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Abstract. With the rapid development of neural networks, much attention has been focused on network 

embedding for complex network data, which aims to learn low-dimensional embedding of nodes in the network 

and how to effectively apply learned network representations to various graph-based analytical tasks. Moreover, 

two typical models are the shallow random walk network representation method and deep learning models such as 

graph convolution networks (GCNs). The former one can be used to capture the linear structure of the network via 

using depth-first search (DFS) and width-first search (BFS), whereas Hierarchical GCN (HGCN) is an 

unsupervised graph embedding that can be used to describe the global nonlinear structure of the network via 

aggregating node information. However, the two existing kinds of models cannot simultaneously capture the 

nonlinear and linear structure information of nodes. Thus, the nodal characteristics of nonlinear and linear 

structures are explored in this paper, and an unsupervised representation method based on HGCN that joins 

learning of shallow and deep models is proposed. Experiments on node classification and dimension reduction 

visualization are carried out on citation, language, and traffic networks. The results show that, compared with the 

existing shallow network representation model and deep network model, the proposed model achieves better 

performances in terms of micro-F1, macro-F1 and accuracy scores. 
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1. Introduction

The purpose of network embedding is to map 

high-dimensional sparse network data into 

low-dimensional, dense and real-valued vector 

space, which can be used to adaptively extract 

features and facilitate analysis of downstream 

network tasks. These tasks can be performed via 

using machine learning and other methods, such 

as node classification, link prediction and 

dimension reduction visualization [1-2]. At 

present, the mainstream network embedding 

methods include a shallow random walk model 

and a semi-supervised deep learning model 

based on graph convolution networks (GCNs). 

In the shallow random walk method, the 

depth-first search (DFS) method captures the 

global network structure, whereas the width-first 

search (BFS) method captures the local network 

structure. 

The DeepWalk method uses a DFS-based 

random walk and uses second-order similarity to 

capture local community information, which can 

be used to observe the entire network in the 

absence of structural information. LINE 

considers both the first-order similarity and the 

second-order similarity of nodes and stitches 

their trained similarity vectors to represent nodes. 



Meanwhile, node2vec and struc2vec can flexibly 

describe the structure of nodes in the network 

according to their different roles in the network 

as well. A random walk is usually used in the 

aforementioned shallow models because it can 

capture the linear structure of the network. 

With the rapid development of graph neural 

networks, more semi-supervised methods based 

on GCNs have been used for graph embedding. 

In real world, due to difficulties of privacy 

protection and labeling, many real networks do 

not contain node characteristics and labels, 

which results in a poor applicability of the 

original GCN semi-supervised method to a 

network with only structural information. Thus, 

Hierarchical GCN (HGCN) is proposed as it can 

be used to learn the structure of the network. In 

other words, an HGCN is used to construct an 

initial node embedding and pseudo label, and 

then the labels are updated and embedded via 

using a double GCN, which can describe the 

nonlinear structure of the network without 

attributes. However, the two existing types of 

models cannot simultaneously capture the 

nonlinear and linear structure information of 

nodes.  

In order to overcome these limitations, we 

explore the nodal characteristics of network 

structures and improve the HGCN model, and a 

representation method based on unsupervised 

joint learning with shallow and deep learning 

models is put forward. Our model uses the 

shallow learning model to extract local and 

global linear structural features of nodes and 

obtains global nonlinear structural features of 

nodes via aggregating information from 

neighboring nodes with HGCN. More 

specifically, it fuses the two kinds of extracted 

features and applies them to downstream tasks in 

the network. We provide experimental analysis 

in each stage of the proposed approach and 

compare our work with several state-of-the-art 

approaches in depth. The experimental results 

show that the proposed approach produces 

higher accuracy, micro-F1 and macro-F1 scores. 

A detailed flowchart of the proposed method is 

shown in Figure 1. Network embedding of the 

input graph is obtained by extracting nonlinear 

and linear structural features, which are then 

applied to downstream tasks, such as node 

classification and dimension reduction 

visualization after fine-tuning.
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 Fig.1. Workflow of the proposed method.

The remainder of the paper is organized as 

follows. Related work on network embedding is 

introduced in Section 2. The proposed approach, 

including shallow linear structure representation, 

proposed HGCN, and improved HGCN, is 

presented in Section 3. Experimental results are 

presented in Section 4. The paper is concluded 

with several future study options in Section 5. 

2. Related work 



Network embedding methods have different 

classification systems. In this section, we briefly 

sum up existing works on network embedding 

from three perspectives. First, we introduce 

matrix methods. Then, we revisit different 

network embedding methods in machine 

learning field. Finally, we classify network 

embedding models based on the structure of the 

embedding methods, and the disadvantages of 

existing network embedding methods are 

analyzed as well. 

2.1 Matrix 

As mentioned above, traditional network 

embedding methods are described in the context 

of dimensionality reduction. From the 

perspective of linear algebra, unsupervised 

feature learning methods are usually represented 

by various graph matrices, especially the 

Laplacian operator and adjacency matrix [3]. The 

classic dimensionality reduction techniques 

include principal component analysis (PCA) [4] 

and multidimensional scaling (MDS) [5]. In both 

methods, a graph is represented as an n×m 

matrix and transformed into an n×k matrix, 

where k≪m. Both methods can capture the 

linear structural information, but they cannot be 

used to learn the nonlinear structure of the input 

data. These are much more commonly applied to 

the Laplacians and adjacency matrix than PCA 

and MDS. Mikhail et al [6] proposed a 

geometrically motivated algorithm for 

representing the high-dimensional data, and this 

algorithm provides a computationally efficient 

approach to nonlinear dimensionality reduction 

that has locality-preserving properties and a 

natural connection to clustering. Sawomir et al [7] 

investigated several notions of graph Laplacians 

and graph kernels from the perspective of 

understanding the graph clustering via the graph 

embedding into an Euclidean space. 

Several linear (e.g., PCA) and nonlinear (e.g., 

Isomap) dimensionality reduction techniques [8] 

have computational and statistical performance 

defects. In terms of computational efficiency, 

feature decomposition of the input data matrix 

requires high computational power. 

2.2 Machine learning 

Representation learning is an important 

research topic in machine learning field, and 

network representation learning is a subset of the 

set of representation learning. Supervised 

machine learning methods for complex networks 

usually need a set of node-distinguishing 

features. The typical methods by using manual 

feature extraction to learn node representation 

primarily focus on the specific fields, which 

leads to inaccurate feature extraction and poor 

robustness [9]. For instance, traditional feature 

extraction methods for machine learning mainly 

include data cleaning, missing value processing, 

data annotation and a series of manual works. 

The other category of methods primarily explore 

node representation based on which parameters 

are used when solving an optimization problem, 

which enables feature extraction with higher 

accuracy. However, the number of estimated 

parameters is large, and the process requires 

significant computation time [10]. 

In unsupervised learning (e.g., such as 

DeepWalk, node2vec, and struc2vec) [10], feature 

representation requires defining an objective 

function that is independent of downstream tasks 

to balance accuracy and computational 

efficiency. Compared with manual feature 

extraction, using an objective function for 

determining network representation can ensure 

more comprehensive features are extracted, 

which are closely related to the prediction 

network accuracy [11]. Due to the influence of 

human subjective factors, manual feature 

extraction has the problem of inaccuracy or poor 

robustness, and the problems can be effectively 

weakened by using the objective function. 

Therefore, unsupervised graph embedding 

improves the shortcomings of semi-supervised 

machine learning. Nevertheless, unsupervised 



graph embedding is difficult to expand and has 

high training complexity. 

2.3 Structure 

The structure of neural networks is related to 

the number of hidden layers. According to the 

number of hidden layers [12-14], network 

embedding methods are divided into shallow and 

deep learning methods. First, inspired by 

successful application of skip-grams in natural 

language processing [15], a series of network 

structure coding models based on skip-grams 

have been proposed in the shallow learning 

model, such as DeepWalk, LINE, and node2vec. 

In specific, DeepWalk [16] simulates word 

sequences, generates node sequences from each 

node randomly, and forms a "corpus" based on 

these node sequences. In addition, DeepWalk 

sets the size of the background window and then 

imports the "corpus" into the skip-gram model to 

obtain the node embedding. LINE [17] optimizes 

the first-order and the second-order similarity of 

direct connections, and the two similarities are 

combined as the node embedding. The 

first-order similarity is defined as the structure of 

directly connected vertices, whereas the 

second-order similarity is defined as that two 

vertices are not directly connected, but have 

many similar neighbors. Node2vec [18] uses two 

additional parameters to control the direction of 

the random walk in the "corpus" generation step 

in DeepWalk. Struc2vec [19] defines nodes that 

are not structurally adjacent but have the same 

structural role. In summary, unsupervised 

machine learning is normally used in the shallow 

embedded model because it can better capture 

the linear structure of the network. However, it 

has the disadvantage of ignoring nodal features. 

2.4 Graph neural networks 

In the deep learning model, a mainstream 

method like GNN uses a deep learning model to 

capture the nonlinear relationship between nodes 

[20]. Classic deep learning models include SDNE, 

GCN, and a series of graph neural network 

models based on GCN. SDNE [21] uses an 

unsupervised learning method to automatically 

capture the local relationship between nodes, and 

the second-order neighborhood of nodes is used 

as the low-dimensional representation of input 

learning nodes. GCN [22] is a deep, 

semi-supervised graph embedding model, which 

integrates additional features and labeled data 

into the graph embedding learning process. 

With the development of graph neural networks 

(GNNs), a series of GNN methods based on 

GCN have been applied to various types of 

networks to improve the applicability of GCN in 

the inductive task. Typical examples are graph 

attention network (GAT), N-GCN, and 

Fast-GCN. Specifically, GAT [23] uses an 

attention mechanism to address the shortcomings 

of prior methods based on graph convolutions or 

their approximations. N-GCN [24] improves the 

scalability of GCN on an entire graph by setting 

the size of the convolution kernel. Fast-GCN [25] 

is a batch training algorithm by combining 

importance sampling, and it can make GCN 

training more efficient by providing generalized 

inference. Inspired by unsupervised methods and 

the idea of pre-training, a series of GCN-based 

training methods have emerged. 

DeepGraphInfoMax [26] relies on maximizing 

mutual information between patch 

representations and corresponding high-level 

summaries of graphs, whereas both are derived 

via using established GCN architectures. The 

pre-trained GCN model proposed by Hu et al. [27] 

can capture generic graph structural information 

that is transferable across tasks. M3S [28] uses the 

correct extra feature and increases the number of 

labeled data via self-training to learn the 

undirected graph embedding. GMNN [29] also 

applies the correct extra feature and neighbor 

nodes to generate pseudo-labels for unsupervised 

learning. Consequently, one main challenge 

encountered when using the above GNN method 



is that it still cannot simultaneously consider the 

feature and the label of the node. 

3. Model 

Suppose 𝐺 = (V, 𝐴), where V is a set of nodes 

in the network, 𝐴 is the adjacency matrix of 

network, and n = |V| is the number of nodes. 

The shallow linear structure embedding of the 

network is 𝐸𝑠 , which directly join the local 

linear embedding and global linear embedding. 

The deep nonlinear structure is 𝐸𝐷 , which 

directly join the dual GCN embedding and 

global linear embedding. Finally, the embedding 

model 𝐸𝐴𝑙𝑙  is the dual GCN embedding and 𝐸𝑠. 

3.1 Shallow linear structure representation 

Qi [33] showed that DeepWalk, LINE, PTE, and 

Node2vec are implicit matrix factorizations in 

theory. DeepWalk first generates a low rank 

transformation of the network’s normalized 

Laplacian matrix, and then the eigenvector of the 

decomposed matrix is taken as the representation 

vector. Because of observing the characteristics 

of the entire network in the absence of structural 

information, DeepWalk captures a global linear 

representation. LINE is a special case where the 

size of DeepWalk’s window is “1”. The 

first-order proximity similarity of LINE captures 

a representation of the local linear structure. The 

following definitions are given in this paper: 

(1) Local structural information: edge 

information in the network is an observed 

first-order similarity. In general, the first-order 

similarity considers that the greater the edge 

weight between two vertices, the more similar 

the two vertices are. In this paper, the first-order 

similarity in the LINE method is used to 

describe the shallow linear structure. For each 

pair of undirected edges (ⅈ, j) ∈ E , the joint 

probability of (𝑣𝑖 , 𝑣𝑗) is defined as formula (1)： 

𝐸𝑆−𝐶(vi, vj) =
1

1+ⅇxp(−ui⃗⃗  ⃗⋅uj⃗⃗  ⃗)
         (1) 

where ui⃗⃗  ⃗  is the vector of vi , which is 

generated by the skip-gram model, and the 

objective function for the first-order similarity 

minimization of (vi,vj) is defined as formula (2): 

OL = −∑ Wij log 𝐸𝑆−𝐶(vi, vj)
(i,j)∈E

      (2) 

where Wij is the weight of vertex (vi,vj), and 

𝐸𝑆−𝐶(. , . ) is an n ×  n vector matrix. 

In the undirected graph, Wij ≡ Wji. If there are 

no edges directly connecting two vertices, then 

Wij = 0. 

(2) Global structural information: global 

network embedding can obtain more abundant 

node characteristics [34]. In a realistic network, 

many legitimate edges are not observed. 

DeepWalk can be used to predict and learn the 

global structure of the network with higher 

accuracy, hence it is used to describe the global 

information of the network in the shallow linear 

structure. For an undirected graph, a random 

walk is used to obtain a random walk sequence 

with a specific length W(vi) =

(W(vi)
1,W(vi)

2 …W(vi)
k), where W(vi)

n  is 

n𝑡ℎ  node. Then the model uses the language 

model skip-gram to learn these sequences and 

determine the global structure embedding ES−G, 

which is as formula (3): 

ES−G(W(vi)) = skⅈp − gram(Wi
u)          

(3) 

where Wi
u = (W1,W2, …Wn )  is the word 

order and wi is a specific word in the word 

order. 

For further experiments, we also directly join 

the local linear embedding and global linear 

embedding to get the model, named DL. The 

linear structure embedding is defined as 𝐸𝑆, and 

the detailed description is as formula (4): 

     𝐸𝑆 = 𝐸𝑆−𝐺(Wvi
) ⊕ 𝐸𝑆−𝐶(Wvi

)        (4) 

3.2 Fusion of linear and nonlinear network 

structure representation based on HGCN 

In this section, we focus on the improved 

hierarchical GCN model. We first introduce 

GCN, and then introduce the HGCN nonlinear 

structure representation model. In addition, we 



further explain the merit of the improved model. 

3.2.1 GCN model 

GCN is a semi-supervised graph convolution 

model that integrates additional node attributes 

with some labeled nodes into the process of 

learning the node representation. Mathematically, 

convolution is defined as formula (5): 

    𝐻(𝑙+1) = 𝜎(𝑃𝐻(𝑙)𝑊(𝑙))                (5) 

where 𝑃 = 𝐷−
1

2(𝐴 + 𝐼)𝐷−
1

2  is a normalized 

Laplacian matrix of the graph G. H(𝑙)is the input 

from the 𝑙th hidden layer in the GCN, i.e., it is 

the output from the (𝑙 − 1)𝑡ℎ  hidden layer. 

W(𝑙)  is the weight matrix in the 𝑙𝑡ℎ  hidden 

layer that would be trained, 𝐴 is the adjacency 

matrix of the undirected graph, and 𝜎(. ) is the 

activation function. 

For any given node, a GCN layer aggregates the 

previous layer’s embedding of its neighbor with 

𝐴, followed by a linear transformation 𝑊(𝑙) and 

nonlinear activation 𝜎(. ),  so as to obtain a 

contextualized node representation. We denote 

𝐹W(⋅)  as L-layer GCNs, which are 

parameterized by{W𝑖}i=1
𝐿 . For each given graph 

𝐺 = (V, 𝐴)with input features 𝐻(0) , the node 

representations 𝐹(⋅) are defined as formula (6): 

𝐹W(𝐺) = σ(P(σ(𝑃𝐻(1)𝑊(1)). . )𝑊(𝐿))         (6) 

GCN is a deep neural network model. In each 

hidden layer in the GCN, a neighboring node 

representation for the aggregation center node is 

used as the input representation in the next layer, 

and the nonlinear activation function is 

connected. From the overall structure of the 

GCN stacking nonlinear activation function, a 

GCN model captures the deep nonlinear 

structural information of the network. 

3.2.2 HGCN nonlinear structure 

representation model 

In real world, due to the lack of privacy 

information and tagged data, GCN is not suitable 

for graphs with only structural information. 

HGCN improves the applicability of the GCN 

model in graphs with only structural information 

by constructing an initial node embedding vector 

and pseudo label. The specific model includes an 

input layer, a dual GCN updated layer, and an 

output layer. Detailed definitions are listed as 

follows: 

(1) Input layer: first, HGCN will capture the 

global information of 𝐸𝑆−𝐺(Wvi
)  as an 

additional feature of the node. Because the 

number of label categories is unknown, the 

model needs to choose an unsupervised 

clustering method that does not need to specify 

the number of clusters [35]. Then, the affinity 

propagation (AP) clustering algorithm is used to 

cluster and label the feature, and the pseudo 

label 𝑌 is given. 𝑦𝑖∈𝑌 is a pseudo label of 

vertex 𝑣𝑖. The undirected graph G in the input 

layer is redefined as formula (7): 

G = (V, A, 𝐸𝑆−𝐺(Wvi
), Y)             (7). 

(2) Dual GCN updated layer: the dual GCN 

updated layer in the HGCN is composed of two 

GCN models, and each GCN model includes 

three hidden layers. When information from the 

input undirected graph is known, the first GCN 

model will be learned and embedded into 𝐸𝐷1. 

Let 𝐻(0) = 𝐸𝑆−𝐺 , and according to Eq. (5), 𝐸𝐷1 

is defined as formula (8): 

𝐸𝐷1(Wvi
) =

σ(P(. . σ(𝑃𝐸𝑆−𝐺(Wvi
)𝑊(0)). . )𝑊(2))     (8) 

Meanwhile, node labels  Y are predicted, and 

the second GCN is used to learn the updated 

features 𝐸𝐷2  and labels. 𝐸𝐷2  is defined as 

formula (9): 

𝐸𝐷2(Wvi
) =

σ(P(. . σ(𝑃𝐸𝐷1(Wvi
)𝑊(0)). . )𝑊(2))     (9). 

(3) Output layer: after the second training 

iteration, the dual GCN representation aggregate 

the higher order network structure, hence the 

trained GCN model will have an embedding that 

is too smooth, which will affect the downstream 

node classification results. Therefore, we further 

splice 𝐸𝐷2  and 𝐸𝑆−𝐺  for prevent smoothing. 

Finally, 𝐸𝐷 is obtained, which is the nonlinear 



structure representation. The detailed formula is 

shown in formula (10), where ⊕ is a vector 

splicing operation: 

𝐸𝐷 = 𝐸𝐷2(Wvi
) ⊕ 𝐸𝑆−𝐺(Wvi

)          (10).                            

3.2.3 Fusion embedding 

The linear structure embedding in the shallow 

layer includes two types: global linear 

embedding and local linear embedding. In the 

output layer, there are two types of fusion 

embedding methods. One is fusing the local 

linear embedding into the learned embedding of 

HGCN, and that is splicing 𝐸𝐷2 and 𝐸𝑆−𝐶(Wvi
). 

The other is simultaneously integrating the 

learned embedding of HGCN, the global linear 

embedding with the local linear embedding, and 

that is splicing  𝐸𝐷2 and ES(Wvi
) . 

(1) Fusion of local linear structure embedding 

(HGCN-L): 

In our model, 𝐸𝑆−𝐺(Wvi
) is replaced by local 

embedding  𝐸𝑆−𝐶(Wvi
) in formula (10), which 

can fuse local information in the shallow linear 

structure into HGCN model. This improvement 

is shown in formula (11): 

𝐸𝐴𝑙𝑙 = 𝐸𝐷2(Wvⅈ
) ⊕ 𝐸𝑆−𝐶(Wvⅈ

)          (11). 

(2) Fusion of local and global linear structure 

embedding (HGCN-DL): 

Splicing the shallow linear embedding and deep 

nonlinear structure embedding can integrate 

local with global network structure information 

and prevent smoothing. The linear structure 

embedding 𝐸𝑆  is obtained by splicing 𝐸𝑆−𝐶  

and 𝐸𝑆−𝐺. In our model, 𝐸𝑆−𝐺(Wvi
) is replaced 

by linear structure embedding 𝐸𝑆 . 𝐸𝐴𝑙𝑙  is 

defined as the final embedding of a node. 

According to Eq. (9), it is improved to formula 

(12): 

𝐸𝐴𝑙𝑙 = 𝐸𝐷2(Wvⅈ
) ⊕ ES(Wvⅈ

)            (12). 

A detailed model is shown in Figure 2. The 

graph embedding is composed of nonlinear and 

linear structure embedding. Among them, the 

nonlinear structure embedding is generated by 

the dual GCN updated layer in the HGCN, i.e., 

the double GCN. The linear structural 

embedding uses a random walk model and the 

first-order proximity similarity to describe the 

global and local vectors, respectively. Finally, 

the nonlinear and linear structure representations 

are spliced to obtain the final network structure 

embedding. 
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Fig.2. Model architecture. 

4. Experiments 

In this section, the proposed approach is 

experimentally evaluated via using three kinds 

of datasets. We present the dataset, the 

experimental settings, and a comparison with 

state-of-the-art baseline results. In addition, we 

also evaluate the influence of shallow linear 



structural information for embedding and 

downstream analysis tasks. 

4.1 Data sets 

In order to verify the validity of the model, 

three kinds of undirected graph network data sets 

are selected: citation network [30], air-traffic 

network [19], and language network [31]. In this 

paper, the citation network includes the Cora and 

Citeseer data sets; the air traffic network 

includes European and American air traffic data 

sets; and the language network is a Wikipedia 

data set. Specifically, the citation network is 

used as a network with only structural 

information in this paper, and the correct label is 

only used to verify downstream tasks. The 

Citeseer data set includes six categories: Agents, 

AI (Artificial Intelligence), DB (database), IR 

(information retrieval), ML machine language), 

and HCI. The Cora data set includes seven kinds 

of papers: Based on Case, Genetic Algorithm, 

Neural Network, Probability Method, Intensive 

Learning, Rule Learning and Theory. 

The details of these data sets are shown in Table 

1. 

Table 1. Experimental data sets 

Type Citation network 
Language 

network 
Air traffic network 

Datasets Cora Citeseer Wikipedia 
American 

air traffic 

European 

air traffic 

Nodes 2708 3327 2405 1190 399 

Edges 5429 4732 17981 13599 5995 

Classes 7 6 17 4 4 

4.2 Baselines 

DeepWalk is a typical unsupervised graph 

embedding method that adopts the skip-gram 

language model. 

LINE is also a popular unsupervised method 

that considers the first-order and the 

second-order proximity information. 

Node2vec learns low-dimensional 

representations for nodes in a graph by 

optimizing a neighborhood-preserving objective. 

This method explores the structure of the 

network by controlling the parameters of 𝑝 and 

𝑞, and its d dimension feature representations 

can be learned by simulating biased random 

walks. 

SDNE learns the 𝑑 dimension node 

representation by capturing the nonlinear 

structure of the network via using multi-layer 

nonlinear functions, which is a semi-supervised 

deep graph embedding model. 

SN2vec is a model that integrates node 

structure with node content similarity. This 

model is our previous work. It is a shallow 

random walk model, which primarily captures 

linear structures. In this paper, the model is 

compared as a shallow linear baseline model. 

The baseline model SDNE can capture 

nonlinear structures. The models such as 

Deepwalk and LINE mainly capture linear 

structures, which are part of the proposed model. 

4.3 Experimental setup 

Due to the different sizes of the data sets and 

different experimental settings in different 

models, we introduce the parameters of the step 

size and step number in DeepWalk, the 

parameters 𝑝  and 𝑞  in Node2vec, and batch 

size in LINE separately. Parameter values are 

shown in Table 2. 



 

Table 2. Baselines experimental setup 

Model Traffic datasets Citation network Language network 

DeepWalk 
Step size 10 10 10 

Step number 80 80 80 

Node2vec 
p 0.25 0.25 0.25 

q 0.25 2 2 

LINE 
Training  

batch size 
128 1024 1024 

The step number of random walks was set to 80 

and the step size was set to 10 in DeepWalk, 

whereas for the European traffic network data 

set, the step size was set to 10, and the number 

of random walk steps was set to 15 after 

comparing experimental results for different 

parameter values. 

Table 2 shows that for the traffic network, the 

parameters 𝑝 and 𝑞 in Node2vec were set to 

0.25 because the datasets are equivalent in 

structure and content. For the citation network, 

after comparing experimental results for 

different parameter values, the experimental 

results are better when 𝑝 = 0.25  and 𝑞 = 2 . 

The sizes of the data sets for the language 

network and citation network are similar, so the 

same experimental parameters were used. 

Regarding the training batch size in LINE, the 

training batch size for the European traffic data 

set was set to 128; the training batch size for the 

other data sets was set to 1024. 

4.4 Node classification experiments 

Node classification is used to verify the model. 

The baseline models include the shallow linear 

structure model and the deep nonlinear structure 

model. The evaluation indices used in this study 

are micro-F1, macro-F1 and accuracy. In Table 3 

and Table 4 in this paper, we first independently 

repeated the experiment 10 times. Then, we 

calculated the average of the 10 results and the 

confidence interval of the average. 

In particular, the SN2vec model was used as a 

baseline model for exploring the shallow linear 

structure of undirected graph networks with 

equivalent structure and content. Among them, 

the results with * are the experimental results 

obtained from OpenNE [32]. The specific 

experimental results are shown in Table 3 and 

Table 4. 

Table 3 shows that on the American air traffic 

network, HGCN-L is better than the original 

HGCN model in terms of all three evaluation 

indicators. The same results are obtained for the 

Europe traffic dataset after adjusting the 

parameters, suggesting the local topological 

representation is more identifiable for nodes on 

datasets with the same structure and content. 

This also indicates that local structural 

information is more important for node 

classification than global structure information 

for such datasets. 

Table 3 also shows that HGCN-DL, which fuses 

shallow linear local and global structural 

information, further improves the node 

classification results on HGCN-L in micro-F1, 

macro-F1, and accuracy. On the American traffic 

dataset, HGCN-DL is 4.8% higher than 

HGCN-L on micro-F1 and accuracy, and 4.9% 

higher than HGCN-L on macro-F1. For the 

European dataset, HGCN-DL is 2.5% higher 

than HGCN-L on micro-F1 and accuracy, and 

2.2% higher than HGCN-L on macro-F1. These 

results indicate that HGCN-DL can more fully 

capture and represent the topological structure of 



undirected graphs.  

Table 3. Node classification experimental results on traffic network datasets 

Model 

American air traffic Europe 

Micro-F1 Macro-F1 Accuracy Micro-F1 Macro-F1 Accuracy 

DeepWalk 0.523 0.518 0.523 0.395 290 0.395 

LINE (2nd) 0.504 0.499 0.504 0.430 0.405 0.430 

Node2vec 0.493 0.459 0.493 0.43 0.340 0.430 

SN2vec 0.530 0.509 0.530 0.45 0.404 0.45 

SDNE 0.580 0.56 0.58 --- --- --- 

HGCN 0.5210.033 0.5180.032 0.5210.033 0.4980.061 0.4480.065 0.4980.061 

HGCN-L 0.5730.017 0.5700.020 0.5730.017 0.5010.010 0.4650.010 0.5010.010 

HGCN-DL 0.621.024 0.6190.024 0.621.024 0.5260.029 0.4870.034 0.5260.029 

Table 4. Node classification experimental results on citation and language network datasets 

Model 

Citation network Language network 

Cora Citeseer Wikipedia 

Micro-F1 Macro-F1 Accuracy Micro-F1 Macro-F1 Accuracy Micro-F1 Macro-F1 Accuracy 

DeepWalk ---- ---- 0.672* ---- ---- 0.432* 0.669* 0.560* 0.669* 

LINE (2nd) 0.704 0.684 0.704 0.444 0.399 0.444 0.576* 0.387* 0.576* 

Node2vec 0.771 0.765 0.771 0.567 0.486 0.567 0.651* 0.541* 0.651* 

SN2vec 0.786 0.773 0.786 --- --- --- 0.571 0.394 0.571 

SDNE 0.660 0.648 0.660 0.400 0.351 0.400 0.643* 0.498* 0.643* 

HGCN 0.7970.014 0.7830.012 0.7970.014 0.5440.020 0.4690.025 0.5440.020 0.6220.020 0.5750.015 0.6220.020 

HGCN-L 0.6680.012 0.6440.011 0.6680.012 0.3960.022 0.3510.020 0.3960.022 0.5330.015 0.3930.020 0.5330.015 

HGCN-DL 0.8020.012 0.7890.013 0.8020.012 0.5690.012 0.4950.020 0.5690.012 0.6550.014 0.5860.018 0.6550.014 

Table 4 shows that, HGCN-DL performs better 

than other models regarding micro-F1, macro-F1 

and accuracy in node classification task. In the 

Cora dataset, it is 0.5% higher than HGCN in 

micro-F1 and accuracy, and 0.6% higher in 

macro-F1. For the Citeseer dataset, it is 2.5% 

higher than HGCN in micro-F1 and accuracy. 

Regarding the Wikipedia dataset, it is 3.3% 

higher than HGCN in micro-F1 and 1.1% higher 

in macro-F1, however, it is 1.4% lower than 

DeepWalk in micro-F1. Table 4 further indicates 

that HGCN-DL, which combines shallow linear 

local with global structures, can also more fully 

capture and represent undirected graph topology 

on citation and language networks. 

However, for the citation and language network 

datasets, our HGCN-L model performs slightly 

worse than HGCN regarding micro-F1, accuracy 

and macro-F1. This result may be related to the 

structure of the selected dataset. Compared with 

the traffic network, the citation and language 

network datasets have sparser structures. This 

shows that in the citation and language network 

datasets, the integration of global information is 

more beneficial to downstream node 

classification tasks. Therefore, compared with 



the experimental results from the traffic network 

datasets, the citation and language networks fuse 

global information to make the classified nodes 

more distinguishable. 

4.5 Experimental results comparison of 

DL model and HGCN-DL model 

In Section 3.1, we propose a linear structure 

representation model, which directly joins the 

local linear embedding and global linear 

embedding, named DL. In order to verify 

whether the effect of HGCN-DL is entirely 

influenced by the linear structure representation, 

we compare the two models on node 

classification task. The experimental results are 

shown in Figure 3 and Figure 4. 

By comparing the results in Figure 3 and Figure 

4, we find that the HGCN-DL model performs 

better than the shallow linear model DL in terms 

of micro-F1 and macro-F1 on all data sets. It 

shows that the effect of HGCN-DL is not 

completely affected by the shallow linear 

structure representation. In other words, 

HGCN-DL can capture both linear and nonlinear 

structures. 

 

 

Fig.3. Micro-F1 of the two models for five datasets. 
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Fig.4. Macro-F1 of the two models for five datasets. 

4.6 t-SNE 

For a more intuitive comparison model, three 

different kinds of datasets, including the citation, 

traffic and language networks, are visualized in a 

reduced dimension from Section 4.6.1 to Section 

4.6.3. The results are shown in Figures 5-7. 

4.6.1 Citeseer Network 

Figure 5 (a) shows the dimensionality reduction 

for the original HGCN model, where categories 

1-3 in the black framed parts are not obvious. 

Figure 5 (b) shows the model with local linear 

features. The edge category features are clear, 

while the six categories in the middle have no 

obvious boundaries. Compared with Figure 5 (d), 

the HGCN-DL model proposed in this paper can 

refine some categories in the Citeseer dataset, 

particularly data in the intermediate categories in 

Figure 5 (b). 

Compared with the shallow linear model, the 

t-SNE results of DL are given. As shown in 

Figure 5 (c), the shallow linear structure causes 

features in categories 3 and 4 in the Citeseer 

dataset to appear mixed. Compared with the 

corresponding observations in Figure 5 (d), 

HGCN-DL, which integrates the nonlinear 

structure, successfully distinguishes categories 3 

and 4. This indicates that the fusion of the deep 

nonlinear and shallow linear structures can more 

comprehensively describe the features of nodes. 
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(a)HGCN                          (b)HGCN-L 

  
(c)DL                                   (d)HGCN-DL  

Fig.5. Dimensionality reduction results for the Citeseer network dataset in citation network. 

The framed parts regions in (d) correspond to the observation results in (a)-(c), respectively. 

4.6.2 American air traffic network 

The American air traffic network comes from 

struc2vec [19], where air traffic in the US is 

divided into four categories based on airport 

activity. Figure 6 (a) shows that the original 

HGCN model does not distinguish category 0 

from category 1, whereas Figure 6 (d) displays 

that HGCN-DL separates category 1 from 

category 0. Compared with HGCN-L in Figure 6 

(b), HGCN-DL makes the dataset more obvious 

in local distribution. 

Similarly, compared with DL in Figure 6 (c), 

Figure 6 (d) shows that for HGCN-DL the 

addition of a nonlinear structure can successfully 

separate the label nodes in category 2 in the edge 

portion of the graph, which makes the 

distribution boundaries in different categories of 

labels more obvious. 

 

 

 

 

 

 



  
(a)HGCN                                (b) HGCN-L 

  
(c)DL                                  (d)HGCN-DL 

Fig. 6. Dimensionality reduction visualization of the American-air-traffic network dataset in traffic network.  

The framed parts regions in (d) correspond to the observation results in (a)-(c), respectively. 

4.6.3 Wikipedia Network 

The Wikipedia language network dataset 

consists of 17 categories, 2405 Wikipedia pages, 

and 17981 links, and it is denser than the citation 

and traffic network datasets. 

In Figure 7(a), the results determined with 

HGCN show that the boundary between the 

nodes of category 10 and some nodes of 

category 3 is indistinguishable on the edge of the 

middle part. However, the observations in Figure 

7(d) show that HGCN-DL can successfully 

separate the nodes of category 3.  

In Figure 7(b), HGCN-L with shallow linear 

local information can better represent the nodes 

at the edge of the dataset. However, for the 

denser nodes in Wikipedia, HGCN-L has a weak 

ability to describe. The above problem is also 

seen in HGCN-DL, but compared with HGCN-L 

in Figure 7(b), HGCN-DL improves the 

representation ability of HGCN-L for the dense 

node distributions. 

Similarly, the t-SNE results obtained with DL 

are given. By the comparison between Figure 

7(d) and Figure 7(c), it is noted that HGCN-DL 

can capture some category 3 nodes in the 

language network so that it can be successfully 

distinguished from nodes in category 5 and 

category 13 at the edge of the distribution. 



  
(a)HGCN                                 (b)HGCN-L 

  
(c)DL                                       (d)HGCN-DL 

Fig. 7. Dimensionality reduction visualization of the Wikipedia network dataset in language network 

The framed parts regions in (d) correspond to the observation results in (a)-(c), respectively. 

5. Conclusions 

In this study, we primarily explore a graph 

embedding approach on combining linear with 

nonlinear network structures. Because existing 

shallow and deep learning models cannot 

simultaneously capture the nonlinear and linear 

structural information of nodes, we introduce 

hierarchical graph convolution network to put 

forward the HGCN-L and HGCN-DL methods 

respectively. In order to verify the effectiveness 

of the model, node classification experiments 

were conducted for citation network, traffic 

network, and language network data sets. 

Dimensionality reduction visualization 

experiments for the three kinds of data sets were 

conducted. 

Besides, we come to the following conclusions: 

(1) From the results of the node classification 

experiment, for the traffic network data set, the 

results of HGCN-L show that the local 

topological structure indicates that nodes to be 

classified are more significant; the proposed 

HGCN-DL model can capture and represent the 

topology of the undirected graph more 

comprehensively. 

(2) Compared with the linear model DL, our 

model HGCN-DL performs better in node 

classification, which indicates that our model 

can further capture the depth nonlinear structure. 

(3) The dimensionality reduction visualization 

experiments show that HGCN-DL can capture 

and distinguish easily confused category label 

nodes in both sparse traffic networks, dense 

citation networks, and denser language 

networks.  

In general, HGCN-DL can represent the 

topology structure of undirected graphs 

effectively. However, compared with HGCN, 

HGCN-L performs well in the traffic network, 

performs poorly in citation and language 

networks. We suspect that this is related to the 

structure of the dataset itself. In the future, we 



will provide evidence for this conjecture.  
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