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Abstract.
Due to the increasing use of RDF data, efficient processing of SPARQL queries over RDF datasets has become an important

issue. In graph-based RDF data management solution, SPARQL queries are translated into subgraph patterns and evaluated over
RDF graphs via graph matching. However, answering SPARQL queries requires handing RDF reasoning to model implicit triples
in RDF data, which is largely overlooked by existing graph-based solutions. In this paper, we investigate to equip graph-based
solution with the important RDF reasoning feature for supporting SPARQL query answering. In detail, we first propose an on-
demand saturation strategy, which only selects an RDF fragment that may be potentially affected by the query. Then, we provide
a filtering-and-verification framework to efficiently compute the answers of a given query. The framework groups the equivalent
entity vertices in the RDF graph to form semantic abstracted graph as index, and further computes the matches according to
the multi-grade pruning supported by the index. In order to drive and expedite query evaluation, we conceive an effective cost
model for estimating the step-wise cost of query pattern matching. In addition, we show that the semantic abstracted graph and
the graph saturation can be efficiently updated upon the changes to the data graph, enabling the framework to cope with dynamic
RDF graphs. The results of extensive experiments on real-life and synthetic datasets demonstrate the effectiveness and efficiency
of our algorithms.

Keywords: SPARQL BGP query, subgraph matching, RDFS entailment

1. Introduction

The Resource Description Framework (RDF) is a graph-based data model promoted by the W3C for model-
ing Web Objects as part of the prospective semantic web. Due to the simplicity and flexibility of RDF, it is now
leveraged as a unified data model in a wide spectrum of applications, including bioinformatics [2], media data [3],
Wikipedia [4] and social networks [5], etc. They enable machines to leverage the rich structured knowledge to better
understand texts or provide intelligent services.

An RDF dataset is in essence a set of triples, each of the form 〈s, p, o〉 for 〈subject, property,object〉, where
subject and object are entities or concepts and property is the relationship connecting them. Consequently,
a collection of triples can be modelled as a directed labeled graph where the graph vertices denote subjects and
objects while graph edges are used to denote properties, as shown in Figure 1. In order to query RDF data, the W3C
recommends a formal language, namely, SPARQL. For example, to retrieve the actor in a science fiction film who
won an America award, one may formulate the query using the following SPARQL:
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SELECT ?m WHERE (1)

{?m 〈won〉 ?p. (2)

?n 〈hasActor〉 ?m. (3)

?m 〈rd f : type〉 Actor. (4)

?p 〈rd f : type〉 America_Award. (5)

?n 〈rd f : type〉 Science_Fiction_ Film.} (6)

From the perspective of data management, there exist two types of solutions—relational and graph-based—to
RDF data [6]. Using relational databases does not always offer an elegant solution towards efficiently RDF query
evaluation, and still lacks best practices currently [7]. Recently, graph-based solution emerges, attributed to the fact
that RDF is a universal graph model of data. In graph-based solution, a SPARQL query is translated into a graph
pattern P, which is then evaluated over the RDF graph G. The query evaluation process is performed via matching
the variables in P with the elements of G such that the returned graph is contained in G (pattern matching). To
simplify presentation, we assume that the SPARQL queries originally issued at the control site are basic graph
pattern (BGP) queries, since BGP queries are the building block of SPARQL queries [8]. Our solution is easily
extensible to handle general SPARQL queries.

The major advantage of graph-based solution lies in that SPARQL query becomes easier to formulate without
losing its modeling capability, and more importantly, graph pattern matching, without optimization strategies, is
able to perform, if not better, as good as relational RDF query engines [9]. In succession, a few novel graph-based
systems were put forward [9–11]. In particular, gStore [10] uses a carefully designed index VS*-tree to process RDF
queries. TurboHom++ [9] transforms RDF graphs into labeled graphs and applies subgraph homomorphism methods
to RDF query processing. AMbER [11] is a graph-based RDF engine that represents the RDF data and SPARQL
queries into multigraphs and the query evaluation task is transformed to the problem of subgraph homomorphism.

All the aforementioned work can be summarized as graph-based efforts for RDF query evaluation (not an-
swering) since they ignore the essential RDF feature called entailment, which allows model implicit information
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rdf:type

Kate_Winslet

Academy_Award
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Fig. 1. Sample RDF graph
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within RDF graph. Taking entailment into account is crucial, without which leads to incomplete answers [12].
For instance, assume the claim that “Titanic has an actor Leonardo DiCaprio” is not in the RDF data; nonethe-
less, we can derive 〈Titanic_Film, hasActor, Leonardo_DiCaprio〉, on the basis of the explicit triple
〈Titanic_Film, leadingRole,Leonardo_DiCaprio〉 and the description “leadingRole belongs to the
subproperty of hasActor” in terms of RDFS Full. Here, RDFS represents an ontology language that can be used
to enhance the description of RDF graphs. As a result, SPARQL query answering can be split into a reasoning step
and a query evaluation step.

There are two disparate reasoning steps, i.e., saturation and reformulation [13, 14], in relational-based approach-
es. Saturation-based query answering exhaustively makes explicit all of the implicit information. Reformulation-
based query answering performs rewriting a query into an equivalent large union of conjunctive queries and posing
them against the original RDF data [15, 16]. While saturation leads to efficient query evaluation, it requires large
amount of time to compute, space to store, and must be recomputed upon updates; query reformulation adversely
affects query response times due to syntactically great complexity and subtle interplay between RDF and SPARQL
dialects.

In this paper, we investigate to close the gap by supplementing reasoning mechanism to existing graph-based sys-
tems. Conceptually, we strike a balance between saturation and reformulation, and propose to deal with entailment
by using an on-demand saturation strategy. That is, we need not make explicit all of the implicit data in the RDF
graph, since most implicit information is irrelevant to the query; instead, we carefully choose only the RDF frag-
ment that is revelent to the query, and then, saturate it accordingly. Based on the reasoning mechanism, we propose
a filtering-and-verification framework, namely, GQARDF, for computing the answers of a given query.

Contributions. In short, the major contributions under the framework we have made are summarized below:

– We group the equivalent entity vertices in the RDF graph to form multi-grade abstracted graph as index.
– Using the index, we develop a filtering strategy, which extracts a small subgraph of G as a compact represen-

tation of the query results.
– We propose a new encoding method for further refining the candidates of each query vertex and conduct

subgraph matching calculations.
– We conceive an effective cost model for estimating the stepwise cost of query pattern matching, which helps

minimize the total number of intermediate results, and hence, generates a judicious matching order for driving
query evaluation.

– We provide techniques to incrementally maintain the index and the graph saturation upon the changes to the
RDF graph, enabling the framework to cope with dynamic data graphs.

Experiment results demonstrate that our techniques significantly outperform the state-of-the-art RDF data man-
agement system.

Organization. Section 2 formulates the problem, and an overview of the proposed framework follows in Sec-
tion 3. Sections 4 introduces the offline process that build the semantic abstracted graph as index. Section 5 and 6
detail the major components of SPARQL query answering, for handling the entailment and pattern matching, re-
spectively. Section 7 further enables the SPARQL query answering to cope with dynamic data graphs. Experimental
results and analyses are presented in Section 8. Section 9 summarizes related work, and Section 10 concludes the
paper.

2. Preliminaries

RDF data is a set of triples of the form 〈s, p, o〉, where s is an entity or a class, and p denotes one attribute
associated to one entity or a class, and o is an entity, a class, or a literal value. We consider only well-formed triples,
as per the W3C RDF standard, an entity or a class can be represented by URI (Uniform Resource Identifier). In
this work, we will not distinguish between an“entity" and a “literal" since we have the same operations. As an
alternative, RDF data is expressed as an RDF graph, formally defined as follows.
Definition 1 (RDF graph). An RDF graph is a directed labeled graph G = (UG, EG,ΣG, LG), where UG is a set of
vertices that correspond to all subjects and objects in RDF data, EG ⊆ UG × UG is the set of directed edges that
connect the subjects and objects, ΣG is a finite set of labels for vertices and edges, and the labeling function LG
maps each vertex or edge to a label in ΣG. More precisely, a vertex of a subject has a label corresponding to its URI,
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while a vertex of an object can possess a label of either URI or literal. The label of an edge is its corresponding
property.
Definition 2 (RDF schema). RDF Schema (RDFS) is a valuable feature of RDF that allows enhancing the descrip-
tions in RDF graphs. RDFS triples declare semantic constraints between the classes and the properties used in
those graphs.
Definition 3 (RDF entailment). The W3C named RDF entailment the mechanism, through which, implicit RDF
triples can be derived, based on a set of explicit triples and some entailment rules.

Table 1
Instance-level entailment

Constraints Description Entailment rules Entailed triples

≺sc subclass s′ ≺sc s′′; s rdf:type s′ s rdf:type s′′

≺sp subproperty p ≺sp p′; s p s′ s p′ s′

↼d domain p↼d s; s1 p o s1 rdf:type s
⇀r range p⇀r s; s1 p o o rdf:type s

In this research, we concentrate ourselves on the core entailment of RDFS regime. Using RDFS, we can recover a
large amount of implicit information, part of which may be answers to queries. Specifically, Table 1 enumerates the
possible RDFS constraints and the corresponding entailment rules. The first two columns show the allowed semantic
constraints, and the notations to express them, where domain and range denote the first and second attribute of
every property (edge label), respectively. The last two columns show the entailment rules to get the entailed triples.
Since the overwhelming practical impact of querying only the instance-level (implicit and explicit) data, we focus
on query answering only for instance-level queries (cf. Table 1).

We consider the most fundamental building block of SPARQL, which consists of (unions of) basic graph pattern
(BGP) queries1.
Definition 4 (Basic Graph Pattern). A basic graph pattern is modeled as a directed labeled query pattern graph
Q = (VQ, EQ, LQ), where VQ ∈ VG ∪ Vvar is a collection of vertices, where VQ denotes vertices in RDF graph G
and Vvar is a set of variables; EQ ⊆ VQ × VQ is a set of directed edges in Q; each edge e in EQ has a property in
LQ. Figure 2 shows a BGP query, and the circles in it represent variable vertices.

?p
won

Actor

rdf:type

?m ?n
hasActor

America_Award

rdf:type

Science_Fiction_Film

rdf:type

Fig. 2. An illustrate of query pattern graph

Definition 5 (BGP match over RDF graph). Consider an RDF graph G and a BGP query Q = (VQ, EQ, LQ) that
has n vertices {v1, . . . , vn}. A set of n vertices {u1, . . . , un} in G is said to be a BGP match, or embedding, of Q, if
and only if the following conditions hold:

– if vi is a literal vertex, vi and ui have the same literal value;
– if vi is an entity vertex, vi and ui have the same URI;
– if vi is a variable vertex, there is no constraint on ui; and
– if there is an edge 〈vi, v j〉 ∈ EQ with the property p, there is an edge 〈ui, u j〉 ∈ EG with the same property p.

Definition 6 (Query answering). It is important to keep in mind the distinction between query evaluation and query
answering. The evaluation of Q against G only use G’s explicit triples to obtain the BGP matches, thus may lead to
an incomplete answer set. Query answering is the evaluation of Q against G that takes the entailment into account,
to obtain complete answer set. The answers of Q are constituted of returned bindings to query variables.

Frequently used notations are summarized in Table 2.

1 https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns
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Table 2
Notations

Notations Description

Q and G RDF query and RDF graph

v and u A vertex in Q and a vertex in G

T and Ts A class vertex in RDFS and a superclass vertex

Gc and Uc The concept graph of G and the node in Gc

Gci and Uci The i-th grade concept graph and the node in Gci

Tu The class vertex that is adjacent to u

cand(v) The candidates of a query vertex v

QT and vr The spanning tree of Q and the root vertex in QT

3. Framework

Recall that the SPARQL BGP query answering problem is a major challenge that is largely overlooked by exist-
ing graph-based efforts towards RDF data management. To this end, we provide a novel filtering-and-verification
framework named GQARDF. Generally speaking, our approach consists of two stages: offline index construction and
online RDF query answering (see Figure 3). We briefly review the two stages before we discuss them in details in
upcoming sections.

Offline index construction. The offline process is used to build the semantic abstracted graph as index. We
describe the main components. Firstly, we construct an auxiliary data structure, namely, STP, which is a series of
sets that represent the semantic inclusion relation in RDFS. Then, based on STP, we merge the entity vertices in
the RDF graph that is adjacent to equivalent class vertices (have equivalent type) to construct an abstracted graph as
index. The index is precomputed once, and is dynamically maintained upon changes to G.

Online query processing. The online process is used to calculate the answers of a given query. Upon receiving
an RDF query Q, the framework extracts a small subgraph as a compact representation of all the matches that
are similar to Q, by visiting the abstracted graphs. If such a subgraph is empty, the framework determines that Q
has no answers. Otherwise, we use the proposed on-demand saturation strategy to obtain the candidates of each
variable vertex and conduct subgraph matching to calculate the answer. Specially, we propose a new encode module
to encode the neighborhood structure around a vertex into a bitstring, and prune the candidates via “Bloom filter".
Besides, in order to reduce the matching cost, which is proportional to the total number of comparisons, we propose
a cost model to guide the pattern matching, and produce the answer bindings eventually.

On-demand

saturation module

Subgraph 

matching module

O
n
li
n
e

Abstracted 

graph builder

Semantic relationships 

extractor
Input

RDF graph

RDFS

O
ff
li
n
e

RDF query

Filter module
Candidate

Fig. 3. Solution framework of GQARDF
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4. Semantic Abstracted Graph

In this section, we propose an effective index to reduce the space cost and facilitate the query processing.

4.1. Semantic Relationships Extraction

In order to construct the abstracted graph, we need to group and merge the equivalent entity vertices in G, where
two entity vertices are equivalent if they are adjacent to equivalent class vertex (have the equivalent type). To this
end, we construct an auxiliary data structure named STP by using the semantic relation in RDFS, such that given a
class vertex T and an entity vertex u, one can check whether u has type T. STP is comprised of the following four
sets.

– SubPro(·): given an edge property p in RDFS, SubPro(p) is a set of edge properties that are the subproperty
of p;

– SubClass(·): given a class vertex T in RDFS, SubClass(T) is a set of class vertices that are the subclass of T;
– Domain(·): given a class vertex T in RDFS, Domain(T) is a set of edge properties that belong to the domain

of T; and
– Range(·): given a class vertex T in RDFS, Range(T) is a set of edge properties that belong to the range of T.

We extract all triples in RDFS with edge property “rdfs:subPropertyOf ”, i.e., 〈p1, rdfs:subPropertyOf, p2〉 to ob-
tain SubPro(·),. Then, the vertex p1 is extracted to form the set SubPro (p2). The other three sets can be constructed
in a similar flavor as the set SubPro(·). Note that, in the STP construction process, we need to obtain corresponding
superclass vertices for constructing the index.
Definition 7 (Superclass vertex). We say a class vertex Ts is a superclass vertex if there exists no other class vertex
T such that Ts ∈ SubClass(T).

To achieve the superclass vertices, we use a counter num(T) (initialize to 0) for every class vertex T in RDFS to
count the times of T that is extracted to construct SubClass(·). For example, in processing a trip in RDFS with edge
property “rdfs:subClassOf ”, i.e., 〈T1, rdfs:subClassOf,T2〉, T1 is extracted to form the set SubClass (T2). Then,
we set num(T1)← num(T1) + 1. Intuitively, we say a class vertex Ts is a superclass vertex if Ts has a 0 count (i.e.,
num(Ts) = 0). The class vertices {T} within SubClass(·) are sorted in descending order of vertex weights w(T)
where w(T) = 1

num(T) .

Person FilmAward

Kate_Winslet

Leonardo_DiCaprio

Titanic_Film

Inception_FilmAcademy_Award

Golden_Globe_Award James_Cameron

Christopher_Nolan

Fig. 4. Concept graph

4.2. Semantic Abstracted Graph

Relying on the semantic class constraint set in STP, we construct a semantic abstracted graph as index to reduce
the space cost further.

Given an RDF graph G = (U, E, L), a concept graph Gc = (Uc, Ec, Lc) is a directed graph by ignoring edge labels.
In detail, (1) Uc is a partition of U, where each Uc ∈ Uc is a set of entity vertices; (2) each Uc has a label Lc(Uc) from
the superclass vertices obtained in STP, such that for any entity vertex u ∈ Uc of type Tu, Tu ∈ SubClass(Lc(Uc));
(3) 〈U1

c ,U2
c 〉 is an edge in Ec if and only if for each entity vertex u1 in U1

c (resp. u2 in U2
c ), there is an entity vertex

u2 in U2
c (resp. u1 in U1

c ), such that 〈u1, u2〉 (resp. 〈u2, u1〉) is an edge in G. Here, a entity vertex u of type Tu means
there is a class vertex Tu that is adjacent to u. Specially, if u has no type, we can use STP to derive corresponding
type of u. To differentiate the vertices of the concept graph from the vertices of Q and G, we call vertices of the
abstracted graph as nodes.
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)
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)
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Science_Fiction

_ Film(Uc2
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)Romantic_Movie(Uc2

5
)

Director(Uc2
3
)

Award(Uc1
3
)

Academy_Award
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America_Award(Uc2
7
)
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Director(Uc2
4
)
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Kate_Winslet
Leonardo_

DiCaprio

Actress Actor

Film

Inception_FilmTitanic_Film

Science_Fiction_

FilmRomantic_Movie

Award

Academy_Award

Golden_Globe_Award

America_Award

James_Cameron

Christopher_Nolan

Director

(a) Split-Merge process (b) Two-grade semantic abstracted graph 

Gc1

Gc2

Fig. 5. Construction of abstracted graph

Example 1. Figure 4 shows the concept graph Gc of the RDF graph in Figure 1. We see that Person, Film and
Award are the superclass vertices. Each node Uc in Gc represents a set of entity vertices whose types belong to
SubClass(Lc(Uc)). For example, in the node Film, the types of Inception_Film (i.e., S cience_Fiction_Film) and
Titanic_Film (i.e., Romantic_Movie) both belong to SubClass(Film). Then, consider the edge 〈Award, Person〉 in
Ec. For each entity vertex u in the node Award (resp. Person), there is entity vertex u′ in the node Person (resp.
Award) such that 〈u, u′〉 is an edge in G.
Definition 8 (Semantic abstracted graph). A semantic abstracted graph is multi-grade concept graph, where

– the first grade, Gc1 = (Uc1 , Ec1 , Lc1), represents the initial concept graph constructed by using the superclass
vertices;

– the i-th (i > 2) grade, Gci = (Uci , Eci , Lci), is a more detailed concept graph constructed from Gci−1
in the

(i − 1)-th grade by dividing each node Uci−1
(Uci−1

∈ Uci−1
) into smaller partitions. In this case, (1) each

Uci (Uci is in Uci−1 ) has a label Lci(Uci), which is the child-class of Lci−1(Uci−1); (2) 〈U1
ci
,U2

ci
〉 (U1

ci
∈ U1

ci−1
,

U2
ci
∈ U2

ci−1
) is an edge in Eci if and only if for each entity vertex u1 in U1

ci
(resp. u2 in U2

ci
), there is a entity

vertex u2 in U2
ci

(resp. u1 in U1
ci

), such that 〈u1, u2〉 (resp. 〈u2, u1〉) is an edge in G.

An important issue is to get the child-class vertices of a given class vertex Tu. Recall that we can obtain the
subclass vertices {Tn

u} of Tu based on SubClass(Tu) in STP, each of which has a weight w(Tn
u). Note that, the closer

Tn
u is to Tu, the greater the value of w(Tn

u) is. As a result, we say {T1
u , . . . ,Ti

u} (1 < i 6 n) is the set of child-class
vertices of tu if they have the same and greatest value of weights in SubClass(Tu). In specific, if SubClass(Tu) = ∅,
we say the child-class vertex of Tu is itself. Figure 5(b) depicts a semantic abstracted graph of the RDF graph in
Figure 1, which is also a two-grade concept graph.

Our empirical study showed that three-grade concept graph are enough for optimization. Thus, we set the grade
as 3 in our experiments.

Semantic abstracted graph construction. In order to construct the semantic abstracted graph, we present an
algorithm, namely, constructSAG. It first constructs the nodes set Uc1 as a vertex partition of G, where each node Uc1
of Uc1 consists of the entity vertices of type Lc1(Uc1) ∈ SubClass(Ts) (Line 1). The edge set Ec1 is also constructed
accordingly (Line 2). It then checks the condition whether for each edge 〈U1

c1 ,U
2
c1〉, each vertex u1 (resp. u2) in U1

c1
(resp. U2

c1 ) has a child in U2
c1 (resp. parent in U1

c1 ) (Line 4). If not, it refines Uc1 by splitting and merging the node
U1

c1 (resp. U2
c1 ) to make the condition satisfied. The refinement process repeats until a fixpoint is reached (Line 5).

Gc1 is updated accordingly with the new node and edge set (Line 6). In Gci (i > 2), it replaces the class vertices
used in Gci−1 with corresponding child-class vertices and adopt the same procedure to construct Gci (Lines 7–9).

For example in Figure 5(a), nodes Person and Film are divided into a set of nodes {Actress, Actor,Director}
and {Romantic_Movie, S eience_Fiction_Film} in Gc2 , respectively. Since the entity vertex Christopher_Nolan
in Director has no neighbor in node Romantic_Movie, we split the node Director into two nodes to produce Gc2
(Figure 5(b)) as the 2-nd grade concept graph.
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Algorithm 1: constructSAG
Input : G is the RDF graph ; STP is the auxiliary data structure.

1 Construct partition Uc1 of U as {U1
c1 , · · · ,U

n
c1}, where Lc1(U i

c1) := Tsi , U i
c1 = {ui|Tui ∈ SubClass(Lc1(U i

c1))};
2 Set Ec1 := {〈U1

c1 ,U
2
c1〉|〈u1, u2〉 ∈ E, u1 ∈ U1

c1 , u2 ∈ U2
c1}

3 while there is a change in Uc1 do
4 if there is an edge 〈Uc1 ,U ′c1〉 where u ∈ Uc1 has no child in U ′c1 (resp. u′ ∈ U ′c1 has no parent in Uc1 ) then
5 SplitMerge (Uc1 ,Gc1 ) (resp. SplitMerge (U ′c1 ,Gc1 ))

6 update Gc1 ;

7 foreach grade i from 2 to maxgrade do
8 Construct partition Uci of U as {U1

ci , · · · ,U
n
ci}, where Lci(Um

ci ) := ChildClass(Lci−1(Um
ci−1

)),
Um

ci = {um|Tum ∈ SubClass(Lci(Um
ci ))};

9 Same as Lines 2–6;

Correctness and Complexity. The algorithm constructSAG correctly computes a set of concept graphs as the
sematic abstracted graph. For the complexity, the time complexity of SplitMerge is O(|UG| + |EG|); and the com-
plicity of constructing the i-th grade concept graph isO(|EG|log|UG|). Thus, the total time complexity of construct-
SAG is O(g ∗ |EG|log|UG|) where g is maxgrade. As g is typically small comparing with |UG| and |EG|, the overall
complexity of constructSAG is thus O(|EG|log|UG|).

5. Query Pruning and Answering

In this section, we illustrate the filtering phase of the query answering framework based on the abstracted graph
index, and then obtain the answers of the query by adding the on-demand saturation strategy.

5.1. Multi-grade Filtering

In order to retrieve the final answers, we need to obtain candidates for each variable vertex in the query. Instead
of performing the subgraph matching directly over the RDF graph, we extract a (typically small) subgraph of G that
contains all the matches of the query based on the abstracted graph.

We first search the query graph over Gc1 . For each variable v in Q, we can obtain the corresponding superclass Ts
of v based on STP. Let cand(v) denote the candidates of v, which is initialized as the set of nodes labeled Ts in Gc1 .
We conduct a fixpoint computation for each query edge 〈v, v′〉 (v′ is not a class vertex) using cand(v) and cand(v′).
Regarding each node Uc1 ∈ cand(v), we check if there is a node U ′c1 in cand(v′) such that edge 〈Uc1 ,U ′c1〉 in Gc1
has the same direction as 〈v, v′〉. If not, Uc1 (and all the data vertices contained in it) is no longer a candidate for v,
and will be removed from cand(v). Specially, if cand(v) is empty, then we can say the query Q has no answers over
the RDF graph.

Multi-grade pruning. Since the semantic abstracted graph is a multi-grade concept graph, we can refine can-
didates by going through i-th (i > 2) grade concept graph one-by-one. For example, in the 2-nd grade, given a
query edge 〈v, v′〉, let Tv and Tv′ denote the types of v and v′, respectively. For each node Uc2 contained in Uc1
(Uc1 ∈ cand(v)), we check if (1) Tv ∈ SubClass(Lc2(Uc2)) (or Tv = Lc2(Uc2)); (2) there is node U ′c2 contained in
U ′c1 (U ′c1 ∈ cand(v′)) that is adjacent to Uc2 and Tv′ ∈ SubClass(Lc2(U ′c2)) (or Tv′ = Lc2(U ′c2 )). If not, Uc2 (and all
the entity vertices contained in it) can be pruned. Note that, if the type Tv of v is equal to Lc2(Uc2), then we will not
check the query edges adjacent to v any more in larger grades concept graphs. To differentiate v from other query
vertices, we use a flag for each query vertex (initialize to false) and set f lag[v] = true. Similarly, one may further
refine the candidates by going through larger grades concept graphs.
Example 2. Consider the semantic abstracted graph in Figure 5(b), and the SPARQL query graph in Figure 2.
Based on STP, we can calculate the superclasses of ?p, ?m and ?n are Award, Person and Film, respectively.
In Gc1 , we initialize cand(?p) = {U3

c1}, cand(?m) = {U1
c1}, cand(?n) = {U2

c1}. After checking, we find all the
candidate nodes satisfy the edge constraint and will not be pruned. Then, in Gc2 , we refine the candidates set of each
variable vertex based on the child-class of each superclass used in Gc1 . After the refinement, cand(?p) = {U7

c2},
cand(?m) = {U2

c2}, cand(?n) = {U6
c2}.
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Correctness and Complexity. The candidates of each variable vertex in Q is initialized using the lazy strategy
contains all the possible matches. For each query edge 〈v1, v2〉, we use cand(v2) to refine cand(v1) in each grade
concept graph, and only remove those nodes that are not matches (non-matches) for v1. Since if there indeed exists
a data node Uci that can match v, then for every query edge 〈(〉v, v′), there must exist an edge 〈Uci ,U ′ci

〉 in the i-th
concept graph. Thus, we only remove invalid candidates from the initial candidates of each variable vertex. The
correctness thus follows.

Suppose that the semantic abstracted graph S AG = {Gc1 ,Gc2 , . . . ,Gcn}. The filtering process can be imple-
mented in time O(|EQ||S AG|). The construction of candidates of Q is in time O(|S AG|). Thus, the total time is
in O(|EQ||S AG|). In practice EQ is typically small, and the TOTAL complexity can be considered as near-linear
w.r.t.|S AG|.

5.2. On-demand Saturation

To obtain complete answers of the query, in this section, we present an on-demand saturation strategy, which
consists of two stages: edge property saturation and entity type saturation.

Edge property saturation. Edge property saturation is used to check whether a data edge can match a query
edge with respect to property, either directly or via entailment. That is, if a data edge has a different property from a
query edge, we examine the subproperties entailed by the data edge, to see if any of them matches the query edge.

To this end, let 〈v, v′〉 be an outing going edge labeled pv adjacent to v. For each candidate entity vertex u in
cand(v), we check whether there exists an outgoing edge 〈u, u′〉 labeled pu adjacent to u such that pu = pv or
pu ∈ SubPro(pv). If not, u will be pruned from cand(v). Otherwise, if pu ∈ SubPro(pv) and there is no other outing
edge adjacent to u with the property pv, we add the outgoing edge 〈u, u′〉 labeled pv into u.

Entity type saturation. Entity type saturation is used to check if a entity vertex matches a query vertex with
respect to type in the query graph.

Given a variable vertex v of type Tv s.t. f lag[v] = false, for each entity vertex u in cand(v), we check if one of
the following three conditions hold: (1) Tu ∈ SubClass(Tv) where Tu is the type of u; (2) there exists an outgoing
edge 〈u, u′〉 labeled pu adjacent to u such that pu ∈ Domain(Tv); (3) there exists an incoming edge 〈u′, u〉 labeled
pu adjacent to u such that pu ∈ Range(Tv). If not, u will be pruned from cand(v).

5.3. RDF Query Answering

Note that, in the filtering process, we ignore the edge property information for each query edge. In this section,
we use the neighborhood encoding technology to further prune invalid candidates.

Neighborhood encoding. Neighborhood encoding has been widely adopted to assist various operations in man-
aging RDF data [17], which describes each vertex as a bit string, namely, vertex signature. In a similar flavor, we
choose to encode, for each vertex in RDF graph, its adjacent edge properties and the corresponding neighbor vertex
properties into bit strings via Bloom filter [18].

Let 〈u, u′〉 labeled pu be an adjacent edge of an entity vertex u in G, m the length of pu’s bit string, n the length of
u′’s bit string. Bloom filter uses a set of hash functions H to set m out of m bits to be “1", and set n out of n bits to be
“1", where m and n represent the number of independent hash functions, respectively. The bit string of u, denoted
by Bit(u), is formed by performing bitwise OR operations over all it’s adjacent edge bit strings. Note that given a
variable vertex v, if the adjacent neighbor of v is also a variable vertex, we set the bit string of the vertex with all
“0” (same as variable edge). u is a candidate of v only if Bit(v) & Bit(u) = Bit(v), where ‘&’ is the bitwise AND
operator.

Out-

edge

Out-

vertex

Out-

edge+vertex

In-

edge

In-

vertex

In-

edge+vertex

Fig. 6. Bit string of a vertex

The encoding method in [10] divides the bit string of the vertex into two parts: the first part represents the outgo-
ing edge properties information, while the second represents the properties information of linked neighbors. Such
method can be insufficient in fully harness the neighborhood information for candidate pruning. In this connection,
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we propose to encode the neighborhood of a vertex using six parts, as depicted in Figure 6. The first two parts de-
scribe the information of outgoing edges information and linked vertices. In the third part, we bind each edge with
the neighbor corresponding to it. The last three parts are the information about incoming edges, which are processed
in a similar manner as for outgoing edges. In order to avoid the “false drop" problem that may exist in the encoding
method, we follow the method in [10] to set the length of each part as 100 and use 3 different hash functions.

Then, upon receiving the final concise candidates set of each query vertex, we conduct subgraph homomorphism
calculations to obtain the answers of the query. Since the matching order selection is one of the most important
parts of the subgraph matching, we propose an effective cost model for estimating the stepwise cost of query pattern
matching, which helps minimize the total number of intermediate results, and hence, generates a judicious matching
order for driving query evaluation. More details see Section 6.

6. Cost-driven Pattern Matching

In this section, we intend to harvest BGP matches (or embedding) to the SPARQL query Q by leveraging the
candidates set of each vertex in Q. We are in quest of boosting performance by conducting exploration on the
corresponding candidates sets.

Standard backtracking is viable but inefficient, which neglects the matching order that may greatly affect the
performance. The matching order has been a focused theme in general graph pattern matching [19], which also
applies to RDF graphs [9]. The key problem to be addressed is how to reduce the total number of comparisons
performed in the candidate verification. Analogous to existing work, we present a novel prediction-based approach
to decide an appropriate order for matching vertices.

6.1. Cost model

We use a cost model to guide the choice of next vertex in matching order. Akin to existing work [20], our model
follows to be established on the basis of a spanning tree QT of the query pattern Q. First and foremost, the first
decision is to choose a root vertex, and based on the root vertex spanning trees can be derived. Edges in QT are
called tree edges, and those not in QT are non-tree edges.

We develop the cost model as follows. If we have a matching order (v1, v2, . . . , vn) for all vertices of Q, the total
number of comparisons (mapping cost) performed in a backtracking algorithm for matching Q is

Thom , T|VQ| = |M1|+
|VQ|∑
i=2

|Mi−1|∑
j=1

d j
i · (ri + 1), (7)

where Mi represents the set of matching results for the subgraph of Q that is induced by (v1, v2, . . . , vi), d j
i is the

number of vertices in cand(vi) joinable with a (partial) match in Mi−1, and ri is the number of non-tree edges
between vi and vertices before vi in the matching order. In addition, u ∈ cand(vi) is a successful mapping of vi, if it
satisfies all connection constraints specified by the non-tree edges of vi (ri in total).

?x u1

u2 u3 u4 u5 u6 u7

T

?y ?z

?x

?y ?z

T

hasActor directBy

hasFriend

liveIn

(a) (b)

?m

won

?mT u8 u9 u10

Fig. 7. Sample query pattern and candidates

Example 3. Consider the sample query pattern Q in Figure 7(a), where edges in black are tree edges, and the one
in green is a non-tree edge. Figure 7(b) depicts the candidates of every vertex. Assume we are looking at a matching
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order by (?x, ?y,T, ?z, ?m) for Q, the total number of comparisons, according to Equation (7), can be derived by
1 + 4 + 4 + 8 × 2 + 1 = 26. In comparison, if we use another order by (?x, ?z, ?y,T, ?m), the total number of
comparisons is 1 + 2 + 8× 2 + 1 + 1 = 21.

The above example unveils that matching order is vital to a performant RDF query evaluator. In the sequel, we
present an efficient algorithm to obtain a good and practical order.

6.2. Heuristic approximation

It is noted from Equation (7) that the number of non-tree edges, i.e., ri between vi and vertices before vi in the
matching order, largely depends on the actual matching order. The total number of configurations of ri is exponential
in O(|VQ|!). It is prohibitively expensive to optimize Tiso on the fly while involving ri. As a consequence, we choose
to minimize Tiso in a greedy manner. That is, every time when matching a vertex of Q, we expect a vertex producing
the minimum number of comparisons on the basis of current intermediate results.

Intuitively, for the root vertex, we favor vertex that is of a relatively small number of candidates and a large
degree. Thus, the vertex with the minimum value of |cand(v)|

deg(v) is chosen as the root vr, where deg(v) is the total degree
of v. Subsequently, given a set of vertices adjacent to vr, the next vertex is the one that together with vr requests the
minimum number of comparisons. Nevertheless, it is still fairly difficult to precisely calculate the actual results of
every vertex together with the intermediate matching results. To further simplify the calculation, when we match a
vertex vi, the number of comparisons together with vi may be estimated by

T ′(vi) = |Mi−1| · |cand(vi)| · P(pi) · (ri + 1). (8)

Here, pi is the edge connecting vi and vi’s parent vertex in the spanning tree, P(pi) denotes the probability that
a triple satisfies the constraint of the edge, i.e., the ratio of number of candidate edges satisfying the connection
constraint of pi over total number of edges in G 2. We exemplify the calculation using Example 4.
Example 4. Consider the query pattern in Figure 7, and suppose that the vertices ?x and ?z have been matched. At
this time, the number of intermediate results is 2, and we are going to choose the next vertex. If we choose ?m, the
number of comparisons is 1 + 2 = 3; if we choose ?y, the number of comparisons is 8× 2 = 16. According to the
greedy selection, we choose ?m as the next vertex, and the current total number of comparisons is 1 + 2 + 3 + 12×
2 + 1 = 31.

The cost estimation in Equation (8) is greedy in the sense that it only considers the cost thus far, but ignores the
cost from remaining unmatched vertices. If we choose to match ?y (rather than ?m), we could have a smaller number
of 21 comparisons. This means the approximation needs to be amended, and this situation recalls a heuristic strategy
used in the classic A∗ algorithm. Analogously, we divide the cost of matching a vertex into two components: 1. the
cost incurred by the current vertex (Equation (8)); and 2. the estimated future cost from the current vertex.

In order to estimate the future cost, we need to anticipate the number of intermediate matching results afterwards
and the number of candidates of unvisited vertices. Note that, it is very difficult to precisely calculate the actual
intermediate results after mapping vi. Thus, we use an approximate method that estimates the number of results as

|Mi| = |Mi−1| · |cand(vi)| ·
n−1∏
j=0

P(pi
j), (9)

where pi
j represents the jth edge adjacent to vi that links to the visited vertex. Then, we estimate the number of candi-

dates for the unvisited vertices. Let vk be an unvisited vertex, the number of candidates for vk may be represented as
|cand(vk)| ×

∏
P(pk), where pk represents an edge adjacent to vk. The total number of candidates for the unvisited

vertices is the sum of every candidate results of unvisited vertex. Based on intermediate results and candidates for
unvisited vertices, the future cost of mapping a vertex vi is estimated as

T ′′(vi) = |Mi| ·
∑[

|cand(vk)| ×
∏
P(pk)

]
. (10)

2 If pi is a variable, P(pi) equals number of candidate edges adjacent to Mi−1 divided by total number of edges.
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As a result, the cost of mapping vi, i.e., Tiso++(vi), is estimated as Thom++(vi) = T ′(vi) + T ′′(vi), which is close to
the real cost (minimum cost) in pattern matching.

Correctness and complexity. Based on the discussion, we can implement a procedure for choosing the next
vertex for matching, namely, minCostVertex. Note that, we will choose ?y first if we use the new cost model in
Example 4 which may bring fewer cost. While the details of the procedure is omitted in the interest of space, it can
be seen that the procedure runs in O (|EG| × |VQ| × |EQ|). In the matching process, we ignore the type vertices in
Q since these vertices have been used to prune candidates in entity type saturation step (see Section 5.2).
Example 5. Continuing Figure 7, suppose ?x and ?z have been visited and ?y is the vertex to be mapped at this
step. The intermediate matches M = {(u1, u6), (u1, u7)} and cand(?y) = {u2, u3, u4, u5}. There are two visited
vertices ?x and ?z that are adjacent to ?y. Here, (u1, u7) will be removed from M since there are no edges linking
the vertices in cand(?y) and u7. As a result, we can get M′ = {(u1, u6, u2)}.
Remark. In comparison with existing cost models for pattern matching and order selection, the proposed model
and algorithm are advantageous in the sense that

– As identified by existing work [20], TurboHom++ [9] fails to be applicable to large and complex query patterns;
in contrast, GQARDF lends itself to large and complex BGP queries against the more difficult matching criteria
of subgraph homomorphism;

– Compared with QuickSI [21], which merely concentrate on a local cost with a greedy strategy, our proposed
cost model generates a more effective matching order, which takes both existing and future costs into account,
and hence, reduces a large number of unpromising intermediate results;

– In comparison with CFL [20], which implements a path-based cost model, our model chooses an edge-based
cost most, and thus, is more flexible and less computationally expensive, while retaining the quality of order
selection.

It can be seen that the cost-driven matching algorithm heavily relies on a good estimation of cand(·), and the more
accurate estimation, the better guidance for matching ordering. In this paper, we strive to offer a good estimation of
candidates by levering an online saturation strategy with index support.

7. Rationale of Maintenance

In practice the data graphs are changing frequently over time. In this section, we investigate the incremental
maintenance of the semantic abstracted graph index and the graph saturation, which further enables the RDF query
answering to cope with dynamic data graphs.

7.1. Index Maintenance upon updates

Instead of recomputing the semantic abstracted graph and the saturation from the scratch each time the RDF
graph is updated, we relay on an incremental maintain strategy.

Handling Edge Insertions. Consider an edge 〈u, u′〉 inserted into G, we take a split-merge-propagation strategy
for each grade in the abstracted graph as follows. In the 1-st grade, we first identify Uc1 and U ′c1 in Gc1 that contains
u and u′, respectively. We then separate u′ from U ′c1 , and split Uc1 similarly if Uc1 and U ′c1 violate the structural
constraints of a concept graph due to the edge insertion. Next, we check whether the separated data vertices can
be merged into other nodes in Gc1 , due to satisfying the edge constraints. Since the updates of nodes Uc1 (resp.
U ′c1 ) may propagate to its adjacent nodes, we should further check the neighbor nodes of Uc1 (resp. U ′c1 ) in the
same way until there is no update in Gc1 . Similarly, after updating Gc1 , we update Gci (i > 2) following the same
split-merge-propagation strategy.

Handling Edge Deletions. Consider an edge 〈u, u′〉 deleted from G, we take a similar operations as the updating
procedure of edge insertions. After processing the changes directly caused by the edge deletion, it propagates the
changes, following the same split-merge-propagation strategy. In the 1-st grade, we first identify Uc1 and U ′c1 in Gc1
that contains u and u′, respectively.And then identifying whether U ′c1 still has the child vertex of u (resp. whether
Uc1 still has the parent vertex of u′). If not,we separate u form Uc1 (reap. u′ form U ′c1 ), and then check whether the
separated data vertices can be merged into other nodes in Gc1
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7.2. Saturation Maintenance upon updates

To maintain the saturation efficiently, an important issue is to keep track of the multiple ways in which an edge
was entailed. This is significant when considering both implicit data and updates: for a given update, we must decide
whether this adds/removes one reason why a triple belongs to the saturation. A naïve implementation would record
the inference paths of each implied triple, that is, all sequences of reasoning rules that have lead to that triple being
present in the saturation. However, the volume of such justification grows very fast and thus the approach does not
scale. Instead, we chose to keep track of the number of reasons why an edge has been inferred. In subproperty satu-
ration, the number of reason is 1 since an implied edge only entailed by one explicit edge. In entity type saturation,
for each data vertex u in cand(v), we use the notation Type(u) to record the number of reasons that can entail u has
the same type as v. Then, for a given edge insertion (resp. edge deletion), we will decide whether this adds (resp.
deletes) one reason why an type edge belongs to the saturation. When this count reaches 0, the implied type edge
should be deleted.

8. Experiments

In this section, we evaluate our method over both real and synthetic datasets and compare with te state-of-the-art
algorithms. Both real and synthetic data are used to evaluate GQARDF’s performance. The synthetic data is used to
study its scalability.

8.1. Experiment setup

The proposed algorithms were implemented using C++, running on a Linux machine with two Core Intel Xeon
CPU 2.2Ghz and 32GB main memory. Particularly, three algorithms were implemented: (1) GQARDF, our algorithm;
(2) TurboHom++, which extends existing subgraph homomorphism method to handle SPARQL queries [9]; (3) g-
Store, which tags each vertex with a signature and match signatures of data vertices and pattern vertices one by
one [10]; (4) CFL, the state-of-the-art subgraph matching algorithm that is used to evaluate the efficiency of our
proposed cost model.

Experiments were carried out on real-life RDF and synthetic datasets (as shown in Table 3). For query evaluation,
Table 3

Graph datasets

Dataset Edge Predicate Entity
Yago 20,263,756 21,843 2,218,624

LUBM10M 12,237,135 18 1,684,231
LUBM20M 25,124,227 18 3,243,658
LUBM30M 32,457,671 18 4,752,538

we choose to use the SPARQL BGP queries in [22] over Yago and use the SPARQL BGP queries in [23] over LUBM,
each of which has six queries (Q1 ∼ Q6).

We measure and evaluate (1) the effectiveness of the on-demand saturation strategy; (2) the efficiency and scala-
bility of the query answering framework; (3) the effectiveness of our proposed encoding method and the efficiency
of our cost model; and (4) the performance and cost of the semantic abstracted graph index.

8.2. Evaluating the effectiveness of on-demand saturation

In this subsection, we evaluate the effectiveness of our on-demand saturation technology, which is scaled by
the number of match results. For the sake of simplicity, we use Qy

i to represent the query Qi in Yago, and use Ql
i

to represent the query Qi in LUBM. We ran experiments with both datasets and report the results obtained for all
queries. The conclusions are reported below.

Table 4 shows the total number of match results. It is not surprising to notice that GQARDF can get more complete
match results for almost all the queries than gStore. Especially, in Qy

2, Qy
4 and Ql

3, the number of match results
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Table 4
Match results

Queries
Yago LUBM 10M

gStore GQARDF gStore GQARDF

Q1 1,638 3,271 211 495
Q2 0 1,063 2,201 6,731
Q3 397 1,817 0 4,062
Q4 0 18,849 1,336 1,849
Q5 125 428 29 231
Q6 863 1,093 784 784

is 0 if we use gStore. This is because in Qy
2, the edge label “placedIn” does not exist in original RDF graph,

however, GQARDF can use the constraint isLocatedIn ≺sp placedIn to get the entailed triples which satisfy the
query. Similarly, in Qy

4 and Ql
3, some edges in pattern graph but not in RDF graph will be entailed, and added

to the RDF graph to get more match results. In general, the comparisons verify the effectiveness of our proposed
on-demand saturation strategy.

8.3. Evaluating the efficiency and scalability of GQARDF

We evaluated the performance of GQARDF, gStore and TurboHom++ using both Yago and LUBM, and their scala-
bility using LUBM. In these experiments, the indexes were precomputed, and thus their construction time were not
counted. Note that, gStore and TurboHom++ cannot handle SPARQL query answering since they ignore the essential
RDF feature called entailment. As a result, we adopt the reformulation reasoning strategy, and rewrite the queries
that are used in gStore and TurboHom++ to directly compute all the answers.

Query answering time. Figure 8(1) and Figure 8(2) show the query answering time for each RDF query graph
over Yago and LUBM, respectively. Since TurboHom++ needs offline process for transforming the RDF graph into
labeled graph and gStore needs offline process for building the VS*-tree index, we only consider the online per-
formance for each competitors. GQARDF consistently outperforms its competitors. This is due to our on-demand
saturation strategy that can avoid large amounts of subgraph matching calculations for rewritten queries. Specially,
in Yago, GQARDF outperforms TurboHom++ by up to 14.89 times (see query Qy

4), gStore by up to 13.75 times (see
query Qy

6); in LUBM, GQARDF outperforms TurboHom++ by up to 8.32 times (see query Ql
5), gStore by up to 12.16

times (see query Ql
5). Note that, in most cases, gStore has the worst performance, since it traverses the RDF graph

in a BFS order, which will produce redundant Cartesian products.

Evaluating the scalability. Figure 9 shows the performance results of GQARDF against existing algorithms re-
garding the scalability by using LUBM for varying the dataset size. Here, we vary the size of the RDF graph from
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Fig. 9. Comparison of scalability

12,237,135 (LUBM10M) to 32,457,671 (LUBM30M). We use Q6b since the performance gap is largest at this
case. It reveals that GQARDF consistently outperforms its competitors regardless of the dataset size. In generally,
the scalability suggests that GQARDF can handle reasonably large real-life graphs as those existing algorithms for
deterministic graphs. Specially, GQARDF outperforms TurboHom++ by up to 14.73 times and gStore by up to 26.02
times.

8.4. Comparison of partial performance

In this subsection, we compare the partial performance with baselines on Yago dataset, including: 1. the pruning
power of the new encoding method; and 2. the efficiency of the new cost model. Note that, when comparing the
encoding method, there may be many variable vertices that need to retrieve candidates, and we select the vertex with
the maximum neighbors to be displayed.

Evaluating the encoding method. The result is shown in Figure 10. As expected, the encoding method in this
paper is no worse than gStore system. Note that in Q6, using the new encoding method can reduce the number
of candidates by a factor of 100. However, for the vertex with a large number of candidates, i.e., Q5, there is no
significant improvement in pruning power. This is because the minimum number of candidates is already very large,
and only the outgoing edges of the chosen vertex are enough to obtain the minimum number of candidates in these
cases, even if we consider the local features of the chosen vertex precisely rather than using Bloom Filter. In such
cases, the unpromise candidates can only be moved in pattern matching process.
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Fig. 10. Number of candidates

Evaluating the cost model. Since the size of candidates is also a key factor affecting the running time despite
matching order, for a fair comparison, we choose to use the same candidate set for every variable vertex in both
solutions. Here, we use the candidates produced by GQARDF and plot the running time in Figure 11. It is revealed
that the time cost in GQARDF is never higher than that in CFL. We observe that in Q5, if we use the matching order
that our cost model produced, it can help lower the time cost by a factor of 10. This is because CFL does not consider



16 N. Huang et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

100

101

102

103

Q1 Q2 Q3 Q4 Q5 Q6

S
ub

gr
ap

h 
M

at
ch

in
g 

T
im

e 
(in

 m
s)

CFL
GQARDF

Fig. 11. Join cost

the future costs, which will produce unpromising intermediate match results; and GQARDF selects the vertex with
minimum immediate results with the aim to postpone cartesian products. In a word, our GQARDF demonstrates
advantage over CFL as the proposed cost model can work well for normal queries.

8.5. Evaluating the effectiveness of semantic abstracted graph

Using synthetic and real-life datasets, we next investigate (1) the index building cost of GQARDF and its competi-
tors, including time cost and physical memory; (2) the memory reduction mr = |MI |

|M| , where |MI | and |M| are the

physical memory cost of the index and the data graph, respectively; (3) the filtering rate fr =
|Gsub|
|G| , where |Gsub| is

the average size of the induced subgraphs in the filtering phase, and G is the size of G. The result is shown below.
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Fig. 12. Evaluation of the offline performance

Figure 12(1) and Figure 12(2) show the space cost and time cost of index construction using LUBM, respectively.
Since TurboHom++ does not construct any index, we only compare GQARDF with gStore. We see that GQARDF has
consistently better performance than its competitors regardless of memory and time. What’s more, the figure reads
a non-exponential increase as the data size grows. In specific, GQARDF outperforms gStore by up to 11.24 times and
40.31 times, in terms of the memory cost and time cost, respectively.

Table 5
Effectiveness of index

Dataset
GQARDF gStore

mr fr mr fr

Yago 0.43 0.13 0.64 0.27
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Table 5 gives the effectiveness of the index using Yago. It reveals: (1) GQARDF beats gStore regardless of mr and
fr; (2) the semantic abstracted graph contains much less nodes and edges over the RDF graph, and takes less than
half of its physical memory cost; (3) using semantic abstracted graph can effectively filter the search space, that is,
the size of Gsub for verification is only 17% over Yago.

We finally compare the performance of GQARDF and its competitors upon RDF graph changes. We use Yago
dataset and fix edge insertions |EI | = 1, 376, 286. Since updating one edge at a time is too slow for TurboHom++
and will reach the timeout (1-hour) for all queries. As a result, we insert edges in batches of 100K (= 100×103) for
it. Figure 13 tells us that GQARDF greatly outperforms its competitors. Specially, GQARDF performs TurboHom++ by
up to 32.19 even the edge updates are inserted in batches for TurboHom++.

9. Related Work

Due to the increasing use of RDF data, many well-known RDF stores based on relation come to the fore, including
relational-based stores and graph-based stores.

Relational-based RDF query evaluation. Relational-based RDF stores use relational models to store RDF data
and translate SPARQL queries into relational algebraic expressions. It, however, need too many join operations.
SW-Store [24] uses a column-oriented store as its underlying store, triples are stored as sorted by the subject column.
RDF-3X [6, 25] and Hexastore [26] model RDF triples as big three-attribute tabular structures and build six
clustered clustered B+-trees as indexes for each permutation of subject, predicate and object. H-RDF-3X [27] is a
distributed RDF processing engine where RDF-3X is installed in each cluster node.

Graph-based query evaluation. Graph-based stores use graph traversal approaches, i.e., subgraph homomor-
phism, and graph indexing. TurboHom++ [9] eliminates corresponding query vertices/edges from a query graph by
embedding the types of an entity into a vertex label set to boost query performance. GRIN [28] uses graph parti-
tioning and distance information to construct the index for graph queries. Its index is a balanced binary tree with
each of its nodes containing a set of triples. gStore [10] tags each vertex with a signature and matches signatures
of data vertices and query vertices by using the VS*-tree index. Grass [29] performs the graph pattern matching by
the concept of fingerprint for star subgraph, which can describe a subgraph and be used as a filter to help to prune
search space.

However, above methods ignore the essential RDF feature called entailment, which allows modeling implicit
information through some inference schemes. As a result, leading to incomplete answers. In general, inference
schemes are inherently divided into two main approaches, forward-chaining and backward-chaining. Forward-
chaining generates all the implicit triples based on graph saturation (closure) and add them to the database. For
example, 3store [13], Jena [30], OWLIM [14], Sesame [31] support saturation-based query answering, based on (a
subset of) RDF entailment rules. The work by Goasdoué et al. [12] extends above studied by the support of blank
nodes. While saturation leads to efficient query process, it needs time to be computed iteratively until a stopping
criterion is matched and space to be stored. The Backward-chaining approach performs inference at query time,
rewriting queries and posing them against the original data. Algorithms in [32] consider some novel rules to refor-
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mulate relational conjunctive queries. However, the query-specific backward-chaining techniques adversely affect
query response times due to live inference. As for graph-based SPARQL query processing, the system could re-
turn more answers that match the query based on the semantic similarity. The work by Zheng et al. [33] proposes
an instance-driven approach to automatically discover the diverse structure patterns conveying equivalent semantic
meanings from a large RDF graph. However, the answers at this condition are inexactly.

To our best knowledge, there is no research literature directly targeting entailment on graph-based RDF query
answering. In this paper, we striking the trade-off between forward- and backward-chaining and propose to deal
with entailment via on-demand saturation. That is, we carefully choose only the RDF fragment that is revelent to
the query to get exact and complete answers.

10. Conclusion

In this paper, we have studied graph-based approach for efficient query answering. We devise GQARDF to provide
effective support. On top of it, we propose an on-demand saturation strategy, which only selects an RDF fragment
that may be potentially affected by the query. In addition, we devise a semantic abstracted graph index for discov-
ering candidate vertices, which brings a constant-time reduction of candidate search space. The semantic abstracted
graph and the graph saturation can be efficiently updated upon the changes to the data graph. Most importantly, a
cost model is proposed, which takes both existing and future costs into account, and hence, reduces a large number
of unpromising intermediate results. The proposed cost model Finally, comprehensive experiments performed on
real and benchmark datasets demonstrate that GQARDF outperforms its alternatives.

There are many directions that we intend to follow. In this work, we do not consider the blank nodes in the
RDF graph. In the future, we will take the blank nodes into account. Others include support for partitioned RDF
repositories, parallel execution of SPARQL queries, and further query optimization techniques.
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