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Abstract. Small and medium-sized organisations face challenges in acquiring, storing and analysing personal data, particularly
sensitive data (e.g., data of medical nature), due to data protection regulations, such as the GDPR in the EU, which stipulates
high standards in data protection. Consequently, these organisations often refrain from collecting data centrally, which means
losing the potential of data analytics and learning from aggregated user data.

To enable organisations to leverage the full-potential of the collected personal data, two main technical challenges need to
be addressed: (i) organisations must preserve the privacy of individual users and honour their consent, while (ii) being able to
provide data and algorithmic governance, e.g., in the form of audit trails, to increase trust in the result and support reproducibility
of the data analysis tasks performed on the collected data.

Such an auditable, privacy-preserving data analysis is currently challenging to achieve, as existing methods and tools only
offer partial solutions to this problem, e.g., data representation of audit trails and user consent, automatic checking of usage
policies or data anonymisation. To the best of our knowledge, there exists no approach providing an integrated architecture for
auditable, privacy-preserving data analysis.

To address these gaps, as the main contribution of this paper, we propose the WellFort approach, a semantic-enabled architec-
ture for auditable, privacy-preserving data analysis which provides secure storage for users’ sensitive data with explicit consent,
and delivers a trusted, auditable analysis environment for executing data analytic processes in a privacy-preserving manner. Addi-
tional contributions include the adaptation of Semantic Web technologies as an integral part of the WellFort architecture, and the
demonstration of the approach through a feasibility study with a prototype supporting use cases from the medical domain. Our
evaluation shows that WellFort enables privacy preserving analysis of data, and collects sufficient information in an automated
way to support its auditability at the same time.

Keywords: provenance, semantic web, privacy-preserving data analysis, auditability, dpv, consent management
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1. Introduction1

In Europe, the GDPR [1], in effect since May 2018,
stipulates high standards in data protection and im-
poses substantial fines for non-compliance. Moreover,
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security breaches have the potential to go beyond fi-
nancial impact and ruin an organisation permanently,
as lost reputation and trust cannot be regained easily.
Hence, the organisations not only have to make sure
that the data analysis techniques fulfil guarantees of
privacy of the individuals representing the underlying
records [2], but they also need to ensure that the use
of data is compliant with the user consent. This is es-
pecially important to keep track of explicit consent for
sensitive user data as defined in GDPR art. 9.

Furthermore, to enable accountability, and trans-
parency of systems used for data analysis through au-
ditability, we must capture and understand the broad
context in which the system operates: data sources and
algorithms, as well as processes and services that the
deployed systems depend on [3]. In our context, we
define auditability as the ability of an auditor to re-
ceive accurate results for inspection and review. Goal
of an audit can be to check compliance of an organisa-
tion with pre-defined rules and/or standards and regu-
lation. However, without a strong background in IT se-
curity and big budgets, providing a secure platform for
data storage and analysis is often beyond capabilities
of small and medium-sized organisations.

As a consequence, organisations often refrain from
collecting data centrally and, for example, offer appli-
cations that analyse data locally, on the device that col-
lects the data, instead. While this reduces the attack
surface, it means losing on the potential of data ana-
lytics and learning from the entire collected data, and
thereby hinders innovative services and research. As
an example, identifying trends over cohorts of users is
not possible.

Some approaches, such as Federated Learning,
allow analysis of data distributed among multiple
sources by computing a common result without having
to centralise the inputs (data). However, most of these
approaches are well explored only when data is hori-
zontally partitioned. In our scenario, we generally have
a setting with vertical partitioning, i.e. we have data
records describing different aspects of the same indi-
vidual(s), which still poses some challenges (cf. Sec-
tion 7). Further, auditability is more difficult to achieve
in the federated setting. Therefore, we focus on the
centralised setup proposed in our paper.

To this end, the main research problem discussed in
this paper can be formulated as follows: How to enable
auditable, privacy-preserving data analysis systems?

Further, we divided the problem into a number of
research questions as follows:

– What are the key characteristics of auditable,
privacy-preserving data analysis systems?

– What are the key elements of an architecture for
auditable, privacy-preserving data analysis sys-
tems?

– How can Semantic Web technologies be used to
enable auditable, privacy-preserving data analy-
sis systems?

Recently, research on applying Semantic Web tech-
nologies to address challenges related to auditabil-
ity and user privacy has been intensified. On the one
hand, the emergence of the W3C PROV-O recom-
mendation [4] has been well-received in the commu-
nity as a de-facto standard for RDF representation
of provenance trails, forming a basis for auditability.
As a result, the development of methods and tools
around PROV-O are growing rapidly, summarised in
a recent survey paper [5]. On the other hand, the re-
search on representation and compliance checking for
user consent and personal data handling also gained
traction. Semantic Web technologies, with ontologies
and reasoners as key resources, have been proposed
to facilitate representing [6–8] and automated com-
pliance checking [9, 10] on usage policy, which are
key to enable consent-check mechanisms for privacy-
preserving data analysis.

In a wider research community, privacy-preserving
data analysis is an active research area. Various ap-
proaches that have been proposed for privacy-preserving
data analysis can be categorised according to the data
lifecycle they are applied to, for example: privacy-
preserving data publishing (PPDP) and privacy-preser-
ving data mining outputs (PPDMO) [11]. In our work
we rely on the methods from PPDP and PPDMO.
PPDP relies on anonymising data records before pub-
lishing. The most prominent method is k-anonymity [12],
including its extensions, l-diversity and t-closeness.
Approaches towards PPDMO include query inference
control, where either the original data or the output
of the query are perturbed and query auditing where
some queries are denied because of potential privacy
breach. DataSHIELD [13] is an example of such a sys-
tem, which applies both of the later techniques to a
number of data mining functions.

Despite research on isolated topics, to the best of
our knowledge, no integrated architecture for auditable
privacy-preserving data analysis exists. The lack of
such an approach can be attributed in part to the con-
tradicting goals of collecting as much data as possible
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for auditability, while aiming for reduced data collec-
tion to minimise the impact of a data breach.

To fill in this gap, we propose a novel approach
called WellFort, a semantic-enabled architecture for
auditable, privacy-preserving data analysis which (i)
provides secure storage for users’ sensitive data with
explicit consent, and (ii) delivers a trusted analysis en-
vironment for executing data analytic processes in a
privacy-preserving manner. Our approach is novel, be-
cause organisations do not have direct access to in-
dividual data, but only access it in an aggregated or
anonymised form. Organisations on the one hand can
benefit from a large groups of individuals that are po-
tentially willing to share their data for broader an-
alytics tasks, such as those required by e.g., medi-
cal research. Users, on the other hand, benefit from a
privacy-preserving and secure platform for their data,
and can contribute to analytics/research projects in a
secure manner. Finally, analysts (such as researchers)
may obtain a detailed source of microdata, if data sub-
jects give the corresponding consent.

The contribution of this paper is three-fold:

– We propose WellFort, a semantic-enabled archi-
tecture for auditable privacy preserving data anal-
ysis,

– We adapt Semantic Web technologies as an in-
tegral part of the architecture, including: (a)
ontology-based data representation of prove-
nance, dataset metadata, and usage policies, (b)
ontology development and extension methods, as
well as (c) automatic usage policy compliance
checking with OWL2 reasoning, and

– We demonstrate the feasibility of our approach on
real-world use cases in the medical domain.

The rest of the paper is structured as follows. Sec-
tion 2 presents the requirements for the architecture.
Section 3 describes the WellFort conceptual architec-
ture and the processes it supports. Section 4 reports
on the Semantic Web methods adoption to support the
architecture. Section 5 presents the prototype imple-
mentation. Section 6 investigates the feasibility of a
WellFort-based prototype in four use cases, and Sec-
tion 7 presents related work. Finally, conclusions and
an outlook are given in Section 8.

2. Requirements1

In this section, we introduce the main functional and
non-functional requirements for our platform. These

Fig. 1. WellFort overview scenario

iteratively refined requirements are based on privacy
regulations, such as GDPR [1] as well as use cases and
discussions with partners from the WellFort project1.

In the following, we describe a scenario (cf. Fig-
ure 1) to exemplify and motivate the requirements for
auditable privacy-preserving data analysis described in
the following sub-sections. Later, in Section 6, we will
derive four concrete use cases from this scenario to
conduct feasibility studies of our approach.

Andrea is a user of two health apps, one from Com-
pany H, which monitors her heart rate, and another
one from Company M, which records her cholesterol
level. She wants to collect her data from both apps, link
and share her data, but only for research purposes. She
also considers sharing her data for specific commer-
cial purposes, like getting product recommendations,
but wants to decide about it later.

However, since Company H and Company M are
small companies, they do not want to manage the data
themselves. They plan to store their users’ data in a
cloud platform without having to develop and run the
platform themselves.

Barbara, a researcher from TU Wien, is planning to
develop a machine-learning model on the relationship
between heart rate and cholesterol level for her re-
search. She is looking for suitable data for her model,
but at the same time, she wants to make sure that she
is compliant with regulations.

Later on, Andrea asks Claudia, an auditor of the
cloud platform, regarding the use of her data. Since
Andrea’s data is used as part of Barbara’s research,
Claudia provides Andrea with the information on the
research setup.

In the scenario above, the data captured by the ap-
plication providers (i.e., Company H and M) can be
categorised in the special category of personal data in

1https://www.sba-research.org/research/projects/wellfort/

https://www.sba-research.org/research/projects/wellfort/
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GDPR art. 9. Thus, the cloud platform should facili-
tate users like Andrea to define explicit consent to their
data. Furthermore, due to privacy reasons, application
providers and researchers like Barbara should not get
direct access to user data repositories, but still should
be able to conduct data analysis in a privacy-preserving
manner without compromising user consent. Claudia,
in the other hand, should be able to provide the audit
information to Andrea, without having access to the
content of her personal data.

2.1. Privacy-preserving Data Analysis2

Data analysis. The platform must enable data an-
alysts to conduct privacy-preserving analysis without
disclosing individual user data. To reduce the attack
surface, input and intermediate data beyond the anal-
ysis must not be persisted by the platform. It should
be possible to analyse data originating from the same
application (organization) and also to conduct cross-
application (cross-data owner) analysis (e.g., correlat-
ing heart rate with cholesterol level, even though each
was collected from a different application).

Finally, all data analysis computation on raw indi-
vidual data must take place inside the platform and the
analysis environments can be stored only for a limited
period of time, as defined by the data retention policy
of the platform.

Data publishing. Analysts must not download any
data in its original form, to fulfil regulatory require-
ments, and to minimise the surface for privacy attacks,
such as user re-identification. Instead, for offline anal-
ysis, the platform should offer anonymized downloads,
and the generation of synthetic data [14]. The platform
must provide measures to prohibit downloading simi-
lar data multiple times by a single analyst, since this
provides the channel for disclosure of sensitive infor-
mation.

Usage Policy Management. Data analysis requires
fine-grained consent from the involved users [1], and
access control has to ensure that only authorised an-
alysts can work with the data. To this end, usage
policies, which include both user consent and data
handling setup need to be represented in a machine-
readable format. Further, a mechanism to conduct an
automatic usage policy checking between consent and
data handling is required.

2.2. Auditability2

Provenance data capture and tracing. Provenance
of data must be traced in the whole data lifecycle

within the platform. Automated collection of by who,
when, and how data has been accessed, processed and
analysed needs to be recorded, ranging from high level
to precise trails. Traces must be easily accessible by
auditors to check which data was used and how results
were computed to identify irregularities or do checks.
Finally, analysts must not be able to acquire or infer
personal or otherwise sensitive data via the provenance
trail.

Provenance data inspection and analysis capability.
Collected provenance data streams must be accessible
to users with auditing privileges through an interface,
to be able to answer audit questions concerning data
and its upload, usage, and analysis. Such a question
could be to inspect which studies involved a user’s per-
sonal data, for what purposes, and how it was anal-
ysed. Auditors should be able to access the data while
preserving the privacy of users, therefore, no personal
data must be acquired by the provenance feature.

Metadata-retention after deletion. Even after users
revoke their consent due to their right to be forgotten,
consent for past studies is still valid. In order to ful-
fil the requirement of providing proof of correct data
capturing and data analysis, minimum necessary meta-
information must be kept in the provenance module
for past studies that were conducted and based on now
deleted information.

3. Conceptual architecture1

In this section, we describe the conceptual architec-
ture of the platform for auditable privacy-preserving
data analysis, which addresses the requirements de-
fined in Section 2. More on the technical details will
be described on Section 4 and Section 5.

The conceptual architecture of the platform is de-
picted in Figure 2. There are three distinct actors:

– User – store their data in the platform and give
consent to analyse it. They use an application pro-
vided by the organisation and do not interact with
the platform directly, e.g., using a dedicated user
interface.

– Analyst – can run experiments in the platform.
They define what types of data will be used in the
analysis and perform the actual analysis.

– Auditor – can analyse evidence collected to an-
swer specific audit questions that depend on the
purpose of the audit, e.g., a litigation case, or
simple usage statistics for users wanting to know
when and by whom their data was used.
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Fig. 2. WellFort conceptual architecture

The architecture consists of three component groups,
each serving a different purpose:

– Secure Repository – stores data uploaded by a
user and allows the selection of data to be used
in experiments by the analyst. There are no com-
ponents in this group allowing analyst to directly
view or analyse raw data.

– Trusted Analysis Environment – selected data that
fulfils experiment criteria, e.g., consent, fit for
purpose, etc. is duplicated to this component for
further analysis. This part of the platform pro-
vides mechanisms allowing the analysts to con-
duct their experiments in a privacy-preserving
manner. Data selection is usually expressed via
queries.

– Audit Box – collects and manages provenance
data to support the auditability of processes
within the secure repository and trusted analy-
sis environment. The Knowledge Base can be ac-
cessed via an interface to answer audit-related
questions on personal data access and usage.

In Figure 2, we use dashed lines to indicate the di-
vision into these three groups. Figure 2 further depicts
four typical processes executed in the platform:

– User data upload – the process starts when a
user’s application sends data to the platform. It

extracts metadata from the data, and stores it to-
gether with the data and the consent indicated
during the upload in the platform. Thus, every
dataset uploaded to the platform is linked to a
minimal set of information that allows for its re-
trieval.

– Data selection – analysts define the search crite-
ria for data they want to use in their experiments.
If the platform has enough data fulfilling their cri-
teria (and also consent for usage), then the pro-
cess loads the actual data into the Trusted Anal-
ysis Environment where the analyst obtains accu-
rate aggregate results without having access to in-
dividual datasets. The search for data relies only
on high-level information provided in the meta-
data. For example, BloodGlucose, which is one
of the attributes in the actual user data, has only
a boolean value in the corresponding metadata
to indicate whether the dataset contains informa-
tion on BloodGlucose. Furthermore, Analysts can
download anonymised data and analyse it outside
(offline) of the platform. However, anonymisation
can substantially reduce the quality of the data
and the results of the offline data analysis there-
upon.

– Data analysis – analysts process the data and pro-
duce results by submitting code to the platform.
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The platform will ensure that the analysts will not
be able to identify or infer data subjects from the
analysis.

– Audit – provenance information obtained from
each component of the platform is sent to an inde-
pendent component and organised in a knowledge
base. Auditors query experiment details.

We numbered the steps of each process and marked
them with colours: green (user data upload), orange
(data selection), blue (data analysis), and pink (audit).
We describe now each of the processes in detail to ex-
plain the role of each of the components.

3.1. User data upload2

Following the terminology set by the Open Archival
Information System (OAIS) reference model [15], this
process is equivalent to the ingest process that trans-
forms and enriches data uploaded by users, so that it
can be later located and accessed according to the cor-
responding user consent.

The process starts by a user’s application sending
data together with the consent to the Data Reposi-
tory. The Data Repository creates a record in which
it stores the persistent identifier (PID), consent, and
location of the received data. The PID is unique and
never changes. Following the FAIR (Findable, Acces-
sible, Interoperable, Reusable) principles [16], even if
the data is deleted, the PID is kept, and the record is
updated with information on why and when the data
was removed.

The platform automatically creates metadata and
stores it together with the consent in the Triplestore.
The Extractor component receives the PID of the
dataset and accesses the data. The generated metadata
consists of a list of key-value pairs, where each key
corresponds to an attribute located in data, e.g., heart
rate, while the value is always boolean, i.e. true or
false. Thus, the Triplestore contains PIDs of datasets,
together with a high-level description of the presence
of certain types of contents, and consent given. The
Triplestore does not contain any user specific informa-
tion. We provide more details on the metadata and con-
sent representation in Section 4.1.1 and Section 4.1.2
respectively.

It would be possible to use only a Data Reposi-
tory and omit the Triplestore. However, the current de-
sign has two major advantages. First, data is decou-
pled from its metadata, and thus analysts can query
the Triplestore, while the actual data can be kept of-

fline, e.g., due to security measures. Second, by using
the semantics provided by the underlying ontology, we
can run advanced queries to identify suitable data for
an experiment that go beyond simple string matching,
e.g., by using subsumption reasoning for query expan-
sions and usage policy compliance checking.

3.2. Data selection2

Analysts use the Experiment Setup Interface to de-
fine their experiments. They specify the purpose of the
experiment, and which data attributes they want to use
in their analysis. Based on this input, the Controller au-
tomatically generates a query and sends it to the Triple-
store. The Triplestore returns a list of dataset PIDs that
fulfil the criteria (cf. Section 4.1 for details on how the
result is produced). If the number of available datasets
fulfils the requirements of the analyst (so that the study
is meaningful from a statistical point of view), they can
decide to start a new study and load the data into the
Trusted Analysis Environment.

Each study has its own PID and links with the list
of dataset PIDs, as well as metadata about the experi-
ment. Similar to the PIDs used for datasets, the study
PID allows us to refer to experiments in an unambigu-
ous way.

The Loader receives the study PID and fetches the
data from the Data Repository. Depending on the ac-
tual implementation of the Trusted Analysis Environ-
ment, the Loader transforms the data into a suitable
format, e.g., database, pivot tables, etc. When the data
is loaded, analysts receive information via the Exper-
iment Setup Interface on how to access the Trusted
Analysis Environment, e.g., an access URL, username
and password.

Analysts can also decide to download either the k-
anononymised data or synthetic data. To do so they
use the Experiment Setup Interface to define their ex-
periment. All the steps are the same as before, yet the
data is not loaded in the the Analysis Database but
transformed by the Privacy Preserving Data Publish-
ing component and made available for download.

3.3. Data analysis2

Analysts use the Analysis Interface to communicate
with the Analysis Server, which in turn has access to
the data stored in the Analysis Database. The Analy-
sis Interface allows submitting code for data analysis
and viewing the processing results. It also logs every
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activity of the analyst. The Analysis Interface can be
realised as a web application running on a server side.

The Analysis Server inspects the code submitted by
analysts and protects data from direct access. For ex-
ample, the server allows only aggregation functions to
be executed, and blocks requests to list properties of
specific datasets (users). If the submitted scripts pass
such requirements for privacy-preservation, then the
results are calculated on the original data and returned
to the Analysis Interface.

Please note that the Analysis Interface is part of the
platform, and a direct access to the Analysis Server is
not possible. Such a design is more secure, and allows
to better track the analysis process.

A data analysis process can only be executed when
the data has been loaded into the Trusted Analysis En-
vironment, and when the analysts received their con-
nection details. The Analysis Database receives only
the data required for the specific study, keeps it for a
limited time, and deletes it after the study is completed.
During the analysis, there is no need to access the Se-
cure Repository. Hence, thanks to loose coupling, each
group of components can be instantiated by deploying
them on different nodes with varying levels of security,
access, as well as computational power.

3.4. Audit2

The Secure Repository and the Trusted Analysis En-
vironment push provenance information to the Prove-
nance Collector to separate this information from the
components processing data, in which the provenance
was captured. Such a design increases security of
provenance information, because it prevents from non-
authorised modification of provenance when one of the
user-facing components is compromised.

Provenance capturing can be implemented in differ-
ent ways and the captured information can be struc-
tured differently, hence, it is necessary to align repre-
sentation of provenance information before loading it
into the Knowledge Base.

The Knowledge Base stores provenance for each of
the processes supported by the platform, specifically:

– User Data Upload – a persistent identifier of
a dataset, consent, an automatically generated
metadata summarising contents of the dataset, a
timestamp.

– Data Selection – an identifier of the analyst, an
identifier of the submitted query, query attributes
(e.g. timestamp, study purpose, study descrip-

Table 1
The list of predefined prefixes and namespaces

prefix namespace
: http://w3id.org/wellfort/ns/dpv#

meta: http://w3id.org/wellfort/ns/meta#

wprv: http://w3id.org/wellfort/ns/prov#

id: http://w3id.org/wellfort/id/

dpv: http://www.w3.org/ns/dpv#

prov: http://www.w3.org/ns/prov#

dcat: http://www.w3.org/ns/dcat#

dct: http://purl.org/dc/terms/

xsd: http://www.w3.org/2001/XMLSchema#

rdt: https://github.com/End-to-end-provenance/
ExtendedProvJson/blob/master/JSON-format.md#

p-plan: http://purl.org/net/p-plan#

tion), query results, consent check results, and
an identifier of the analysis (only if the consent
check was successful and the analyst decides to
analyse the data).

– Data Analysis – an identifier of the analysis (cre-
ated in the previous step to link the query with
the analysis), information on software environ-
ment and dependencies (e.g. operating system,
software libraries, environment variables), script
parameters, results of the analysis.

Auditors use the Auditor Interface to get access to
provenance information organised in the Knowledge
Base. They define queries to retrieve relevant prove-
nance information when performing an audit, which
we will describe in the next section.

4. Semantic-Web Methods for Auditable
Privacy-preserving Data Analysis1

In this section, we describe in detail how Seman-
tic Web technologies contribute to the overall architec-
ture presented in Section 3, in particular for consent
and metadata management (Section 4.1) and auditabil-
ity (Section 4.2) . Note that from here on, for consis-
tency reasons we will use the prefixes and namespaces
introduced in Table 1.

4.1. Consent and metadata management2

In this section, we describe the mechanism to man-
age and utilise consent and metadata with Semantic
Web technologies, to ensure that experiments can be
executed with a sufficient amount of data without com-

http://w3id.org/wellfort/ns/dpv#
http://w3id.org/wellfort/ns/meta#
http://w3id.org/wellfort/ns/prov#
http://w3id.org/wellfort/id/
http://www.w3.org/ns/dpv#
http://www.w3.org/ns/prov#
http://www.w3.org/ns/dcat#
http://purl.org/dc/terms/
http://www.w3.org/2001/XMLSchema#
https://github.com/End-to-end-provenance/ExtendedProvJson/blob/master/JSON-format.md#
https://github.com/End-to-end-provenance/ExtendedProvJson/blob/master/JSON-format.md#
http://purl.org/net/p-plan#
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promising the user consent of the datasets. The mech-
anism mainly resides within the Secure Repository,
where the analysts interact with the system to setup
their experiments.

When an analyst interacts with the Experiment
Setup Interface, she needs to describe the Data Han-
dling setup, which contains information about the re-
quired category of personal data, purpose, processing,
recipient, and expiry time of the experiment. This in-
formation allows the data selection process to be con-
ducted as the following:

Step 1. Finding datasets with matching categories,
where we query the Triplestore for datasets. As a part
of the step, the RDFS reasoning is used to expand the
dataset selection based on the subsumption relations
between data categories.

Step 2. Usage policy compliance check. In this step,
we determine whether the Data Handling setup of the
analyst is compliant with the user consent of datasets
collected from Step 1. Therefore, it is necessary to au-
tomate the compliance check in order to speed up the
process.

From the steps above, we identify three necessary
components that need to be defined in order to facili-
tate the consent and metadata management, namely (i)
Dataset metadata representation, (ii) Usage policy rep-
resentation, and (iii) Automated compliance checking
mechanism.

4.1.1. Metadata Representation3
There are several suitable ontologies that can be

used to represent dataset metadata, and we therefore
only need to adapt and extend those where required,
e.g., Data Catalog Vocabulary (DCAT) [17] or VOID
[18]. In our approach, we decided to base our metadata
representation2 on Data Catalog Vocabulary (DCAT)
Version 2 [17] since it is the latest W3C recommenda-
tion.

We adopt two classes from DCAT, dcat:Catalog
to describe a catalog of datasets stored within our Data
Repository, and dcat:Dataset as the superclass of
our meta:Dataset to represent each dataset. We ar-
gue that this subclass is necessary since we add addi-
tional properties specific to meta:Dataset as fol-
lows:

– meta:hasConsent that relates a dataset and
active dpv:Consent given by a data subject for
this dataset, and

2http://w3id.org/wellfort/ns/metadata

– dpv:hasPersonalDataCategory, where
this relation indicates the categories of personal
data contained within a dataset. Note that the
value of this property may be an instance of sev-
eral sub-classes of dpv:PersonalDataCategory.

These two relations imply the use of the Data Pri-
vacy Vocabulary (DPV) [6] in our architecture that we
will explain in the next subsection.

id:WellFortCatalog a dcat:Catalog ;
dct:title "WellFort Catalog" ;
dct:publisher id:TUWien ;
dcat:dataset id:dataset-1, id:dataset-2 .

id:dataset-303 a meta:Dataset ;
meta:hasConsent id:consent-1 ;
dpv:hasPersonalDataCategory id:category-1 ;
dct:identifier "303" ;
dct:issued "2011-12-05"^^xsd:date .

id:category-1 a :HeartRate, dpv:Age .

Listing 1: An excerpt of dataset metadata on WellFort

We provided an example metadata in Listing 1,
which shows the single catalog in the platform and
dataset-303, which contains personal information on
heart rate and age. We deliberately removed the rela-
tion between users and datasets in our metadata.

4.1.2. Usage Policy Representation3
One of the main requirements of our approach is to

ensure that the personal data can be used for analy-
sis without compromising user consent. To this end,
there is a clear need to represent usage policies, both
for user consent and analyst data handling, in a clear
and concise manner. In recent years, a number of on-
tologies has been proposed to represent usage policies,
e.g., DPV [6], PrOnto [8], SPECIAL [19] and SAVE
[7], among others.

For our approach, we decided to use DPV as our
basis for usage policy representation, due to (i) the
community-based development of the vocabularies,
and (ii) DPV does not recommend a specific mech-
anism to use its concepts, providing adopters with a
high degree of freedom to use and adapt it for their pur-
pose. Furthermore, the DPV Community Group3 in-
volves researchers and practitioners with similar inter-
ests across the world and has become a strong candi-
date for usage policy representation.

We adapt the SPECIAL Policy Language [19] to
structure DPV as usage policy. In this structure, a us-
age policy is composed of one or more basic usage
policies each of which is an OWL2 expression of the

3https://www.w3.org/community/dpvcg/

http://w3id.org/wellfort/ns/metadata
https://www.w3.org/community/dpvcg/
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ObjectIntersectionOf(
ObjectSomeValuesFrom(dpv:hasPersonalDataCategory
SomePersonalDataCategory)

ObjectSomeValuesFrom(dpv:hasProcessing SomeProcessing)
ObjectSomeValuesFrom(dpv:hasPurpose SomePurpose)
ObjectSomeValuesFrom(dpv:hasRecipient SomeRecipient)
DataSomeValuesFrom(:expiryTime
DatatypeRestriction(xsd:dateTime xsd:maxInclusive
SomeDateTime)))

Listing 2: DPV adaptation of SPECIAL Policy Lan-
guage for WellFort

form shown in Listing 2. We implement a small adjust-
ment to the original structure by replacing the storage
information with an explicit expiry time of policies,
which is simpler but provide the necessary time limit
on the use of data. We argue that the current structure is
inline with the GDPR, which defines that policies shall
specify clearly (i) which data are collected, (ii) what
is the purpose of the collection, (iii) what processing
will be performed, (iv) whether or not the data will be
shared with others, and (v) for how long the data will
be stored.

Within our approach, we use the dpv:Consent
to represent user consent for their personal data and
dpv:PersonalDataHandling to capture the an-
alyst data handling. Other than these two classes, sim-
ilar to SPECIAL, DPV provides taxonomies that rep-
resent general categories for each type of basic usage
policy, which we briefly describe in the following:

– dpv:PersonalDataCategory to represent
the category of personal data provided by a user
and requested by an analyst.

– dpv:Processing to describe the categories of
processes that are consented by a user and pro-
cesses that are planned to be executed by an ana-
lyst.

– dpv:Purpose to describe the allowed purpose
of the personal data processing (user) and the pur-
pose of the data handling (analyst).

– dpv:Recipient to describe the designated re-
cipient of personal data processing results (an-
alyst) and the consented recipient of the results
(user).

Furthermore, there are a number of properties that
we deemed necessary to be included in the consent and
data handling setup:

– dpv:hasPersonalDataCategory to link
either a consent or a data handling to the relevant
personal data category.

– dpv:hasPurpose to link either a consent or a
data handling to its purposes.

Fig. 3. An excerpt of the extended Data Privacy Vocabulary (DPV)

– dpv:hasProcessing to link either a consent
or a data handling to the processing mechanisms.

– dpv:hasRecipient to link either a consent or
a data handling to the target recipient.

– :expiryTime to store the expiry time for
both user consent and data handling. We de-
cided against using dpv:expiry to include
dpv:PersonalDataHandling as a domain
and to use xsd:DateTime as its range.

– dpv:hasProvisionTime to store the provi-
sion time of a user consent.

– dpv:hasWithdrawalTime to store the with-
drawal time of a user consent.

While the generic concepts provided by DPV vocab-
ularies cover a wide range of subjects, they might not
cover the requirements for the fine-granular consent
definition in domain-specific use cases. To address this
issue, we adopt the vocabulary extension approach we
previously developed in [20], where we adapted and
extended the SPECIAL vocabularies in the smart-city
domain. We reuse a similar mechanism to extend DPV
concepts with use case specific concepts to allow us-
age policy matching on fine-granular user consent for
our evaluation in Section 6. An excerpt of the extended
DPV4 is shown in Figure 3.

4Full version is available online: http://w3id.org/wellfort/ns/dpv

http://w3id.org/wellfort/ns/dpv
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4.1.3. Automated Compliance Checking3
In SPECIAL [19], policies and log events are de-

scribed in semantically unambiguous terms from the
same taxonomies defining usage policies, hence it fa-
cilitates automatic compliance checking. To allow au-
tomatic compliance checking, the usage policy en-
forced by a data controller contains the operations that
are permitted within the data controller’s organisation.

In this work, we reuse the same mechanism as in
SPECIAL approach [9], where the usage policy Uc at-
tached to a dpv:PersonalDataHandling complies with
the usage policy Ps in the data subject’s dpv:Consent if
and only if all the authorisations in Uc are also autho-
rised by Ps, that is, Uc complies with Ps if and only if
Uc is a subclass of Ps. This implies checking whether
this subsumption is entailed by the combined ontol-
ogy containing a subset of DPV as described in Sec-
tion 4.1.2 and the aforementioned auxiliary vocabular-
ies. This entailment is supported by general inference
engines for OWL 2 (e.g. HermiT and FaCT++) and
further details of the compliance checking mechanism
can be found in [9, 21]. Furthermore, Bonatti et al. [22]
have developed a specialised reasoning engine that al-
lows real-time OWL2 reasoning that enhanced the rea-
soning performance for the automatic consent check
mechanism considerably.

The reasoning behind reusing the SPECIAL usage
policy compliance checking mechanism for our ap-
proach is two-fold: (i) the approach is compatible with
DPV, which is mainly due to the fact that DPV is de-
veloped based on the SPECIAL vocabularies, and (ii)
our successful experience in adopting the SPECIAL
approach in several of our prior works [10, 20, 23].

4.2. Auditability2

In this subsection, we explain the extension made
to accommodate auditability concerns and questions.
First, we describe the methodology on how to capture
the provenance data in our architecture (Section 4.2.1).
Next, we present a list of predefined provenance-
focused competency questions from our scenario and
requirement analysis (Section 4.2.2). In the follow-
ing, we report on our extensions to the PROV-O data
model, which are tailored to these concerns (Sec-
tion 4.2.3). Finally, we explain our approach to handle
the mapping and query translation for provenance data
captured from the system (Section 4.2.4).

4.2.1. Methodology3
Miles et al. [24] offer a methodology for developing

provenance-aware applications, arguing for the iden-
tification of actors and data flows of applications. We
apply and adapt a condensed form to define our au-
ditability needs:

1. Definition of provenance competency questions:
These questions are to validate that the correct
information pieces have been gathered to answer
them and will be provided in Section 4.2.2.

2. Identification of main actors, activities and en-
tities: During the definition of provenance ques-
tions, we identified the main actors, activities and
entities.

3. Extension of provenance data model: We have
chosen PROV-O as the foundation for our au-
ditability. However, adaptations are needed to an-
swer our defined competency questions. The pro-
cess from Step 2 and 3 will be described in Sec-
tion 4.2.3.

4. Mapping of system data sources to provenance
data: In this step, audit data artefacts from the
system have to be analysed and mapped accord-
ingly to the extended PROV-O.

5. Translation of competency questions into queries
on the data: This step is concerned with the trans-
lation of questions defined in Step 1 into queries.
We will briefly describe the process from Step 4
and 5 in Section 4.2.4

4.2.2. Auditability Competency Questions3
This subsection deals with the identification of

audit-related questions from our scenario and require-
ments described in Section 2. In the process, we dis-
cussed the questions with both project members as
well as our use case partners.

We group the questions according to the main ac-
tors: 1) user-centric that are relevant for users to gain
trust in the system, e.g.: how data was used, which con-
sent was provided,etc., 2) analyst-centric, focusing on
search parameters, system variables and the software
environment of the analyst.

User-centric questions:4

– If user data has been analysed, in which studies
was it used?

– If user data has been analysed, which purposes
did the study serve?

– What user consent was given for a dataset at a
specific time?

– Which entities have analysed user data?
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– What processing was conducted on user data?
– Which user data types were used for analysis?

Analysis-centric:4

– Which search attributes were specified for a cer-
tain study?

– Which software dependencies, deployment set-
tings and software versions have been used when
conducting a study?

– Are there differences in the results between two
queries with the same search parameters but at a
different time?

– Can these differences be related to user consent,
additional data upload or a change in the platfor-
m/software environment?

– Which data transformation operations were con-
ducted on data?

– Which software was used to analyse user data?
– What scripts were used to analyse user data?

4.2.3. Audit Data Model3
We decided to adopt PROV-O5 and P-Plan6, the for-

mer as the basis of our audit data model, due to its
broad coverage of general provenance concepts, ease
of use and extensibility [25], and the latter to have
the capability to model plans. However, while PROV-
O and P-Plan are established generic frameworks for
provenance management, there is still a need to adapt
to support data tracing within the scope of our plat-
form.

One of the related works with regards to our Audit
data model is GDProv [26], an effort to model prove-
nance based on PROV-O and P-Plan to enable GDPR-
related compliance queries. However, due to the au-
diting requirements in our use cases that are beyond
consent, e.g., to model system configurations, analysis
scripts and search parameters, we still need to extend
GDProv to cater our needs.

During the definition of provenance questions, we
identified two main processes that need to be modelled
as plans (p-plan:Plan): (i) Data Upload Plan, dur-
ing which user data and associated user consent is up-
loaded, and metadata is extracted from these uploaded
inputs; and (ii) Study Plan associated with the query-
ing of metadata and the analysis activities. In the fol-
lowing we will describe the design of our core audit
data model (cf. Figure 4) to support the auditing capa-
bilities of our platform for each plan.

5https://www.w3.org/TR/prov-o/
6http://vocab.linkeddata.es/p-plan/index.html

Data Upload Plan (wprv:DataUploadPlan)4

– Upload (wprv:UploadStep) constitutes the
upload process of personal data to the plat-
form. Inputs for this step are consent (wdpv:-
Consent) and user data coming from participat-
ing user applications (wprv:InputDataset).
Dataset with consent (wprv:DatasetWith-
Consent) is the output from the upload step and
describes the stored data, which is also input to
the metadata extraction step.

– Metadata extraction (wprv:MetadataExtract-
ionStep) takes as inputs the uploaded datasets
to extract metadata (wprv:Metadata).

– UpdateUserConsent (wprv:ConsentUpdate-
Step) is an optional step in case consent for a
dataset gets updated.

Study Plan (wprv:StudyPlan)4

– Metadata Query step (wprv:MetadataQuery-
Step) stores the information associated of query-
ing the triplestore based on an analyst’s query de-
scribed in (wprv:StudyContext). The output
of this step is a query result (wprv:Metadata-
QueryResult).

– Dataset transformation (wprv:DatasetTrans-
formationStep) in case the analyst proceeds
with the study after seeing how many records
qualify for the search and consent, the transfor-
mation step captures the necessary information
to create the (wprv:TransformedDataset)
for further analysis.

– Data anonymisation (wprv:DatasetAnonym-
isationStep) is an optional step for cases
where the Analyst wants to use the privacy pre-
serving data publishing feature. When the step is
executed, the transformed dataset is used as an
input and anonymised.

– Data analysis (wprv:AnalysisExecution-
Step) describes the processing of the data for
studies within the Trusted Analysis Environment.
Input variables are: Script (wprv:Script),
and the transformed study dataset. The output is
stored in a study result (wprv:StudyResult).

We do not depict the agents and entities in Fig-
ure 4 for ease of readability. Relevant agents are the
analysts (wprv:Analyst) acting on the behalf of
their organisations (prov:Organization) in ac-
cessing the platform. Analysts execute queries to plan
their experiments and do analysis. Another relevant en-
tity is the WellFort platform itself (wprv:System),
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Fig. 4. Study and Data Upload plan of WellFort audit data model

which provides the capabilities of data upload, se-
lection and analysis. Furthermore, we defined cor-
responding sub-classes of p-plan:Activity and
p-plan:Entity to represent the instances of prove-
nance data in our ontology. For the complete ontology,
we refer interested readers to look into the ontology7.

4.2.4. Data Source Mapping and Query Translation3
The Audit Box component in WellFort architecture

provides a basic building block for audit data manage-
ment previously explained in Section 3.4.

In the provenance collector of the Audit Box, we
define a set of mappings between the raw provenance
data provided by the other two components of the
architecture, namely Secure Repository and Trusted
Analysis Environment, and our extended PROV-O data
model to ensure that we can retrieve and collect the
provenance data properly. Potential mapping technolo-
gies include RML for structured data [27] or ON-
TOP [28].

Since we store the provenance data as RDF graphs,
we naturally rely on the SPARQL query language to
formulate auditor queries to the system. To this end,
we support the auditors by implementing the com-
petency questions described in Section 4.2.1 as pre-
defined queries and provide it to the user in the Audi-

7http://w3id.org/wellfort/ns/prov

tor Interface. Furthermore, it is also possible for audi-
tors with advanced SPARQL capabilities to implement
their own SPARQL queries on their audit process.

5. Prototype1

Our overall guidelines when implementing the pro-
totype of our platform were as follows:

– For data handling, we re-use proven data formats,
standards, and ontologies as much as possible,
to avoid common pitfalls when designing from
scratch, and to foster re-use and interoperability
with other systems.

– For software components, we re-use existing,
well proven and tested components, e.g., for the
basic repository system, database servers or anal-
ysis platform, and focus our effort on orchestra-
tion and integration of these components into a
functional platform serving the intended purpose
of providing auditable, privacy-preserving data
analysis.

In the following, we provide details on our prototype
and the technologies utilised.

http://w3id.org/wellfort/ns/prov
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5.1. Secure Data Repository2

We implemented the Data Repository using the In-
venio framework8, which is used by institutions to
build data repositories that enable publication of data
according to FAIR principles. The invenio framework
allows us to store and organise datasets uploaded from
users’ applications, assign PIDs to datasets, and man-
age access control. Invenio framework is a modular
web application that is implemented in python. We
added custom-built modules to achieve the needed
functionality.

We implemented the Extractor and Controller mod-
ules as Flask9 services inside the web application.
They are responsible for automated extraction of meta-
data and consent, as well as managing the experiment.
The Experiment Setup Interface, also built with Flask,
is the only component of the Secure Data Repository
that the Analyst can interact with. It performs val-
idation of the user input, provides pages for search
queries, and functionality to setup the Analysis En-
vironment. The Loader component was implemented
with watchdog10, and is capable to supervise file sys-
tem events, such as file creation. Its purpose is to listen
for specific file patterns created (i.e., of personal data),
that in turn invoke the import of the data to the analysis
database.

The core part of the Triplestore component is built
using SparkJava11 and RDF4J12, with GraphDB13 as
its storage component. The Triplestore is responsible
for retrieving a set of dataset ids based on the evalua-
tion setup provided by an Analyst, taking into account
the availability of the requested data, as well as the
compliance between user consents and the setup.

To this end, we developed a Usage Policy Com-
pliance Check engine to complement the Triplestore
with a compliance check mechanism, which is built
using the OWL-API14 and Hermit reasoner [29]. We
explained the compliance check mechanism in Sec-
tion 4.1.3, where user consent and experiment setup
data is structured into OWL class restrictions and
checked for their compliance using OWL2 reasoning,
ensuring that only dataset ids with compliant consent

8https://inveniosoftware.org/
9https://flask.palletsprojects.com
10https://github.com/gorakhargosh/watchdog
11https://sparkjava.com/
12https://rdf4j.org/
13https://graphdb.ontotext.com/
14https://owlcs.github.io/owlapi/

are returned to the Analyst. We describe the data struc-
ture, which is based on SPECIAL Policy Language and
DPV, on Section 4.1.2

The Privacy-Preserving Data Publishing module is
implemented using open-source tools for data anonymi-
sation. There are two methods enabling privacy-pre-
serving download: (i) k-anonymisation [12] and (ii)
synthetic data generation. For k-anonymisation we
utilise ARX Data Anonymisation Tool15. The tool
allows for extending the privacy guarantee of the
downloaded data by supporting multiple additional
data privacy models, such as l-diversity, t-closeness,
etc. The choice of identifiers and quasi-identifiers is
done inside the platform and is based on DPV vo-
cabularies described in Section 4.2.3. Direct identi-
fiers are described by dpv:Identifying category
and are suppressed for the data download. Quasi-
identifying attributes are those falling under a subset
of class dpv:PersonalDataCategory, such as
dpv:Ethnicity, dpv:Geographic, e.g. home
address and dpv:PhisicalCharacteristics.
The Synthetic Data Vault (SDV)16 is used for generat-
ing synthetic data in the Privacy-Preserving Data Pub-
lishing module. It is a Python library based on proba-
bilistic graphical modelling and deep learning for gen-
erating synthetic data that has the same format and sta-
tistical properties as the original data.

5.2. Trusted Analysis Environment2

The Trusted Analysis Environment contains the
mechanisms for secure and privacy-preserving data
analysis. The mechanism is provided by the analysis
server, the analysis database, where the study data are
temporarily stored, and the analysis interface, which
allows the Analyst to interact with the data.

Analysis Server4 For this component, we rely on
Opal17, which is a data management system that pro-
vides tools for importing, transforming, describing and
exporting data. Data managers can securely import a
variety of data types, e.g., text, numerical data, images,
geo-localisation, etc. and formats, e.g., from SPSS or
CSV.

15https://arx.deidentifier.org/
16https://sdv.dev/
17Opal is open-source and freely available at www.obiba.org un-

der a General Public License (GPL) version 3, and the metadata
models and taxonomies that accompany them are available under a
Creative Commons licence.

https://sparkjava.com/
https://rdf4j.org/
https://graphdb.ontotext.com/
https://owlcs.github.io/owlapi/
www.obiba.org
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Fig. 5. Connection between Opal and clients [30]

Opal is built on REST web services, which allows
connections from different software web clients us-
ing the HTTPS protocol, as shown in Figure 5. These
clients are designed to ensure a broad range of spe-
cialised tasks to be achieved by different users. For ex-
ample, a Python client allows data managers (in this
case our platform administrator) to automate repetitive
tasks such as data imports and access permission man-
agement. An R client, e.g., RStudio, allows conduct-
ing statistical analysis of the data stored on Opal. Opal
provides the access to the Analysis Database to the au-
thenticated users. The Loader sets the user permissions
for the data tables loaded into Analysis Database so
that the Analyst can access them thought the Analy-
sis Interface. This allows the Analysts to operate only
on the data that has been retrieved for studies they
initiated. Client authentication is performed using ei-
ther certificates, username/password, or token mecha-
nisms.

Analysis Database4 In the Trusted Analysis Environ-
ment, Opal is connected to the Analysis Database, a
PostgreSQL18 database that temporarily stores the data
relevant for the analyses. The tables from all studies
conducted on our platform are imported as CSV and
JSON files from the Loader and queried only through
the Analysis Interface.

The details about the data formats within the Analy-
sis Database are provided in Section 5.4.2.

Analysis Interface4 In our prototype platform, we
utilise the R client of Opal as an interface where the

18https://www.postgresql.org/

Analyst conducts her studies on selected data using R
DataSHIELD packages. DataSHIELD [13] is an open-
source software that provides a modified R statisti-
cal environment linked to an Opal database. It was
originally developed for remote, non-disclosive analy-
sis of biomedical, healthcare and social-science data,
although it can be used in any setting where micro-
data (individual-level data) must be analysed but can-
not or should not physically be shared with the re-
search users for various ethico-legal reasons, or when
the underlying data objects are too large to be shared.
DataSHIELD implements >100 statistical methods19

that embed privacy-protection traps, which prevent the
Analyst from identifying individual data subjects or
inferring the value of particular variables in given
subjects based on analytic results. For instance, sub-
setting is functionally restricted by not generating any
subset data set containing, by default, only 1-4 obser-
vations since results based on these subsets might be
disclosive.

RStudio Server20 is employed as a user interface
of our platform, which an Analyst uses to connect
to Opal and perform privacy-preserving analysis via
DataSHIELD functions.

5.3. Audit Box2

The Audit Box collects and integrates provenance
data from the entire platform, and provides an inter-
face for Auditors to audit processes within the plat-
form. The Audit Box consists of three components of
which the implementation will be described in the fol-
lowing.

Provenance Collector. The task of this component is
retrieving and transforming raw provenance data into
an integrated RDF graph. In our prototype, we imple-
ment this component as a set of REST services. The
services accept raw provenance data in JSON format
from various components in the Secure Repository and
Trusted Analysis Environment and transform it into
PROV-O compliant RDF graphs.

Specifically for Trusted Analysis Environment, we
rely on an existing tool to collect provenance from R-
Scripts21. RDT format its provenance data using an ex-
tended PROV-DM22 model and allows to collect all
relevant information from the analysis environment

19https://rdrr.io/github/datashield/dsBaseClient/man/
20https://rstudio.com/
21https://github.com/End-to-end-provenance/rdtLite
22https://www.w3.org/TR/prov-dm/

https://www.postgresql.org/
https://github.com/End-to-end-provenance/rdtLite
https://www.w3.org/TR/prov-dm/
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{
"description": "...",
"consent": [ {

"data_type": "Demographic,HealthRecord",
"processing": "PseudoAnonymise",
"purpose": "Security",
"recipient": "CompanyH",
"until": "2022-02-10"

} ],
"execution": {
"invenio_ts": "2021-01-20T21:23:53",
"end": "2021-01-20T21:23:53",
"start": "2021-01-20T21:23:52"

},
"triggered_by": "api.py:40",
"invenio_id": "378",
"patient_id": "243",
"upload_id": "0a5c1d64"

}

Listing 3: An example of raw provenance data

such as operating system, language version, and script
directory. We use RML mappings [27] and the caRML
engine23 to execute the transformation from the raw
data into RDF graphs.

We provide an example of raw provenance data pro-
duced by the Secure Repository in Listing 3 and the
respective RDF graph result in Listing 4. These ex-
amples capture the provenance of the upload process,
where a user finished uploading her personal data with
a consent to the Secure Repository. Both the upload
activity and the uploaded dataset are captured as in-
stances of prov:Activity and prov:Entity re-
spectively. We show in the resulted provenance graph
that the upload process is associated with a python
script api.py and executed in one second.

Knowledge Base. We collected the provenance
graph from the Provenance Collector into the Knowl-
edge Base component. This component stores and
manages the provenance data, which is necessary to
support Auditors in conducting their tasks. Similar to
the metadata store in the Secure Repository, we utilise
GraphDB as our Knowledge Base for Audit Box. The
communication between GraphDB and the Provenance
Collector is handled using Eclipse RDF4J24 that allows
seamless I/O communication between them.

Auditor Interface. In our current prototype, the Au-
ditor Interface relies on the SPARQL user interface
of GraphDB, both for storing the pre-defined queries
for the audit-related competency questions described
in Section 4.2.1 and to allow auditors to formulate their
own queries related to their tasks.

23https://github.com/carml/carml
24https://rdf4j.org/

# upload activity
id:upload-0a5c1d64 a prov:Activity, wprv:Upload ;
prov:startedAtTime
"2021-01-20T21:23:52"^^xsd:dateTime ;

prov:endedAtTime
"2021-01-20T21:23:53"^^xsd:dateTime ;

prov:wasAssociatedWith id:script-api-py-40 .

# uploaded dataset
id:dataset-303 a prov:Entity, dcat:Dataset ;
prov:wasGeneratedBy id:upload-0a5c1d64;
prov:generatedAtTime
"2021-01-20T21:23:53"^^xsd:dateTime ;

prov:wasAttributedTo id:patient-367 ;
:hasConsent id:consent-0a5c1d64.

# consent
id:consent-0a5c1d64 a dpv:Consent, owl:Class ;
owl:equivalentClass [ owl:intersectionOf (

[ a owl:Restriction ;
owl:onProperty dpv:hasPersonalDataCategory ;
owl:someValuesFrom [ owl:unionOf

( dpv:Demographic dpv:HealthRecord ) ] ]
[ a owl:Restriction ;
owl:onProperty dpv:hasProcessing ;
owl:someValuesFrom dpv:PseudoAnonymise ]

[ a owl:Restriction ;
owl:onProperty dpv:hasPurpose ;
owl:someValuesFrom dpv:Security ]

[ a owl:Restriction ;
owl:onProperty dpv:hasRecipient ;
owl:someValuesFrom :CompanyH ]

[ a owl:Restriction ;
owl:onProperty dpv:expiryTime ;
owl:someValuesFrom [

a rdfs:Datatype ;
owl:onDatatype xsd:dateTime ;
owl:withRestrictions ( [ xsd:maxInclusive

"2022-02-10T23:59:59"^^xsd:dateTime ] )
] ] ) ] .

Listing 4: The resulted RDF graph from Listing 3

5.4. Data Model2

This section explains the data model used in our pro-
totype implementation: (i) a domain-specific vocabu-
lary on health record and (ii) the analysis data model
for our Analysis Database.

5.4.1. Domain Specific Vocabularies: Health Record3
The proposed conceptual architecture does not im-

pose limitations on the formats of the data used in the
Data Repository and therefore, the data model depends
on the specific use case. For the prototype presented
in this paper, we consider the following characteristics
for our health record data model:

1. Based on open-source standards that guaran-
tees stable specifications for platform users.

2. Designed for interoperability and information
exchange, which is critical in the healthcare do-
main due to the heterogeneity of data and stake-
holders [31]; and

https://github.com/carml/carml
https://rdf4j.org/
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Fig. 6. Analysis Database schema

3. Widely used in the healthcare communities to
allow easier adoption for stakeholders that are al-
ready familiar with the data model.

Based on these criteria, we decided to use the Fast
Healthcare Interoperability Resources (FHIR) devel-
oped by Health Level 7 International (HL7) as the data
format in our Data Repository for our prototype. HL7-
FHIR is the latest standard by HL7 for electronically
exchanging healthcare information based on emerging
industry approaches [32]. FHIR offers a number of ad-
vantages for prototype development, such as its solid
foundation in Web Standards and supports for REST-
ful architectures.

In our use case, we used FHIR to represent Patient,
Diagnostic Report, and Observation. While FHIR rec-
ommends the use of LOINC25 for observation data,
we decided to use the custom classification codes pro-
vided by our use case partners for our prototype for
practical reasons.

5.4.2. Analysis Database3
The privacy-preserving nature of the Trusted Analy-

sis Environment comes with the price of reducing the
data utility and flexibility of an Analysis compared to
full data access. Another challenge is that the data orig-
inating from different sources needs to be transformed
to the same common format, while keeping the data
intuitive for Analysts to work with. Therefore, in the
Analysis Database we aim to keep the most relevant
data for the analysis in a rather concise but compre-
hensive format.

The database consists of two default tables defined
by the types of FHIR resources Patient and Observa-
tion:

- Patient: provides information about the users in-
cluded in the study, such as sex, age and country.

- Observation: contains information about the spe-
cific measurements for a user. A biomarker can be

25https://www.hl7.org/fhir/valueset-observation-codes.html

Fig. 7. An excerpt of data table CSV file for table Observation

any attribute contained in the source databases, for in-
stance, blood sugar, activity level, etc. Each biomarker
is represented with its code (biomarkerCode) and full
name (biomarker). A patient can have multiple mea-
surements of the same biomarker measured at a dif-
ferent moment in time, so the attribute issued provides
the information of when the specific measurement has
been taken.

The two tables are connected by a foreign key Ob-
servation:patientId - Patient:id. The database schema
can be seen in Figure 6.

As specified by Opal, each table is represented by
(i) one CSV file called data table and (ii) one JSON
file called data dictionary.

- Data table: the columns of this table correspond to
the attributes in the actual table Patient/Observation.
Each row is one data entry. An example data table file
is shown in Figure 7.

- Data dictionary: this file is used to describe one
data table. These tables must follow the scheme de-
fined by Opal which imposes a set of fields such as en-
tityType, index, name, unit, valueType, etc. for describ-
ing each of the attributes form the data table.

6. Evaluation1

In this section, we demonstrate the platform through
representative use cases. In the summary we assess
how well the demonstrated scenarios answer to the re-
quirements posed in Section 2.

6.1. Data2

For the evaluation we use data originating from two
sources, both from SMEs that provide a health-care or
lifestyle related application to end-users. For confiden-
tiality reasons, we denote these sources as Company
(or Datasource) M and Company H. A subset of the at-
tributes provided by these two data sources are shown
in Table 2. We generated 1100 synthetic datasets for
600 users based on the original data from both compa-
nies with varying consent configurations. Each dataset

https://www.hl7.org/fhir/valueset-observation-codes.html
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Table 2
Attributes of evaluation data

Datasource M Datasource H

attribute type attribute type

Age int Birthday date
Sex text Sex text

Country text Sympathicus activity dec
Blood Glucose dec Parasympathicus activity dec

Lipids dec Heart rate dec
Liver dec Pulse/Respiration Quotient dec

Kidney dec Vitality index dec

contains a single record for patient data (e.g., ID, age,
and country) and health observation attributes (cf. Ta-
ble 2) that we observe in the use cases for a single day.
The synthetic datasets are generated using the Syn-
thetic Data Vault (SDV)26 model trained with original
datasets provided by companies M and H. Further de-
tails on the evaluation users, datasets and the associ-
ated user consent is given in Table 3, where processing
and expiry refer to the dataset consent for processing
and consent expiry time, respectively. We set the con-
sent of all user data to the default values: dpv:has-
Purpose is set to dpv:AcademicResearch and
dpv:hasRecipient is set to :TUWien.

Table 3
Synthetic users and datasets for the evaluation

users dataset processing expiry

u0-49
ds0-49 (H)
ds550-599(M)

dpv:Processing 2021-01-05

u50-199
ds50-199 (H)
ds600-749 (M)

dpv:Processing 2021-01-10

u200-399
ds200-399 (H)
ds750-949 (M)

dpv:Adapt,
dpv:Combine,
dpv:Analyse

2021-01-10

u400-499
ds400-499 (H)
ds8=950-1049 (M)

dpv:Analyse 2021-01-10

u500-549 ds500-549 (H) dpv:Processing 2021-01-10

u550-599 ds1050-1099 (M) dpv:Processing 2021-01-10

6.2. Use cases2

We define four use cases which will be processed in
our platform:

– UC1: Descriptive analysis of data from a single
data source

26https://sdv.dev/

– UC2: Descriptive analysis of data from multiple
data sources

– UC3: Predictive modelling
– UC4: Data publishing

UC1, UC2 and UC3 describe scenarios of using
Trusted Analysis Environment, while UC4 describes
the purpose of Privacy-Preserving Data Publishing
component. UC1 and UC3 deal with data originating
from a single data source, while presenting the spec-
trum of functionalities provided to the Analyst. UC2
focuses on a study utilising data from multiple sources.
Within each use case, we provide a discussion on pri-
vacy concerns of the respective analyses.

We simulate the following scenario to introduce dy-
namic aspects:

– Initial state: all user datasets are uploaded and
collected in the Secure Repository.

– Day 1 (05-01-2021): UC1 and UC2 are executed.
UC1 analysis setup (expiry: 05-01-2021; process-
ing: dpv:Adapt and dpv:Analyse) yields
450 datasets in total from Datasource H. UC2
analysis setup (expiry: 07-01-2021; processing:
dpv:Adapt, dpv:Combine, and dpv:Analyse)
yields 800 datasets in total, 400 each from Data-
source H and Datasource M.

– Day 2 (06-01-2021): User consent from 50 users
expired (u0-u49). Furthermore, 50 users (u200-
u249) removed dpv:Adapt from their consent

– Day 3 (07-01-2021): UC3 and UC4 are exe-
cuted. Due to the changes and expiration of
some user consents, UC3 analysis setup (ex-
piry: 07-01-2021; processing: dpv:Adapt and
dpv:Analyse) only yields 350 datasets from
Datasource H, which is less than UC1 with an
identical evaluation setup. UC4 analysis setup
(expiry: 07-01-2021; processing: dpv:Share,
dpv:Anonymise, and dpv:Derive) yields
200 datasets from Datasource M.

The flow for each of our use cases shares some com-
mon steps:

1. The Analyst initiates their study by selecting rel-
evant attributes, specifying the study purpose and
study expiry date.

2. the platform yields the available datasets ac-
cording to:

– the user consent that needs to match with the
Analyst’s study purpose

– the expiry date of data consent that needs to be
later than the study expiry date.
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The number of the available datasets needs to
exceed the predefined threshold, otherwise the
analysis is considered to be potentially disclosive
and the platform terminates the study setup. For
our evaluation, we set the threshold to 10.

3. For each study, after initialisation, the platform
transforms the available datasets into the files de-
scribing two relational tables, Patient and Obser-
vation, as discussed in Section 5.4.2.

4. For each study the platform defines the user per-
mission in Opal for the Analyst that allows using
data via DataSHIELD - this way each Analyst
only sees the studies they initiated.

5. When the study is initiated, the Analyst uses
DataSHIELD and their credentials to connect
to Opal and perform the analysis in case they
use the Trusted Analysis Environment, or down-
load their data if they use the Privacy-Preserving
Data Publishing component.

6.2.1. UC1: Descriptive analysis of data from a
single source3

Fig. 8. UC1 (Single source use case example): Average PRQ of pa-
tients

In our first use case, we assume the Analyst wants
to conduct a set of descriptive studies to visualise se-
lected attribute values across the population of plat-
form users. Let this attribute be Pulse/Respiration-
Quotient (PRQ) originating from the database of Data-
source H. The Analyst then wants to study how the
PRQ values differ between age groups and sex.

In our evaluation, the platform finds 450 participants
with a set of records of the selected attributes, therefore
the Patient table contains 450 records of users’ age and
sex. and Observation table 450 records of PRQ.

Figure 8 shows the results of the analysis, i.e. the
average PRQ for different age groups (under 40, 40-

60 and over 60) for male and female participants
separately. The averages of PRQ are obtained by
DataSHIELD functions and then plotted using the na-
tive R plotting package ggplot. The Analyst uses a
set of data manipulation and statistical functions from
DataSHIELD, for instance:

– Joining tables via ds.cbind: the Analyst needs
to join the tables Patient and Observation by pa-
tient_id.

– Subsetting via ds.dataFrameSubset: this
function is used to subset the table joint in the
previous step by the values of the attribute age
and sex.

– Mean function via ds.mean: the Analyst uses
this function to calculate the mean of each subset.

The listed DataSHIELD functions for subsetting and
calculating the mean value are potentially disclosive
functions. For example, applying subsetting repeatedly
might lead to revealing the actual values from the table.
DataSHIELD achieves privacy-preserving versions of
these functions by prohibiting subsetting and calcu-
lating simple statistics, such as mean, on less than 4
data samples. Functionality for joining tables is im-
plemented such that the method does not return any
value to the Analyst, except for potential error mes-
sages. The joined table is persisted on the server in a
variable, which the Analyst can use in other functions
only by name, therefore no values can be disclosed in
the process.

6.2.2. UC2: Descriptive analysis of data from
multiple sources3

Fig. 9. UC2 (Multiple source use case example): Mean and standard
deviation of heart rate of users with different dieting profiles.

In this use case, the Analyst wants to conduct a study
on attributes that are originating from separate data
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sources. For example, the Analyst wants to compare
the resting heart rates of people with different diet-
ing profiles, such as vegetarian diet, low-carbohydrate
diet, etc. For that, the platform needs to collect the data
from two applications. Datasource M provides the at-
tribute diet and Datasource H provides the attribute
heart rate. This analysis is only possible on users
which use both applications. Users control the link-
ing of their data and have to enable linking between
those applications upon data submission (in their ap-
plications).

In our evaluation, the Patient table contains 400 user
records and Observation table contains 800 records
for these 400 users; 400 records of heart rate and 400
of diet type. The Analyst groups the patients by their
diet type, and then for each dieting group calculates
the mean and standard deviation of the heart rate val-
ues. To highlight a few steps, let us list the specific
DataSHIELD functions that allow these operations:

– Subsetting via ds.dataFrameSubset: split-
ting the Observation table depending on the at-
tribute ’biomarker’ such that each subtable con-
tains one type of biomarker, i.e. one table for diet,
another table for HR.

– Joining tables via: ds.merge: joining the subta-
bles from the previous step on attribute patient_id
and in that way pivot the Observation table into
a table with the new set of columns: [patient_id,
diet_value, HR_value, ...]

– Aggregation via ds.meanSdGp: given that the
Analyst subsets the pivoted table from the previ-
ous step by diet_value, this function obtains the
mean and standard deviation of heart rate values
for each dieting group.

The resulting analysis is shown in Figure 9. It shows
the mean and standard deviation of the heart rate value
for individuals in different dieting groups.

From the privacy-preserving perspective, the func-
tion ds.merge is achieved in the same manner as
previously mentioned ds.cbind, by not returning
any outputs to the Analyst. The implementations of ag-
gregation functions are achieved similarly as subset-
ting, by prohibiting operations on less than 4 data sam-
ples.

6.2.3. UC3:Predictive modelling3
The Analyst wants to conduct a more sophisticated

study to predict the value of the Vitality Index (a mea-
sure of the resources that are available to the organ-
ism for activity and health maintenance). To that end,
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Fig. 10. UC3: Univariate GLM for target attribute Vitality Index and
predictive attribute Sympathicus Activity

$family

Family: gaussian
Link function: identity

$formula
[1] "v.idx ~ s.act + ps.act + sex"

$coefficients
Estimate Std. Error z-value

(Intercept) -2332.955688 61.37485 -38.011594
s.act 359.214501 15.10462 23.781766
ps.act 114.199106 11.34462 10.066368
sexmale -8.615435 19.75788 -0.436046

p-value low0.95CI high0.95CI
0.000000e+00 -2453.24818 -2212.66320
5.157566e-125 329.60999 388.81901
7.779775e-24 91.96406 136.43415
6.628034e-01 -47.34008 30.10939

Fig. 11. UC3: Output of multivariate GLM for target attribute Vital-
ity Index and predictive attributes Sympathicus Activity, Parasym-
pathicus Activity and Sex

the Analyst wants to learn and apply a generalised
linear model (GLM) that describes the linear combi-
nation of the attributes sex, parasympathicus activity
and sympathicus activity and enables predicting the ex-
pected value of the attribute Vitality Index of a person.
Such a predictive model functionality is provided as a
DataSHIELD function, and thus readily available.

Datasource H provides the data about vitality in-
dex, sympathicus and parasympathicus activity and
sex of its patients, thus this analysis task is a single
source setting. The Patient table contains 350 records
and Observation table 1050 records of vitality index,
parasympathicus activity and sympathicus activity for
the same set of patients.

The Analyst is now free to use any type and number
of DataSHIELD and native R functionalities to obtain
privacy-preserving results. We single out some specific
DataSHILED methods used in this study:

– Generalised Linear Model via ds.glm: this
function is used for fitting GLM. The implemen-
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tation supports binomial, gaussian and poisson
error distribution functions.

– Visualisation via ds.scatterPlot: one of the
non-disclosive plotting functions in DataSHIELD.
This function may be used in this study to plot
data points, taking into account two attributes,
e.g., Vitality Index and Sympathicus Activity.

One option for the Analyst is to examine the rela-
tionship between Vitality Index and one of the afore-
mentioned attributes by fitting a univariate GLM. The
Analyst chooses sympathicus activity as a predictor at-
tribute for Vitality index and Gaussian error distribu-
tion. Figure 10 shows the distribution of data points
and the estimated linear model for target attribute Vi-
tality Index, using Sympathicus Activity as a predic-
tive attribute.

Furthermore, to fit a more complex model, i.e. mul-
tivariate GLM, the Analyst in addition includes more
predictive attributes: sex and parasympathicus activity.
Figure 11 shows the output of the DataSHIELD func-
tion ds.glm. The Analyst sees the coefficient esti-
mates, standard error, p-value indicating significance
of a predictor for the model, etc.

For both univariate and multivariate analysis, the
output of ds.glm are the learnt estimates of regres-
sion coefficients and their standard errors, both of
which intrinsically do not disclose any personal infor-
mation. The Implementation of the privacy-preserving
GLM model for the usage with the data schema of
our platform does not differ from its original form in
native R. However, a scatter plot generated from the
original data is disclosive, therefore not permitted in
DataSHIELD in its original form. There are rather two
implementations of the privacy-preserving scatter plot
available: (i) based on k-Nearest Neighbours (kNN)
and (ii) based on adding random noise. In the first im-
plementation, instead of the actual data point, kNN for
each data point is calculated and the average value is
plotted. k is chosen by the Analyst, but cannot be set to
a value smaller than 3. In the second implementation, a
random normal noise is added to the x and y coordinate
of each data point. In this analysis the kNN method is
used with k = 3.

6.2.4. UC4: Data publishing3
In this use case, the Analyst wants to download

anonymised data so that they can perform an offline
analysis on the given data, using other data analysis
tools rather than the Trusted Analysis Environment.
Reasons for this might be of technical nature, such as
programming language preference, familiarity and re-

Table 4
Original dataset

id sex age country Total Cholesterol

382 female 32 PT 3.38
24 female 32 BG 4.58
239 male 25 NL 4.86
253 female 38 AT 4.42
293 female 25 BG 5.08
77 male 63 PT 4.6
212 male 53 HR 5.45

liance on another analysis framework, required func-
tionalities that are not covered by DataSHIELD, etc.
Furthermore, the Analyst might be interested in the
structure of the data and particular data values rather
than statistical analysis, or wishes to avoid being time-
constrained for conducting their studies.

The Analyst chooses attributes sex, age, country and
Total Cholesterol provided by the Company M. In the
k-anonymised dataset the direct identifiers such as user
full name or any kind of IDs are not displayed at all.
Other indirectly identifying attributes with personal in-
formation such as user country, age and sex, i.e. quasi-
identifiers, are generalised according to the hierarchies
predefined by the platform for quasi-identifying at-
tributes as discussed in Section 5.1:

– sex

* Level 1: * (i.e.fully generalised)

– age

* Level 1: [20,40[, [40,60[, [60, 81[
* Level 2: [20, 81[

– country

* Level 1: SE (South Europe), SEE (South-east
Europe), CE (Central Europe), ...

* Level 2: *

Furthermore, the exact values of non-identifying at-
tributes such as Total Cholesterol remain in their orig-
inal form, since the possibility of re-identify people
from the database based on this information is minute.
Tables 4 and 5 show a subset of data before and af-
ter applying k-anonymisation, respectively, where only
the later is the output of this analysis.

6.3. Auditability2

In this subsection, we focus on the evaluation of
consent and provenance mechanisms that enable au-
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Table 5
Anonymised dataset

id sex age country Total Cholesterol

* female 32 * 3.38
* female [20,81[ * 4.58
* male 25 * 4.86
* female 38 AT 4.42
* female [20,81[ BG 5.08
* male 63 PT 4.6
* male [40,60[ SEE 5.45

ditability of the platform within the context of the pre-
viously described use cases.

Auditor Queries4 We stated in Section 2.2 that
provenance data must be automatically captured from
each platform component to cover the whole data life-
cycle within the platform. Here, we demonstrate the
capability of the system in using the captured prove-
nance data to answer Auditor queries.

We selected four questions that arose from the con-
text of the use cases to verify our designed provenance
and consent capabilities. Several questions, i.e., Q1-
Q3, are parts of the common auditability competency
questions described in Section 4.2.1. However, in some
cases, Auditor may require more complex queries that
are not in the pre-defined list. On these cases, the au-
ditor can formulate her own SPARQL queries, such as
in the case of Q4.

– Q1: In which experiments was a dataset used?
– Q2: Which software has been used to analyse data

in a specific study?
– Q3:Which query parameters were used for the se-

lection of data in experiments?
– Q4: What is the ratio between analysed datasets

in a study and the total number of datasets in the
triplestore?

Q1. Query Q1 addresses concerns regarding consent
and data usage for study purposes (cf. Listing 5). In
case of suspicions regarding the correctness of given
consent and analysed data, auditors can verify which
data was used for which purposes stated in the study
description.

Q1 demonstrates the capability of an Auditor to es-
tablish such a connection between a study, user id, user
dataset metadata, and consent attached to the dataset.
Table 6 shows the answer to Q1, linking a dataset used
in a specific study to a user. Based on this information,
an Auditor can inform concerned users on which stud-
ies their data was used and under which purposes, sim-

select distinct ?studyId ?datasetId
where {

?QueryResult prov:wasGeneratedBy ?query .
?QueryResult prov:hadMember ?ds .
?query rdf:type wprv:MetadataQueryActivity .
?query prov:used ?study .
?study rdf:type wprv:StudyContextEntity .
?study wprv:studyId ?studyId .
?ds rdf:type wprv:DatasetWithConsentEntity .
?ds wprv:datasetId ?datasetId .

FILTER(?datasetId = "_DATASET_1050")
}

Listing 5: Q1- Experiments in which a specific dataset
was used

Table 6
Results Q1- In which studies was a dataset used

studyId datasetId
_EXPERIMENT_1 _DATASET_1050

_EXPERIMENT_2 _DATASET_1050

_EXPERIMENT_3 _DATASET_1050

select ?libraryName where {
?script rdf:type wprv:ScriptEntity .
?script prov:hadMember ?library .
?library rdf:type wprv:ScriptLibraryEntity .
?library rdt:name ?libraryName .
?exe rdf:type wprv:AnalysisExecutionActivity .
?exe prov:used ?script .
?result rdf:type wprv:StudyResultEntity .
?result prov:wasGeneratedBy ?exe .
?result wprv:studyId ?studyId .
Filter(?studyId = "_EXPERIMENT_1")

}

Listing 6: Q2- Used libraries in a study

Table 7
Results Q2- An excerpt of used libraries in a study

libraryName
"base"

"datasets"

"devtools"

"dsBaseClient"

"..."

ilar to the situation described in the scenario provided
in Section 2.1.

Q2. Query Q2 (cf. Listing 6) is concerned with the
usage of software libraries applied in the analysis as
described in UC-2 descriptive analysis of data from
multiple sources.

In our prototype, the provenance trails of the li-
braries, environment, and scripts executed on the R-
server are collected using the RDT-extension and
stored in the Audit Box. Q2 provides an answer to the
question of which software libraries are used in a spe-

_EXPERIMENT_1
_DATASET_1050
_EXPERIMENT_2
_DATASET_1050
_EXPERIMENT_3
_DATASET_1050
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SELECT ?studyId ?patientAttrs ?observationAttrs
WHERE { ?study a wprv:StudyContextEntity ;

:attributesObservation ?observationAttrs ;
:studyId ?studyId . OPTIONAL
{ ?study :attributesPatient ?patientAttrs }

}

Listing 7: Q3- Retrieving search parameters used in an
Analyst query

Table 8
Results Q3- Search parameters Analyst queries

studyId patientAttrs observationAttrs
_EXPERIMENT_1 gender PRQ

_EXPERIMENT_2 diet, HR

_EXPERIMENT_3 gender PSA, SA

_EXPERIMENT_4 gender,age,country TCH

cific study, with example results shown in Table 7. The
purpose of retrieving such information is to increase
the study reproduceability and also to ensure the legit-
imate existence of the analysis results.

Q3. Query Q3 refers to the search parameters for
personal data categories from UC3 predictive mod-
elling (cf. Listing 7).

Before being able to conduct an analysis, an Analyst
has to provide details on which data categories of per-
sonal data are required for her analysis (e.g. Gender,
Age, heart rate etc.; we also called them as search pa-
rameters) to check the availability of the data. This pa-
rameter, together with rest of the data handling setup,
which includes the purpose of the analysis and expiry
time, among others, are captured and stored in the Au-
dit Box. Using this provenance information, we can re-
trieve specific search parameters used for a Query (see
Table 8 for answers to Q3). This information can be
used by an Auditor to check whether there are any sus-
picious activities conducted by certain analysts, e.g., if
there are too many queries with varying search param-
eters by one analyst during a short amount of time.

Q4. Query Q4 (cf. Listing 8) shows the ratio of
utilised datasets in studies compared to the actual
available datasets in the triple store. This ratio (see Ta-
ble 9) can be regarded as an indicator on how represen-
tative the study sample is in relation to the overall pop-
ulation and could serve as a robustness factor within
the platform. To this end, there are two possible rea-
sons why datasets were not available for analysis: (i)
it could be that the consent was not applicable to the
purpose given by the Analyst, or (ii) the dataset dose
not contain the personal data categories required by the
Analyst.

select ?result (?sumdata/?usdata as ?ratio)
where {
{ select ?result (count(?data) as ?sumdata)
where {
?data rdf:type wprv:DatasetWithConsentEntity;
prov:wasAttributedTo ?patient .
?data ^prov:hadMember ?result .

} group by ?result } . {
select (count(?sum) as ?usdata)
where {
?sum rdf:type wprv:DatasetWithConsentEntity.

} group by ?result
} ?result rdf:type wprv:MetadataQueryResultEntity

}

Listing 8: Results Q4- Retrieving the ratio between
data sample and general user population

Table 9
Ratio of datasets analysed in a study compared to total datasets

queryResult ratio
QueryResult-_EXPERIMENT_1 0.409

QueryResult-_EXPERIMENT_2 0.727

QueryResult-_EXPERIMENT_3 0.363

QueryResult-_EXPERIMENT_4 0.181

6.4. Summary2

In this section we described the behaviour of our
platform throughout the concrete scenario that encom-
passes the dynamic aspects of the data and consent
management, and 4 different data analysis use cases.
The coherent user story allowed us to explore the ap-
plication of our platform in a holistic manner, i.e. cov-
ering the behaviour of all components of our platform
through one process and showing the feasibility of
the proposed auditable privacy-preserving data analy-
sis platform.

To summarise the evaluation, we now assess our
platform according to the requirements defined in Sec-
tion 2.2, targeting particular components of the plat-
form. In Table 10, we explicitly list the requirements
and indicate to which extent they are satisfied by
the described scenario: fully, partially or unsatisfied.
The listed requirements follow the structure from Sec-
tion 2.2, therefore R1.x denotes requirements regard-
ing privacy-preserving data analysis, divided into 3
subcategories, (i) data analysis, (ii) data publishing and
(iii) usage policy management, and R2.x denotes re-
quirements regarding auditability: (i) provenance data
capture and tracing, (ii) provenance data inspection
and analysis capability and (iii) metadata-retention af-
ter deletion.

Requirements R1.1, R1.2 and R1.5 are fully satis-
fied in the platform, which is shown by each use case

_EXPERIMENT_1
gender
_EXPERIMENT_2
_EXPERIMENT_3
gender
_EXPERIMENT_4
gender, age, country
QueryResult-_EXPERIMENT_1
QueryResult-_EXPERIMENT_2
QueryResult-_EXPERIMENT_3
QueryResult-_EXPERIMENT_4
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Table 10
Evaluation on the requirements

Requirement full partial unsatisfied

R1.1: Input and intermediate data are not persisted by the platform •
R1.2: Analysis from a single data source •
R1.3: Analysis from multiple data sources •
R1.4: All computation on original data is inside the platform •
R1.5: Platform limits the period of time for storing analysis environment •
R1.6: No data download in original form •
R1.7: Anonymised data download •
R1.8: Synthetic data download •
R1.9: Measures for prohibiting the download of similar data •
R1.10: Fine-grained consent •
R1.11: User access control •
R1.12: Automatic usage policy compliance checking •

R2.1: Data provenance traced in the whole data lifecycle •
R2.2: Automated trails of data access, processing and analysis. •
R2.3: Provenance of software components •
R2.4: Traces are available for each result •
R2.5: Trails do not contain private user data •
R2.6: Provenance data streams are accessible for users with auditing privileges •
R2.7: No personal data can be acquired by auditors •
R2.8: Users’ consent for studies is still valid after revoking their consent •
R2.9: Minimum meta-information is kept for the past studies •

from our evaluation. The data for analysis is stored
in the transformed format inside the analysis database
only, and the outputs of the analysis are shown to the
Analyst and not stored in the platform at all. Both of
these intermediate products of data analysis are part
of the analysis environment and are deleted together
with the environment, which is defined by the data ex-
piry. UC1 and UC3 directly support the requirement
R1.2. R1.3, however, faces the limitations regarding
user linkage across different platforms that we already
discussed in the scope of UC2. Our platform offers the
infrastructure to combine data with different schemes
of data originating from different sources. However,
record linkage methods impose some privacy and ac-
curacy concerns [33], therefore we give the user full
control over linking their data. As our solution depends
on user engagement, we evaluate it as partially satis-
fied. Furthermore, requirements R1.6, R1.7 and R1.8
are described via UC4. R1.9 aims to address the po-
tential surface for privacy attacks, when a malicious
user has the access to multiple datasets, either simi-
lar anonymised or synthesised. We will address this is-
sue as part of the future work by employing a query-
auditing method. R1.10 and R1.11 are discussed in

Sections 4.1 and 5.2, respectively. The fulfilment of
R1.12 was demonstrated in the data selection scenario
in Section 6.2, where the number of retrieved dataset
for each UC depends on the data handling setup and
the dynamics of user consent.

The second part of requirements concerns the au-
ditability and provenance of the system: R2.1, R2.2
and R.2.5 are fully satisfied, shown through the auto-
mated capturing of provenance trails and the prove-
nance management and analysis capabilities of the au-
dit box. The Secure Repository and Trusted Analysis
Environment both send log files in a predefined format,
which is then mapped on our provenance model. R2.3
is currently enabled through RDT-Lite, a library cap-
turing provenance in R-Scripts. R2.4 is also enabled
through RDT-Lite, capturing the script as a directed
graph. In the future, we are planning to extend its sup-
port to enable improved analysis capabilities, espe-
cially when heterogeneous data traces from other anal-
ysis environments, e.g. python scripts are integrated.
Regarding R2.6, the audit box is a separate component
of our architecture, where only qualified users have ac-
cess to. Furthermore, it only captures metadata, hence
no personal data can be acquired by auditors through
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the audit box, which addresses R2.7. R2.8 and R2.9
are concerned with past studies: only data with valid
consent is analysed through the platform. However, it
may occur that users whose data has been analysed re-
voke their consent after a study has been conducted.
In this case, the applicable data will be removed, and
only pointers will remain for past studies.

7. Related Work1

This section discusses related work from three
perspectives: privacy-preserving data analysis (Sec-
tion 7.1, auditability (Section 7.2), and consent man-
agement (Section 7.3).

7.1. Privacy-preserving Data Analysis2

For achieving privacy-preserving data analysis, of-
ten two complementary approaches are considered
- privacy-preserving data publishing (PPDP) [34],
and privacy-preserving computation, such as secure-
multiparty computation (SMPC) or homomorphic en-
cryption.

Regarding PPDP, early approaches include e.g., k-
anonymity [12], where data is transformed so that in-
dividual records can not be distinguished from k − 1
other records, and thus re-identification becomes diffi-
cult. Several implementations perform these transfor-
mations, e.g., ARX [35].

Differential privacy [36] aims at maximising the ac-
curacy of responses to queries to databases, while min-
imising the likelihood of being able to identify the
records used to answer them – whether a specific in-
stance is included in the dataset should not increase the
privacy of the individual represented. Systems imple-
menting differential privacy include e.g., GUPT [37],
PINQ [38], Airavat [39].

Recently, synthetisation of data, which creates an ar-
tificial dataset that however still preserves global prop-
erties of the original data, is emerging as an alterna-
tive method [14]. One approach is e.g., the Synthetic
Data Vault (SDV) [40]. SDV builds a model of the data
based on estimates for the distributions of each col-
umn. In order to preserve the correlation between at-
tributes, the synthesizer applies a multivariate version
of the Gaussian copula and, subsequently, computes
the covariance matrix. This model is then used to gen-
erate new, synthetic samples.

While these solutions provide building blocks of
privacy-preserving data analysis, they do not provide

a complete system comprising data collection, con-
sent management, data transformation and the actual
privacy-preserving data analysis. We will review re-
lated work that addresses these aspects to some de-
gree. A recent report on Trusted Research Environ-
ments [41] elaborates on requirements for such envi-
ronments in the health domain.

A system utilising block-chain to trace the usage of
federated data sources in an analysis process is pre-
sented in [42], also providing a mechanism to check
for consent.

The DEXHELPP project [43] focuses on safe-haven
like settings, e.g., allowing the user a relatively unre-
stricted access to data inside a specific remote comput-
ing environment, but does not address issues of data
integration, or consent management.

DataSHIELD [13] is a system allowing analysis
of data from federated sources, enabling privacy by
restricting the analyst to only executing aggregate
queries. It does not address aspects of data and con-
sent management. In our prototypical implementation,
we utilise DataSHIELD to provide the functionality
of the Trusted Analysis Environment. A similar sys-
tem is ViPAR [44], a secure analysis platform for fed-
erated data. The system offers a central server host
where the data is virtually pooled via the Secure Shell
protocol from remote research datasets hosted by re-
search institutions. The data can then be used for anal-
ysis through a secure analysis portal, and it is deleted
once the analysis is done. The central pooling com-
ponent is the major difference between DataSHIELD
and ViPAR. DataSHIELD applies the analysis to each
of the remote sources separately and then combine the
analysis results, while ViPAR combines the data itself.

BioSHaRE project [45] (Biobank Standardisation
and Harmonisation for Research Excellence in the
European Union) is a collaborative European project
focused on developing tools for data harmonisation,
database integration and federated analysis to en-
able large-scale studies across multiple institutions.
BioSHaRE includes DataSHIELD as a privacy-preserving
analysis tool. Others systems used in the project are
DataHSaPER for database federation and harmonisa-
tion and OBiBa as information technology tools.

If data is distributed among multiple sources, com-
puting a common result without having to share the
inputs (data) can solve privacy requirements. For ex-
ample, secure-multiparty computation provides a cryp-
tographic protocol to compute the output without the
need of a third party. Other more light-weight ap-
proaches such as Federated Learning [46] have been
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proposed as a potential solution. Federated Learning
generally aims to learn a global model by aggregat-
ing locally learned models; this way, raw data does not
need to leave the device where it is stored.

However, most approaches, such as Federated Learn-
ing, are mostly explored when data is horizontally par-
titioned, i.e. when there are multiple sites that hold data
that is described by the same attributes, but contains
different individual records. In our scenario, when
combining data from multiple origins, we generally
have a setting of vertical partitioning, i.e. we have data
records describing different aspects of the same indi-
vidual(s). Such an integration and linkage of multiple
data sources, considering also consent checking, still
poses challenges, such as keeping membership secret
[47]. Further, auditability is more difficult to achieve
in the federated setting. Therefore, we focus on the
centralised setup proposed in our paper.

7.2. Auditability2

Traditionally, system logs have been collected and
analysed to conduct system audits and hence, mak-
ing the underlying systems more transparent. However,
the analysis of such logs is cumbersome and tedious.
Moreover, the right to explain, as postulated by the
European Union General Data Protection Regulation
(GDPR) [1], demands better suited methods to provide
context and reasoning. Therefore, semantic technolo-
gies seem to be a promising method to capture and
manage data lineage in a structured way and to provide
support in addressing auditability questions.

Various frameworks and solutions to capture work-
flows, such as Taverna [48] or data models to collect
provenance data such as PROV-DM [49] enable im-
proved analysis and management. Provenance data can
also support the reproduceability of research results by
capturing the experiment context, for example by us-
ing ontologies [50–52].

Language-specific solutions, such as noworkflow
[53] for python scripts, or rdt for R scripts among oth-
ers have been developed and offer richer support such
as visualisation [54]. Prov-O serves as a fundamental
building block for capturing provenance-related data.
Its generic nature however, calls for extension and
adaption to specific contexts to be able to benefit from
contextual information.

ProvStore, developed to be the first public reposi-
tory of provenance documents showcases the need for
such improved data management [55]. Use cases re-
lated to auditing and provenance include the possibil-

ity to prove adherence to legislative regulation (e.g.
GDPR) as suggested by [56] to visualisation of depen-
dencies or debugging capabilities [57]. However, so
far, most tools and approaches are very specific to cer-
tain environments or setups without integrating hetero-
geneous provenance trails, applicable to our use case.

7.3. Consent Management2

The European General Data Protection Regulation
(GDPR) [1] defines a set of obligations for controllers
of personal data. Among other requirements, GDPR
requires data controllers to obtain explicit consent for
the processing of personal data from data subjects. Fur-
thermore, organisations must be transparent about their
processing of personal data and demonstrate that their
systems comply with usage constraints specified by
data subjects.

The traditional representation of user consent in
the form of human-readable description does not al-
low for automatic processing. Formal policy languages
are designed to unambiguously represent usage poli-
cies, which makes it possible to automatically verify
whether data processing is covered by consent given
by data subjects. Here, we will briefly review the cur-
rent alternatives for (i) usage policy representation, and
(ii) GDPR compliance tools.

Usage Policy Representation. There are several po-
tential candidates for the formal representation of us-
age policies. KAoS [58] is a general policy language
which adopts a pure ontological approach, whereas Rei
[59] and Protune [60] use ontologies to represent con-
cepts, the relationships between these concepts and the
evidence needed to prove their truth, and rules to repre-
sent policies. PrOnto [8] is another ontology developed
based on GDPR to represent a legal knowledge mod-
elling of GDPR conceptual cores, i.e., privacy agents,
data types, types of processing operations, rights and
obligations. SPECIAL27, a European H2020 project,
have developed the SPECIAL Policy Language [19]
around the recent OWL2 standard with the goal to ad-
equately trade off expressiveness and computational
complexity for usage policy checking. Finally, there
is the SAVE ontology [7], which integrates and aligns
to DPV [6], ODRL [61], and ORCP [62] to provide a
fine-grained representation of privacy policies. While
in essence any of these vocabularies can be used for
usage policy representation in our use case, none of

27https://www.specialprivacy.eu/

https://www.specialprivacy.eu/
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them is community-based and geared towards open
standards, unlike DPV [6]. Furthermore, it is impor-
tant that the representation would allow for automatic
compliance check, which will be discussed next.

GDPR compliance tools. [26] extends Prov-O and
P-Plan with GDPR-specific concepts aiming to de-
scribing the provenance of data and using SPARQL
to formulate compliance related queries over the data
lifecycle. The Information Commissioner’s Office
(ICO) in the UK [63], Microsoft [64], and TrustArc28

have developed compliance checking tools that enable
companies to assess the compliance of their applica-
tions and business processes by completing a prede-
fined questionnaire. These approaches are manual with
regards to the compliance checking, which are not suit-
able for our use cases, where compliance checking
happens during the use of the platform and must be au-
tomated. GConsent29 is an ontology to model consent
based on GDPR in a structured way, which is under
development. Another notable project is Business Pro-
cess Re-engineering and functional toolkit for GDPR
compliance (BPR4GDPR)30, a EU Horizon 2020 re-
search project until April 2021. The project focused
on process-based re-engineering to check security and
compliance policies, one result being the Compliance
ontology31.

For automatic usage policy compliance checking,
other than the SPECIAL compliance check mech-
anism [9] that we use in our approach, MIREL32

and DAPRECO33 projects extend PrOnto with Legal-
RuleML [65] to allow legal reasoning through Defea-
sible Logic theory. The goal for this approach is to con-
duct complex legal reasoning and compliance, which
is not the goal in our use cases. While not explicitly
designed for GDPR, PrivOnto [66] provides a frame-
work that could facilitate analysis of privacy policies,
including usage policy compliance.

8. Conclusion and Future Work1

In this paper we discussed the problem of enabling
auditable privacy-preserving data analysis systems,
inspired by the challenges faced by many small and

28http://bit.ly/3tTplPq
29http://openscience.adaptcentre.ie/ontologies/GConsent/docs/ontology
30https://www.bpr4gdpr.eu
31https://www.bpr4gdpr.eu/wp-content/uploads/2019/06/D3.1-

Compliance-Ontology-1.0.pdf
32https://www.mirelproject.eu/
33https://www.fnr.lu/projects/data-protection-regulation-compliance/

medium-sized organisations in acquiring, storing and
analysing personal data due to data protection regula-
tions. We detailed the problem into a number of re-
search questions that we addressed in this paper. We
discuss each of the research questions and our ap-
proach to address it in the following.

What are the key characteristics of auditable privacy-
preserving data analysis systems?4 We described a
scenario to exemplify the requirements for auditable
privacy-preserving data analysis and motivate a num-
ber of functional and non-functional requirements for
our approach listed in Table 10. These are the results of
our iterative process of identification and refining the
requirements based on privacy standards as well as use
cases and discussions with partners from the WellFort
project.

What are the key elements of an architecture for au-
ditable privacy-preserving data analysis systems?4
We proposed a novel approach called WellFort, a
semantic-enabled architecture for auditable privacy-
preserving data analysis which provides secure storage
for users’ sensitive data with explicit consent as well
as a trusted analysis environment for executing data
analytics processes in a privacy-preserving manner.

How can Semantic Web technologies be used to enable
auditable privacy-preserving data analysis systems?4
We detailed how we select and utilise a set of Seman-
tic Web technologies to support our conceptual archi-
tecture for auditable privacy-preserving data analysis
systems. We found that for some tasks, e.g., the auto-
matic usage policy compliance checking, the technol-
ogy already has a high-level of maturity. For others,
some adaptations are still required. Nevertheless, it is
encouraging to see that research results can be adapted
for real-world use cases.

In our evaluation, we demonstrated the feasibility
of our approach on four real-world use cases in the
medical domain. We show that the platform prototype
is able to track the entire data lifecyle, starting from
the deposit of data, to producing results in a scientific
study. Thus, the architecture provides means to inspect
which data was used, whether the consent was granted,
or which specific libraries and code were used to pro-
duce the results. This, in turn, increases reproducibility
and trust in the results, and can be used as evidence in
litigation cases to discharge claims.

The future work will focus on adoption of the pro-
posed platform to application domains in which au-
ditability and privacy are the key concerns. This will

http://bit.ly/3tTplPq
https://www.mirelproject.eu/
https://www.fnr.lu/projects/data-protection-regulation-compliance/
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require changes in the data model used in the reposi-
tory and development of methods to automate knowl-
edge graph generation from new types of data.

Another branch of future work is to investigate
the possibility of adopting Semantic Web technolo-
gies for the Trusted Analysis Environment. Recent
works in this direction have emerged in the Semantic
Web community, e.g., on privacy-aware query process-
ing [67, 68]. Additionally, we will focus on improving
the quality of the Trusted Analysis Environment. This
includes embedding privacy-preserving record link-
age to improve the analysis of data originating from
different companies, and extending the repertoire of
DataSHIELD functionalities.

Furthermore, we plan to continue our work on the
Audit Box to develop a multi-purpose RDF-based au-
dit toolbox to support auditability of data analysis sys-
tems. Such toolbox facilitates capturing and auditing
provenance trail data from heterogeneous sources, e.g.,
NoWorkflow [53] for python scripts. To this end, we
also consider the possibility of linking the toolbox with
our prior work on RDF data generation from security
log data [69].
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