the Con-
struction of a Knowledge Graph?, in: Proceedings of the Con-
federated International Conferences, Springer International
Publishing, 2019, pp. 695–713. ISBN 978-3-030-33246-4.
doi:10.1007/978-3-030-33246-4_43.

[27] D. Lanti, G. Xiao and D. Calvanese, VIG: Data scaling for
OBDA benchmarks, Semantic Web 10(2) (2019), 413–433.
doi:10.3233/SW-180336.

[28] M. Hert, G. Reif and H.C. Gall, A Comparison of
RDB-to-RDF Mapping Languages, in: Proceedings of the
7th International Conference on Semantic Systems, I-
Semantics ’11, Association for Computing Machinery, New
York, NY, USA, 2011, pp. 25–32–. ISBN 9781450306218.
doi:10.1145/2063518.2063522.

[29] M. Lefrançois, A. Zimmermann and N. Bakerally, A SPARQL
Extension for Generating RDF from Heterogeneous Formats,
in: Proceedings of the 14th Extended Semantic Web Con-
ference, ESWC, E. Blomqvist, D. Maynard, A. Gangemi,
R. Hoekstra, P. Hitzler and O. Hartig, eds, Springer Interna-
tional Publishing, 2017, pp. 35–50. ISBN 978-3-319-58068-5.

[30] H. García-González, I. Boneva, S. Staworko, J.E. Labra-
Gayo and J.M.C. Lovelle, ShExML: improving the us-
ability of heterogeneous data mapping languages for first-
time users, PeerJ Computer Science 6 (2020), e318.
doi:https://doi.org/10.7717/peerj-cs.318.

[31] B. De Meester, W. Maroy, A. Dimou, R. Verborgh and E. Man-
nens, Declarative Data Transformations for Linked Data Gen-
eration: The Case of DBpedia, in: Proceedings of the 14th
Extended Semantic Web Conference, ESWC, E. Blomqvist,
D. Maynard, A. Gangemi, R. Hoekstra, P. Hitzler and O. Har-
tig, eds, Springer International Publishing, 2017, pp. 33–
48. ISBN 978-3-319-58451-5. doi:10.1007/978-3-319-58451-
5_3.

[32] P. Heyvaert, B. De Meester, A. Dimou and R. Verborgh,
Declarative Rules for Linked Data Generation at Your Finger-
tips!, in: Extended Semantic Web Conference, ESWC, Springer
International Publishing, 2018, pp. 213–217. ISBN 978-3-319-
98192-5. doi:10.1007/978-3-319-98192-5_40.

[33] J. Slepicka, C. Yin, P. Szekely and C.A. Knoblock, KR2RML:
An Alternative Interpretation of R2RML for Heterogeneous
Sources, in: Proceedings of the 6th International Workshop
on Consuming Linked Data, CEUR Workshop Proceedings,
CEUR-WS.org, 2015.

[34] G. Xiao, L. Ding, B. Cogrel and D. Calvanese, Virtual Knowl-
edge Graphs: An Overview of Systems and Use Cases, Data
Intelligence 1(3) (2019), 201–223. doi:10.1162/dint_a_00011.

16 J. Arenas-Guerrero et al. / Morph-KGC: Scalable Knowledge Graph Materialization with Mapping Partitions

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[35] G. Xiao, D. Lanti, R. Kontchakov, S. Komla-Ebri, E. Güzel-
Kalaycı, L. Ding, J. Corman, B. Cogrel, D. Calvanese and
E. Botoeva, The Virtual Knowledge Graph System Ontop,
in: Proceedings of the 19th International Semantic Web
Conference, ISWC, Springer International Publishing, 2020,
pp. 259–277. ISBN 978-3-030-62466-8. doi:10.1007/978-3-
030-62466-8_17.

[36] S. Jozashoori and M.-E. Vidal, MapSDI: A Scaled-Up Se-
mantic Data Integration Framework for Knowledge Graph
Creation, in: Proceedings of the Confederated International
Conferences, Springer International Publishing, 2019, pp. 58–
75. ISBN 978-3-030-33246-4. doi:10.1007/978-3-030-33246-
4_4.

[37] M. Scrocca, M. Comerio, A. Carenini and I. Celino, Turning
Transport Data to Comply with EU Standards While Enabling

a Multimodal Transport Knowledge Graph, in: Proceedings

of the 19th International Semantic Web Conference, ISWC,

Springer International Publishing, 2020, pp. 411–429. ISBN

978-3-030-62466-8. doi:10.1007/978-3-030-62466-8_26.

[38] T. Delva, J. Arenas-Guerrero, A. Iglesias-Molina, O. Corcho,

D. Chaves-Fraga and A. Dimou, RML-star: A Declarative

Mapping Language for RDF-star Generation, in: International

Semantic Web Conference, ISWC, P&D, CEUR Workshop Pro-

ceedings, CEUR-WS.org, 2021.

[39] Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard Version 4.0, 2021, https://www.mpi-forum.org/

docs/mpi-4.0/mpi40-report.pdf.

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

	Introduction
	Preliminaries
	R2RML and RML
	Assumptions, Notation and Conventions

	The Morph-KGC Approach
	Self-Join Elimination in Materialization
	Mapping Partitions
	Mapping Partition-Based Knowledge Graph Construction
	Significance of Mapping Partitions

	Empirical Evaluation
	GTFS-Madrid-Benchmark
	COSMIC Testbeds
	Norwegian Petroleum Directorate Benchmark

	Related Work
	Conclusions and Future Work
	References

