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Abstract. Knowledge graph reasoning is essential for improving the quality of knowledge graphs due to automatic mechanisms
involved in KG construction which probably introduces incompleteness and incorrectness. In recent years, various KG reasoning
techniques such as symbolic- and embedding-based methods, have been proposed for inferring missing triples and detecting
noises. Symbolic-based reasoning methods concentrate on inferring new knowledge according to predefined rules or ontologies,
where rules and axioms have been proved to be effective but are difficult to obtain. Meanwhile, embedding-based reasoning
methods learn low-dimensional representations of entities and relations primarily by utilizing structural information, and the
learned embeddings achieve promissing results in downstream tasks such as knowledge graph completion. These methods, how-
ever, ignore implicit axiom information which are not predefined in KGs but can be reflected through data. To be specific, each
correct triple is considered to satisfy all axioms, as it is also a consistent triple. In this paper, we explore how to combine explicit
structural and implicit axiom information to improve reasoning ability. Specifically, we present a novel NeuRal Axiom Network
framework (NeuRAN) that only uses existing triples in KGs to address issues in the above methods. The framework consists of
a knowledge graph embedding module that preserves the semantics of a triple, and five axiom modules that are encoded based
on the characteristics of five kinds of axioms corresponding to five typical object property expression axioms defined in OWL2,
including ObjectPropertyDomain, ObjectPropertyRange, DisjointObjectProperties, IrreflexiveObjectProperty and Asymmetri-
cObjectProperty. The knowledge graph embedding module and axiom modules respectively calculate the probabilities that the
triple conforms to the semantics and the corresponding axioms. Evaluations on KG reasoning tasks including noise detection,
triple classification and link prediction show the efficiency of our method.

Keywords: Knowledge Graph Reasoning, Knowledge Graph Embedding, Noise Detection, Triple Classification, Link Prediction

1. Introduction

Knowledge Graphs (KGs) are represented as multi-
relational directed graphs composed of entities as
nodes and relations as edges, where knowledge is or-
ganized in the form of triples (subject entity, relation,
object entity), abbreviated as (s, r, o). Typical KGs like
DBpedia[1], Freebase[2], Wikidata[3], and Yago[4],
have played a pivotal role in a broad range of applica-

§Equal contribution.
*Corresponding author.

tions, such as question answering[5] and recommender
system[6]. Since KGs are usually automatically cre-
ated and contain billions of triples, it is inevitable that
they may suffer from incompleteness and incorrect-
ness. For example, 71% of people in Freebase have
no place of birth, and 94% have no known parents[7].
While Wikipedia is estimated to have 2.8% of its state-
ments wrong[8]. To deal with these issues, methods
proposed for knowledge graph reasoning tasks have re-
ceived increasing attention. There are two mainstream
techniques, including symbolic- and embedding-based
methods.
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Symbolic-based methods[9–12] adopt logic rules
or ontologies for KG reasoning, and have shown to
achieve good performance. For example, if an axiom
DisjointObjectProperties(:hasParent :hasSpouse) in-
dicating that the relations hasSpouse and hasParent
are disjoint has been already defined, and (Linda, has-
Spouse, Bruce) is a correct triple, the triple (Linda,
hasParent, Bruce) will be classified as an incorrect
triple. Although this kind of methods are more reliable
and human-interpretable if used in reasoning tasks,
they require rich ontologies which are usually miss-
ing or incomplete in KGs. Moreover, manual defini-
tion of axioms is tedious, and maintaining them is a
non-trivial task.

Embedding-based methods[13–16] target to em-
bed entities and relations into low-dimensional vec-
tor space. Based on these embeddings, a scoring func-
tion is employed to compute scores for triples to
measure the plausibility of them. Knowledge graph
embedding (KGE) models, such as translation-based
methods[13, 17, 18], semantic-based methods[14, 19],
and neural network methods[16, 20, 21], have been
shown to be scalable and effective. However, despite
the successes of embedding models in KG comple-
tion which aims to predict missing links, as well as
in noise detection which aims to detect noisy triples.
They focus on structural information rather than tak-
ing into consideration of implicit axiom information.
Take implicit domain axiom as an example. Given the
positive triple (Linda, hasS pouse, Bruce), even if type
of the subject entity Linda and domain of the relation
hasS pouse are not given, we can infer that it satisfies
domain axiom.

In this paper, we propose a neural axiom network
framework NeuRAN for KG reasoning. This frame-
work not only encodes explicit structural information
through a knowledge graph embedding model, but also
implicit axiom information through neural networks.
The main idea behind is that even ontology informa-
tion is not explicitly defined in the given KG, any cor-
rect triple satisfies all axioms. In specific, we con-
sider five different axioms corresponding to five typ-
ical object property expression axioms selected from
OWL2 ontology language*, including ObjectProperty-
Domain, ObjectPropertyRange, DisjointObjectProp-
erties, IrreflexiveObjectProperty and AsymmetricOb-
jectProperty. As domain and range axioms are related
to type compatibility, we distinguish type and semantic

*https://www.w3.org/TR/owl2-primer/

embeddings. Each entity has one type and one seman-
tic vector representation. And each relation has two
type (i.e., subject and object entity types excepted by
the relation) and one semantic embeddings. We encode
inherent structure of triples via an embedding mod-
ule to learn semantic embeddings of entities and re-
lations, such as TransE and TransH. Without prede-
fined axioms, we introduce five axiom modules where
semantic and type embeddings are involved, to cal-
culate probability scores range from 0 to 1 for each
possible type of axiom. The probability scores indi-
cate the degree to which the triple satisfies the ax-
ioms. The closer the value is to 1, the more likely the
triple is to satisfy the axiom. The design of these ax-
iom modules are based on conditions satisfied by the
axioms as listed in Table 1. For each triple (s, r, o), do-
main/range axiom module concentrates on type com-
patibility between subject/object entity type embed-
ding expected by the relation and type embedding
of the subject/object entity. For example in Figure 1,
the triple (United Kingdom, occupation, novelist) vi-
olates domain axiom, thus the expected subject entity
type vector of the relation occupation and type em-
bedding of the subject entity United Kingdom may get
a low domain axiom score close to 0. Disjoint axiom
module focuses on compatibility of two relations with
the same subject and object entity. Irreflexive axiom
module encodes whether the relation is irreflexive and
whether s = o. And asymmetric axiom module en-
codes whether the relation is asymmetric and whether
(o, r, s) is also in the KG. The final score of the triple is
defined as the summarization of scores from the struc-
ture and the five implicit axioms.

In summary, our main contributions are as follows:

– We raise the problem of neural axiom learning, in
which axiom information is not given but can be
reflected by and learned from existing data.

– We propose the framework NeuRAN with the
consideration of both explicit structural informa-
tion and implicit axiom information in KGs, re-
lying exclusively on the triples in KGs for KGR
tasks. The explicit structural and implicit axiom
information is respectively encoded by a KG em-
bedding module and five axiom modules.

– We evaluate NeuRAN on datasets with differ-
ent ratio of noises and achieve promising perfor-
mances, demonstrating the effectiveness of our
models on noisy KGs.
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Fig. 1. In the hypothetical knowledge graph, there may exist erroneous triples. And the reason for these errors is that the triples do not conform
to the axioms considered in this paper, including domain, range, disjoint, irreflexive and asymmetric axioms.

2. Related work

We discuss the following three lines of research
work that are closely relevant to this paper.

2.1. Symbolic-based Reasoning

Symbolic-based reasoning is important to ensure the
quality of KGs, aiming at inferring new knowledge or
detecting noises with respect to accompanying rules or
ontologies. Since rules and axioms suffer from incom-
pleteness and manually annotate such information is
infeasible, there are several works which attempt to en-
rich ontologies. For example, Inductive logic program-
ing (ILP) has been used to mine logical rules, but it
has limitations due to open-world assumption of KGs.
AMIE[9] and AMIE+[10] make up for this shortcom-
ing by introducing an altered confidence metric based
on the partial completeness assumption. With the rules
generated with AMIE+, [22] discovers inverse and
symmetric axioms by applying the predefined reason-
ing rules. Moreover, [23] presents approaches based
on statistical inductive learning, including correlation
computing and association rule mining to enrich on-
tologies with disjointness axioms. As it evaluates the
validity of association rule mining by computing the

precision and recall scores, another association rule
mining algorithm [24] not only discusses the precision
and recall, but also analyzes quality of disjoint axioms
acquired. In addition to disjoint axiom, [25] enriches
DBpedia ontology with domain and range restrictions
as well as class disjointness axioms, and uses enhanced
ontology for error detection.

2.2. Embedding-based Reasoning

Knowledge graph embedding embeds entities and
relations of a KG into a continuous vector space to pre-
serve the structure information of the KG. There are
mainly three categories of embedding models: trans-
lational distance, semantic matching and neural net-
work models. Translational distance models learn em-
beddings by translating a subject entity to an object en-
tity through a relation. For example, TransE[13] repe-
sents entities and relations in the same vector space
and assumes (s + r) to be close to o, where s, r, o
are vector embeddings for s, r and o respectively.
However, it has difficulty dealing with complex rela-
tions. To overcome the flaws, TransH[17] introduces
relation-specific hyperplanes to allow entities have dif-
ferent embeddings in different relations. TransR[18]
builds entity and relation embeddings in separate entity
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Fig. 2. The key idea of our framework.

and relation spaces. And TransD[26] constructs map-
ping matrices dynamically. Similarly, TorusE[27] and
RotatE[28] use lie groups and rotations for translation
respectively. Semantic matching models measure plau-
sibility by matching latent semantics of entities and
relations. DistMult[14] uses a formulation of bilinear
model to represent entities and relations. ComplEx[19]
extends DistMult by introducing complex-valued em-
beddings so as to better model asymmetric relations.
HolE[15] makes use of circular correlation of embed-
ding to learn compositional representations and se-
mantically matches circular correlation with the re-
lation embedding. Apart from that, researchers have
raised interests in applying neural networks for knowl-
edge graph reasoning. ConvE[16] and ConvKB[20]
employ convolutional neural network to achieve bet-
ter link prediction performance. CapsE[21] explores
a capsule network to model relationship triples. Also,
KGTtm[29] and CKRL[30] measure trustworthiness
or confidence of triples.

2.3. Hybrid Reasoning

Another line of work concerns hybrid methods for
KG reasoning, such as the combination of symbolic
reasoning and embedding-based reasoning, and the
combination of symbolic reasoning and statistical rea-
soning. In the former methods, TransC[31] learns Sub-
ClassOf axiom between types by encoding each type
as a sphere and each entity as a vector. Furthermore,
SetE[32] computes two axioms SubClassOf and Sub-
PropertyOf in subsumption by employing linear pro-
gramming methods on embeddings, focusing on do-
main, range or subClassOf axioms. Recently, IterE[33]
iteratively learns embeddings and rules, considers
seven object property expression axioms for rule learn-
ing. It combines rule learning and embedding learn-
ing to improve the quality of sparse entity embeddings
by injecting new triples about sparse entities accord-
ing to the scores of the axioms as well as to generate
high quality rules. As for the latter, the statistic-based
methods such as SDType and SDValidate[34], exploit
statistical distributions of types and relations. SDType
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Table 1
Five types of object property expression axioms selected from OWL2 ontology language. OP is the short for ObjectProperty. OPE denotes Object
Property Expression, and x, y, z are entity variables. 4I is a nonempty set called the object domain. ·OP is an object property interpretation
function. When translating axioms into examples in KG according to condition, we replace OPE in axioms with a relation.

Object Property Axioms Condition Examples

OPDomain(OPE CE) ∀(x, y) ∈ (OPE)OP implies x ∈ (CE)C Domain(hasWife, Man)

OPRange(OPE CE) ∀(x, y) ∈ (OPE)OP implies y ∈ (CE)C Range(hasWife, Woman)

DisjointOP(OPE1...OPEn) (OPE j)
OP ∩ (OPEk)

OP = ∅ for each 1 6 j 6 n and each 1 6 k 6 n such that j 6= k Disjoint(hasParent, hasSpouse)

IrreflexiveOP(OPE) ∀x : x ∈ 4I implies (x, x) /∈ (OPE)OP Irreflexive(parentOf)

AsymmetricOP(OPE) ∀(x, y) ∈ (OPE)OP implies (y, x) /∈(OPE)OP Asymmetric(hasChild)

deduces missing type information based on statistics
about the usage of relations with entities of known
type. And SDValidate measures the deviation between
actual types of the subject and/or object and the apriori
probabilities given by the distribution.

3. Method

We begin this section by briefly describing some
notations. We denote a knowledge graph as G =
{(s, r, o) ⊂ E × R × E}, where s, o ∈ E , r ∈ R, E
is the entity set, and R is the relation set. (s, r, o) is a
triple indicates the relation r between the subject entity
s and the object entity o. Throughout this paper, we
use bold letters to indicate vectors. s, r, o are the em-
bedding vectors of s, r, o respectively. And the abbre-
viations DM(dm), RG(rg), DIS (dis), IRRE(irre) and
AS Y M(asym) respectively correspond to the implicit
domain, range, disjoint, irreflexive and asymmetric ax-
ioms.

Then, we introduce the neural axiom network Neu-
RAN that combines a knowledge graph embedding
module and five axiom modules(§3.1). Next, we intro-
duce the KGE module which is used to encode explicit
structural information (§3.2), and the five axiom mod-
ules which aim to encode five kinds of implicit axiom
information (§3.3).

3.1. Neural Axiom Network

As depicted in Figure 2, we present a neural axiom
network designed for KG reasoning, encoding both ex-
plicit structural(KGE module) and implicit axiom in-
formation(different axiom modules) existing in triples.
In addition to the semantics of triples, NeuRAN takes
into account of five kinds of axioms including domain,
range, disjoint, irreflexive and asymmetric axioms im-
plicit in each triple. We assume that probability value
of the degree of satisfaction of the axioms intensify or

mitigate the probability of existence of a triple. The
score of a triple is calculated as:

E(s, r, o) = ES + αENA (1)

ENA = EDM + ERG + EDIS + EIRRE + EAS Y M

(2)

The overall energy function consists of two parts: ES

is the energy function which depends on the structure-
based representations. It can be any of the knowledge
graph embedding models[35]. A lower ES indicates
that the triple is more likely to be correct. The second
part ENA is the score of neural axioms, which consists
of five kinds of axioms. EDM = ||1 − Pdm||, ERG =
||1 − Prg||, EDIS = ||1 − Pdis||, EIRRE = ||1 − Pirre||,
EAS Y M = ||1−Pasym|| are respectively the energy func-
tions of domain, range, disjoint, irreflexive, asymmet-
ric axioms. Pdm, Prg, Pdis, Pirre and Pasym correspond
to probabilities that corresponding axioms are satis-
fied. The higher Pdm, Prg, Pdis, Pirre, Pasym, and the
lower EDM , ERG, EDIS , EIRRE , EAS Y M imply that the
triple is more likely to satisfy the corresponding neural
axiom.

Following the conventional training strategy of pre-
vious models, we train NeuRAN based on the local-
closed world assumption. In this case, the observed
triples in KGs are regard as positive triples, while the
unobserved ones as negative triples. For the score of
the triple, we utilize a margin-based score function,
which is defined as follows:

Lt =
∑

(s,r,o)∈T

∑
(s′,r′,o′)∈T ′

max(0, E(s, r, o) + γ−

E(s′, r′, o′))

(3)

where γ is a margin hyper-parameter, E(s, r, o) is the
overall energy function for (s, r, o). T and T ′ are the
positive and negative triple sets. Since there are no ex-
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plicit negative triples, T ′ can be generated by randomly
corrupting the subject or object entity:

T ′ = {(s′, r, o)|s′ ∈ E} ∪ {(s, r, o′)|o′ ∈ E},

(s, r, o) ∈ T, (s′, r, o) /∈ Tand(s, r, o′) /∈ T
(4)

In the process of generating negative triples, the goal is
to minimize the loss function Lt. And Lt is calculated
by the embeddings of entities and relations.

Since structural information is encoded by a knowl-
edge graph embedding model. In order to encode such
latent axioms, we learn embeddings of entities and re-
lations by adopting five axiom modules. Each possi-
ble type of axiom module is devised based on the con-
dition of the axiom, the input of which is a triple,
and the output is the probability of the triple con-
forming to the corresponding axiom. Considering do-
main/range axioms, as the two axioms are associ-
ated with type compatibility and type information is
not provided, we attempt to introduce type embed-
dings. Following the type-sensitive models TypeDM
and TypeComplex[36], we distinguish type embed-
dings from semantic embeddings when we learn vector
representations for entities and relations. Thus, each
entity is represented as two vectors, and each relation
is represented as three vectors. Given a triple (s, r, o),
for entities, we use type embeddings(sc and oc) and
semantic embeddings(sm and om) to represent the sub-
ject entity s and the object entity o respectively. As for
the relation, rs and ro represent subject type and object
type embeddings expected by the relation r, and rm is
the semantic embedding of r.

3.2. KG Embedding Module

The knowledge graph embedding module of the
framework concerns the learning of a function ES ,
which is designed to score each triple in KGs. Our
framework considers two translation-based embedding
models TransE[13] and TransH[17] as basic KG em-
bedding models.

3.2.1. TransE
TransE is the simplest translation-based model,

which interprets relations as translating operations be-
tween subject and object entities. The basic idea is
that, a given triple (s, r, o) follows the assumption that
s+ r ≈ o when (s, r, o) holds. The fitness of the model
is calculated through the scoring function, which is
defined as:

ES = ||sm + rm − om||L1/L2 (5)

where L1 and L2 respectively denote the L1 and L2

norm. sm, rm and om are the semantic embeddings of
the subject entity, relation and object entity respec-
tively. The smaller value of the scoring function, the
higher the fitness for a triple.

3.2.2. TransH
TransH extends TransE by translating on hyper-

planes, which models the relation r as a vector on a
hyperplane with wr as the normal vector. It enables an
entity to have distinct representations when involved in
different relations. Similar to TransE, the score func-
tion is defined as:

ES = ‖(sm)⊥ + rm − (om)⊥‖L1/L2
(6)

where the projections (sm)⊥ = sm − w>r smwr, and
(om)⊥ = om − w>r omwr. It restricts ‖wr‖2 = 1. The
score is low if (s, r, o) holds, and is high otherwise.

3.3. Five Axiom Modules

Using only triple scores based on semantics for
training ignores axiom information that is implicit but
inherently existed in triples. It is intuitive that a correct
triple, such as (J. K. Rowling, nationality, United King-
dom), is also a logically consistent triple. Even with-
out any priori knowledge of the ontological informa-
tion, such as type information of the subject entity J.
K. Rowling and the object entity United Kingdom, as
well as domain and range of the relation nationality.
We can infer that it satisfies domain, range, disjoint,
irreflexive, and asymmetric axioms.

Therefore, for domain/range axioms, the type em-
bedding of the subject/object entity expected by the
relation rs/ro and the type embedding of the sub-
ject/object entity sc/oc are used to calculate a type
compatibility score. For disjoint axiom, the seman-
tic compatibility of any two relations with the same
subject and object entities are discussed. We assume
that (om − sm) represent the general semantic embed-
ding of the relation for the subject to be s and ob-
ject to be o. For irreflexive axiom, whether the rela-
tion is irreflexive, and whether the subject entity is
the same as the object entity(s = o?) are considered.
For asymmetric axiom whether the relation is asym-
metric, and whether the symmetric triple of the input
triple exists((o, r, s) ∈ G?) are concerned. We intro-
duce these typical axioms in detail.
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3.3.1. Domain Axiom Module
Domain axiom module focuses on type compatibil-

ity between the subject entity type expected by the
relation r and type of the subject entity s. TypeDM
uses the function C(sc, rs) = σ(sc · rs) to mea-
sure the compatibility by calculating a score with the
type embeddings of subject entity sc and the sub-
ject entity type embedding expected by the relation
rs. However, the subject type expected by the given
relation may varies. For example, given the triple
(S oul( f ilm), language, English), if we only focus on
the relation language, the subject type expected by the
relation can be an entity in the class of Person, Book or
Film. But if we concern about the other relations of the
subject entity, such as starring and running time, we
may find that the subject entity expected by the relation
is more likely to be in the class of Film. These relations
may have strong correlations with the given relation,
such as starring and language, or differ greatly such
as running time and language. Thus, they contribute to
embeddings of the subject entity type expected by the
current given relation, and have different contributions.
In order to represent embedding of the subject entity
type expected by the given relation more accurately,
we introduce attention mechanism to make use of rich
information contained in the set of all the relations of
the subject entity s which isR(s) = {ri|(s, ri, e) ∈ G},
where e denotes any entity in the KG. By adopting a
domain attention layer (Dm_Att_Layer), we generate
the subject type embedding expected by the relation r̂s
based on the relations inR(s), a representation of each
relation of the subject entity is learned. For each rela-
tion ri ∈ R(s), we compute attention weights for rela-
tions of the subject. The importance is denoted by ai,
which reflects how relevant or important the relation ri

is to rs.

ai = f (rs, ri) = rT
s ri, ri ∈ R(s) (7)

To get the relative attention values, softmax is applied
over ai.

pi =
exp(ai)∑

r j∈R(s) exp(a j)
(8)

where j denotes the jth relation of the subject entity.
The new embedding of the subject entity type expected
by the relation r̂s is the sum of the product of repre-
sentation of each relation and the relation weighted by

attention values of the considered relation.

r̂s =
∑

ri∈R(s)

piri (9)

Then the type compatibility is calculated via a com-
patibility module, the likelihood of s and r satisfying
domain axiom can be defined as follows:

Pdm = f (sc, rs) = σ(sc · r̂s) (10)

where σ denotes sigmoid function.

3.3.2. Range Axiom Module
Range axiom module focuses on type compatibil-

ity between the object entity type expected by the re-
lation r and the type of the object entity o. Similarly,
TypeDM uses C(oc, ro) = σ(oc · ro) to compute the
compatibility score between the type embedding of ob-
ject entity oc and the object entity type embedding
expected by the relation ro, where the score can be
used to evaluate the satisfaction of range axiom. How-
ever, a relation can have object entities with very dif-
ferent types. For example, the object entity of the re-
lation hasPart can be Leg in (Table, hasPart, Leg),
or NewYorkBay in (Atlantics, hasPart, NewYorkBay).
Similar to the issue in domain axiom, object entities
expected by a relation may exhibit diverse roles within
the same relation, and other relations of the object en-
tity may make different contributions to the embedding
of the object entity type expected by the relation. To
tackle this issue, we devise an attention mechanism as
in domain axiom discerning the expected object entity
type associated with the given relation. Taking the ob-
ject entity o as a target, we denote the relations con-
nected to o as R(o) = {ri|(e, ri, o) ∈ G}. By using
a range attention layer (Rg_Att_Layer), we generate a
new type embedding for the object entity expected by
the relation r̂o based on all the relations in R(o). The
importance of each relation to r denoted by bi can be
calculated as:

bi = f (ro, ri) = rT
o ri, ri ∈ R(o) (11)

We then apply softmax over bi to get the relative atten-
tion values.

qi =
exp(bi)∑

rk∈R(o) exp(bk)
(12)

where k denotes the kth relation in the connected rela-
tions of the object entity. The generated embedding r̂o
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is the sum of the product of each object entity repre-
sentation and the relation weighted by attention values
of the object entities.

r̂o =
∑

ri∈R(o)

qiri (13)

The compatibility probability whether the triple satis-
fies range axiom is calculated by a compatibility mod-
ule, and is defined as:

Prg = f (oc, ro) = σ(oc · r̂o) (14)

where σ denotes sigmoid function.

3.3.3. Disjoint Axiom Module
Disjoint axiom module focuses on the compatibility

of the semantic embeddings of two relations with the
same subject and object entities. For example, suppose
(John, spouse, Mary) is an existing correct triple, then
(John, friend, Mary) is correct, and (John, child, Mary)
is incorrect. It is because that the two relations spouse
and f riend can exist between two persons at the same
time, while spouse and child are disjoint relations. In
other words, if one person is the spouse of another,
the two persons does not exist children relation, spouse
and children could defined to be semantically disjoint.
Following the condition of disjoint axiom, in order to
find out disjoint triples for triple (s, r, o), we have to
traverse the whole knowledge graph to find out all the
relationsR(s, o) = {rk|(s, rk, o) ∈ G, rk 6= r}, and cal-
culate the semantic compatibility of the relation pairs
(r, rk), which is time-consuming. To reduce time cost,
we simply copy the idea from TransE, which holds the
view that s + r = o. Specifically, we attempt to regard
(om − sm) as the general representation of relations in
triples with s and o being the subject and object entity
respectively. Therefore, for relations rk ∈ R(s, o), we
assume they share similar semantic vector representa-
tion (om − sm). The semantic judgment of this axiom
can be simplified to calculate the compatibility score
of (om − sm) and rm, which is defined as:

f (rm, (om − sm)) = σ(rm · (om − sm)) (15)

where σ denotes sigmoid function.

3.3.4. Irreflexive Axiom Module
Irreflexive axiom module considers two aspects of

judgements. One is the property of the relation (i.e.,
whether r is irreflexive), and the other is whether the
subject and object entity are equal(i.e., whether s and

o are the same entity). In OWL2, a relation is irreflex-
ive means that no entity can be related to itself by such
a relation. Therefore, if in the triple (s, r, o) the rela-
tion r is irreflexive and s = o, it violates irreflexive ax-
iom. For example, when the relation is hasParent, it is
intuitively that (John, hasParent, John) is an incorrect
triple.

Due to that we can judge whether s = o directly
without the need to represent the two entities as vec-
tors, we conduct this as the first step. Only when s = o,
we need to consider the property of the relation. Oth-
erwise, the probability that the triple conforms to ir-
reflexive axiom is 1, and the reason for the triple to be
classified as wrong can not be due to the irreflexive ax-
iom. If s = o, we can infer that types of s and o are the
same (sc = oc). In regard to the property of the rela-
tion, we expect types of the subject entity and the ob-
ject entity expected by the relation which are rs and ro

should be respectively compatible with s and o. If so, it
can be conclude that rs ≈ sc and ro ≈ oc. As a result,
rs and ro are compatible (rs ≈ ro), which is measured
by a compatibility module. The type constraint is cal-
culated as σ(ro · rs). Besides, the semantic information
of the relation rm can also help to determine the prop-
erty of the relation. We utilize a multi-layer perceptron
(MLP) layer to encode semantic information. Since vi-
olation of this axiom is determined by both types and
semantics, we calculated the probability that a triple
satisfies irreflexive axiom through the Logic AND op-
eration. The final probability is defined as:

Pirr =

{
1, i f s 6= o
σ(W1(rm) + b1) ∗ σ(ro · rs), otherwise

(16)

where W1 ∈ R1×dm , b1 ∈ R1, and dm is the dimension
of the semantic embedding. σ denotes sigmoid func-
tion.

3.3.5. Asymmetric Axiom Module
Asymmetric axiom module considers two aspects of

judgements as well, which are the property of the re-
lation (i.e., whether r is asymmetric) and the existence
of symmetric triple of the given triple (i.e., whether
(s, r, o) and (o, r, s) both exist in the same KG). In
OWL2, a relation can be asymmetric meaning that if
it connects s with o it never connects o with s. In
other words, if r is an asymmetric relation, and (s, r, o)
and (o, r, s) appear in the same KG simultaneously,
one of the two triples is incorrect for the violation of
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asymmetric axiom. For example, when the relation is
hasChild, and there is a correct triple (John, hasChild,
David), (David, hasChild, John) is incorrect because
of the asymmetric axiom.

In this axiom, we firstly begin the process of deter-
mining the property of the relation by focusing on the
semantic embedding rm. We take a multi-layer percep-
tron (MLP) layer to capture the semantics of the rela-
tion for further judgement of the property of the rela-
tion. Secondly, we use the simplest knowledge graph
embedding model TransE to check whether (o, r, s) ex-
ists. Then, as only when the two conditions met at the
same time, the violation of the axiom can be deter-
mined, otherwise the triple satisfies asymmetric axiom.
We introduce a Logical AND operation as well. Fi-
nally, the asymmetric axiom network can be defined as
follows:

fkge = σ(om + rm − sm) (17)

Pasy = σ(W2(rm) + b2) ∗ fkge (18)

where W2 ∈ R1×dm , b2 ∈ R1. σ denotes sigmoid func-
tion.

4. Experiments

We evaluate our proposed method through three
main knowledge graph reasoning tasks, including
noise detection, link prediction, and triple classifica-
tion.

4.1. Experimental Settings

Datasets. In this paper, we use two popular bench-
mark datasets: FB15K237[37] and WN18RR[16].
They are constructed from FB15K and WN18 respec-
tively by removing inverse relations to solve test leak-
age. FB15K is a relatively dense subset extracted from
Freebase[2], which is a large collaborative knowledge
graph consists of billions of real-world facts. And
WN18 is a subset of WordNet[38] that describes rela-
tions between words.

Dataset #Ent #Rel #Train #Valid #Test
FB15K237 14541 237 272115 17535 20466
WN18RR 40943 11 86845 3034 3134

Table 2
Statistics of FB15K237 and WN18RR

Datasets FB15K237-
10%

FB15K237-
20%

FB15K237-
40%

#Neg triple 27211 54423 108846

Datasets WN18RR-
10%

WN18RR-
20%

WN18RR-
40%

#Neg triple 8683 17367 34734
Table 3

Statistics of negative triples generated from FB15K237 and
WN18RR

Error Imputation. Since in real world, KGs are
constructed in an automated or semi-automated way,
noises can not be avoided. However, there are no
explicitly-labeled noisy triples in FB15K237 or WN18RR.
Therefore, to assess the methodologies presented, we
generate new datasets with different noise rates based
on the two datasets to simulate the real noisy knowl-
edge graphs. Specifically, for each dataset, we first ran-
domly sample positive triples from the training set.
The number of sampled triple is equal to the number
of noisy triples that need to be generated. Then, for
each positive triple (s, r, o), we corrupt either the sub-
ject entity or object entity with equal probability. If the
former, we form a negative triple (s′, r, o), otherwise
the negative triple is (s, r, o′). The triples (s′, r, o) and
(s, r, o′) are not in KGs. All the three tasks are evalu-
ated on these simulated noisy datasets.

For each dataset, we construct three noisy datasets
with negative triples to be 10%, 20%, and 40% of pos-
itive triples. And the negative triples will be imbued
to the training set of the original dataset, and be re-
garded as positive triples for training. All the three
noisy datasets share the same entities, relations, vali-
dation and test sets with the original dataset. The de-
tailed statistics of the two datasets, and the generated
noisy datasets are shown in Table 2 and 3.

Baselines. We choose TransE or TransH as the
knowledge graph embedding module respectively,
and compare our methods* NeuRAN(TransE) and
NeuRAN(TransH) which introduce axiom modules
with them. CKRL(TransE) and CKRL(TransH) are
also considered as baselines, which focus on the uti-
lization of path information. Results of TransE and
TransH are produced by running OpenKE[39] with
its default parameters. Results of CKRL(TransE) and
CKRL(TransH) are reproduced by us. In the following

*The code of NeuRAN is available at https://github.com/
JuanLi1621/NeuRAN

https://github.com/JuanLi1621/NeuRAN
https://github.com/JuanLi1621/NeuRAN
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FB15K237-10% FB15K237-20% FB15K237-40% WN18RR-10% WN18RR-20% WN18RR-40%

TransE 0.9174 0.9431 0.9588 0.8403 0.8202 0.7961
CKRL(TransE) 0.9775 0.9755 0.9745 0.8584 0.8340 0.8015

NeuRAN(TransE) 0.9811 0.9883 0.9796 0.9365 0.9233 0.8864
TransH 0.8544 0.8986 0.9392 0.8191 0.7882 0.7748

CKRL(TransH) 0.9787 0.9774 0.9763 0.8412 0.8148 0.7805
NeuRAN(TransH) 0.9751 0.9740 0.9739 0.8903 0.8751 0.8459

Table 4
Noise detection results on noisy datasets with different ratios based on FB15K237 and WN18RR.

tasks, the results of TransE, TransH, CKRL(TransE)
and CKRL(TransH) are also obtained in this way.

Training Details. We use SGD[40] or Adam[41]
to optimize the model for different tasks on different
datasets. We select the learning rate from {0.01, 0.1,
0.5, 1}, the margin among {2,4,6,8,10}, the batch size
from {100, 500, 1000}, dimension of the type from
{20, 50}, dimension of the semantic from {50, 100,
200}, the combination weight of the axiom scores α
from {0.01, 0.05, 0.1, 0.5, 1}. The number of training
epochs is set as 1000.

4.2. Noise Detection

To verify the capability of our method in detecting
noises in a noisy knowledge graph, we use the evalu-
ation task KG noise detection proposed in [30]. This
task aims to detect possible noises in noisy KGs ac-
cording to the scores of triples, which can be viewed
as triple classification task on training set.

Evaluation Protocol. First of all, we compute the
score of a triple via the energy function E(s, r, o) =
ES + α(EDM + ERG + EDIS + EIRRE + EAS Y M). Then
all triples in training set will be ranked based on the
scores. The lower the score of the triple, the more valid
the triple is. Triples with higher values of the energy
function tend to be noises. We consider evaluation in-
dicator the Area Under the ROC Curve (auc value) to
examine how well the method classify the noise as an
error. Before calculating the auc metric, we normalize
the energy function score in the [0, 1] interval, values
close to 0 indicate a correct triple, and values close to
1 indicate an erroneous triple.

Result Analysis. Evaluation results on noisy datasets
generated based on FB15K237 and WN18RR can be
found in Table 4. We observe that: (1) Regardless of
the embedding module is TransE or TransH, our model
achieves the best performance on WN18RR with dif-
ferent noise rates (i.e., WN18RR-10%, WN18RR-20%
and WN18RR-40%), demonstrating the capability of

our model in detecting noises. (2) On FB15K237-
10%, FB15K237-20% and FB15K237-40%, results of
our method outperform TransE, CKRL(TransE) and
TransH, but are slightly worse than CKRL(TransH).
It indicates both path information and axiom informa-
tion can help noise detection. And when the complex
relations are well encoded, the larger the number of re-
lations and triples, the path information may be more
effective than axiom information on noise detection.
(3) On WN18RR-10%, WN18RR-20% and WN18RR-
40% datasets, our results are significantly improved
compared with CKRL(TransE) and CKRL(TransH).
But on FB15K237-based noisy datasets, the results are
not competitive. It may not only because FB15K237-
based noisy datasets contain much more relations and
triples than WN18RR-based, but also due to that rela-
tions in WN18RR-based dataset are difficult to form
path information. While as each relation has domain
and range axioms, it is reasonable that axiom informa-
tion can have good noise detection capabilities when
there are only a few relations in a dataset. (4) With
the increase of noises, the ability of baselines and
our model to detect noises decreases on WN18RR-
based datasets. But may increase on FB15K237-based
datasets, it indicates when the number of relations is
large, the more triples in noisy datasets, the more valid
information may be introduced, even these triples may
be noises.

Thus we conclude that implicit axiom information
is useful for noise detection, and the improvements are
more obvious especially in small datasets with a small
number of relations and triples.

4.3. Triple Classification

Triple classification aims to judge whether a triple
in test data is correct or not according to triple scores
calculated by the energy function E(s, r, o) = ES +
α(EDM + ERG + EDIS + EIRRE + EAS Y M), which can
be viewed as a binary classification task on the test set.
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Methods
FB15K237-10% FB15K237-20% FB15K237-40%

ACC P R ACC P R ACC P R
TransE 93.91 92.51 95.55 93.12 93.02 93.23 92.61 91.95 93.39

CKRL(TransE) 94.43 92.61 96.56 94.15 92.37 96.23 93.39 91.56 95.59
NeuRAN(TransE) 94.92 93.55 96.50 94.77 93.04 96.79 94.33 92.78 96.15

TransH 93.59 93.73 93.43 93.28 93.03 93.58 92.81 92.65 93.00
CKRL(TransH) 94.78 94.05 95.60 94.51 93.46 95.72 94.03 93.17 95.04

NeuRAN(TransH) 95.16 93.77 96.75 94.94 93.63 96.44 94.52 93.10 96.16

Table 5
triple classification results for FB15K237-10%, FB15K237-20% and FB15K237-40%.

Methods
WN18RR-10% WN18RR-20% WN18RR-40%

ACC P R ACC P R ACC P R
TransE 87.73 92.46 82.16 86.38 89.18 82.80 83.49 88.34 77.15

CKRL(TransE) 88.19 93.31 82.29 86.49 90.71 81.30 83.31 85.80 79.83
NeuRAN(TransE) 89.29 94.83 83.12 87.84 91.35 83.60 85.90 90.24 80.50

TransH 86.87 90.64 82.23 84.99 86.03 83.54 82.29 83.48 80.50
CKRL(TransH) 86.65 92.40 79.87 85.63 90.70 79.39 82.35 83.64 80.44

NeuRAN(TransH) 87.92 93.61 81.40 86.95 91.90 81.05 84.43 87.52 80.31

Table 6
triple classification results on WN18RR, WN18RR-10%, WN18RR-20% and WN18RR-40%.

Evaluation Protocol. As the test set of the datasets
used for triple classification only contains correct
triples, we construct negative triples by corrupt the
subject or object entity of correct triples. There are
as many positive triples as negative triples in both
valid and test set. For triple classification, we learn a
relation-specific threshold δr for every relation. δr is
optimized by maximizing classification accuracies on
the validation set. Given a triple (s, r, o), if the score
obtained by the energy function is below δr, it is clas-
sified as positive, otherwise negative. We use accu-
racy(ACC), precision(P) and recall(R) as the evalua-
tion metrics.

Result Analysis. Table 5 and 6 show the detailed
evaluation results of triple classification. From the
two tables, we can observe that: (1) In terms of the
three metric, our method outperforms baselines on
the WN18RR-based and FB15K237-based datasets
except for few cases, and it achieves the best re-
sults in accuracy metric. This confirms that learn-
ing knowledge representations with axiom information
could help for triple classification as well. (2) Whether
on WN18RR-10%, WN18RR-20% and WN18RR-
40%, or on FB15K237-10%, FB15K237-20% and
FB15K237-40%, the advantages our method have
over baselines in this task seem to be smaller than

those in noise detection. It may because the method
concentrates on negative triples in training set, but
not on negative triples that generated in test set. (3)
Compared with TransE, TransH, CKRL(TransE) and
CKRL(TransH), the improvements of results in ac-
curacy metric on FB15K237-10%, FB15K237-20%
and FB15K237-40%, as well as on WN18RR-10%,
WN18RR-20% and WN18RR-40% are more larger
with higher noise rates. It indicates that on noisy
datasets, triple classification results of NeuRAN can
be more robust than baselines regardless of the size of
the dataset.

From the results, we can conclude that in triple clas-
sification task, combining implicit axiom and struc-
tural information reflected by existing triples in knowl-
edge graphs works better than using structural infor-
mation only. And the combination helps to learn robust
embeddings on noisy datasets with a large or small
number of relations and triples.

4.4. Link Prediction

To show that axiom information could improve em-
bedding learning of entities and relations, and further
help complete knowledge graphs, we conduct link pre-
diction task to evaluate the performance of knowledge
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FB15K237-10% FB15K237-20% FB15K237-40%

MRR
Hit@

MRR
Hit@

MRR
Hit@

3 1 3 1 3 1

TransE 0.259 0.298 0.161 0.242 0.281 0.146 0.228 0.267 0.134

CKRL(TransE) 0.261 0.292 0.175 0.256 0.286 0.172 0.250 0.280 0.167

NeuRAN(TransE) 0.285 0.312 0.200 0.269 0.293 0.187 0.250 0.271 0.174

TransH 0.244 0.297 0.129 0.214 0.269 0.096 0.191 0.247 0.075

CKRL(TransH) 0.269 0.303 0.176 0.265 0.294 0.181 0.258 0.288 0.175

NeuRAN(TransH) 0.287 0.316 0.203 0.273 0.297 0.190 0.259 0.282 0.181
Table 7

Link prediction results on FB15K237-10%, FB15K237-20% and FB15K237-40%.

WN18RR-10% WN18RR-20% WN18RR-40%

MRR
Hit@

MRR
Hit@

MRR
Hit@

3 1 3 1 3 1

TransE 0.212 0.348 0.036 0.204 0.349 0.029 0.190 0.324 0.027

CKRL(TransE) 0.216 0.348 0.043 0.210 0.356 0.036 0.187 0.321 0.026

NeuRAN(TransE) 0.339 0.387 0.269 0.319 0.369 0.245 0.268 0.339 0.173

TransH 0.218 0.362 0.042 0.208 0.357 0.035 0.193 0.331 0.032

CKRL(TransH) 0.221 0.367 0.043 0.209 0.358 0.037 0.194 0.330 0.036

NeuRAN(TransH) 0.312 0.379 0.223 0.262 0.354 0.147 0.295 0.348 0.214
Table 8

Link prediction results on WN18RR-10%, WN18RR-20% and WN18RR-40%.

graph completion. This task aims to predict the miss-
ing entity when given one entity and the relation in a
triple, including subject entity prediction (?, r, o) and
object entity prediction (s, r, ?).

Evaluation Protocol. For each test triple, suppose
the subject entity prediction (?,r,o) with the right sub-
ject entity s. We first take all entities e ∈ E in the
dataset as candidate predictions, and then replace the
missing part with each entity e and calculate scores for
triples in T = {(e, r, o)|e ∈ G}. Subsequently, we rank
these scores by ascending order, the rank of the correct
entity is stored. The object entity prediction is done in
the same way. The evaluation metrics are MRR and
Hits@N, where MRR is the mean reciprocal rank of
the ranks of all test triples, and Hits@N (N=1,3) is the
proportion of ranks within N of all test triples. A higher
MRR and a higher Hits@1, 3 should be achieved by
a good embedding model. This is called ’raw’ setting.
If we filter out the corrupted triples that exist in the
training, validation, or test set before ranking, the eval-
uation setting is called ’filter’. In this paper, we report
evaluation results of the filter setting.

Result Analysis. Link prediction results are shown
in Table 7 and 8. We analyze the results as fol-
lows: (1) The link prediction results of our method

are improved compared with baselines on WN18RR-
10%, WN18RR-20% and WN18RR-40% datasets,
as well as on FB15K237-10%, FB15K237-20% and
FB15K237-40%. It confirms that the quality of learned
knowledge graph embeddings are better, and could
also help to complete KGs. Besides, it indicates
axiom information can be more useful than path
information on noisy datasets. (2) On WN18RR-
10%, WN18RR-20% and WN18RR-40% datasets, our
method achieves the best performance almost on all
metrics. And the improvements are significantly, espe-
cially on Hit@1. It demonstrates that axiom informa-
tion is of great help in improving the predictive ability
a missing triple, when a dataset has fewer relations and
triples. (3) On FB15K237-10%, FB15K237-20% and
FB15K237-40%, although the improvements of the re-
sults are less obvious compared with WN18RR-based
datasets, the results are better than baselines. More-
over, as the noise ratio increases, most results of our
method decreases more slowly compared to baselines.
It reaffirms that our method can improve link predic-
tion, and the more relations and triples, the more in-
formation as well as noises brought by axiom infor-
mation. Therefore, the advantages of implicit axiom
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information would not as significant as in small-scale
dataset.

Thus we can conclude that implicit axiom informa-
tion encoded by neural axiom networks help improve
the quality of learned embeddings of entities and re-
lations, and improve link prediction. And such infor-
mation is more effective on datasets with a relatively
small number of relations and triples.

5. Conclusion

In this paper, we propose a novel neural axiom net-
work model which aims to do reasoning on noisy
knowledge graphs. We consider to encode not only
structural information, but also axiom information of
triples. In specific, we propose a knowledge graph em-
bedding module for preserving the structure, and five
different axiom modules for calculating probability
scores that the corresponding axioms are satisfied. We
evaluate our method on KG noise detection, triple clas-
sification and link prediction. Experiments show that
axiom information can benefit these tasks.

In the future, we will attempt to explore more im-
plicit or explicit information existed in triples which
can enhance the performance of knowledge graph rea-
soning. Further more, we will improve our method to
apply it for inconsistency reasoning, due to that axiom
information may be able to provide explanations for
inconsistent triples, so as to correct erroneous triples.
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