
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Knowledge Graph Embedding for Data
Mining vs. Knowledge Graph Embedding for
Link Prediction –
Two Sides of the Same Coin?
Jan Portisch a,b and Nicolas Heist a and Heiko Paulheim a,*

a Data and Web Science Group, University of Mannheim, Germany
E-mails: jan@informatik.uni-mannheim.de, nico@informatik.uni-mannheim.de,
heiko@informatik.uni-mannheim.de
b SAP SE, Germany
E-mail: jan.portisch@sap.com

Editors: Mehwish Alam, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Germany; Davide Buscaldi, LIPN, Université
Sorbonne Paris Nord, France; Michael Cochez, Vrije University of Amsterdam, the Netherlands; Francesco Osborne, Knowledge Media
Institute, (KMi), and The Open University, UK; Diego Reforgiato Recupero, University of Cagliari, Italy; Harald Sack, FIZ Karlsruhe - Leibniz
Institute for Information Infrastructure, Germany
Solicited reviews: Angelo Salatino, The Open University, UK; Paul Groth, University of Amsterdam, Netherlands; Five anonymous reviewers

Abstract. Knowledge Graph Embeddings, i.e., projections of entities and relations to lower dimensional spaces, have been
proposed for two purposes: (1) providing an encoding for data mining tasks, and (2) predicting links in a knowledge graph. Both
lines of research have been pursued rather in isolation from each other so far, each with their own benchmarks and evaluation
methodologies. In this paper, we argue that both tasks are actually related, and we show that the first family of approaches can
also be used for the second task and vice versa. In two series of experiments, we provide a comparison of both families of
approaches on both tasks, which, to the best of our knowledge, has not been done so far. Furthermore, we discuss the differences
in the similarity functions evoked by the different embedding approaches.

Keywords: Knowledge Graph Embedding, Link Prediction, Data Mining, RDF2vec, KGlove, node2vec, DeepWalk, TransE,
TransR, RotatE, RESCAL, DistMult, ComplEx

1. Introduction1

In the recent past, the topic of knowledge graph em-
bedding – i.e., projecting entities and relations in a
knowledge graph into a numerical vector space – has
gained a lot of traction. An often cited survey from
2017 [1] lists already 25 approaches, with new mod-

*Corresponding author. E-mail:
heiko@informatik.uni-mannheim.de.

els being proposed almost every month, as depicted in
Fig. 1.

Even more remarkably, two mostly disjoint strands
of research have emerged in that vivid area. The first
family of research works focus mostly on link predic-
tion [2], i.e., the approaches are evaluated in a knowl-
edge graph refinement setting [3]. The optimization
goal here is to distinguish correct from incorrect triples
in the knowledge graph as accurately as possible. The
evaluations of this kind of approaches are always con-

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:jan@informatik.uni-mannheim.de
mailto:nico@informatik.uni-mannheim.de
mailto:heiko@informatik.uni-mannheim.de
mailto:jan.portisch@sap.com
mailto:heiko@informatik.uni-mannheim.de

2 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ducted within the knowledge graph, using the existing
knowledge graph assertions as ground truth.

A second strand of research focuses on the embed-
ding of entities in the knowledge graph for downstream
tasks outside the knowledge graph, which often come
from the data mining field – hence, we coin this family
of approaches embeddings for data mining. Examples
include: the prediction of external variables for entities
in a knowledge graph [4], information retrieval backed
by a knowledge graph [5], or the usage of a knowledge
graph in content-based recommender systems [6]. In
those cases, the optimization goal is to create an em-
bedding space which reflects semantic similarity as
well as possible (e.g., in a recommender system, sim-
ilar items to the ones in the user interest should be
recommended). The evaluations here are always con-
ducted outside the knowledge graph, based on external
ground truth.

In this paper, we want to look at the commonali-
ties and differences of the two approaches. We look
at two of the most basic and well-known approaches
of both strands, i.e., TransE [7] and RDF2vec [4],
and analyze and compare their optimization goals in
a simple example. Moreover, we analyze the perfor-
mance of approaches from both families in the re-
spective other evaluation setup: we explore the usage
of link-prediction based embeddings for other down-
stream tasks based on similarity, and we propose a
link prediction method based on node embedding tech-
niques such as RDF2vec. From those experiments, we
derive a set of insights into the differences of the two
families of methods, and a few recommendations on
which kind of approach should be used in which set-
ting.

Fig. 1. Publications with Knowledge Graph Embedding in their title
or abstract, created with dimensions.ai (as of November 15th, 2021)

2. Related Work1

As pointed out above, the number of works on
knowledge graph embedding is legion, and enumerat-
ing them all in this section would go beyond the scope
of this paper. However, there have already been quite a
few survey articles.

The first strand of research works – i.e., knowl-
edge graph embeddings for link prediction – has been
covered in different surveys, such as [1], and, more
recently, [8–10]. The categorization of approaches in
those reviews is similar, as they distinguish different
families of approaches: translational distance models
[1] or geometric models [9] focus on link prediction as
a geometric task, i.e., projecting the graph in a vector
space so that a translation operation defined for rela-
tion r on a head h yields a result close to the tail t.

The second family among the link prediction em-
beddings are semantic matching [1] or matrix factor-
ization or tensor decomposition [9] models. Here, a
knowledge graph is represented as a three-dimensional
tensor, which is decomposed into smaller tensors
and/or two-dimensional matrices. The reconstruction
operation can then be used for link prediction.

The third and youngest family among the link pre-
diction embeddings are based on deep learning and
graph neural networks. Here, neural network train-
ing approaches, such as convolutional neural networks,
capsule networks, or recurrent neural networks, are
adapted to work with knowledge graphs. They are gen-
erated by training a deep neural network. Different ar-
chitectures exist (based on convolutions, recurrent lay-
ers, etc.), and the approaches also differ in the training
objective, e.g., performing binary classification into
true and false triples, or predicting the relation of a
triple, given its subject and object. [9].

While most of those approaches only consider
graphs with nodes and edges, most knowledge graphs
also contain literals, e.g., strings and numeric values.
Recently, approaches combining textual information
with knowledge graph embeddings using language
modeling techniques have also been proposed, using
techniques such as word2vec and convolutional neu-
ral networks [11] or transformer methods [12, 13].
[14] shows a survey of approaches which take such lit-
eral information into account. It is also one of the few
review articles which considers embedding methods
from the different research strands.

Link prediction is typically evaluated on a set of
standard datasets, and uses a within-KG protocol,
where the triples in the knowledge graph are divided

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

into a training, testing, and validation set. Predic-
tion accuracy is then assessed on the validation set.
Datasets commonly used for the evaluation are FB15k,
which is a subset of Freebase, and WN18, which is
derived from WordNet [7]. Since it has been remarked
that those datasets contain too many simple inferences
due to inverse relations, the more challenging variants
FB15k-237 [15] and WN18RR [16] have been pro-
posed. More recently, evaluation sets based on larger
knowledge graphs, such as YAGO3-10 [16] and DB-
pedia50k/DBpedia500k [17] have been introduced.

The second strand of research works, focusing on
the embedding for downstream tasks (which are often
from the domain of data mining), is not as extensively
reviewed, and the number of works in this area are still
smaller. One of the more comprehensive evaluations
is shown in [18], which is also one of the rare works
which includes approaches from both strands in a com-
mon evaluation. They show that at least the three meth-
ods for link prediction used – namely TransE, TransR,
and TransH – perform inferior on downstream tasks,
compared to approaches developed specifically for op-
timizing for entity similarity in the embedding space.

A third, yet less closely related strand of research
works is node embeddings for homogeneous graphs,
such as node2vec and DeepWalk. While knowledge
graphs come with different relations and are thus con-
sidered heterogeneous, approaches for homogeneous
graphs are sometimes used on knowledge graphs as
well by first transforming the knowledge graph into
an unlabeled graph, usually by ignoring the different
types of relations. Since some of the approaches are
defined for undirected graphs, but knowledge graphs
are directed, those approaches may also ignore the di-
rection of edges.

For the evaluation of entity embeddings for data
mining, i.e., optimized for capturing entity similarity,
there are quite a few use cases at hand. The authors in
[19] list a number of tasks, including classification and
regression of entities based on external ground truth
variables, entity clustering, as well as identifying se-
mantically related entities.

Most of the above mentioned strands exist mainly
in their own respective “research bubbles”. Table 1
shows a co-citation analysis of the different families of
approaches. It shows that the Trans* family, together
with other approaches for link prediction, forms its
own citation network, so do the approaches for ho-
mogeneous networks, while RDF2vec and KGlove are
less clearly separated.

Works which explicitly compare approaches from
the different research strands are still rare. In [20], the
authors analyze the vector spaces of different embed-
ding models with respect to class separation, i.e., they
fit the best linear separation between classes in dif-
ferent embedding spaces. According to their findings,
RDF2vec achieves a better linear separation than the
models tailored to link prediction.

In [21], an in-KG scenario, i.e., the detection and
correction of erroneous links, is considered. The au-
thors compare RDF2vec (with an additional classifica-
tion layer) to TransE and DistMult on the link predic-
tion task. The results are mixed: While RDF2vec out-
performs TransE and DistMult in terms of Mean Re-
ciprocal Rank and Precision@1, it is inferior in Preci-
sion@10. Since the results are only validated on one
single dataset, the evidence is rather thin.

Most other research works in which approaches
from different strands are compared are related to dif-
ferent downstream tasks. In many cases, the results are
rather inconclusive, as the following examples illus-
trate:

– [22] and [23] both analyze drug drug interac-
tion, using different sets of embedding methods.
The finding of [22] is that RDF2vec outperforms
TransE and TransD, whereas in the experiment in
[23], ComplEx outperforms RDF2vec, KGlove,
TransE, and CrossE, and, in particular, TransE
outperforms RDF2vec.

– [24], [21], and [25] all analyze link prediction
in different graphs. While [24] state that RotatE
and TransD outperform TransE, DistMult, and
ComplEx, which in turn outperforms node2vec,
[21] reports that DistMult outperforms RDF2vec,
which in turn outperforms TransE, while [25]
reports that KG2vec (which can be considered
equivalent to RDF2vec) outperforms node2vec,
which in turn outperforms TransE.

– [26] compare the performance of RDF2vec, Dist-
Mult, TransE, and SimplE on a set of classifi-
cation and clustering datasets. The results are
mixed. For classification, the authors use four
different learning algorithms, and the variance
induced by the learning algorithms is most of-
ten higher than that induced by the embed-
ding method. For the clustering, they report that
TransE outperforms the other approaches.1

1We think that these results must be taken with a grain of salt. To
evaluate the clustering quality, the authors use an intrinsic evalua-

4 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Co-citation likelihood of different embeddings approaches, obtained from Google scholar, July 12th, 2021. An entry (row,column) in the table
reads as: this fraction of the papers citing column also cites row.

TransE TransR RotatE DistMult RESCAL ComplEx RDF2vec KGlove node2vec DeepWalk
total 3379 1852 391 1147 408 1017 321 73 5269 5290
TransE 100,0% 69,7% 80,6% 69,8% 40,9% 73,3% 38,3% 46,6% 5,1% 5,0%
TransR 32,6% 100,0% 36,3% 36,2% 23,8% 38,2% 17,8% 27,4% 3,2% 2,9%
RotatE 10,7% 10,7% 100,0% 22,8% 3,4% 27,3% 3,1% 6,8% 0,5% 0,5%
DistMult 25,2% 26,7% 75,4% 100,0% 16,7% 63,7% 16,2% 21,9% 1,7% 1,5%
RESCAL 22,3% 27,4% 34,0% 38,6% 100,0% 40,8% 14,3% 20,5% 1,6% 1,7%
ComplEx 26,4% 27,2% 73,4% 58,2% 19,9% 100,0% 15,3% 17,8% 1,9% 1,9%
RDF2vec 4,4% 4,6% 4,3% 4,8% 2,5% 5,9% 100,0% 83,6% 1,6% 1,5%
KGlove 1,0% 1,4% 2,0% 1,0% 1,2% 1,4% 13,7% 100,0% 0,3% 0,2%
node2vec 11,1% 11,7% 8,7% 9,4% 5,6% 9,7% 21,5% 31,5% 100,0% 64,1%
DeepWalk 11,7% 11,7% 10,0% 8,8% 6,1% 9,1% 21,8% 23,3% 66,2% 100,0%

While this is not a comprehensive list, these observa-
tions hint at a need both for more task-specific bench-
mark datasets as well as for ablation studies analyzing
the interplay of embedding methods and other process-
ing steps. Moreover, it is important to gain a deeper un-
derstanding of how these approaches behave with re-
spect to different downstream problems, and to have
more direct comparisons. This paper aims at closing
the latter gap.

3. Knowledge Graph Embedding Methods for
Data Mining1

Traditionally, most data mining methods are work-
ing on propositional data, i.e., each instance is a row in
a table, described by a set of (binary, numeric, or cat-
egorical) features. For using knowledge graphs in data
mining, one needs to either develop methods which
work on graphs instead of propositional data, or find
ways to represent instances of the knowledge graph as
feature vectors [27]. The latter is often referred to as
propositionalization [28].

RDF2vec [4] is a prominent example from the sec-
ond family. It adapts the word2vec approach [29] for
deriving word embeddings (i.e., vector representations
for words) from a corpus of sentences. RDF2vec cre-
ates such sentences by performing random walks on
an RDF graph and collecting the sequences of entities
and relations, then trains a word2vec model on those
sequences. It has been shown that this strategy out-
performs other strategies of propositionalization. The
relation between propositionalization and embedding
methods has also recently been pointed out by [30].

tion metric, i.e., Silhouette score, which is computed in the respec-
tive vector space. It is debatable, however, whether Silhouette scores
computed in different vector spaces are comparable.

3.1. Data Mining is based on Similarity2

Predictive data mining tasks are predicting classes
or numerical values for instances. Typically, the tar-
get is to predict an external variable not contained in
the knowledge graph (or, to put it differently: use the
background information from the knowledge graph to
improve prediction models). One example would be to
predict the popularity of an item (e.g., a book, a music
album, a movie) as a numerical value. The idea here
would be that two items which share similar features
should also receive similar ratings. The same mecha-
nism is also exploited in recommender systems: if two
items share similar features, users who consumed one
of those items are recommended the other one.

RDF2vec has been shown to be usable for such
cases, since the underlying method tends to create
similar vectors for similar entities, i.e., position them
closer in vector space [6]. Figure 2 illustrates this us-
ing a 2D PCA plot of RDF2vec vectors for movies in
DBpedia. It can be seen that clusters of movies, e.g.,
Disney movies, Star Trek movies, and Marvel related
movies are formed.

Many techniques for predictive data mining rely on
similarity in one or the other way. This is more obvious
for, e.g., k-nearest neighbors, where the predicted la-
bel for an instance is the majority or average of labels
of its closest neighbors (i.e., most similar instances),
or Naive Bayes, where an instance is predicted to be-
long to a class if its feature values are most similar to
the typical distribution of features for this class (i.e., it
is similar to an average member of this class). A sim-
ilar argument can be made for neural networks, where
one can assume a similar output when changing the
value of one input neuron (i.e., one feature value) by a
small delta. Other classes of approaches (such as Sup-
port Vector Machines) use the concept of class separa-

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 2. RDF2vec embeddings for movies in DBpedia, from [6].

Germany

Berlin

capital

Angela_Merkel

headOfGovernment

EU

partOflocatedIn

Brussels

governmentSeat

Strasbourg

governmentSeat

Mannheim

locatedIn

Belgium

partOf

capital

Sophie_Wilmes

headOfGovernment

locatedIn

France

locatedIn

USA

WashingtonDC

capital

Donald_Trump

headOfGovernmentlocatedIn

partOf

Paris

capital

Emmanuel_Macron

headOfGovernment locatedIn

Fig. 3. Example graph used for illustration

bility, which is similar to exploiting similarity: datasets
with well separable classes have similar instances (be-
longing to the same class) close to each other, while
dissimilar instances (belonging to different classes) are
further away from each other [31].

3.2. Creating Similar Embeddings for Similar
Instances2

To understand how (and why) RDF2vec creates em-
beddings that project similar entities to nearby vectors,
we use the running example depicted in Fig. 3 and
Fig. 4, showing a number of European cities, countries,
and heads of those governments.

As discussed above, the first step of RDF2vec is
to create random walks on the graph. To that end,

RDF2vec starts a fixed number of random walks of a
fixed maximum length from each entity. Since the ex-
ample above is very small, we will, for the sake of
illustration, enumerate all walks of length 4 that can
be created for the graph. Those walks are depicted in
Fig. 5. It is notable that, since the graph has nodes
without outgoing edges, some of the walks are actually
shorter than 4.

In the next step, the walks are used to train a predic-
tive model. Since RDF2vec uses word2vec, it can be
trained with the two flavors of word2vec, i.e., CBOW
(context back of words) and SG (skip gram). The first
predicts a word, given its surrounding words, the sec-
ond predicts the surroundings, given a word. For the
sake of our argument, we will only consider the sec-
ond variant, depicted in Fig. 6. Simply speaking, given
training examples where the input is the target word (as
a one-hot-encoded vector) and the output is the con-
text words (again, one hot encoded vectors), a neural
network is trained, where the hidden layer is typically
of smaller dimensionality than the input. That hidden
layer is later used to produce the actual embedding
vectors.

To create the training examples, a window with a
given size is slid over the input sentences. Here, we
use a window of size 2, which means that the two
words preceding and the two words succeeding a con-
text word are taken into consideration. Table 2 shows
the training examples generated for three instances.

A model that learns to predict the context given the
target word would now learn to predict the majority
of the context words for the target word at hand at
the output layer called output in Fig. 6, as depicted in
the lower part of Table 2. Here, we can see that Paris
and Berlin share two out of four predictions, so do
Mannheim and Berlin. Angela Merkel and Berlin share
one out of four predictions.2

Considering again Fig. 6, given that the activation
function which computes the output from the projec-
tion values is continuous, it implies that similar acti-
vations on the output layer requires similar values on
the projection layer. Hence, for a well fit model, the
distance on the projection layer of Paris, Berlin, and
Mannheim should be comparatively lower than the dis-

2Note that in the classic formulation of RDF2vec (and word2vec),
the position at which a prediction appears does not matter. The order-
aware variant RDF2vecoa [32] uses an order-aware formulation of
word2vec [33].

6 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Berlin locatedIn Germany .
Germany headOfGovernment Angela_Merkel .
Mannheim locatedIn Germany .
Belgium capital Brussels .
Germany partOf EU .
Belgium partOf EU .
Belgium headOfGovernment Sophie_Wilmes .
EU governmentSeat Brussels .
USA capital WashingtonDC .
WashingtonDC locatedIn USA .
France capital Paris .
France headOfGovernment Emmanuel_Macron .
Paris locatedIn France .
Strasbourg locatedIn France .
Germany capital Berlin .
Brussels locatedIn Belgium .
France partOf EU .
USA headOfGovernment Donald_Trump .
EU governmentSeat Strasbourg .

Fig. 4. Triples of the example Knowledge Graph

Belgium partOf EU governmentSeat Brussels
Belgium capital Brussels locatedIn Belgium
Belgium partOf EU governmentSeat Strasbourg
Belgium headOfGovernment Sophie_Wilmes
Berlin locatedIn Germany capital Berlin
Berlin locatedIn Germany headOfGovernment Angela_Merkel
Berlin locatedIn Germany partOf EU
Brussels locatedIn Belgium headOfGovernment Sophie_Wilmes
Brussels locatedIn Belgium partOf EU
Brussels locatedIn Belgium capital Brussels
EU governmentSeat Strasbourg locatedIn France
EU governmentSeat Brussels locatedIn Belgium
France headOfGovernment Emmanuel_Macron
France capital Paris locatedIn France
France partOf EU governmentSeat Brussels
France partOf EU governmentSeat Strasbourg
Germany partOf EU governmentSeat Brussels
Germany partOf EU governmentSeat Strasbourg
Germany capital Berlin locatedIn Germany
Germany headOfGovernment Angela_Merkel
Mannheim locatedIn Germany capital Berlin
Mannheim locatedIn Germany headOfGovernment Angela_Merkel
Mannheim locatedIn Germany partOf EU
Paris locatedIn France headOfGovernment Emmanuel_Macron
Paris locatedIn France partOf EU
Paris locatedIn France capital Paris
Strasbourg locatedIn France capital Paris
Strasbourg locatedIn France headOfGovernment Emmanuel_Macron
Strasbourg locatedIn France partOf EU
USA headOfGovernment Donald_Trump
USA capital Washington_DC locatedIn USA
Washington_DC locatedIn USA capital Washington_DC
Washington_DC locatedIn USA headOfGovernment Donald_Trump

Fig. 5. Walks extracted from the example graph

tance of the other entities, since they activate similar
outputs.3

3Note that there are still weights learned for the individual con-
nections between the projection and the output layer, which empha-
size some connections more strongly than others. Hence, we cannot
simplify our argumentation in a way like “with two common con-

Fig. 7 depicts a two-dimensional RDF2vec embed-
ding learned for the example graph.4 We can observe

text words activated, the entities must be projected twice as close as
those with one common context word activated”.

4Created with PyRDF2vec [34], using two dimensions, a walk
length of 8, and standard configuration otherwise

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Training examples for instances Paris, Berlin, Mannheim, Angela Merkel, Donald Trump, and Belgium (upper part) and majority predictions
(lower part).

Target Word w−2 w−1 w+1 w+2

Paris France capital locatedIn France
Paris – – locatedIn France
Paris – – locatedIn France
Paris – – locatedIn France
Paris France capital – –
Paris France capital – –
Berlin – – locatedIn Germany
Berlin Germany capital – –
Berlin – – locatedIn Germany
Berlin – – locatedIn Germany
Berlin Germany capital locatedIn Germany
Berlin Germany capital – –
Mannheim – – locatedIn Germany
Mannheim – – locatedIn Germany
Mannheim – – locatedIn Germany
Angela Merkel Germany headOfGovernment – –
Angela Merkel Germany headOfGovernment – –
Angela Merkel Germany headOfGovernment – –
Donald Trump USA headOfGovernment – –
Donald Trump USA headOfGovernment – –
Belgium – – partOf EU
Belgium – – capital Brussels
Belgium Brussels locatedIn – –
Belgium – – partOf EU
Belgium – – headOfGovernment Sophie Wilmes
Belgium Brussels locatedIn headOfGovernment Sophie Wilmes
Belgium Brussels locatedIn partOf EU
Belgium Brussels locatedIn capital Brussels
Belgium Brussels locatedIn – –

Paris France capital locatedIn France
Berlin Germany capital locatedIn Germany
Mannheim – – locatedIn Germany
Angela Merkel Germany headOfGovernment – –
Donald Trump USA headOfGovernment – –
Belgium Brussels locatedIn partOf EU

Fig. 6. The Skip Gram variant of word2vec [4]

that there are clusters of persons, countries, and cities.
The grouping of similar objects also goes further – we
can, e.g., observe that European cities in the dataset
are embedded closer to each other than to Washington
D.C. This is in line with previous observations show-

ing that RDF2vec is particularly well suited in creating
clusters also for finer-grained classes [35]. A predic-
tive model could now exploit those similarities, e.g.,
for type prediction, as proposed in [36] and [35].

3.3. Usage for Link Prediction2

From Fig. 7, we can assume that link prediction
should, in principle, be possible. For example, the pre-
dictions for heads of governments all point in a simi-
lar direction. This is in line with what is known about
word2vec, which allows for computing analogies, like
the well-known example

v(King)− v(Man)+ v(Woman) ≈ v(Queen) (1)

8 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 7. The example graph embedded with RDF2vec

RDF2vec does not learn relation embeddings, only
entity embeddings.5 Hence, we cannot directly predict
links, but we can exploit those analogies. If we want to
make a tail prediction like

< h, r, ? >, (2)

we can identify another pair < h′, r, t′ > and exploit the
above analogy, i.e.,

t′ − h′ + h ≈ t (3)

To come to a stable prediction, we would use the aver-
age, i.e.,

t ≈
∑
<h′,r,t′> t′ − h′ + h
|< h′, r, t′ >|

, (4)

where |< h′, r, t′ >| is the number of triples which have
r as predicate.

With the same idea, we can also average the relation
vectors r for each relation that holds between all its
head and tail pairs, i.e.,

r ≈
∑
<h′,r,t′> t′ − h′

|< h′, r, t′ >|
, (5)

and thereby reformulate the above equation to

t ≈ h + r, (6)

5Technically, we can also make RDF2vec learn embeddings for
the relations, but they would not behave the way we need them.

Fig. 8. Average relation vectors for the example

which is what we expect from an embedding model
for link prediction. Those approximate relation vectors
for the example at hand are depicted in Fig. 8. We can
see that in some (not all) cases, the directions of the
vectors are approximately correct: the partOf vector
is roughly the difference between EU and Germany,
France, and Belgium, and the headOfGovernment vec-
tor is approximately the vector between the countries
and the politicians cluster.

It can also be observed that the vectors for locate-
dIn and capitalOf point in reverse directions, which
makes sense because they form connections between
two clusters (countries and cities) in opposite direc-
tions.

4. Knowledge Graph Embedding Methods for
Link Prediction1

A larger body of work has been devoted on knowl-
edge graph embedding methods for link prediction.
Here, the goal is to learn a model which embeds enti-
ties and relations in the same vector space.

4.1. Link Prediction is based on Vector Operations2

As the main objective is link prediction, most mod-
els, more or less, try to find a vector space embedding
of entities and relations so that

t ≈ h⊕ r (7)

holds for as many triples < h, r, t > as possible. ⊕ can
stand for different operations in the vector space; in
basic approaches, simple vector addition (+) is used.

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In our considerations below, we will also use vector
addition.

In most approaches, negative examples are created
by corrupting an existing triple, i.e., replace the head
or tail with another entity from the graph (some ap-
proaches also foresee corrupting the relation). Then,
a model is learned which tries to tell apart corrupted
from non-corrupted triples. The formulation in the
original TransE paper [7] defines the loss function L as
follows:

L =
∑

(h,r,t)∈S ,
(h′,r,t′)∈S ′

[γ + d(h + r, t)− d(h′ + r, t′)]+

(8)

where γ is some margin, and d is a distance function,
i.e., the L1 or L2 norm. S is the set of statements that
are in the knowledge graph, and S ′ are the corrupted
statements derived from them. In words, the formula
states for a triple < h, r, t >, h + r should be closer
to t than to t′ for some corrupted tail, similarly for a
corrupted head. However, a difference of γ is accepted.

Fig. 9 shows the example graph from above, as em-
bedded by TransE.6 Looking at the relation vectors, it
can be observed that they seem approximately accurate
in some cases, e.g.,

Germany+headO fGovernment ≈ Angela_Merkel,

but not everywhere.7

Like in the RDF2vec example above, we can ob-
serve that the two vectors for locatedIn and capi-
tal point in opposite directions. Also similar to the
RDF2vec example, we can see that entities in similar
classes form clusters: cities are mostly in the upper part
of the space, people in the left, countries in the lower
right part.

4.2. Usage for Data Mining2

As discussed above, positioning similar entities
close in a vector space is an essential requirement for

6Created with PyKEEN [37], using 128 epochs, a learning rate
of 0.1, the softplus loss function, and default parameters otherwise,
as advised by the authors of PyKEEN: https://github.com/pykeen/
pykeen/issues/97

7This does not mean that TransE does not work. The training data
for the very small graph is rather scarce, and two dimensions might
not be sufficient to find a good solution here.

Fig. 9. Example graph embedded by TransE

using entity embeddings in data mining tasks. To un-
derstand why an approach tailored towards link pre-
diction can also, to a certain extent, cluster similar in-
stances together (although not explicitly designed for
this task), we first rephrase the approximate link pre-
diction Equation 8 as

t = h + r + ηh,r,t, (9)

where ηh,r,t can be considered an error term for the
triple < h, r, t >. Moreover, we define

ηmax = max
<h,r,t>∈S

ηh,r,t (10)

Next, we consider two triples< h1, r, t > and< h2, r, t >,
which share a relation to an object – e.g., in our exam-
ple, France and Belgium, which both share the relation
partOf to EU. In that case,

t = h1 + r + ηh1,r,t (11)

and

t = h2 + r + ηh2,r,t (12)

hold. From that, we get8

h1 − h2 = ηh2,r,t − ηh1,r,t

⇒ |h1 − h2| = |ηh2,r,t − ηh1,r,t|

8Using the triangle inequality for the first inequation.

https://github.com/pykeen/pykeen/issues/97
https://github.com/pykeen/pykeen/issues/97

10 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

= |ηh2,r,t + (−ηh1,r,t)|

⩽ |ηh2,r,t|+ | − ηh1,r,t|

= |ηh2,r,t|+ |ηh1,r,t|

⩽ 2 · ηmax (13)

In other words, ηmax also imposes an upper bound of
two entities sharing a relation to an object. As a con-
sequence, the lower the error in relation prediction, the
closer are entities which share a common statement.

This also carries over to entities sharing the same
two-hop connection. Consider two further triples
< h1a, ra, h1 > and < h2a, ra, h2 >. In our example, this
could be two cities located in the two countries, e.g.,
Strasbourg and Brussels. In that case, we would have

h1 = h1a + ra + ηh1a,ra,h1 (14)

h2 = h2a + ra + ηh2a,ra,h2 (15)

Substituting this in (11) and (12) yields

t = h1a + ra + ηh1a,ra,h1 + r + ηh1,r,t (16)

t = h2a + ra + ηh2a,ra,h2 + r + ηh2,r,t. (17)

Consequently, using similar transformations as above,
we get

h1a − h2a = ηh2a,ra,h2 − ηh1a,ra,h1 + ηh2,r,t − ηh1,r,t

⇒ |h1a − h2a| ⩽ 4 · ηmax (18)

Again, ηmax constrains the proximity of the two entities
h1a and h2a, but only half as strictly as for the case of
h1 and h2.

4.3. Comparing the Two Notions of Similarity2

In the examples above, we can see that embeddings
for link prediction have a tendency to project similar
instances close to each other in the vector space. Here,
the notion of similarity is that two entities are simi-
lar if they share a relation to another entity, i.e., e1
and e2 are considered similar if there exist two state-
ments < e1, r, t > and < e2, r, t > or < h, r, e1 > and
< h, r, e2 >,9 or, less strongly, if there exists a chain of
such statements. More formally, we can write the no-
tion of similarity between two entities in link predic-
tion approaches as

e1 ≈ e2 ← ∃ t, r : r(e1, t) ∧ r(e2, t) (19)

e1 ≈ e2 ← ∃ h, r : r(h, e1) ∧ r(h, e2) (20)

9The argument in Section 4.2 would also work for shared relations
to common heads.

In other words: two entities are similar if they share a
common connection to a common third entity.

RDF2vec, on the other hand, covers a wider range of
such similarities. Looking at Table 2, we can observe
that two entities sharing a common relation to two dif-
ferent objects are also considered similar (Berlin and
Mannheim both share the fact that they are located in
Germany, hence, their predictions for w+1 and w+2 are
similar).

However, there in RDF2vec, similarity can also
come in other notions. For example, Germany and
USA are also considered similar, because they both
share the relations headOfGovernment and capital, al-
beit with different object (i.e., their prediction for w1

is similar). In contrast, such similarities do not lead
to close projections for link prediction embeddings. In
fact, in Fig. 9, it can be observed that USA and Ger-
many are further away than Germany and other Euro-
pean countries. In other words, the following two no-
tions of similarity also hold for RDF2vec:

e1 ≈ e2 ← ∃ t1, t2, r : r(e1, t1) ∧ r(e2, t2) (21)

e1 ≈ e2 ← ∃ h1, h2, r : r(h1, e1) ∧ r(h2, e2) (22)

On a similar argument, RDF2vec also positions en-
tities closer which share any relation to another entity.
Although this is not visible in the two-dimensional em-
bedding depicted in Fig. 7, RDF2vec would also cre-
ate vectors with some similarity for Angela Merkel and
Berlin, since they both have a (albeit different) relation
to Germany (i.e., their prediction for w−2 is similar).
Hence, the following notions of similarity can also be
observed in RDF2vec:

e1 ≈ e2 ← ∃ t, r1, r2 : r1(e1, t) ∧ r2(e2, t) (23)

e1 ≈ e2 ← ∃ h, r1, r2 : r1(h, e1) ∧ r2(h, e2) (24)

The example with Angela Merkel and Berlin already
hints at a slightly different notion of the interpretation
of proximity in the vector space evoked by RDF2vec:
not only similar, but also related entities are positioned
close in the vector space. This means that to a certain
extent, RDF2vec mixes the concepts of similarity and
relatedness in its distance function. We will see exam-
ples of this in later considerations, and discuss how
they interfere with downstream applications.

5. Experiments1

To compare the two sets of approaches, we use stan-
dard setups for evaluating knowledge graph embed-
ding methods for data mining as well as for link pre-
diction.

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5.1. Experiments on Data Mining Tasks2

In our experiments, we follow the setup proposed
in [38] and [19]. Those works propose the use of data
mining tasks with an external ground truth, e.g., pre-
dicting certain indicators or classes for entities. Those
entities are then linked to a knowledge graph. Different
feature extraction methods – which includes the gen-
eration of embedding vectors – can then be compared
using a fixed set of learning methods.

The setup of [19] comprises six tasks using 20
datasets in total:

– Five classification tasks, evaluated by accuracy.
Those tasks use the same ground truth as the re-
gression tasks (see below), where the numeric
prediction target is discretized into high/medium/
low (for the Cities, AAUP, and Forbes dataset) or
high/low (for the Albums and Movies datasets).
All five tasks are single-label classification tasks.

– Five regression tasks, evaluated by root mean
squared error. Those datasets are constructed by
acquiring an external target variable for instances
in knowledge graphs which is not contained in the
knowledge graph per se. Specifically, the ground
truth variables for the datasets are: a quality of
living indicator for the Cities dataset, obtained
from Mercer; average salary of university pro-
fessors per university, obtained from the AAUP;
profitability of companies, obtained from Forbes;
average ratings of albums and movies, obtained
from Facebook.

– Four clustering tasks (with ground truth clusters),
evaluated by accuracy. The clusters are obtained
by retrieving entities of different ontology classes
from the knowledge graph. The clustering prob-
lems range from distinguishing coarser clusters
(e.g., cities vs. countries) to finer ones (e.g., bas-
ketball teams vs. football teams).

– A document similarity task (where the similarity
is assessed by computing the similarity between
entities identified in the documents), evaluated by
the harmonic mean of Pearson and Spearman cor-
relation coefficients. The dataset is based on the
LP50 dataset [39]. It consists of 50 documents,
each of which have been annotated with DBpedia
entities using DBpedia spotlight [40]. The task
is to predict the similarity for each pair of docu-
ments.

– An entity relatedness task (where semantic simi-
larity is used as a proxy for semantic relatedness),

evaluated by Kendall’s Tau. The dataset is based
on the KORE dataset [41]. The dataset consists
of 20 seed entities from the YAGO knowledge
graph, and 20 related entities each. Those 20 re-
lated entities per seed entity have been ranked by
humans to capture the strength of relatedness. The
task is to rank the entities per seed by relatedness.

– Four semantic analogy tasks (e.g., Athens is to
Greece as Oslo is to X), which are based on the
original datasets on which word2vec was eval-
uated [29]. The datasets were created by man-
ual annotation. In our evaluation, we aim at pre-
dicting the fourth element (D) in an analogy
A : B = C : D by considering the closest n vec-
tors to B− A +C. If the element is contained the
top n predictions, we consider the answer correct,
i.e., the evaluation metric top-n accuracy. In the
default setting of the evaluation framework used,
n is set to 2.

Table 3 shows a summary of the characteristics of the
datasets used in the evaluation. It can be observed that
they cover a wide range of tasks, topics, sizes, and
other characteristics (e.g., balance). More details on
the construction of the datasets can be found in [19]
and [38].

Note that all datasets are provided with predefined
instance links to DBpedia. For the smaller ones, the
creators of the datasets created and checked the links
manually; for the larger ones, the linking had been
done heuristically. We used the links provided in the
evaluation framework as is, including possible linkage
errors.

We follow the evaluation protocol suggested in [19].
This protocol foresees the usage of different algo-
rithms on each task for each embedding (e.g., Naive
Bayes, Decision Tree, k-NN, and SVM for classifi-
cation), and also performs parameter tuning in some
cases. In the end, we report the best results per task
and embedding method. Those results are depicted in
Table 4.

All embeddings are trained on DBpedia 2016-10.10

For generating the different embedding vectors, we use
the DGL-KE framework [42] in the respective stan-
dard settings, and we use the RDF2vec vectors pro-
vided by the KGvec2go API [43], trained with 500
walks of depth 8 per entity, Skip-Gram, and 200 di-

10The code for the experiments as well as the result-
ing embeddings can be found at https://github.com/nheist/
KBE-for-Data-Mining

https://github.com/nheist/KBE-for-Data-Mining
https://github.com/nheist/KBE-for-Data-Mining

12 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Task Dataset # entities Target variable

Classification Cities 212 3 classes (67/106/39)
AAUP 960 3 classes (236/527/197)
Forbes 1,585 3 classes (738/781/66)
Albums 1,600 2 classes (800/800)
Movies 2,000 2 classes (1,000/1,000)

Regression Cities 212 numeric [23, 106]

AAUP 960 numeric [277, 1009]

Forbes 1,585 numeric [0.0, 416.6]

Albums 1,600 numeric [15, 97]

Movies 2,000 numeric [1, 100]

Clustering Cities and Countries (2k) 4,344 2 clusters (2,000/2,344)
Cities and Countries 11,182 2 clusters (8,838/2,344)
Cities, Countries, Albums, Movies, AAUP, Forbes 6,357 5 clusters (2,000/960/1,600/212/1,585)
Teams 4,206 2 clusters (4,185/21)

Document Similarity Pairs of 50 documents with entities 1,225 numeric similarity score [1.0,5.0]

Entity relatedness 20x20 entity pairs 400 ranking of entities

Semantic Analogies (All) capitals and countries 4,523 entity prediction
Capitals and countries 505 entity prediction
Cities and States 2,467 entity prediction
Countries and Currencies 866 entity prediction

Table 3
Overview on the evaluation datasets.

mensions. We compare RDF2vec [4], TransE (with L1
and L2 norm) [7], TransR [44], RotatE [45], DistMult
[46], RESCAL [47], and ComplEx [48]. To create the
embedding vectors with DGL-KE, we use the param-
eter configurations recommended by the framework, a
dimension of 200, and a step maximum of 1,000,000.
The RDF2vecoa vectors were generated with the same
configuration, but using the order-aware variant of
Skip-Gram [32, 33]. For node2vec, DeepWalk, and
KGlove, we use the standard settings and the code pro-
vided by the respective authors.11,12,13 For KGlove, we
use the Inverse Predicate Frequency, which has been
reported to work well on many tasks by the original
paper [18].

It is noteworthy that the default settings for node2vec
and DeepWalk differ in one crucial property. While
node2vec interprets the graph as a directed graph by
default and only traverses edges in the direction in
which they are defined, DeepWalk treats all edges as
undirected, i.e., it traverses them in both directions.

From the table, we can observe a few expected
and a few unexpected results. First, since RDF2vec is

11https://github.com/D2KLab/entity2vec
12https://github.com/phanein/deepwalk
13https://github.com/miselico/globalRDFEmbeddingsISWC

tailored towards classic data mining tasks like clas-
sification and regression, it is not much surprising
that those tasks are solved better by using RDF2vec
(and even slightly better by using RDF2vecoa) vectors.
Still, some of the link prediction methods (in particu-
lar TransE and RESCAL) perform reasonably well on
those tasks. In contrast, KGloVe rarely reaches the per-
formance level of RDF2vec, while the two approaches
for unlabeled graphs – i.e., DeepWalk and node2vec –
behave differently: while the results of DeepWalk are
at the lower end of the spectrum, node2vec is competi-
tive. The latter is remarkable, showing that pure neigh-
borhood information, ignoring the direction and edge
labels, can be a strong signal when embedding entities.

Referring back to the different notions of similar-
ity that these families of approaches imply (cf. Sec-
tion 4.3), this behavior can be explained by the ten-
dency of RDF2vec (and also node2vec) to positioning
entities closer in the vector space which are more simi-
lar to each other (e.g., two cities that are similar). Since
it is likely that some of those dimensions are also cor-
related with the target variable at hand (in other words:
they encode some dimension of similarity that can be
used to predict the target variable), classifiers and re-
gressors can pick up on those dimensions and exploit
them in their prediction model.

https://github.com/D2KLab/entity2vec
https://github.com/phanein/deepwalk
https://github.com/miselico/globalRDFEmbeddingsISWC

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

What is also remarkable is the performance on the
entity relatedness task. While RDF2vec embeddings,
as well as node2vec, KGlove, and, to a lesser extent,
DeepWalk, reflect entity relatedness to a certain ex-
tent, this is not given for any of the link prediction ap-
proaches. According to the notions of similarity dis-
cussed above, this is reflected in the RDF2vec mech-
anism: RDF2vec has an incentive to position two en-
tities closer in the vector space if they share relations
to a common entity, as shown in Equations 21-24. One
example is the relatedness of Apple Inc. and Steve Jobs
– here, we can observe the two statements

product(AppleInc., IPhone)

known f or(S teveJobs, IPhone)

in DBpedia, among others. Those lead to similar vec-
tors in RDF2vec according to Equation 23. A simi-
lar argument can be made for node2vec and Deep-
Walk, and also for KGlove, which looks at global
cooccurences of entities, i.e., it also favors closer em-
beddings of related entities.

The same behavior of RDF2vec – i.e., assigning
close vectors to related entities – also explains the
comparatively bad results of RDF2vec on the first two
clustering tasks. Here, the task is to separate cities and
countries in two clusters, but since a city is also re-
lated to the country it is located in, RDF2vec may
position that city and country rather closely together
(RDF2vecoa changes that behavior, as argued in [32],
and hence produces better results for the clustering
problems). Hence, that city has a certain probabil-
ity of ending up in the same cluster as the country.
The latter two clustering tasks are different: the third
one contains five clusters (cities, albums, movies, uni-
versities, and companies), which are less likely to be
strongly related (except universities and companies to
cities) and therefore are more likely to be projected
in different areas in the vector space. Here, the differ-
ence of RDF2vec to the best performing approaches
(i.e., TransE-L1 and TransE-L2) is not that severe. The
same behavior can also be observed for the other em-
bedding approaches for data mining, i.e., node2vec,
DeepWalk, and KGlove, which behave similarly in that
respect.

The problem of relatedness being mixed with simi-
larity does not occur so strongly for homogeneous sets
of entities, as in the classification and regression tasks,
where all entities are of the same kind (cities, com-
panies, etc.) – here, two companies which are related
(e.g., because one is a holding of the other) can also

be considered similar to a certain degree (in that case,
they are both operating in the same branch). This also
explains why the forth clustering task (where the task
is to assign sports teams to clusters by the type of
sports) works well for RDF2vec – here, the entities are
again homogeneous.

At the same time, the test case of clustering teams
can also be used to explain why link prediction ap-
proaches work well for that kind of tasks: here, it is
likely that two teams in the same sports share a rela-
tion to a common entity, i.e., they fulfill Equations 19
and 20. Examples include participation in the same
tournaments or common former players.

The semantic analogies task also reveals some in-
teresting findings. First, it should be noted that the
relations which form the respective analogies (capi-
tal, state, and currency) is contained in the knowledge
graph used for the computation. That being said, we
can see that most of the link prediction results (except
for RotatE and RESCAL) perform reasonably well
here. Particularly, the first cases (capitals and coun-
tries) can be solved particularly well in those cases,
as this is a 1:1 relation, which is the case in which
link prediction is a fairly simple task. On the other
hand, most of the data-mining-centric approaches (i.e.,
node2vec, DeepWalk, KGlove) solve this problem rel-
atively bad. A possible explanation is that the respec-
tive entities belong to the strongly interconnected head
entities of the knowledge graphs, and also the false so-
lutions are fairly close to each other in the graph (e.g.,
US Dollar and Euro are interconnected through var-
ious short paths). This makes it hard for approaches
concentrating on a common neighborhood to produce
decent results here.

On the other hand, the currency case is solved par-
ticularly bad by most of the link prediction results.
This relation is an n:m relation (there are countries
with more than one official, unofficial, or historic cur-
rency, and many currencies, like the Euro, are used
across many countries. Moreover, looking into DBpe-
dia, this relation contains a lot of mixed usage and is
not maintained with very high quality. For example,
DBpedia lists 33 entities whose currency is US Dol-
lars14 – the list contains historic entities (e.g., West
Berlin), errors (e.g., Netherlands), and entities which
are not countries (e.g., OPEC), but the United States
are not among those. For such kind of relations which
contain a certain amount of noise and heterogeneous

14http://dbpedia.org/page/United_States_dollar

http://dbpedia.org/page/United_States_dollar

14 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Task
(M

etric)
D

ataset
R

D
F2vec
(D

M
)

R
D

F2vecO
A

(D
M

)
TransE

-L
1

(L
P)

TransE
-L

2
(L

P)
TransR

(L
P)

R
otatE
(L

P)
D

istM
ult

(L
P)

R
E

SC
A

L
(L

P)
C

om
plE

x
(L

P)
node2vec

(D
M

)
D

eepW
alk

(D
M

)
K

G
loV

e
(D

M
)

C
lassification

(A
C

C
)

A
A

U
P

0.676
0.671

0.628
0.651

0.607
0.617

0.597
0.623

0.602
0.694

0.549
0.558

C
ities

0.810
0.837

0.676
0.752

0.757
0.581

0.666
0.740

0.637
0.774

0.495
0.496

Forbes
0.610

0.626
0.550

0.601
0.561

0.526
0.601

0.563
0.578

0.618
0.490

0.502
A

lbum
s

0.774
0.787

0.637
0.746

0.728
0.550

0.666
0.678

0.693
0.789

0.543
0.548

M
ovies

0.739
0.736

0.603
0.728

0.715
0.567

0.668
0.693

0.655
0.763

0.555
0.563

C
lustering

(A
C

C
)

C
ities

and
C

ountries
(2K

)
0.758

0.931
0.982

0.994
0.962

0.510
0.957

0.991
0.955

0.939
0.557

0.623

C
ities

and
C

ountries
0.696

0.760
0.953

0.979
0.952

0.691
0.909

0.990
0.591

0.743
0.817

0.765
C

ities,A
lbum

s,M
ov-

ies,A
A

U
P,Forbes

0.926
0.928

0.946
0.944

0.908
0.860

0.878
0.936

0.914
0.930

0.335
0.525

Team
s

0.917
0.958

0.887
0.977

0.844
0.853

0.883
0.881

0.881
0.931

0.830
0.740

R
egression

(R
M

SE
)

A
A

U
P

68.745
66.505

81.503
69.728

88.751
80.177

78.337
72.880

73.665
68.007

103.235
98.794

C
ities

15.601
13.486

19.694
14.455

13.558
26.846

19.785
15.137

19.809
15.363

25.323
24.151

Forbes
36.459

36.124
37.589

38.398
39.803

38.343
38.037

35.489
37.877

35.684
41.384

40.141
A

lbum
s

11.930
11.597

14.128
12.589

12.789
14.890

13.452
13.537

13.009
15.165

15.129
11.739

M
ovies

19.648
11.739

23.286
20.635

20.699
23.878

22.161
21.362

22.229
18.877

24.215
24.000

Sem
antic

A
nalogies

(precision@
k)

(A
ll)capitals

and
countries

0.685
0.895

0.709
0.675

0.938
0.377

0.782
0.211

0.814
0.284

0.000
0.011

C
apitals

and
countries

0.648
0.913

0.840
0.792

0.937
0.640

0.802
0.312

0.864
0.164

0.000
0.043

C
ities

and
State

0.342
0.629

0.335
0.209

0.392
0.294

0.379
0.089

0.309
0.068

0.000
0.029

C
urrency

(and
C

ountries)
0.339

0.427
0.005

0.285
0.143

0.000
0.001

0.000
0.000

0.420
0.005

0.003

D
ocum

ent
Sim

ilarity
(H

arm
onic

M
ean)

L
P50

0.348
0.307

0.343
0.397

0.434
0.326

0.360
0.344

0.341
0.333

0.243
0.225

E
ntity

R
elatedness

(K
endallTau)

K
O

R
E

0.504
0.779

0.002
-0.081

0.139
-0.039

0.147
0.087

0.115
0.525

0.129
0.421

Table
4

R
esults

of
the

differentdata
m

ining
tasks.D

M
denotes

approaches
originally

developed
for

node
representation

in
data

m
ining,LP

denotes
approaches

originally
developed

forlink
prediction.

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

information, many link prediction approaches are ob-
viously not well suited.

RDF2vec, in contrast, can deal reasonably well with
that case. Here, two effects interplay when solving
such tasks: (i) as shown above, relations are encoded
by the proximity in RDF2vec to a certain extent, i.e.,
the properties in Equations 3 and 4 allow to perform
analogy reasoning in the RDF2vec space in general.
Moreover, (ii) we have already seen the tendency of
RDF2vec to position related entities in relative prox-
imity. Thus, for RDF2vec, it can be assumed that the
following holds:

UK ≈ PoundS terling (25)

US A ≈ US Dollar (26)

Since we can rephrase the first equation as

PoundS terling− UK ≈ 0 (27)

we can conclude that analogy reasoning in RDF2vec
would yield

PoundS terling−UK + US A ≈ US Dollar (28)

Hence, in RDF2vec, two effects – the preservation of
relation vectors as well as the proximity of related en-
tities – are helpful for analogy reasoning, and the two
effects also work for rather noisy cases. However, for
cases which are 1:1 relations in the knowledge graph
with rather clean training data available, link predic-
tion approaches are better suited for analogy reason-
ing.

5.2. Experiments on Link Prediction Tasks2

In a second series of experiments, we analyze if we
can use embedding methods developed for similarity
computation, like RDF2vec, also for link prediction.
We use the two established tasks WN18 and FB15k for
a comparative study.

While link prediction methods are developed for the
task at hand, approaches developed for data mining
are not. Although RDF2vec computes vectors for rela-
tions, they do not necessarily follow the same notion as
relation vectors for link prediction, as discussed above.
Hence, we investigate two approaches:

1. We average the difference for each pair of a head
and a tail for each relation r, and use that as aver-
age as a proxy for a relation vector for prediction,
as shown in Equation 4. The predictions are the

Fig. 10. Training a neural network for link prediction with RDF2vec

entities whose embedding vectors are the clos-
est to the approximate prediction. This method is
denoted as avg.

2. For predicting the tail of a relation, we train a
neural network to predict an embedding vector
of the tail based embedding vectors, as shown in
Fig. 10. The predictions for a triple < h, r, ? > are
the entities whose embedding vectors are closest
to the predicted vector for h and r. As similar
network is trained to predict h from r and t. This
method is denoted as ANN.

We trained the RDF2vec embeddings with 2,000
walks, a depth of 4, a dimension of 200, a window of 5,
and 25 epochs in SG mode. For the second prediction
approach, the two neural networks each use two hid-
den layers of size 200, and we use 15 epochs, a batch
size of 1,000, and mean squared error as loss. KGlove,
node2vec, and DeepWalk do not produce any vectors
for relations. Hence, we only use the avg strategy for
those approaches.

The results of the link prediction experiments are
shown in Table 5.15 We can observe that the RDF2vec
based approaches perform at the lower end of the spec-
trum. The avg approach outperforms DistMult and
RESCAL on WN18, and both approaches are about en
par with RESCAL on FB15k. Except for node2vec on
FB15k, the other data mining approaches fail at pro-
ducing sensible results.

While the results are not overwhelming, they show
that similarity of entities, as RDF2vec models it, is at
least a useful signal for implementing a link prediction
approach.

15The code for the experiments can be found at https://github.
com/janothan/kbc_rdf2vec

https://github.com/janothan/kbc_rdf2vec
https://github.com/janothan/kbc_rdf2vec

16 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

D
ataset

M
etric

R
D

F2vec
(AV

G
)

R
D

F2vec
(A

N
N

)
R

D
F2vecO

A
(AV

G
)

R
D

F2vecO
A

(A
N

N
)

TransE
TransR

R
otatE

D
istM

ult
R

E
SC

A
L

C
om

plE
x

node2vec
(AV

G
)

D
eepW

alk
(AV

G
)

K
G

love
(AV

G
)

(D
M

)
(D

M
)

(D
M

)
(D

M
)

(L
P)

(L
P)

(L
P)

(L
P)

(L
P)

(L
P)

D
M

D
M

(D
M

)

W
N

18
M

ean
R

ank
R

aw
147

353
64

77
263

232
-

-
1180

-
17

6112
8247

M
ean

R
ank

Filtered
135

342
53

66
251

219
309

-
1163

-
10

6106
8243

H
IT

S@
10

R
aw

64.4
49.7

65.9
66.6

75.4
78.3

-
-

37.2
-

12.3
5.7

1.7
H

IT
S@

10
Filtered

71.3
55.4

73.0
75.08

89.2
91.7

95.9
57.7

52.8
94.7

14.2
6.0

1.7

FB
15K

M
ean

R
ank

R
aw

399
349

168
443

243
226

-
-

828
-

192
2985

2123
M

ean
R

ank
Filtered

347
303

120
90

125
78

40
-

683
-

138
2939

2077
H

IT
S@

10
R

aw
35.3

34.3
47.9

30.9
34.9

43.8
-

-
28.4

-
44.7

7.2
11.1

H
IT

S@
10

Filtered
40.5

41.8
56.5

37.4
47.1

65.5
88.4

94.2
44.1

84.0
53.3

7.7
11.1

Table
5:

R
esults

of
the

link
prediction

tasks
on

W
N

18
and

FB
15K

.
R

esults
for

TransE
and

R
E

SC
A

L
from

[7],
results

for
R

otatE
from

[45],
results

for
D

istM
ultfrom

[46],results
for

TransR
from

[44].D
M

denotes
approaches

originally
developed

for
node

representation
in

data
m

ining,LP
denotes

approaches
originally

developed
forlink

prediction.

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5.3. Discussion2

As already discussed above, the notion of similarity
which is conveyed by RDF2vec mixes similarity and
relatedness. This can be observed, e.g., when querying
for the 10 closest concepts to Angela Merkel (the chan-
cellor, i.e., head of government in Germany) in DBpe-
dia in the different spaces, as shown in Table 6. The
approach shows a few interesting effects:

– While most of the approaches (except for Ro-
tatE, KGlove and DeepWalk) provide a clean list
of people, RDF2vec brings up a larger variety
of results, containing also Germany and Berlin
(and also a few results which are not instances,
but relations; however, those could be filtered out
easily in downstream applications if necessary).
This demonstrates the property of RDF2vec of
mixing similarity and relatedness. The people in
the RDF2vec result set are all related to Angela
Merkel: Joachim Gauck was president during her
chancellorship, Norbert Lammert was the head of
parliament, Stanislaw Tillich was a leading board
member in the same party as Merkel, and Andreas
Voßkuhle was the head of the highest court during
her chancellorship.

– The approaches at hand have different foci in
determining similarity. For example, TransE-L1
outputs mostly German politicians (Schröder,
Gauck, Trittin, Gabriel, Westerwelle, Wulff) and
former presidents of other countries (Buchanan
as a former US president, Sarkozy and Chirac as
former French presidents) TransE-L2 outputs a
list containing many former German chancellors
(Schröder, Kohl, Adenauer, Schmidt, Kiesinger,
Erhardt), TransR mostly lists German party lead-
ers (Gabriel, Steinmeier, Rösler Schröder, Wulff,
Westerwelle, Kohl, Trittin). Likewise, node2vec
produces a list of German politicians, with the ex-
ception of Merkel’s husband Joachim Sauer.16 In
all of those cases, the persons share some prop-
erty with the query entity Angela Merkel (profes-
sion, role, nationality, etc.), but similarity is usu-
ally affected only by one of those properties. In
other words: one notion of similarity dominates
the others.

16The remaining approaches – RotatE, DistMult, RESCAL, Com-
plEx, KGlove, DeepWalk – produce lists of (mostly) persons which,
in their majority, share no close link to the query concept Angela
Merkel.

– In contrast, the persons in the output list of
RDF2vec are related to the query entity in dif-
ferent respects. In particular, they played differ-
ent roles during Angela Merkel’s chancellorship
(Gauck was the German president, Lammert was
the chairman of the parliament, and Voßkuhle
was the chairman of the federal court). Here,
there is no dominant property, instead, similarity
(or rather: relatedness) is encoded along various
properties. RDF2vecoa brings up a results which
is slightly closer to the politicians lists of the
other approaches, while the result list of KGlove
looks more like a random list of entities. A similar
observation can be made for DeepWalk, which,
with the exception of the first result (which is a
German politician) does not produce any results
seemingly related to the query concept at hand.

With that observation in mind, we can come up with
an initial set of recommendations for choosing embed-
ding approaches:

– Approaches for data mining (RDF2vec, KGlove,
node2vec, and DeepWalk) work well when deal-
ing with sets of homogeneous entities. Here, the
problem of confusing related entities (like Merkel
and Berlin) is negligible, because all entities
are of the same kind anyways. In those cases,
RDF2vec captures the finer distinctions between
the entities better than embeddings for link pre-
diction, and it encodes a larger variety of seman-
tic relations.

– From the approaches for data mining, those which
respect order (RDF2vecoa and node2vec) work
better than those which do not (classic RDF2vec,
KGlove, and DeepWalk).17

– For problems where heterogeneous sets of enti-
ties are involved, embeddings for link prediction
often do a better job in telling different entities
apart.

Link prediction is a problem of the latter kind: in em-
bedding spaces where different types are properly sep-
arated, link prediction mistakes are much rarer. Given
an embedding space where entities of the same type
are always closer than entities of a different type, a link
prediction approach will always rank all “compatible”
entities higher than all incompatible ones. Consider the

17As discussed above, this comments holds for the default config-
uration of node2vec and DeepWalk used in this paper.

18 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

RDF2vec TransE-L1 TransE-L2 TransR

Joachim Gauck Gerhard Schröder Gerhard Schröder Sigmar Gabriel
Norbert Lammert James Buchanan Helmut Kohl Frank-Walter Steinmeier
Stanislaw Tillich Neil Kinnock Konrad Adenauer Philipp Rösler
Andreas Voßkuhle Nicolas Sarkozy Helmut Schmidt Gerhard Schröder
Berlin Joachim Gauck Werner Faymann Joachim Gauck
German language Jacques Chirac Alfred Gusenbauer Christian Wulff
Germany Jürgen Trittin Kurt Georg Kiesinger Guido Westerwelle
federalState Sigmar Gabriel Philipp Scheidemann Helmut Kohl
Social Democratic Party Guido Westerwelle Ludwig Erhard Jürgen Trittin
deputy Christian Wulff Wilhelm Marx Jens Böhrnsen

RotatE DistMult RESCAL ComplEx

Pontine raphe nucleus Gerhard Schröder Gerhard Schröder Gerhard Schröder
Jonathan W. Bailey Milan Truban Kurt Georg Kiesinger Diána Mészáros
Zokwang Trading Maud Cuney Hare Helmut Kohl Francis M. Bator
Steven Hill Tristan Matthiae Annemarie Huber-Hotz William B. Bridges
Chad Kreuter Gerda Hasselfeldt Wang Zhaoguo Mette Vestergaard
Fred Hibbard Faustino Sainz Muñoz Franz Vranitzky Ivan Rosenqvist
Mallory Ervin Joachim Gauck Bogdan Klich Edward Clouston
Paulinho Kobayashi Carsten Linnemann İrsen Küçük Antonio Capuzzi
Fullmetal Alchemist and the Broken Angel Norbert Blüm Helmut Schmidt Steven J. McAuliffe
Archbishop Dorotheus of Athens Neil Hood Mao Zedong Jenkin Coles

KGloVe RDF2vec OA node2vec DeepWalk

Aurora Memorial National Park Joachim Gauck Sigmar Gabriel Manuela Schwesig
Lithuanian Wikipedia Norbert Lammert Guido Westerwelle Irwin Fridovich
Baltic states Stanislaw Tillich Christian Wulff Holstein Kiel Dominik Schmidt
The Monarch (production team) Andreas Voßkuhle Jürgen Trittin Ella Germein
Leeds Ladies F.C. Lauryn Colman Berlin Wolfgang Schäuble Goyang Citizen FC Do Sang-Jin
Steven Marković German language Joachim Gauck Sean Cashman
Funk This (George Porter Jr. album) Germany Philipp Rösler Chia Chiao
A Perfect Match (Ella Fitzgeral album) Christian Wulff Joachim Sauer Albrix Niigata Goson Sakai
Salty liquorice Gerhard Schröder Franz Müntefering Roz Kelly
WMMU-FM federalState Frank-Walter Steinmeier Alberto Penny

Table 6
Closest concepts to Angela Merkel in the different embedding approaches used.

following example in FB15k:

instrument(GilS cottHeron, ?)

Here, music instruments are expected in the object po-
sition. However, approaches tailored towards captur-
ing node similarity, e.g., classic RDF2vec, will suggest
among plausible candidates such as electric guitar and
acoustic guitar, also guitarist and Jimmy Page (who
is a well-known guitarist). While electric guitar, gui-
tarist, and Jimmy Page are semantically related, not all
of them are sensible predictions here, and the fact that

RDF2vec reflects that semantic relatedness is a draw-
back in link prediction.

The same argument underlies an observation made
by Zouaq and Martel [20]: the authors found that
RDF2vec is particularly well suited for distinguish-
ing fine-grained entity classes (as opposed to coarse-
grained entity classification). For fine-grained clas-
sification (e.g., distinguishing guitar players from
singers), all entities to be classified are already of the
same coarse class (e.g., musician), and RDF2vec is
very well suited for capturing the finer differences.
However, for coarse classifications, misclassifications

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

by mistaking relatedness for similarity become more
salient.

From the observations made in the link prediction
task, we can come up with another recommendation:

– For relations which come with rather clean data
quality, link prediction approaches work well.
However, for more noisy data, RDF2vec has a
higher tendency of creating useful embedding
vectors.

For the moment, this is a hypothesis, which should be
hardened, e.g., by performing controlled experiments
on artificially noised link prediction tasks.

6. Conclusion and Outlook1

In this paper, we have compared two use cases and
families of knowledge graph embeddings which have,
up to today, not undergone any thorough direct com-
parison: approaches developed for data mining, such
as RDF2vec, and approaches developed for link pre-
diction, such as TransE and its descendants.

We have argued that the two approaches actually do
something similar, albeit being designed with different
goals in mind. To support this argument, we have run
two sets of experiments which examined how well the
different approaches work if applied in the respective
other setup. We show that, to a certain extent, embed-
ding approaches designed for link prediction can be
applied in data mining and vice versa, however, there
are differences in the outcome.

From the experiments, we have also seen that prox-
imity in the embedding spaces works differently for
the two families of approaches: in RDF2vec, prox-
imity encodes both similarity and relatedness, while
TransE and its descendants rather encode similarity
alone. On the other hand, for entities that are of the
same type, RDF2vec covers finer-grained similarities
better. Moreover, RDF2vec seems to work more stably
in cases where the knowledge graphs are rather noisy
and weakly adherent to their schema.

These findings give rise both for a recommendation
and some future work. First, in use cases where relat-
edness plays a role next to similarity, or in use cases
where all entities are of the same type, approaches like
RDF2vec may yield better results. On the other hand,
for cases with mixed entity types where it is impor-
tant to separate the types, link prediction embeddings
might yield better results.

Since the set of knowledge graphs used in our exper-
iments is limited, we can, however, not come up with
recommendations of which kind of embedding is bet-
ter suited for which kind of knowledge graph. While
we expect that there are differences with respect to dif-
ferent characteristics of the graph – e.g., homogene-
ity, link degree and cardinality distributions, density
and sparsity, schema size and variety – both theoreti-
cal considerations and experimental evaluations in that
direction are subject to future work.

Moreover, the open question remains whether it is
possible to develop embedding methods that combine
the best of both worlds – e.g., that provide both the
coarse type separation of TransE and its descendants
and the fine type separation of RDF2vec, or that sup-
port competitive link prediction while also represent-
ing relatedness. We expect to see some interesting de-
velopments along these lines in the future.

References

[1] Q. Wang, Z. Mao, B. Wang and L. Guo, Knowledge
graph embedding: A survey of approaches and applica-
tions, IEEE Transactions on Knowledge and Data Engineer-
ing 29(12) (2017), 2724–2743, https://doi.org/10.1109/TKDE.
2017.2754499.

[2] X. Han, S. Cao, X. Lv, Y. Lin, Z. Liu, M. Sun and J. Li,
OpenKE: An open toolkit for knowledge embedding, in: Pro-
ceedings of the 2018 conference on empirical methods in
natural language processing: system demonstrations, 2018,
pp. 139–144, http://dx.doi.org/10.18653/v1/D18-2024.

[3] H. Paulheim, Knowledge graph refinement: A survey of ap-
proaches and evaluation methods, Semantic web 8(3) (2017),
489–508, https://dx.doi.org/10.3233/SW-160218.

[4] P. Ristoski and H. Paulheim, RDF2vec: RDF graph embed-
dings for data mining, in: International Semantic Web Con-
ference, Springer, 2016, pp. 498–514, https://doi.org/10.1007/
978-3-319-46523-4_30.

[5] B. Steenwinckel, G. Vandewiele, I. Rausch, P. Heyvaert,
R. Taelman, P. Colpaert, P. Simoens, A. Dimou, F. De Turck
and F. Ongenae, Facilitating the Analysis of COVID-19 Lit-
erature Through a Knowledge Graph, in: International Se-
mantic Web Conference, Springer, 2020, pp. 344–357, https:
//doi.org/10.1007/978-3-030-62466-8_22.

[6] P. Ristoski, J. Rosati, T. Di Noia, R. De Leone and H. Paulheim,
RDF2Vec: RDF graph embeddings and their applications, Se-
mantic Web 10(4) (2019), 721–752, https://dx.doi.org/10.3233/
SW-180317.

[7] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston and
O. Yakhnenko, Translating embeddings for modeling multi-
relational data, in: Advances in neural information processing
systems, 2013, pp. 2787–2795.

[8] Y. Dai, S. Wang, N.N. Xiong and W. Guo, A Survey on Knowl-
edge Graph Embedding: Approaches, Applications and Bench-
marks, Electronics 9(5) (2020), 750, https://doi.org/10.3390/
electronics9050750.

https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.18653/v1/D18-2024
https://dx.doi.org/10.3233/SW-160218
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-030-62466-8_22
https://doi.org/10.1007/978-3-030-62466-8_22
https://dx.doi.org/10.3233/SW-180317
https://dx.doi.org/10.3233/SW-180317
https://doi.org/10.3390/electronics9050750
https://doi.org/10.3390/electronics9050750

20 J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[9] A. Rossi, D. Barbosa, D. Firmani, A. Matinata and P. Meri-
aldo, Knowledge graph embedding for link prediction: A com-
parative analysis, ACM Transactions on Knowledge Discov-
ery from Data (TKDD) 15(2) (2021), 1–49, https://doi.org/10.
1145/3424672.

[10] S. Ji, S. Pan, E. Cambria, P. Marttinen and S.Y. Philip,
A survey on knowledge graphs: Representation, acquisition,
and applications, IEEE Transactions on Neural Networks
and Learning Systems (2021), https://doi.org/10.1109/TNNLS.
2021.3070843.

[11] R. Xie, Z. Liu, J. Jia, H. Luan and M. Sun, Representation
learning of knowledge graphs with entity descriptions, in: Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
Vol. 30, 2016.

[12] X. Wang, T. Gao, Z. Zhu, Z. Zhang, Z. Liu, J. Li and J. Tang,
KEPLER: A unified model for knowledge embedding and pre-
trained language representation, Transactions of the Associa-
tion for Computational Linguistics 9 (2021), 176–194, https:
//doi.org/10.1162/tacl_a_00360.

[13] D. Daza, M. Cochez and P. Groth, Inductive Entity Represen-
tations from Text via Link Prediction, in: Proceedings of the
Web Conference 2021, 2021, pp. 798–808, https://doi.org/10.
1145/3442381.3450141.

[14] G.A. Gesese, R. Biswas, M. Alam and H. Sack, A survey on
knowledge graph embeddings with literals: Which model links
better literal-ly?, Semantic Web 12(4) (2021), 617–647, https:
//dx.doi.org/10.3233/SW-200404.

[15] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury
and M. Gamon, Representing text for joint embedding of text
and knowledge bases, in: Proceedings of the 2015 conference
on empirical methods in natural language processing, 2015,
pp. 1499–1509, http://dx.doi.org/10.18653/v1/D15-1174.

[16] T. Dettmers, P. Minervini, P. Stenetorp and S. Riedel, Con-
volutional 2d knowledge graph embeddings, in: Thirty-second
AAAI conference on artificial intelligence, 2018.

[17] B. Shi and T. Weninger, Open-world knowledge graph com-
pletion, in: Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

[18] M. Cochez, P. Ristoski, S.P. Ponzetto and H. Paulheim, Global
RDF vector space embeddings, in: International Semantic Web
Conference, Springer, 2017, pp. 190–207, https://doi.org/10.
1007/978-3-319-68288-4_12.

[19] M.A. Pellegrino, A. Altabba, M. Garofalo, P. Ristoski and
M. Cochez, GEval: A Modular and Extensible Evaluation
Framework for Graph Embedding Techniques, in: European
Semantic Web Conference, Springer, 2020, pp. 565–582, https:
//doi.org/10.1007/978-3-030-49461-2_33.

[20] A. Zouaq and F. Martel, What is the schema of your knowledge
graph? leveraging knowledge graph embeddings and cluster-
ing for expressive taxonomy learning, in: Proceedings of The
International Workshop on Semantic Big Data, 2020, pp. 1–6,
https://doi.org/10.1145/3391274.3393637.

[21] J. Chen, X. Chen, I. Horrocks, E. B. Myklebust and E. Jimenez-
Ruiz, Correcting Knowledge Base Assertions, in: Proceedings
of The Web Conference 2020, 2020, pp. 1537–1547, https://doi.
org/10.1145/3366423.3380226.

[22] R. Celebi, H. Uyar, E. Yasar, O. Gumus, O. Dikenelli and
M. Dumontier, Evaluation of knowledge graph embedding ap-
proaches for drug-drug interaction prediction in realistic set-
tings, BMC bioinformatics 20(1) (2019), 1–14, https://doi.org/
10.1186/s12859-019-3284-5.

[23] M.R. Karim, M. Cochez, J.B. Jares, M. Uddin, O. Beyan and
S. Decker, Drug-drug interaction prediction based on knowl-
edge graph embeddings and convolutional-LSTM network, in:
Proceedings of the 10th ACM international conference on
bioinformatics, computational biology and health informatics,
2019, pp. 113–123, https://doi.org/10.1145/3307339.3342161.

[24] S. Basu, S. Chakraborty, A. Hassan, S. Siddique and A. Anand,
ERLKG: Entity Representation Learning and Knowledge
Graph based association analysis of COVID-19 through min-
ing of unstructured biomedical corpora, in: Proceedings of
the First Workshop on Scholarly Document Processing, 2020,
pp. 127–137, http://dx.doi.org/10.18653/v1/2020.sdp-1.15.

[25] Y. Wang, L. Dong, X. Jiang, X. Ma, Y. Li and H. Zhang,
KG2Vec: A node2vec-based vectorization model for knowl-
edge graph, Plos one 16(3) (2021), e0248552, https://doi.org/
10.1371/journal.pone.0248552.

[26] F. Bakhshandegan Moghaddam, C. Draschner, J. Lehmann
and H. Jabeen, Literal2Feature: An Automatic Scalable
RDF Graph Feature Extractor, in: Further with Knowledge
Graphs, IOS Press, 2021, pp. 74–88, https://dx.doi.org/10.
3233/SSW210036.

[27] P. Ristoski and H. Paulheim, Semantic Web in data mining and
knowledge discovery: A comprehensive survey, Journal of Web
Semantics 36 (2016), 1–22, https://doi.org/10.1016/j.websem.
2016.01.001.

[28] P. Ristoski and H. Paulheim, A comparison of propositional-
ization strategies for creating features from linked open data,
Linked Data for Knowledge Discovery 6 (2014).

[29] T. Mikolov, K. Chen, G. Corrado and J. Dean, Efficient estima-
tion of word representations in vector space, in: International
Conference on Learning Representations, 2013.

[30] N. Lavrač, B. Škrlj and M. Robnik-Šikonja, Propositionaliza-
tion and embeddings: two sides of the same coin, Machine
Learning 109(7) (2020), 1465–1507, https://doi.org/10.1007/
s10994-020-05890-8.

[31] P.-N. Tan, M. Steinbach and V. Kumar, Introduction to data
mining, Pearson Education India, 2016.

[32] J. Portisch and H. Paulheim, Putting RDF2vec in Order, in:
International Semantic Web Conference, Posters and Demos,
2021.

[33] W. Ling, C. Dyer, A.W. Black and I. Trancoso, Two/too simple
adaptations of word2vec for syntax problems, in: Proceedings
of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, 2015, pp. 1299–1304, http://dx.doi.org/10.3115/
v1/N15-1142.

[34] G. Vandewiele, B. Steenwinckel, M. Weyns, P. Bonte,
F. Ongenae and F.D. Turck, pyRDF2Vec: A python li-
brary for RDF2Vec, 2020, https://github.com/IBCNServices/
pyRDF2Vec.

[35] R. Sofronova, R. Biswas, M. Alam and H. Sack, Entity typing
based on RDF2vec using supervised and unsupervised meth-
ods, in: European Semantic Web Conference, Springer, 2020,
pp. 203–207, https://doi.org/10.1007/978-3-030-62327-2_35.

[36] M. Kejriwal and P. Szekely, Supervised typing of big graphs
using semantic embeddings, in: Proceedings of The Interna-
tional Workshop on Semantic Big Data, 2017, pp. 1–6, https:
//doi.org/10.1145/3066911.3066918.

[37] M. Ali, M. Berrendorf, C.T. Hoyt, L. Vermue, S. Sharifzadeh,
V. Tresp and J. Lehmann, PyKEEN 1.0: A Python Library for

https://doi.org/10.1145/3424672
https://doi.org/10.1145/3424672
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1145/3442381.3450141
https://doi.org/10.1145/3442381.3450141
https://dx.doi.org/10.3233/SW-200404
https://dx.doi.org/10.3233/SW-200404
http://dx.doi.org/10.18653/v1/D15-1174
https://doi.org/10.1007/978-3-319-68288-4_12
https://doi.org/10.1007/978-3-319-68288-4_12
https://doi.org/10.1007/978-3-030-49461-2_33
https://doi.org/10.1007/978-3-030-49461-2_33
https://doi.org/10.1145/3391274.3393637
https://doi.org/10.1145/3366423.3380226
https://doi.org/10.1145/3366423.3380226
https://doi.org/10.1186/s12859-019-3284-5
https://doi.org/10.1186/s12859-019-3284-5
https://doi.org/10.1145/3307339.3342161
http://dx.doi.org/10.18653/v1/2020.sdp-1.15
https://doi.org/10.1371/journal.pone.0248552
https://doi.org/10.1371/journal.pone.0248552
https://dx.doi.org/10.3233/SSW210036
https://dx.doi.org/10.3233/SSW210036
https://doi.org/10.1016/j.websem.2016.01.001
https://doi.org/10.1016/j.websem.2016.01.001
https://doi.org/10.1007/s10994-020-05890-8
https://doi.org/10.1007/s10994-020-05890-8
http://dx.doi.org/10.3115/v1/N15-1142
http://dx.doi.org/10.3115/v1/N15-1142
https://github.com/IBCNServices/pyRDF2Vec
https://github.com/IBCNServices/pyRDF2Vec
https://doi.org/10.1007/978-3-030-62327-2_35
https://doi.org/10.1145/3066911.3066918
https://doi.org/10.1145/3066911.3066918

J. Portisch et al. / Knowledge Graph Embedding for Data Mining vs. Knowledge Graph Embedding for Link Prediction 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Training and Evaluating Knowledge Graph Embeddings, Jour-
nal of Machine Learning Research 22(82) (2021), 1–6.

[38] P. Ristoski, G.K.D. De Vries and H. Paulheim, A collection
of benchmark datasets for systematic evaluations of machine
learning on the semantic web, in: International Semantic Web
Conference, Springer, 2016, pp. 186–194, https://doi.org/10.
1007/978-3-319-46547-0_20.

[39] M.D. Lee, B. Pincombe and M. Welsh, An empirical evaluation
of models of text document similarity, in: Proceedings of the
annual meeting of the cognitive science society, Vol. 27, 2005,
https://hdl.handle.net/2440/28910.

[40] P.N. Mendes, M. Jakob, A. García-Silva and C. Bizer, DBpedia
spotlight: shedding light on the web of documents, in: Proceed-
ings of the 7th international conference on semantic systems,
2011, pp. 1–8, https://doi.org/10.1145/2063518.2063519.

[41] J. Hoffart, S. Seufert, D.B. Nguyen, M. Theobald and
G. Weikum, KORE: keyphrase overlap relatedness for entity
disambiguation, in: Proceedings of the 21st ACM international
conference on Information and knowledge management, 2012,
pp. 545–554, https://doi.org/10.1145/2396761.2396832.

[42] D. Zheng, X. Song, C. Ma, Z. Tan, Z. Ye, J. Dong, H. Xiong,
Z. Zhang and G. Karypis, DGL-KE: Training Knowledge
Graph Embeddings at Scale, in: Proceedings of the 43rd In-
ternational ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’20, Associa-
tion for Computing Machinery, New York, NY, USA, 2020,
pp. 739–748–, https://doi.org/10.1145/3397271.3401172.

[43] J. Portisch, M. Hladik and H. Paulheim, KGvec2go–
Knowledge Graph Embeddings as a Service, in: Proceed-
ings of the 12th Language Resources and Evaluation Con-
ference, 2020, pp. 5641–5647, https://aclanthology.org/2020.
lrec-1.692.

[44] Y. Lin, Z. Liu, M. Sun, Y. Liu and X. Zhu, Learning entity
and relation embeddings for knowledge graph completion, in:
Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 29, 2015, pp. 2181––2187.

[45] Z. Sun, Z.-H. Deng, J.-Y. Nie and J. Tang, RotatE: Knowl-
edge Graph Embedding by Relational Rotation in Complex
Space, in: International Conference on Learning Representa-
tions, 2018.

[46] B. Yang, W.-t. Yih, X. He, J. Gao and L. Deng, Embedding
entities and relations for learning and inference in knowledge
bases, in: International Conference on Learning Representa-
tions, 2015.

[47] M. Nickel, V. Tresp and H.-P. Kriegel, A three-way model for
collective learning on multi-relational data, in: International
Conference on Machine Learning, 2011, pp. 809––816.

[48] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier and G. Bouchard,
Complex embeddings for simple link prediction, in: Inter-
national Conference on Machine Learning, PMLR, 2016,
pp. 2071–2080.

https://doi.org/10.1007/978-3-319-46547-0_20
https://doi.org/10.1007/978-3-319-46547-0_20
https://hdl.handle.net/2440/28910
https://doi.org/10.1145/2063518.2063519
https://doi.org/10.1145/2396761.2396832
https://doi.org/10.1145/3397271.3401172
https://aclanthology.org/2020.lrec-1.692
https://aclanthology.org/2020.lrec-1.692

	Introduction
	Related Work
	Knowledge Graph Embedding Methods for Data Mining
	Data Mining is based on Similarity
	Creating Similar Embeddings for Similar Instances
	Usage for Link Prediction

	Knowledge Graph Embedding Methods for Link Prediction
	Link Prediction is based on Vector Operations
	Usage for Data Mining
	Comparing the Two Notions of Similarity

	Experiments
	Experiments on Data Mining Tasks
	Experiments on Link Prediction Tasks
	Discussion

	Conclusion and Outlook

