
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

Continuous Multi-Query Optimization for
Subgraph Matching over Dynamic Graphs
Xi Wang a, Qianzhen Zhang a,*, Deke Guo a,b and Xiang Zhao a,**

a Science and Technology on Information Systems Engineering Laboratory, University of Defense Technology,
China
E-mails: 18342211026@163.com, 850806464@qq.com, dekeguo@nudt.edu.cn, xiangzhao@nudt.edu.cn
b Tianjin Key Laboratory of Advanced Networking (TANK), College of Intelligence and Computing, Tianjin
University, China

Editors: Axel-Cyrille Ngonga Ngomo, University of Paderborn, Germany; Muhammad Saleem, University of Leipzig, Germany; Ruben
Verborgh, Ghent University - imec, Belgium
Solicited review: Four anonymous reviewers

Abstract.
There is a growing need to perform real-time analytics on dynamic graphs in order to deliver the values of big data to users. An

important problem from such applications is continuously identifying and monitoring critical patterns when fine-grained updates
at a high velocity occur on the graphs. A lot of efforts have been made to develop practical solutions for these problems. Despite
the efforts, existing algorithms showed limited running time and scalability in dealing with large and/or many graphs. In this
paper, we study the problem of continuous multi-query optimization for subgraph matching over dynamic graph data. (1) We
propose annotated query graph, which is obtained by merging the multi-queries into one. (2) Based on the annotated query, we
employ a concise auxiliary data structure to represent partial solutions in a compact form. (3) In addition, we propose an efficient
maintenance strategy to detect the affected queries for each update and report corresponding matches in one pass. (4) Extensive
experiments over real-life and synthetic datasets verify the effectiveness and efficiency of our approach and confirm a two orders
of magnitude improvement of the proposed solution.

Keywords: Multi-query optimization, Annotated query graph, Incremental maintenance strategy, Dynamic graph

1. Introduction

Dynamic graphs emerge in different domains, such
as financial transaction network, mobile communica-
tion network, data center network [1–3], uncertain net-
work [4], etc. These graphs usually contain a very
large number of vertices with different attributes, and
have complex relationships among vertices. In addi-
tion, these graphs are highly dynamic with frequent
updates of edge insertions and deletions.

Identifying and monitoring critical patterns in a dy-
namic graph is important in various application do-
mains [5] such as fraud detection, cyber security, and

* Corresponding author. E-mail: 850806464@qq.com.
** Co-corresponding author. E-mail: xiangzhao@nudt.edu.cn.

emergency response, etc. For example, cyber security
applications should detect cyber intrusions and attacks
in computer network traffic as soon as they appear in
the data graph [6]. In order to identify and monitor
such patterns, existing work [6–8] studies the contin-
uous subgraph matching problem that focuses on a-
query-at-a-time. Given an initial graph G, a graph up-
date stream ∆g consisting of edge insertions and dele-
tions and a query graph Q. Then the continuous sub-
graph matching problem is to report positive (resp.
negative) matches for each edge insertion (resp. dele-
tion) operation.
Example 1. Figure 1 shows an example of continu-
ous subgraph matching. Given a query pattern Q as
show in Figure 1(a), and an initial graph G with an
edge insertion operation ∆g1 as show in Figure 1(b),

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:18342211026@163.com
mailto:850806464@qq.com
mailto:dekeguo@nudt.edu.cn
mailto:xiangzhao@nudt.edu.cn
mailto:850806464@qq.com
mailto:xiangzhao@nudt.edu.cn

2 N. Wang et al. / Continuous Multi-Query Optimization

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

(a) Query pattern Q

A

B C

D

B

D

v1

v5v4

v2

v3

(b) Initial graph G with an edge

insertion operation

C
v6

A

A

CB

D

v1

v5v4

v2

v3

(b) Initial graph G with an edge

insertion operation

C
v6

A

A

CB

D

v1

v5v4

v2

v3

(b) Initial graph G with an edge

insertion operation

C
v6

A

A

C

Δg1u1

u2 u3

u4

Fig. 1. An example of continuous subgraph matching

it is necessary to find all positive matches for each op-
eration. When ∆g1 occurs, it report a positive match
{v1, v2, v3, v5}.

However, these applications deal with dynamic
graphs in such a setup that is often essential to be
able to support hundreds or thousands of continu-
ous queries simultaneously. Optimizing and answer-
ing each query separately over the dynamic graph
is not always the most efficient. Zervakis et al. [9]
first propose a continuous multi-query process engine,
namely, TRIC, on the dynamic graph. It decomposes
the query graphs into minimum covering paths and
constructs an index. Whenever an update occurs, it
continuously evaluates queries by leveraging on the
shared restrictions present in query sets. Although
TRIC can achieve a better performance than a-query-
at-a-time approaches, it still has some serious perfor-
mance problems. (1) TRIC needs to maintain a large
number of materialized views, leading to worse per-
formance in storage cost. (2) Since TRIC decomposes
each query graph Q in the queries set into a set of path
conjuncts, and it will cause inevitably expensive join
and exploration cost for the large sets of query paths;
and (3) TRIC has an expensive maintenance cost of
materialized results when updates occur on the graph.

These problems of existing methods motivated us
to develop a novel concept of annotated query graph
(AQG), which is obtained by merging all the queries
into one. Similar to prior multi-query optimization ap-
proaches, our technique relies on sharing computation
to speed up query processing. Each edge e in the AQG
is annotated by the queries that contain e. In order
to avoid executing subgraph pattern matching repeat-
edly whenever some edges expire or some new edges
arrive, we need to construct an auxiliary data struc-
ture to record some intermediate query results. Note
that data-centric representation of intermediate results
is claimed to have the best performance in storage
cost [7]. It maintains candidate query vertices for each
data vertex using a graph structure such that a data

vertex can appear at most once. In this paper, we also
adopt this solution and construct a newly data-centric
auxiliary data structure, namely, MDCG, based on the
equivalent query tree of AQG. The purpose is to take
advantage of the pruning power of all edges in AQG,
and execute fast query evaluation by leveraging tree
structure.

In summary, our contributions are :

– We propose an efficient continuous multi-query
matching system, IncMQO, to resolve the prob-
lems of existing methods.

– We define annotated query graph, in which corre-
sponding matching results can be obtained in one
pass instead of multiple.

– We construct a newly data-centric auxiliary data
structure based on the equivalent query tree of the
annotated query graph to represent the partial so-
lution in a compact form.

– We propose an incremental maintenance strategy
to efficiently maintain the intermediate results in
MDCG for each update and quickly detect the
affected queries. Then we propose an efficient
matching order for the annotated query to conduct
subgraph pattern matching.

We experimentally evaluate the proposed solution
using three different datasets, and compare the perfor-
mance against the three baselines. The experiment re-
sults show that our solution can achieve up to two or-
ders of magnitude improvement in query processing
time against the sequential processing strategy.

2. Preliminaries and Framework

In this section, we first introduce several essen-
tial notions and formalize the continuous multi-query
processing over dynamic graphs problem. Then, we
overview the proposed solution.

2.1. Preliminaries

We focus on a labeled undirected graph G =
(V, E, L). Here, V is the set of vertices, E ⊂ V × V is
the set of edges, and L is a labeling function that as-
signs a label l to each v ∈ V . Note that our techniques
can be readily extended to handle directed graphs.
Definition 1 (Graph Update Stream). A graph up-
date stream ∆g is a sequence of update operations
(∆g1,∆g2, · · ·), where ∆g1 is a triple ⟨op, vi, v j⟩ such
that op = {I,D} is the type of operations, with I and
D representing edge insertion and deletion of an edge
⟨vi, v j⟩.

N. Wang et al. / Continuous Multi-Query Optimization 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

A dynamic graph abstracts an initial graph G and an
update stream ∆g. G transforms to G′ after applying
∆g to G. Note that insertion of a vertex can be repre-
sented by a set of edge insertions; similarly, deletion of
a vertex can be considered as a set of edge deletions.
Definition 2 (Subgraph homomorphism). Given a
query graph Q = (VQ, EQ, LQ), a data graph G =
(VG, EG, LG), Q is homomorphic to a subgraph of G
if there is a mapping (or a match) f between them
such that: (1) ∀v ∈ VQ, LQ(v) = LG(f (v)); and
(2) ∀(vi, v j) ∈ EQ, (f (vi), f (v j)) ∈ EG, where f (v) is
the vertex in G to which v is mapped.

Since subgraph isomorphism can be obtained by just
checking the injective constraint [7], we use the sub-
graph homomorphism as our default matching seman-
tics. Note that we omit edge labels for ease of explana-
tion, while the actual implementation of our solution
and our experiments support edge labels.

Based on the above definitions, let us now define
the problem of multi-query processing over dynamic
graphs.

Problem Statement. Given a set of query graphs
QDB = {Q1,Q2, . . . ,Qn}, an initial data graph G and
graph update stream ∆g, the problem of continuous
multi-query processing over dynamic graph consists of
continuously calculating positive or negative matching
results for each affected query graphs Qi ∈ QDB when
applying incoming updates.

2.2. Overview of solution

In this subsection, we overview the proposed solu-
tion, which is referred to as IncMQO. Specially, we are
to address two technical challenges:

– Representation of intermediate results should be
compact and can be used to calculate the corre-
sponding matches of affected queries in one pass.

– Update operation needs to be efficient such that
the intermediate results can be maintained incre-
mentally to quickly detect the affected queries.

The former challenge corresponds to Continuous Multi-
query Processing Model, while the latter corresponds
to Continuous Multi-Query Evaluation Phase.

Algorithm 1 shows the outline of IncMQO, which
takes an initial data graph graph G, a graph update
stream ∆g and queries set QDB as input, and find the
matching results of affected queries when necessary.
We first merge all the queries in QDB into an annotated
query graph (AQG) (Line 1). Then, we extract from
the annotated query graph AQG a equivalent query tree
ETree by choosing a root vertex ur (Lines 2–3). The
purpose is to take advantage of the pruning power of

Algorithm 1: IncMQO
Input: QDB is a set of query patterns; G is the

initial data graph; ∆g is the graph
update stream.

1 AQG← Annotated(QDB);
2 ur ← ChooseRootVertex(AQG,G);
3 ETree← ExtractETree(AQG, ur);
4 foreach data vertex vs that matches us do
5 MDCG.setEdgeType((v∗s , us, vs),I);
6 BuildMDCG((v∗s , us, vs),G,ETree)

7 while ∆g is not empty do
8 o← ∆g.pop();
9 foreach edge e of ETree that matches o do

10 if o is an insertion then
insertEval(o, e,MDCG) ;

11 else deleteEval(o, e,MDCG) ;

all edges in AQG, and execute fast query evaluation
by leveraging tree structure. Based on ETree, we con-
struct an auxiliary data structure from each start vertex
us in the ETree (see Section 3), namely, MDCG, which
is able to provide guidance to get affected queries and
generate corresponding matches with light computa-
tion overhead (Line 4–6), here v∗ is a virtual ver-
tex that conveniently represents the parent vertex of
the root vertex. Finally, we perform continuous multi-
query matching for each update operation. During a
graph update stream, when an update comes, we first
check whether it is an update that can affect the query
results, i.e., check whether an edge e of ETree matches
the corresponding edge in the operation o. If so, we
amend the auxiliary data structure MDCG depending
on the update type of the operation o, and calculate
the positive or negative matching results for affected
queries if necessary (Lines 7–11).

3. Continuous Multi-query Processing Model

When an edge update occurs, it is costly to con-
duct sequential query processing. The central idea of
multi-query handling is to employ a delicate data struc-
ture, which can be used to compute matches of affected
queries in one pass.

3.1. Annotated query graph

Different from the work proposed in [9] that decom-
poses queries into covering paths and handles updates
by finding affected paths, we provide a novel concept
of annotated query graph, namely, AQG, which merges

4 N. Wang et al. / Continuous Multi-Query Optimization

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

all queries in QDB into one. An AQG is a pair (QA, δ),
where QA is the merged query and δ is a function that
annotates each edge e ∈ QA with a set δ(e) of query
IDs from QDB. Intuitively, for each Q′ ∈ δ(e), δ(e)
indicates that e is an edge in query Q

′
, i.e., δ(e) is a

condition on whether e is an edge in Q
′
. To construct

AQG, for each graph Qi ∈ QDB, we first add a subscript
to each vertex label in Qi to distinguish the vertices
that have the same labels. That is, we randomly use
{0, 1, · · · , n} as subscripts for the n duplicate vertex
labels in each query Qi. Then, for each unvisited edge
e in Qi, we check whether it exists in other queries
{Q′}. If so, we add {Q′} into δ(e) and mark e and cor-
responding edges in other queries as visited. We repeat
this process till all the edges of each query in QDB have
been visited. Finally, we construct AQG by merging
{e} and {δ(e)} together. Based on AQG, we can com-
pute matches of affected queries in one pass of enu-
meration instead of multiple.
Example 2. The queries in Figure 2(a) are overlaped
and can be merged into an annotated AQG (Q4, δ),
where AQG (Q4, δ) takes the union of the vertices and
edges of the three query graphs. The edges in (Q4, δ)
are annotated by δ such that δ(u1, u2) = {1, 2, 3},
δ(u1, u3) = δ(u2, u3) = {1, 3}, δ(u1, u4) = {2},
δ(u2, u4) = {2, 3}, δ(u2, u5) = {2, 3}, δ(u3, u4) =
{1, 2} (labels omitted here). Observe that common
sub-patterns of Q1 − Q3 are represented only once in
Q4 and the matches to Q1 − Q3 can be computed in a
single enumeration of matches of (Q4, δ).

Remark. Note that, there exists a case that the
queries in the QDB have no common component. In this
condition, we will process each query in QDB sequen-
tially. In Section 6.11, we evaluate the performance of
single query processing against TurboFlux. The exper-
iment results prove that our algorithm is still more ef-
ficient.

3.2. Auxiliary Data Structure

Since continuous multi-query processing is trig-
gered by each update operation on the data graph, it
is more useful to maintain some intermediate results
for each vertex in the data graph as TurboFlux [7] did
rather than in the query graph. To this end, we propose
a newly data-centric auxiliary data structure based on
the equivalent query tree of AQG.
Definition 3. The equivalent query tree of a rooted
AQG is defined as the tree ETree such that each edge
in AQG corresponds to a tree edge in ETree. (e.g., Fig-
ure 3(a) is the equivalent query tree of AQG Q4 in Fig-
ure 2(b)).

Note that since we will transform all edges of AQG
into tree edges, there are duplicate vertices in ETree
(e.g., u3 and u′3 in Figure 3(a)). To construct ETree, we
need to choose a root vertex of AQG. We first adopt
the core-forest decomposition strategy of [10] to de-
termine the core part QC(VC , EC). Then, we use edge
overlapping factor o(e) and candidates set cand(u)
(u ∈ VC) to select the root vertex ur in VC . In detail,
we quantify u′s root degree as |cand(u)|/Σ o(u, ui)
(u ∈ VC , (u,ui) ∈ EC) and select the vertex with the
minimum value as the root vertex ur. Here, o(u, ui) is
the overlapping factor of edge (u, ui), defined as the
maximum number of queries annotated on edge (u, ui)
in the AQG (e.g., o(u1, u2) = 3 in Figure 2(b)), and
|cand(u)| represents a set of vertices in G matching
with u. After that, we traverse AQG in a BFS order
from ur, and direct all edges from upper levels to lower
levels to generate the the equivalent query tree of AQG.
Example 3. For each vertex ui in AQG, supposed that
the number of candidates (i.e., |cand(ui)|) is shown in
Figure 2(c). We select the vertex with the lowest root
degree as root vertex (i.e., vertex u1) and then gener-
ate the equivalent query tree ETree as shown in Figure
3(a).
Observation 1. Let (ui, u j) be an edge in ETree. For
each annotated query ID Qi on (ui, u j), there must exist
a path from a vertex us to u j corresponding to Qi and
us has no incoming edge annotated with Qi. Here, us
is called start vertex.
Example 4. Consider the edge (u3, u′′4) in Figure 3(a).
The start vertex corresponding to Q1 and Q2 is u1 and
u3, respectively.

Based on ETree and AQG, we construct a novel data-
centric auxiliary data structure called MDCG. For each
vertex v in the data graph, we store corresponding can-
didate query vertices as incoming edges to v in inter-
mediate results. The MDCG is a complete multigraph
such that every vertex pair (vi, v j) (vi, v j ∈ VG) has
|VQA | − 1 edges. Here, each edge has a query ver-
tex ID in ETree as edge label, and its state is one of
Null/Incomplete/Complete. Each query vertex ID con-
tains an annotation set σ(u) about query ID that con-
form corresponding states. Let us be one start vertex of
ETree and vs be one vertex in G to which us matches.
Given an edge (v, u′, v′) with σ(u) = {Qi, · · · ,Q j}
in the MDCG, it belongs to one of the following three
types.

– Null edge: For each query Qk (k ∈ [i, j]), there is
no data path vs → v.v′ that match us→ P(u′) 1.u′.

– Incomplete edge: u′ is a candidate of v′ such that
for each Qk (k ∈ [i, j]), (1) there exists a data path

1 P(u′) means the parent of u′ in ETree

N. Wang et al. / Continuous Multi-Query Optimization 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

A

B C D

E

{1,2,3}

{3}

{2}

{1,3}

{1,3} {1,2}

{2,3}

(a) Query graphs in QDB

A

B C D

A

B D C

A

C B D

E

Q1

Q2

Q3

(b) Annotated query graph Q4

Core-structure QC

(c) RootDegree of each vertex

u1

u2

u3

u4

u5
u4 3

u2 6

u3 5

5

7

6

RootDegree

u1 3 6
6

7

1

2

5

6
3

5

Fig. 2. Annotated query graph

A

B

D

v1v7

v5v4

v2

v3

Δo1

Δo1
Insertion operation

(b) Initial graph G

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

C

E

v6

A

C

A

B C

A

u2.{1,3}

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(a)

C

v4

u2.{2}
.{1,2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}.{1,3}

A

B C

A

u2.{1,2,3}

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(b)

C

v4

.{1,2}

u3.{1}

u1.{3}
u1.{1,2}

u3.{2}.{1,3}

A

B C

A

u2.{1,2,3}

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(c)

C

v4

.{1,2}

u1.{1,2,3}

u3.{1}

u1.{1,3}
u1.{2}

u3.{2}.{1,3}

u1.{1,3}

u1.{2}

A

B C

A

u2.{1,3}

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

E

B

D

v1v7

v6

v5v4

v2

v3

v7

Δo1

Δo1
Insertion operation

(b) Initial graph G (c) MDCG for G with ETree

C

v4

Incomplete EdgeIncomplete Edge Complete EdgeComplete Edge

C

E

v6

u2.{2}
.{1,2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

A

C

A

B C

A

u2.{1,3}

u2.{1,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(a)

C

v4

u2.{2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

.{1,3}

(b)

A

B C

A

u2.{1,2,3}

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(c)

C

v4

.{1,2}

u1.{1,2,3}

u3.{1}

u1.{1,3}
u1.{2}

u3.{2}

.{2,3}.{2,3}

u3.{1,3}

.{1,2}.{1,2}

A

B C

A

u2.{1,3}

u2.{1,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

C

v4

u2.{2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

.{2,3}.{2,3}

u3.{1,3}

.{1,2}.{1,2}

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

A

B C

A

u2.{1,3}

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(c) MDCG for G with ETree

C

v4

Incomplete EdgeIncomplete Edge Complete EdgeComplete Edge

u2.{2}
.{1,2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

A

B C

A

u2.{1,3}

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(c) MDCG for G with ETree

C

v4

Incomplete Edge Complete Edge

u2.{2}
.{1,2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

(b) From Null to Incomplete

B C

A

u2.{1,2,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{1}

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{2}.{2}
.{2,3}.{2,3}

u3.{1,3}

A

(b) From Null to Incomplete

B C

A

u2.{1,2,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{1}

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{2}
.{2,3}

u3.{1,3}

A

(c) From Null to Incomplete

A

B C

A

u2.{1,2,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{1}

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{2}.{2}

.{2,3}.{2,3}

u3.{1,3}

.{1}.{1}

Complete Edge

(c) MDCG for G with ETree

A

B C

A

u2.{1,2,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{1}

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{2}.{2}.{2,3}.{2,3}

Incomplete Edge

.{1,3}.{1,3}

.{1,3}.{1,3} .{1,3}.{1,3}

u2.{2} u2.{2}

A

B C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1}

(d) From Incomplete to Complete

u3.{3}

.{1,3}.{1,3}

u1.{1}

A

B C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1}

(d) From Incomplete to Complete

u3.{3}

.{1,3}

u1.{1}

A

B C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(e) From Incomplete to Complete

u1.{1,3}

.{1,3}.{1,3}

u1.{1}

A

B C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(e) From Incomplete to Complete

u1.{1,3}

.{1,3}

u1.{1}

A

C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(f) From Complete to Null

u1.{1,3}

B

A

C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(f) From Complete to Null

u1.{1,3}

B

u1.{1}

A

C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(f) From Complete to Null

u1.{1,3}

B

u1.{1}

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(g) From Complete to Incomplete

u1.{1,3}

B

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(g) From Complete to Incomplete

u1.{1,3}

B

u1.{1}

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(g) From Complete to Incomplete

u1.{1,3}

B

u1.{1}

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(h) From Complete to Incomplete

u1.{1,3}

B

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(h) From Complete to Incomplete

u1.{1,3}

B

u1.{1,3}

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(h) From Complete to Incomplete

u1.{1,3}

B

u1.{1,3}

Δg1 edge insertion
Δg1 edge insertion
Δg1 edge insertion

Δg2 edge deletion
Δg2 edge deletion

D

v1v7

v5v4

v2

v3

(a) Initial graph G with an two edge

operations

C

E

v6

A

C

A

B

D

v1v7

v5v4

v2

v3

(a) Initial graph G with an two edge

operations

C

E

v6

A

C

A

B

Δg1

Δg2

D

v1v7

v5v4

v2

v3

(a) Initial graph G with an two edge

operations

C

E

v6

A

C

A

B

Δg1

Δg2

B

D

v1v7

v5v4

v2

v3

(b) Initial graph G

C

E

v6

A

A

CB

D

v1v7

v5v4

v2

v3

(b) Initial graph G

C

E

v6

A

A

CB

D

v1v7

v5v4

v2

v3

(b) Initial graph G

C

E

v6

A

A

C

Fig. 3. Example of constructing MDCG

vs → v.v′ that match us → P(u′).u′; and (2) there
exists a subtree of u′ does not match any subtree
of v′.

– Complete edge: u′ is a candidate of v′ such that
for each Qk (k ∈ [i, j]), (1) there exists a data path
vs → v.v′ that match us → u.u′; and (2) every
subtree of u′ matches the corresponding subtree
of v′.

Note that we do not store Null edges in the MDCG
since they are hypothetical edges in order to explain
the incremental maintenance strategy (see Section 4).
Furthermore, to reduce the storage cost, we use a
bitmap for each vertex v in the MDCG where the i−th
bit indicates whether v has any incoming Incomplete
edges whose label is ui.
Example 5. Figure 3(c) gives the MDCG based on
ETree in Figure 3(a). Since there is a path u1 → u2.u′4
from start vertex u1 corresponding to Q2 and Q3 that
matches v4 → v2.v5 and u′4 does not have any subtree,
then edge (v2, u′

4, v5) with σ(u′4) = {Q2,Q3} in the
MDCG is set to be a Complete edge.

4. Continuous Multi-Query Evaluation Phase

We rely on an incremental maintain strategy to ef-
ficiently maintain MDCG for each edge update op-
eration, and then propose an effective matching or-
der to conduct subgraph pattern matching for affected
queries in single pass of enumeration directly.

4.1. Incremental maintenance of intermediate results

We propose an edge state transition model to effi-
ciently identify which update operation can affect the
current intermediate results and/or contribute to pos-
itive/negative matches for each affected query. The
edge state transition model consists of three states and
six transition rules, which demonstrates how one state
is transited to another.

Handing Edge Insertion. When an edge insertion
(v, v′) occurs, we have the following three edge transi-
tion rules.

From Null to Null. (1) Suppose that edge (v, v′) fails
to match any query edge in the ETree, then the state of
(v, v′) is Null. (2) Suppose that edge (v, v′) matches a
query edge (u, u′) in the ETree. If v in the MDCG has
no Incomplete/Complete incoming edge with label u

6 N. Wang et al. / Continuous Multi-Query Optimization

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

A

B

D

v1v7

v5v4

v2

v3

Δo1

Δo1
Insertion operation

(b) Initial graph G

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

C

E

v6

A

C

A

B C

A

u2.{1,3}

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(a)

C

v4

u2.{2}
.{1,2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}.{1,3}

A

B C

A

u2.{1,2,3}

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(b)

C

v4

.{1,2}

u3.{1}

u1.{3}
u1.{1,2}

u3.{2}.{1,3}

A

B C

A

u2.{1,2,3}

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(c)

C

v4

.{1,2}

u1.{1,2,3}

u3.{1}

u1.{1,3}
u1.{2}

u3.{2}.{1,3}

u1.{1,3}

u1.{2}

A

B C

A

u2.{1,3}

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

E

B

D

v1v7

v6

v5v4

v2

v3

v7

Δo1

Δo1
Insertion operation

(b) Initial graph G (c) MDCG for G with ETree

C

v4

Incomplete EdgeIncomplete Edge Complete EdgeComplete Edge

C

E

v6

u2.{2}
.{1,2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

A

C

A

B C

A

u2.{1,3}

u2.{1,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(a)

C

v4

u2.{2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

.{1,3}

(b)

A

B C

A

u2.{1,2,3}

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(c)

C

v4

.{1,2}

u1.{1,2,3}

u3.{1}

u1.{1,3}
u1.{2}

u3.{2}

.{2,3}.{2,3}

u3.{1,3}

.{1,2}.{1,2}

A

B C

A

u2.{1,3}

u2.{1,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

C

v4

u2.{2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

.{2,3}.{2,3}

u3.{1,3}

.{1,2}.{1,2}

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

A

B C D

E

{1,2,3}

{3}

{2}
{1,3}

{1,2}

D2D1C1

{2,3}
{1,3}

u1

u2 u3 u4

u5

(a) Equivalent query tree ETree

A

B C

A

u2.{1,3}

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(c) MDCG for G with ETree

C

v4

Incomplete EdgeIncomplete Edge Complete EdgeComplete Edge

u2.{2}
.{1,2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

A

B C

A

u2.{1,3}

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

u3.{1,3}

v6

v7

(c) MDCG for G with ETree

C

v4

Incomplete Edge Complete Edge

u2.{2}
.{1,2}

u1.{1,3}

u1.{2}
u3.{1}

u2.{2}

u1.{3}
u1.{1,2}

u3.{2}

(b) From Null to Incomplete

B C

A

u2.{1,2,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{1}

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{2}.{2}
.{2,3}.{2,3}

u3.{1,3}

A

(b) From Null to Incomplete

B C

A

u2.{1,2,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{1}

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{2}
.{2,3}

u3.{1,3}

A

(c) From Null to Incomplete

A

B C

A

u2.{1,2,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{1}

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{2}.{2}

.{2,3}.{2,3}

u3.{1,3}

.{1}.{1}

Complete Edge

(c) MDCG for G with ETree

A

B C

A

u2.{1,2,3}

D

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{1}

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{2}.{2}.{2,3}.{2,3}

Incomplete Edge

.{1,3}.{1,3}

.{1,3}.{1,3} .{1,3}.{1,3}

u2.{2} u2.{2}

A

B C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1}

(d) From Incomplete to Complete

u3.{3}

.{1,3}.{1,3}

u1.{1}

A

B C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{1,2,3}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1}

(d) From Incomplete to Complete

u3.{3}

.{1,3}

u1.{1}

A

B C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(e) From Incomplete to Complete

u1.{1,3}

.{1,3}.{1,3}

u1.{1}

A

B C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(e) From Incomplete to Complete

u1.{1,3}

.{1,3}

u1.{1}

A

C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(f) From Complete to Null

u1.{1,3}

B

A

C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(f) From Complete to Null

u1.{1,3}

B

u1.{1}

A

C

A

u2.{1,2,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(f) From Complete to Null

u1.{1,3}

B

u1.{1}

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(g) From Complete to Incomplete

u1.{1,3}

B

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(g) From Complete to Incomplete

u1.{1,3}

B

u1.{1}

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2,3}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(g) From Complete to Incomplete

u1.{1,3}

B

u1.{1}

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(h) From Complete to Incomplete

u1.{1,3}

B

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(h) From Complete to Incomplete

u1.{1,3}

B

u1.{1,3}

A

C

A

u2.{1,3}

D

.{2,3}

v1

E

u5.{3}

u3.{3}

u4.{2} v5

v2

v3

v6

v7

C

v4

u1.{2}
u3.{1}

u1.{2}

u3.{2}

u2.{1,2,3}

u3.{2}

.{1,2}

u3.{1,3}

(h) From Complete to Incomplete

u1.{1,3}

B

u1.{1,3}

Δg1 edge insertion
Δg1 edge insertion
Δg1 edge insertion

Δg2 edge deletion
Δg2 edge deletion

D

v1v7

v5v4

v2

v3

(a) Initial graph G with an two edge

operations

C

E

v6

A

C

A

B

D

v1v7

v5v4

v2

v3

(a) Initial graph G with an two edge

operations

C

E

v6

A

C

A

B

Δg1

Δg2

D

v1v7

v5v4

v2

v3

(a) Initial graph G with an two edge

operations

C

E

v6

A

C

A

B

Δg1

Δg2

B

D

v1v7

v5v4

v2

v3

(b) Initial graph G

C

E

v6

A

A

CB

D

v1v7

v5v4

v2

v3

(b) Initial graph G

C

E

v6

A

A

CB

D

v1v7

v5v4

v2

v3

(b) Initial graph G

C

E

v6

A

A

C

Fig. 4. Maintenance strategy

such that σ(u) contains one query ID in δ(u, u′), then
the state of (v, u′, v′) remains Null.

From Null to Incomplete. (1) Suppose that edge (v, v′)
matches a query edge (u, u′) in the ETree. If v has an
Incomplete/Complete edge (vp, v) with label u such
that σ(u) ∩ δ(u, u′) = ζ (ζ ̸= ∅), then we transit the
state of edge (v, u′, v′) from Null to Incomplete and set
σ(u′) = ζ. (2) Suppose that the state of edge (v, u′, v′)
in the MDCG is translated from Null to Incomplete, we
need to propagate the update downwards. That is, for
each adjacent vertex v′′ of v′, we will check whether
(v′, v′′) matches (u′, u′′) where u′′ is the child vertex
of u′ and σ(u′) ∩ δ(u′, u′′)=ζ′ (ζ′ ̸= ∅). If so, we tran-
sit the state of (v′, u′′, v′′) in the MDCG from Null to
Incomplete and set σ(u′′) = ζ′.
Example 6. Figure 4(b)–(c) give the example of edge
transition rule from Null to Incomplete. In Figure 4(a),
when the edge insertion operation ∆g1 (between v1
and v3) occurs, we can find that (v1, v3) matches
(u1, u3) in the ETree. Since v1 has an incoming Incom-
plete edge with label u1 such that σ(u1) ∩ δ(u1, u3) =
{1, 3} in Figure 4(b), then we translate the state
of edge (v1, u3, v3) from Null to Incomplete and set
σ(u3) = {1, 3}. Next, update needs to be propagated
downwards. Here, an Incomplete edge (v3, u′′4 , v5) with
σ(u′′4) = {1} is added into the MDCG, as shown in
Figure 4(c).

From Incomplete to Complete. (1) Suppose that the
state of (v, u′, v′) is transited from Null to Incomplete. If

u′ is a leaf vertex in the ETree for a query Qi in σ(u′),
we transit the state of (v, u′, v′) with σ(u′) = {Qi}
in the MDCG from Incomplete to Complete. The state
of edge (v, u′, v′) with σ(u′)/({Qi}) remains Incom-
plete. (2) Suppose that the state of (v, u′, v′) in the
MDCG is transited from Incomplete to Complete. If v
has an outgoing Complete edge in the MDCG whose
label is u′′ and σ(u′′) contains Qi for every u′′ in
Children(P(u′)), then transit the state of every Incom-
plete incoming edge (vp, v) of v in the MDCG whose
label is P(u′) and σ(P(u′)) contains Qi from Incom-
plete to Complete. The state of edge (vp, P(u′), v) with
σ(P(u′))/({Qi}) remains Incomplete.
Example 7. Figure 4(d)–(e) give the example of edge
transition rule from Incomplete to Complete. In Fig-
ure 4(d), since u3 is the leaf vertex in Q3, the state of
edge (v1, u3, v3) with σ(u3) = {3} is transited from
Incomplete to Complete. Currently, the state of edge
(v3, u′′

4 , v5) with σ(u′′
4) = {1} in Figure 4(c) is tran-

sited from Null to Incomplete. Since u′′
4 is the leaf vertex

of Q1, then the state of edge (v3, u′′4 , v5) with σ(u′′4) =
{1} is transited from Incomplete to Complete. Note
that there is another Complete edge (v3, u′′

4 , v5) with
σ(u′′4) = {2}, we can merge them together. Then,
we further check the state of edge (v1, u3, v3) with
σ(u3) = {1}. Since v3 has an outgoing Complete edge
with label u′′4 and σ(u′′

4) = {1} for every children of
u3, then the state of edge (v1, u3, v3) with σ(u3) = {1}
is transited from Incomplete to Complete. Next, update
needs to be propagated upwards. Here, the state of

N. Wang et al. / Continuous Multi-Query Optimization 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

edge (v∗, u1, v1) with σ(u1) = {1, 3} is transited from
Incomplete to Complete, as shown in Figure 4(e).

Handing Edge Deletion. When an edge deletion
(v, v′) occurs, we have the following three reversed
edge transition rules.

From Complete to Null. (1) For each edge (u, u′) in
ETree such that v in the MDCG has an incoming In-
complete or Complete edge whose edge label is u, if
(v, v′) matches (u, u′) and the state of (v, u′, v′) in the
MDCG is Complete, then transit the state of (v, u′, v′) in
the MDCG from Complete to Null. (2) Suppose that the
state of edge (v, u′, v′) in the MDCG is transited from
Incomplete or Complete to Null. For each query Qi in
σ(u′), if v′ in the MDCG no longer has any incoming
edge whose label is u′ that contains the annotation Qi,
then for each u′′ in Children(u′), transit the state of ev-
ery outgoing Complete edge of v′ in the MDCG whose
label is u′′ that contain Qi from Complete to Null.
Example 8. Figure 4(f) gives the example of edge
transition rule from Complete to Null. In Figure 4(a),
when the edge deletion operation ∆g2 (between v2 and
v3) occurs, the state of edge (v2, u

′

3, v3) is translated
from Complete to Null in the MDCG as show in Fig-
ure 4(f), since v2 has an incoming Complete edge with
label u2 and (v2, v3) matches (u2, u′

3) in the ETree.

From Complete to Incomplete. Suppose that the state
of (v, u′, v′) in the MDCG is transited from Complete
to Incomplete or Null. For each query Qi in σ(u′), if
v in the MDCG no longer has any outgoing Complete
edge whose label is u′ that contains Qi, then we tran-
sit the state of every incoming Complete edge of v in
the MDCG whose label is P(u′) that contains Qi from
Complete to Incomplete.
Example 9. Figure 4(g)–(h) give the example of edge
transition rule from Complete to Incomplete. In Fig-
ure 4(g), since the state of edge (v2, u3, v3) is trans-
lated from Complete to Null, for Q1 and Q3, v2 does
not have an outgoing Complete edge for every chil-
dren of u2 in ETree, then the state of edge (v4, u2, v2)
with σ(u2) = {1, 3} is transited from Complete to
Incomplete. While the state of edge (v4, u2, v2) with
σ(u2) = {2} is still remained Complete, since it meets
the Complete requirement for Q2. Next, update needs
to be propagated upwards. Here, the state of edge
(v∗, u1, v4) with σ(u1) = {3} is transited from Com-
plete to Incomplete, as shown in Figure 4(h).

From Incomplete to Null. (1) If v in the MDCG has
an incoming Incomplete or Complete edge whose edge
label is u, and the state of (v, u′, v′) in the MDCG is
Incomplete, then transit the state of (v, u′, v′) in the
MDCG from Incomplete to Null. (2) Suppose that the
state of (v, u′, v′) in the MDCG is transited from Incom-

plete or Complete to Null. For each query Qi in σ(u′),
if v′ in the MDCG no longer has any incoming edge
whose label is u′ that contains Qi, then for each u′′ in
Children(u′), transit the state of every outgoing Incom-
plete edge of v′ in the MDCG whose label is u′′ that
contain Qi from Incomplete to Null.

4.2. Subgraph search phase

If the state of an edge (v, u′, v′) is translated to Com-
plete, we say the queries in σ(u′) are affected queries
caused by edge (v, v′). Then, we propose an efficient
algorithm, namely, MMatchinc, to calculate correspond-
ing positive matches including (v, v′) for each affected
query based on the MDCG in single pass of enumera-
tion directly. The main idea of MMatchinc is explained
as follows: (1) We derive a matching order based on
the number of affected queries on each edge in ETree;
and then (2) compute the positive matches for each af-
fected query based on the matching order.

In order to calculate the matching order, MMatchinc
first marks u′ as visited. Subsequently, given a set of
unvisited vertices that is adjacent to u′ in ETree, the
next vertex u∗ is the one such that δ(u∗, u′) contains the
maximal affected queries. If there is a tie, it chooses a
query vertex having a minimum number of candidate
data vertices in the MDCG. After that, we mark u∗ as
visited. The matching order for the rest of query ver-
tices is determined along the same lines.

Remark. Intuitively, MMatchinc outputs a “global”
matching order for the query vertices in the AQG QA.
It prioritizes vertices that are shared by more queries.
Matching such vertices at an early stage could help
avoid the enumeration of many unpromising interme-
diate results since the corresponding pruning benefits
multiple queries at the same time.

In the next stage, MMatchinc enumerates the positive
matches for each affected query graph Qi embedded in
the MDCG following the proposed matching order. It
adopts the generic backtracking approach. During the
matching process, it enumerates and prunes v′ adja-
cent Complete edge by inspecting edge label whether
it contains the affected query Qi. The same edge for
different query graphs is indeed enumerated only once.
Example 10. As show in Figure 3(d), the state of edge
insertion (v1, u3, v3) is translated into Complete. Since
σ(u3) = {1, 3}, then Q1 and Q3 are the affected query
graphs. Firstly, we mark u3 as visited. Then, for each
adjacent vertex (i.e., u1 and u

′′

4) in the ETree (see Fig-
ure 2(a)), we choose u1 as the next vertex for match-
ing since δ(u1, u3) contains both Q1 and Q3. Finally,
a matching order {u3, u1, u2, u′3, u5, u4, u′4, u

′′

4} is de-
duced. Based on the matching order, MMatchinc enu-

8 N. Wang et al. / Continuous Multi-Query Optimization

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

merates all the positive matches of the affected query
graphs in a single pass.

5. IncMQO Algorithms

In this section, we present detailed algorithms for
IncMQO. In order to efficiently handle the continuous
multi-query, we first construct the auxiliary data struc-
ture MDCG, and then present two major functions in-
sertEval and deleteEval to apply necessary transition
rules to efficiently maintain the intermediate results
for each update. Finally, we investigate the match-
ing algorithm MMatchinc to report corresponding posi-
tive/negative matches in one pass based on the MDCG.

5.1. MDCG construction

In this subsection, we explain BuildMDCG (Line 6
of Algorithm 1) which is designed for every v with an
Incomplete incoming edge. It uses a depth-first travel
strategy to extend each v in MDCG. First, we check
wether there exists an edge (u, u′) matching (v, v′),
where u′ and v′ represent a child vertex of u and v, re-
spectively; if so, we transit the type of edge (v, u′, v′)
from Null to Incomplete (Line 1–4). If u′ is not a leaf
vertex, we call BuildMDCG recursively to match the
child vertex of u′ (Lines 5-6). Otherwise, transit the
state of the edge (v, u′, v′) from Incomplete to Com-
plete (Line 8). After that, we check if the subtree of v
matches the corresponding subtree of u for Qi; if so,
we transit the state of the edge (p(v), u, v) from Incom-
plete to Complete (Lines 8–9).

Algorithm 2: BuildMDCG

Input: (P(v), u, v) is a edge in MDCG; G is a
data graph; and ETree is the equivalent
query tree

Output: MDCG is the auxiliary data structure
for AQG

1 foreach child query vertex u′ of u do
2 foreach child data vertex v′ of v do
3 if (u, u′) matches (v, v′) then
4 MDCG.setEdgeType((v, u′, v′),I);
5 if u′ is a non-leaf vertex then
6 BuildMDCG

((v, u′, v′),G,ETree);
7 MDCG.setEdgeType((v, u′, v′),C);

8 if v’s subtree matches u’s subtree for Qi then
9 MDCG.setEdgeType((P(v), u, v),C);

Algorithm 3: insertEval

Input: (v, v′) is an insertion edge; MDCG is the
auxiliary data structure

1 U ← {u| satisfying ur → u matches vr → v};
2 foreach u ∈ U do
3 foreach child vertex u′ of u in ETree do
4 if (u, u′) matches (v, v′) then
5 MDCG.setEdgeType((v, u′, v′),I);
6 BuildMDCG ((v, u′, v′),G,ETree)
7 if MDCG.getEdgeType(v, u′, v′)=C

then
8 updateMDCG

((P(v), u, v),G,ETree);

Lemma 1. The time complexity of BuildMDCG is
O(|E(G)| ∗ |V(ETree)|).

Proof. In the worst case, BuildMDCG is called for ev-
ery vertex u and every data vertex v. Thus, given u and
v the time complexity for Lines 1–2 of Algorithm 2
is O(|children(v)| ∗ |children(u)|). Note that the time
complexity for Lines 8–9 is O(children(u)). Thus, the
time complexity of BuildMDCG is O(

∑
u∈ETree

∑
v∈G

(|children(v)|∗|children(u)|)) = O(|E(G)|∗|V(ETree)|)

5.2. Edge Insertion

insertEval (Algorithm 3) is invoked for each new ar-
rival edge (v, v′). The main idea of insertEval is ex-
plained as follows: we try to match (v, v′) with the
query edges in ETree and update the MDCG based
on the corresponding maintenance strategy. Then we
build the MDCG downwards for the subtree of v′ and
further update the MDCG upwards until reaching any
of the starting vertex vs. Finally, we execute the sub-
graph matching to report the matching results.

Note that not all the insertion edge (v, v′) can cause
the update of MDCG. Only when there is a path vs
→ v matches the path us → u, the insertion operation
can cause any update to MDCG. Thus we collect all
the path matched vertex u into a vertex set U (Line
1). To do this, we can guarantee v has an Incomplete
or Complete edge. Then for each child query vertex
u′ of u(u ∈ U), if (u, u′) matches (v, v′), we further
set the type of edge (v, u′, v′) to Incomplete with the
transition rule From Null to Incomplete, and execute
BuildMDCG downwards to build the new part of MDCG
(Lines 2–6). If the type of the insertion edge (v, v′)
transit into Complete finally, we execute updateMDCG

N. Wang et al. / Continuous Multi-Query Optimization 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

Algorithm 4: updateMDCG

Input: (v, u′, v′) is a edge in MDCG; G is a data
graph; and ETree is the equivalent query
tree

1 foreach parent vertex P(v) of v in ETree do
2 if MDCG.getEdgeType((P(v), u, v))=I then
3 if v’s subtree matches partial u’s subtree

then
4 MDCG.setEdgeType((p(v), u, v),C);

5 if v != vs then
6 updateMDCG ((p(v), u, v),G,ETree);

to update the type of the edge which belongs to the
path vs → v (Lines 7–8).

Here, updateMDCG (Algorithm 4) traverses the
MDCG upwards and performs the transition rules
if necessary. It is only called when v has an in-
coming edge with Incomplete type (Line 2). Then,
when v’s subtree matches u’s subtree for Qi, we fur-
ther transit (P(v), u, v)) to Complete with transit rule
From Incomplete to Complete (Lines 3–4). When it
reaches any starting data vertex vs, we end of the up-
dateMDCG. On the contrary, we continue to recurse
upwards(Lines 5–6).

Remark. deleteEval algorithms for edge deletion
are very similar to those for edge insertion except that
they use different transition rules. Thus, we do not de-
scribe here.

6. Experiments

In this section, we perform extensive experiments
on both real and synthetic datasets to show the per-
formance of IncMQO algorithm for continuous multi-
query matching over dynamic graphs. The perfor-
mance of IncMQO was evaluated using various param-
eters such as the overlapped rate of query set, aver-
age query size, query database size, edge update size,
and graph size. The proposed algorithms were imple-
mented using C++, running on a Linux machine with
two Core Intel Xeon CPU 2.2Ghz and 32GB main
memory.

6.1. Datasets and Query Generation

The SNB dataset. SNB [11] is a synthetic bench-
mark designed to accurately simulate the evolution of
a social network through time. This evolution is mod-
eled using activities that occur inside a social network.

Based on the SNB generator, we derived 3 datasets:
(1) SNB0.1M with a graph size of |EG|=0.1M edges
and |VG|=57K vertices; (2) SNB1M with a graph size
of |EG| = 1M edges and |VG| = 463K; and (3) SNB10M
with a graph size of |EG| = 10M edges and |VG| =
3.5M, and use the second one as default.

The NYC dataset. NYC 2 is a real world set of taxi
rides performed in New York City (TAXI) in 2013.
TAXI contains more that 160M entries of taxi rides
with information about the license, pickup and drop-
off location, the trip distance, the date and duration of
the trip, and the fare. We utilized the available data to
generate a data graph with |EG| = 1M edges and |VG|
= 280K vertices.

The BioGRID dataset. BioGRID [12] is a real world
dataset that represents protein to protein interactions.
We used BioGRID to generate a stream of updates that
result in a graph with |EG| = 1M edges and |VG| = 63K
vertices.

In order to construct the set of query graph patterns
QDB, we identified two typical distinct query classes:
trees and graphs. Each type of query graph pattern
was chosen equiprobably during the generation of the
query set. The default values for the query set are:
(1) an average size l of 5, where l represents the av-
erage size of the queries in QDB; (2) a query database
QDB size of 500 query graphs; and (3) a factor that de-
notes the percentage of overlap between the queries in
QDB, θ = 50%.

6.2. Comparative Evaluation

Our method, denoted as IncMQO, is compared with
a number of related works. TRIC is the state-of-the-
art continuous multi-query processing method over dy-
namic graph [9]. It utilizes the common parts of min-
imum covering paths to amortize the costs of process-
ing and answering them. TurboFlux [7] and Graph-
Flow [8] are the state-of-the-art continuous subgraph
matching methods for single query. Both of them can
be utilized for multi-query processing scenarios. That
is, we adopt the sequential query processing strategy
on them.

We measure and evaluate (1) the elapsed time and
the size of intermediate results for IncMQO and its
competitors by varying the percentage of overlap be-
tween the queries in the query set; (2) the elapsed time
and the size of intermediate results for IncMQO and
its competitors by varying the average query size and
query database size; (3) the elapsed time and the size

2 https://chriswhong.com/open-data/foil nyc taxi/

10 N. Wang et al. / Continuous Multi-Query Optimization

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

of intermediate results for IncMQO and its competitors
by varying the edge insertion size; (4) the elapsed time
and the size of intermediate results for IncMQO and
its competitors by varying the edge deletion size; and
(5) the scalability of IncMQO.

6.3. Evaluating the efficiency of IncMQO

In this subsection, we evaluated the performance
of IncMQO against its competitors from the aspect of
processing time and storage cost on three datasets:
SNB1M, NYC and BioGRID with a default updates
stream |∆g| = 15%|G|.
Time Efficiency Comparison. Figure 5(1) shows
the total processing time of IncMQO and its competi-
tors over different datasets. We can see that IncMQO is
better than its competitors over all datasets. Notably,
IncMQO outperforms TRIC, TurboFlux and GraphFlow
by up to 8.43 times, 28.93 times, and 385.21 times,
respectively. The reason is that TRIC needs to main-
tain a large number of indexes to track the matching
results; TurboFlux and GraphFlow need to process the
multiple queries sequentially, which costs a lot of time
overhead. In specific, GraphFlow has the worst perfor-
mance, since it does not store any intermediate results
and use the re-computing method for each update.

Space Efficiency Comparison. Figure 5(2) shows
the size of intermediate results on each dataset. We
only evaluate the IncMQO, TRIC, and TurboFlux, since
GraphFlow does not maintain any intermediate results.
IncMQO outperforms TRIC, and TurboFlux by up to
9.03 times, 29.07 times, respectively. This is because
TRIC maintains a large number of materialized views
and TurboFlux needs to construct auxiliary data struc-
ture for each query in the query set, as a result, leading
to worse performance in storage cost.

6.4. Varying percentage of query overlap

In Figure 6(1) we give the results of the time effi-
ciency evaluation when varying the parameter θ, for
0%, 10%, 20%, 30%, 40%, 50% and 60% of a query
set for |QDB| = 500 on SNB1M dataset. Here, we
fixed |∆g| = 15%|G|. In this setup, the algorithms
are evaluated for varying percentage of query over-
lap. θ = 0% means that the queries in QDB have no
overlap. It is revealed that IncMQO significantly out-
performs other approaches when θ = 0%. A higher
number of query overlap should decrease the number
of calculations performed by algorithms designed to
exploit commonalities among the query set. The re-
sults show that IncMQO and TRIC behave in a similar
manner as previously described, while TurboFlux and

100

101

102

103

104

105

106

SNB NYC BioGRID

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Datasets

IncMQO
TRIC

TurboFlux
GraphFlow

(1) Processing time

100

101

102

103

104

SNB NYC BioGRID

A
vg

.in
t.r

es
ul

ts
 s

iz
e

(M
B

)

Datasets

IncMQO
TRIC

TurboFlux

(2) Space cost

Fig. 5. Performance on SNB1M, NYC and BioGRID

GraphFlow do not since they focus on a-query-at-a-
time. Note that in Figure 6(1), when θ = 0%, IncMQO
is slightly worse than that of TurboFlux while still bet-
ter than that of TRIC by 1.25 times and GraphFlow by
5.07 times. Figure 6(2) plots the average size of in-
termediate results. IncMQO achieves the smallest size
of intermediate results since it merges all the queries
into one and builds a concise auxiliary data structure.
In specific, IncMQO is superior to up to TurboFlux 63.2
times when θ = 60%.

6.5. Varying the average query size

In this subsection, we evaluate the impact of the
average query size in QDB on the performance of In-
cMQO and its competitors. Figure 7(1)–(2) show the
performance results on SNB1M dataset. We set l from
3 to 9 in 2 increments and fixed |∆g| = 15%|G|.
Note that the matching cost does not always increase
as the average query size increases. Figure 7(1) shows
the elapsed time, IncMQO significantly outperforms
its competitors regardless of average query size. Spe-
cially, IncMQO outperforms TRIC by 6.40-11.72 times,
TurboFlux by 39.06-49.24 times and GraphFlow by
139.90-172.33 times. Figure 7(2) gives the average
size of intermediate results. It is reviewed that the av-

N. Wang et al. / Continuous Multi-Query Optimization 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

101

102

103

104

105

0 10 20 30 40 50 60

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

θ%

IncMQO
TRIC

TurboFlux
GraphFlow

(1) Processing time

100

101

102

103

104

0 10 20 30 40 50 60

A
vg

.in
t.r

es
ul

ts
 s

iz
e

(M
B

)

θ%

IncMQO
TRIC

TurboFlux

(2) Space cost

Fig. 6. Performance of varying the percentage of query overlap

erage size of intermediate result of TRIC increases
rapidly with the increase of the average query size.
In specific, IncMQO outperforms TRIC by up to 12.31
times when l is 9. Since TRIC uses path join opera-
tions, the larger the query graph pattern, the more join
operations it requires.

6.6. Varying query database size

In this subsection, we evaluate the impact of the
size of query database on the performance of IncMQO
and its competitors. Figure 8(1)–(2) show the perfor-
mance results using SNB for varying the size of the
query database QDB. More specifically, we fix |∆g| =
15%|G| and vary |QDB| from 250 to 1000 in 250 in-
crements. Please notice the y-axis is in a logarith-
mic scale. Figure 8(1) shows the processing time for
each algorithm when varying |QDB|. It revealed that
IncMQO significantly outperforms its competitors re-
gardless of query database size. Specially, IncMQO
outperforms TRIC by up to 8.92 times, TurboFlux by up
to 82.73 times and GraphFlow by up to 287.77 times
when |QDB| = 1000. IncMQO also outperforms its
competitors in terms of the size of intermediate results,
as shown in Figure 8(2). The performance gap between
IncMQO and TRIC will increase as |QDB| increases.

100

101

102

103

104

105

106

3 5 7 9

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Query size

IncMQO
TRIC

TurboFlux
GraphFlow

(1) Processing time

100

101

102

103

104

105

3 5 7 9

A
vg

.in
t.r

es
ul

t s
iz

e
(M

B
)

Query size

IncMQO
TRIC

TurboFlux

(2) Space cost

Fig. 7. Performance of varying the average query size

Specially, the average size of intermediate results of
TRIC and TurboFlux is larger than that of IncMQO by
up to 10.78 times and 50.47 times, respectively, when
|QDB| = 1000.

6.7. Varying the edge insertion size

Figure 9(1)–(2) show the performance results using
SNB1M for varying edge insertion size. Here, we vary
the number of newly-inserted edges from 10%|G| to
25%|G| in 5%|G| increments with respect to the num-
ber of triples in the graph update stream. Figure 9(1)
shows the total processing time for each algorithm.
The results demonstrate that all algorithm’s behavior is
aligned with our previous observations. It can be seen
that IncMQO has consistent better performance than its
competitors. Specially, IncMQO outperforms TRIC by
up to 6.43 times, TurboFlux by up to 24.04 times and
GraphFlow by up to 152.33 times. In terms of the size
of intermediate results, IncMQO also has a better per-
formance than its competitors, as shown in Figure 9(2).
Specially, the average size of intermediate results of
TRIC and TurboFlux is larger than that of IncMQO by
up to 9.96 times and 60.24 times, respectively, when
the insertion size is 20%|G|.

12 N. Wang et al. / Continuous Multi-Query Optimization

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

101

102

103

104

105

250 500 750 1000

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Query database size

IncMQO

TRIC

TurboFlux

GraphFlow

(1) Processing time

100

101

102

103

104

250 500 750 1000

A
vg

.in
t.r

es
ul

t s
iz

e(
M

B
)

Query database size

IncMQO

TRIC

TurboFlux

(2) Space cost

Fig. 8. Performance of varying query database size

6.8. Varying the edge deletion size

Figure 10(1)–(2) show the performance results us-
ing SNB1M for varying edge deletion size. Here, we
vary the number of expired edges from 10%|G| to
25%|G| in 5%|G| increments increments with respect
to the number of triples in the graph update stream.
Figure 10(1) shows the total processing time for each
algorithm. Note that deletion of an edge (v, v′) may af-
fect the auxiliary data structure. As the edge deletion
size increases, incremental subgraph matching times
of IncMQO, TRIC, and TurboFlux increase, while that
of GraphFlow decreases. The reason is that the edge
deletions reduce the input data size of GraphFlow di-
rectly. Nevertheless, IncMQO still consistently outper-
forms its competitors regardless of the edge deletion
size. As shown in Figure 10(2), the average number of
intermediate results of TRIC is larger than that of In-
cMQO by up to 6.4 times, and TurboFlux is larger than
that of IncMQO by up to 23.4 times when the deletion
size is 20%|G|.

6.9. Varying dataset size

Figure 11(1)–(2) show the performance results us-
ing SNB for varying dataset size. Here, we fixed

101

102

103

104

105

10 15 20 25

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Insertion size(%|G|)

IncMQO

TRIC

TurboFlux

GraphFlow

(1) Processing time

100

101

102

103

104

10 15 20 25

A
vg

.in
t.r

es
ul

t s
iz

e(
M

B
)

Insertion size(%|G|)

IncMQO

TRIC

TurboFlux

(2) Space cost

Fig. 9. Performance of varying the edge insertion size

|∆g| = 15%|G| and varied the size of SNB from 0.1M
to 10M. In Figure 11(1), IncMQO consistently outper-
forms its competitors regardless of the dataset size. In
specific, the figure reads a non-exponential increase as
the dataset size grows. The scalability suggests that In-
cMQO can handle reasonably large real-life graphs as
those existing algorithms for deterministic graphs. Fig-
ure 11(2) shows similar scalability of intermediate re-
sult sizes for IncMQO, TRIC and TurboFlux. Specially,
IncMQO outperforms TRIC by up to 10.70 times and
TurboFlux by up to 53.86 times.

6.10. Comparison of different matching orders

In this set of experiments, we evaluate the perfor-
mance of different matching orderings on SNB1M
dataset. We compare our proposed matching order
with that proposed in IncMQOTurbo. IncMQOTurbo
adopts the subgraph matching algorithm of TurboFlux
which used the candidate set of each query path to
determine the matching order. We set l from 3 to 9
in 2 increments and fixed |∆g| = 15%|G|. The re-
sults are within expectation. Figure 12(1) shows the
elapsed time, IncMQO outperforms IncMQOTurbo by
1.91-2.76 times. Figure 12(2) gives the average size of

N. Wang et al. / Continuous Multi-Query Optimization 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

101

102

103

104

105

200K 300K 400K 500K

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Deletion size(K)

IncMQO

TRIC

TurboFlux

GraphFlow

(1) Processing time

101

102

103

104

10 15 20 25

A
vg

.in
t.r

es
ul

t s
iz

e(
M

B
)

Deletion size(%|G|)

IncMQO

TRIC

TurboFlux

(2) Space cost

Fig. 10. Performance of varying the edge deletion size

intermediate results. IncMQO still performs better than
IncMQOTurbo. Since IncMQO preferentially matches
the vertices that are shared by more query which could
help avoid the enumeration of many unpromising in-
termediate results.

6.11. Performance evaluation of single query

In this set of experiments, we evaluate the perfor-
mance of single query to text the efficiency when
there is no common components in the query set QDB.
Figure 13(1)-(2) show the performance results using
SNB1M dataset between IncMQO (without AQG) and
TurboFlux. We set l from 3 to 9 in 2 increments and
fixed |∆g| = 15%|G|. Specifically, IncMQO outper-
forms TurboFlux in terms of elapsed time and interme-
diate result size. This is because we translate the query
graph into an equivalent query tree rather than a span-
ning tree. When there is a circle in the query graph,
the spanning tree will ignore the non-tree edges, while
the equivalent query tree takes both tree edges and
non-tree edges into consideration. As a result, using an
equivalent query tree can achieve a stronger pruning
ability.

101

102

103

104

105

0.1M 1M 10M

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Data size

IncMQO

TRIC

TurboFlux

GraphFlow

(1) Processing time

100

101

102

103

104

0.1M 1M 10M

A
vg

.in
t.r

es
ul

t s
iz

e(
M

B
)

Data size

IncMQO

TRIC

TurboFlux

(2) Space cost

Fig. 11. Performance of varying dataset size

6.12. Comparison of incremental matching and
recomputing algorithm

In this subsection, we further compare the incremen-
tal algorithm (IncMQO and TRIC) and the recomput-
ing algorithm (MQO [13]) to detect the limitations that
the number of updates brings to our algorithm. Recom-
puting algorithm means that conducts subgraph match-
ing for pattern graph over updated data graph with
batch mode. We conduct experiments on the two syn-
thetic and real-life data graphs by varying the newly-
inserted edges from 10%|G| to 40%|G| in 10%|G| in-
crements with respect to the number of triples in the
graph update stream. Figure 14(1) and Figure 14(2)
show the total processing time for each algorithm on
SNB1M and NYC. We see that IncMQO behaves bet-
ter than TRIC by 2.03-4.24 times and MQO by 1.34-
14.30 times when the size of updates is no more than
30%|G|. However, when the number of edge insertion
size continues to rise, the auxiliary data structure in
the incremental matching needs to maintain a lot inter-
mediate results, making it less effective than matching
from scratch over the updated graph.

14 N. Wang et al. / Continuous Multi-Query Optimization

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

 0

 100

 200

 300

 400

 500

 600

3 5 7 9

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Query size

IncMQO
IncMQOTurbo

(1) Processing time

 20

 40

 60

 80

 100

 120

 140

 160

3 5 7 9

A
vg

.in
t.r

es
ul

t s
iz

e
(M

B
)

Query size

IncMQO
IncMQOTurbo

(2) Space cost

Fig. 12. Comparison of different matching orders

7. Related Work

We categorize the related work as follows.

Subgraph Isomorphism Research. Subgraph iso-
morphism research is a fundamental requirement for
graph databases and has been widely used in many
fields. While this problem is NP-hard, in recent years,
many algorithm have been proposed to solve it in a
reasonable time for real datasets, such as VF2 [14],
GraphQL [15], TurBOiSO [16], QuickSI [17]. Most
all these algorithms follow the framework of Ullmann
[18], with some pruning strategies, heuristic matching
order algorithm and auxiliary neighborhood informa-
tion to improve the performance of subgraph match-
ing search. Lee et al. [19] compared these subgraph
isomorphism algorithms in a common code base and
gave in-depth analysis. However, these techniques are
designed for static graphs and are not suitable for pro-
cessing continuous graph queries on evolving graphs.

Multiple Query Optimization for relational database.
Multiple query optimization (MQO) has been well
studied in relational databases [20, 21]. Most work on
relational database extend existing cost model based
on statistics, and search for a global optimal access
plan among all possible access plan combinations

 50

 100

 150

 200

3 5 7 9

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Query size

IncMQO
TurboFlux

(1) Processing time

 20

 40

 60

 80

 100

 120

 140

3 5 7 9

A
vg

.in
t.r

es
ul

t s
iz

e
(M

B
)

Query size

IncMQO
TurboFlux

(2) Space cost

Fig. 13. Performance evaluation of single query

for each single query. Meanwhile, some intermediate
access plan can be shared to accelerate multi-query
evaluation. However, these relational MQO methods
cannot be directly used for subgraph homomorphism
search of MQO, because we do not assume that statis-
tics or indexes exist on the data graph, and some re-
lational optimization strategies (such as push selection
and projection) are not suitable for subgraph homo-
morphism search. In addition, the methods of identify-
ing common relation subexpression [22] are also dif-
ficult or inefficient for graph-based multi-query eval-
uation since it is inefficient to evaluate graph pattern
queries by converting them into relational queries [15].

One-time Multiple Query Evaluation. Le et al.
[23] studied the problem of evaluating SPARQL one-
time multiple queries (SPARQL-MQO) over RDF
graphs. Given a batch of graph queries, it clustered
the graph queries into disjoint finer groups and then
rewrote the patterns into a single query common pat-
tern graph for each group. However, its clustering tech-
nique (and selectivity information) becomes degen-
erate and the construction of query sets ignores the
cyclic structures in queries. Subsequently, Ren et al.
[13] extended one-time multiple queries for an undi-
rected labeled graph. It organized the useful common

N. Wang et al. / Continuous Multi-Query Optimization 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

 0

 500

 1000

 1500

 2000

 2500

 3000

10 20 30 40

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Insertion size(%|G|)

IncMQO
TRIC
MQO

(1) Processing time(SNB1M)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10 20 30 40

A
vg

.c
os

t(
M

(∆
g,

q)
)(

m
s)

Insertion size(%|G|)

IncMQO
TRIC
MQO

(2) Processing time(NYC)

Fig. 14. Results of the comparison

subgraphs and the original queries in a data structure
called pattern containment map (PCM), and then it
further cached the intermediate results based on PCM
to balance memory usage and the execution time. Note
that, PCM was designed for static graph. When us-
ing it in dynamic graph, we need reconstruct PCM for
each update operation, which is practically infeasible.
In contrast, our proposed MDCG stored intermediate
results in the data graph for each data vertex which can
reduce maintenance operations associated with data
graph updates.

Continuous query process. Continuous query pro-
cess has first been considered in [24] which means
continuously monitoring a set of graph streams and
reporting the appearances of a set of pattern graphs
in a set of graph streams at each timestamp [6, 25].
But it offered an approximate answer instead of us-
ing subgraph isomorphism verification to find the ex-
act query answers. In the latter study, Fan et al. [26]
proposed the concept of incremental subgraph match-
ing to handle continuous query problem. It only exe-
cuted subgraph matching over the updated part, avoid-
ing recomputing from scratch. In addition, Gillani et
al. [27] proposed continuous graph pattern matching
over knowledge graph streams and used two different
executional models with an automata-based model to
guide the searching process. Kim et al. [7] proposed

a novel data-centric presentation to process continu-
ous subgraph matching. However, all of the above al-
gorithms evaluate each query separately and cannot be
directly used for multi-query problem.

Continuous Multiple Query Evaluation. In addi-
tion, there are some researches on the topic of contin-
uous multiple queries evaluation. Pugliese et al. [28]
studied maintaining multiple subgraph query views
under single-edge insertion workloads. It took ad-
vantage of common substructures and used an opti-
mal merge strategy. However, it only focused on in-
sertion. But in the real world, deletions also occur.
Kankanamge et al. [29] studied the problem of opti-
mizing and evaluating multiple subgraph queries con-
tinuously in a changing graph. It decomposed all the
queries into multiple delta queries, which were then
evaluated one query vertex at a time, without requiring
any auxiliary data structures. Mhedhbi et al. [30] opti-
mized both one-time and continuous subgraph queries
using worst-case optimal joins. Since the methods in
literatures [29] and [30] did not store any intermedi-
ate results, they needed to evaluate subgraph match-
ing for each update, even if the update did not generate
any positive/negative match. In recently, Zervakis et al.
[9] handled the continuous multi-query problem over
graph streams via decomposing the query into cov-
ering paths, and then it constructed a trie-based data
structure to indexing and clustering continuous graph
queries. However, this data structure is not concise
enough, leading to many expensive join operations.
Compared to covering paths, our proposed MDCG uses
the data-centric representation of intermediate results,
which is more concise. As a result, MDCG needs less
memory consumption and has smaller maintenance
costs for each update.

8. Conclusion and Further Work

In this paper, we proposed an efficient continuous
multi-query processing engine, namely, IncMQO, in
dynamic graphs. We showed that IncMQO can resolve
the problems of existing methods and process contin-
uous multiple subgraph matching for each update op-
eration efficiently. We first developed a novel concept
of annotated query graph that merges multi-query into
one. Then we constructed a data-centric auxiliary data
structure based on the equivalent query tree of the an-
notated query graph to represent partial solutions in a
concise form. For each update, we proposed an edge
transition strategy to maintain the intermediate results
incrementally and detect the affected queries quickly.
What’s more, we proposed an efficient matching order

16 N. Wang et al. / Continuous Multi-Query Optimization

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

to calculate the positive or negative matching results
for each affected query in one pass. Finally, compre-
hensive experiments performed on real and benchmark
datasets demonstrate that our proposed algorithm out-
performs alternatives.

A couple of issues need further study. We only sim-
ply consider the scenario that all the queries have been
given at the start. However, the queries set will actu-
ally be updated due to users’ demands. To this end, we
are going to consider this scenario in the future work
and design an efficient algorithm to deal with the up-
dates of queries set in multiple queries processing over
dynamic graph.

Acknowledgement. This work is partially sup-
ported by National key research and development pro-
gram under Grant Nos. 2018YFB1800203, Tianjin
Science and Technology Foundation under Grant No.
18ZXJMTG00290, National Natural Science Founda-
tion of China under Grant No. 61872446, and National
Natural Science Foundation of Hunan Province under
grant No. 2019JJ20024.

References

[1] Y. Qin, D. Guo, X. Lin and G. Cheng, Design and
optimization of VLC enabled data center network, Ts-
inghua Science and Technology 25(1) (2020), 82–92.
doi:10.26599/TST.2018.9010105.

[2] Y. Qin, D. Guo, X. Lin, G. Tang and B. Ren, TIO:
A VLC-Enabled Hybrid Data Center Network Ar-
chitecture, Tsinghua Science and Technology (2019).
doi:CNKI:SUN:QHDY.0.2019-04-011.

[3] B. Ren, G. Cheng and D. Guo, Minimum-Cost Forest for Un-
certain Multicast with Delay Constraints, Tsinghua Science
and Technology 24(2) (2019), 13.

[4] Y. Chen, X. Zhao, X. Lin, Y. Wang, D. Guo, B. Ren, G. Cheng
and D. Guo, Efficient Mining of Frequent Patterns on Uncer-
tain Graphs, IEEE Trans. Knowl. Data Eng. 31(2) (2019), 287–
300. doi:10.1109/TKDE.2018.2830336.

[5] J. Gao, C. Zhou and J.X. Yu, Toward continuous pattern detec-
tion over evolving large graph with snapshot isolation, VLDB
J. 25(2) (2016), 269–290. doi:10.1007/s00778-015-0416-z.

[6] S. Choudhury, L.B. Holder, G.C. Jr., K. Agarwal and J. Feo,
A Selectivity based approach to Continuous Pattern Detec-
tion in Streaming Graphs, in: Proceedings of the 18th In-
ternational Conference on Extending Database Technology,
OpenProceedings.org, Brussels, Belgium„ 2015, pp. 157–168.
doi:10.5441/002/edbt.2015.15.

[7] K. Kim, I. Seo, W. Han, J. Lee, S. Hong, H. Chafi,
H. Shin and G. Jeong, TurboFlux: A Fast Continuous Sub-
graph Matching System for Streaming Graph Data, in: Pro-
ceedings of the 2018 International Conference on Manage-
ment of Data, ACM, Houston, TX, 2018, pp. 411–426.
doi:10.1145/3183713.3196917.

[8] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen and S. Sal-
ihoglu, Graphflow: An Active Graph Database, in: Pro-
ceedings of the 2017 International Conference on Manage-

ment of Data, ACM, Chicago, IL, 2017, pp. 1695–1698.
doi:10.1145/3035918.3056445.

[9] L. Zervakis, V. Setty, C. Tryfonopoulos and K. Hose, Efficient
Continuous Multi-Query Processing over Graph Streams, in:
Proceedings of the 23rd International Conference on Extend-
ing Database Technology, OpenProceedings.org, Copenhagen,
Denmark, 2020, pp. 13–24. doi:10.5441/002/edbt.2020.03.

[10] F. Bi, L. Chang, X. Lin, L. Qin and W. Zhang, Effi-
cient Subgraph Matching by Postponing Cartesian Prod-
ucts, in: Proceedings of the 2016 International Conference
on Management of Data,, ACM, San Francisco, CA, 2016.
doi:10.1145/2882903.2915236.

[11] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev,
A. Prat-Pérez, M. Pham and P.A. Boncz, The LDBC So-
cial Network Benchmark: Interactive Workload, in: Proceed-
ings of the 2015 International Conference on Management of
Data, ACM, Melbourne, Victoria, Australia, 2015, pp. 619–
630. doi:10.1145/2723372.2742786.

[12] C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz
and M. Tyers, BioGRID: a general repository for interaction
datasets, Nucleic Acids Res. 34(Database–Issue) (2006), 535–
539. doi:10.1093/nar/gkj109.

[13] X. Ren and J. Wang, Multi-Query Optimization for Subgraph
Isomorphism Search, Proc. VLDB Endow. 10(3) (2016), 121–
132. doi:10.14778/3021924.3021929.

[14] L.P. Cordella, P. Foggia, C. Sansone and M. Vento, A
(Sub)Graph Isomorphism Algorithm for Matching Large
Graphs, IEEE Trans. Pattern Anal. Mach. Intell. 26(10) (2004),
1367–1372. doi:10.1109/TPAMI.2004.75.

[15] H. He and A.K. Singh, Query Language and Access Meth-
ods for Graph Databases, in: Managing and Mining Graph
Data, Advances in Database Systems, Vol. 40, Springer, 2010,
pp. 125–160. doi:10.1007/978-1-4419-6045-0_4.

[16] W. Han, J. Lee and J. Lee, Turboiso: towards ultrafast and ro-
bust subgraph isomorphism search in large graph databases,
in: Proceedings of the 2013 International Conference on Man-
agement of Data, ACM, New York, NY, 2013, pp. 337–348.
doi:10.1145/2463676.2465300.

[17] H. Shang, Y. Zhang, X. Lin and J.X. Yu, Taming verifi-
cation hardness: an efficient algorithm for testing subgraph
isomorphism, Proc. VLDB Endow. 1(1) (2008), 364–375.
doi:10.14778/1453856.1453899.

[18] J.R. Ullmann, An Algorithm for Subgraph Isomorphism, J.
ACM 23(1) (1976), 31–42. doi:10.1145/321921.321925.

[19] J. Lee, W. Han, R. Kasperovics and J. Lee, An In-
depth Comparison of Subgraph Isomorphism Algorithms in
Graph Databases, Proc. VLDB Endow. 6(2) (2012), 133–144.
doi:10.14778/2535568.2448946.

[20] T.K. Sellis and S. Ghosh, On the Multiple-Query Optimization
Problem, IEEE Trans. Knowl. Data Eng. 2(2) (1990), 262–266.
doi:10.1109/69.54724.

[21] T.K. Sellis, Multiple-Query Optimization, ACM
Trans. Database Syst. 13(1) (1988), 23–52.
doi:10.1145/42201.42203.

[22] S.J. Finkelstein, Common Subexpression Analysis in Database
Applications, in: Proceedings of the 1982 International Con-
ference on Management of Data, ACM Press, Orlando,
Florida„ 1982, pp. 235–245. doi:10.1145/582353.582400.

[23] W. Le, A. Kementsietsidis, S. Duan and F. Li, Scalable
Multi-query Optimization for SPARQL, in: Proceedings of
the 28th International Conference on Data Engineering, IEEE
Computer Society, Washington, DC, 2012, pp. 666–677.
doi:10.1109/ICDE.2012.37.

N. Wang et al. / Continuous Multi-Query Optimization 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

[24] C. Wang and L. Chen, Continuous Subgraph Pattern
Search over Graph Streams, in: Proceedings of the 25th
International Conference on Data Engineering, IEEE
Computer Society, Shanghai, China, 2009, pp. 393–404.
doi:10.1109/ICDE.2009.132.

[25] U. Khurana and A. Deshpande, Efficient snapshot retrieval
over historical graph data, in: Proceedings of the 29th In-
ternational Conference on Data Engineering, IEEE Com-
puter Society, Brisbane, Australia, 2013, pp. 997–1008.
doi:10.1109/ICDE.2013.6544892.

[26] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang and Y. Wu, Incremen-
tal graph pattern matching, in: Proceedings of the 2011 Inter-
national Conference on Management of Data, ACM, Athens,
Greece, 2011, pp. 925–936. doi:10.1145/1989323.1989420.

[27] S. Gillani, G. Picard and F. Laforest, Continuous graph pat-
tern matching over knowledge graph streams, in: Proceed-

ings of the 10th International Conference on Distributed and
Event-based Systems, ACM, Irvine, CA, 2016, pp. 214–225.
doi:10.1145/2933267.2933306.

[28] A. Pugliese, M. Bröcheler, V.S. Subrahmanian and M. Ovel-
gönne, Efficient Multiview Maintenance under Insertion in
Huge Social Networks, ACM Trans. Web 8(2) (2014), 10:1–
10:32. doi:10.1145/2541290.

[29] C. Kankanamge, Multiple Continuous Subgraph Query Opti-
mization Using Delta Subgraph Queries, Thesis (2018).

[30] A. Mhedhbi, C. Kankanamge and S. Salihoglu, Optimizing
One-time and Continuous Subgraph Queries using Worst-case
Optimal Joins, ACM Trans. Database Syst. 46(2) (2021), 6:1–
6:45. doi:10.1145/3446980.

	Introduction
	Preliminaries and Framework
	Preliminaries
	Overview of solution

	Continuous Multi-query Processing Model
	Annotated query graph
	Auxiliary Data Structure

	Continuous Multi-Query Evaluation Phase
	Incremental maintenance of intermediate results
	Subgraph search phase

	IncMQO Algorithms
	MDCG construction
	Edge Insertion

	Experiments
	Datasets and Query Generation
	Comparative Evaluation
	Evaluating the efficiency of IncMQO
	Varying percentage of query overlap
	Varying the average query size
	Varying query database size
	Varying the edge insertion size
	Varying the edge deletion size
	Varying dataset size
	Comparison of different matching orders
	Performance evaluation of single query
	Comparison of incremental matching and recomputing algorithm

	Related Work
	Conclusion and Further Work
	References

