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Abstract. Information related to the COVID-19 pandemic ranges from biological to bibliographic, from geographical to
genetic and beyond. The structure of the raw data is highly complex, so converting it to meaningful insight requires data
curation, integration, extraction and visualization, the global crowdsourcing of which provides both additional challenges and
opportunities. Wikidata is an interdisciplinary, multilingual, open collaborative knowledge base of more than 90 million
entities connected by well over a billion relationships. It acts as a web-scale platform for broader computer-supported
cooperative work and linked open data, since it can be written to and queried in multiple ways in near real time by specialists,
automated tools and the public. The main query language, SPARQL, is a semantic language used to retrieve and process
information from databases saved in Resource Description Framework (RDF) format.

Here, we introduce four aspects of Wikidata that enable it to serve as a knowledge base for general information on the COVID-
19 pandemic: its flexible data model, its multilingual features, its alignment to multiple external databases, and its
multidisciplinary organization. The rich knowledge graph created for COVID-19 in Wikidata can be visualized, explored, and
analyzed for purposes like decision support as well as educational and scholarly research.

1> Corresponding author. E-mail: dm7gn@pvirginia.edu.

2 Project members: Jan Ainali, Susanna Anis, Erica Azzellini, Mus’ab Banat, Mohamed Ben Aouicha, Alessandra Boccone, Jane Darnell,
Diptanshu Das, Lena Denis, Rich Farmbrough, Daniel Fernandez-Alvarez, Konrad Foerstner, Jose Emilio Labra Gayo, Mauricio V. Genta,
Mohamed Ali Hadj Taieb, James Hare, Alejandro Gonzalez Hevia, David Hicks, Toby Hudson, Netha Hussain, Jinoy Tom Jacob, Dariusz
Jemielniak, Krupal Kasyap, Will Kent, Samuel Klein, Jasper J. Koehorst, Martina Kutmon, Antoine Logean, Tiago Lubiana, Andy Mabbett,
Kimberli Mékérdinen, Tania Maio, Bodhisattwa Mandal, Nandhini Meenakshi, Daniel Mietchen, Nandana Mihindukulasooriya, Mahir Morshed,
Peter Murray-Rust, Minh Nguyén, Finn Arup Nielsen, Mike Nolan, Shay Nowick, Julian Leonardo Paez, Jodo Alexandre Peschanski, Alexander
Pico, Lane Rasberry, Mairelys Lemus-Rojas, Diego Saez-Trumper, Magnus Silgd, John Samuel, Peter J. Schaap, Jodi Schneider, Thomas
Shafee, Nick Sheppard, Adam Shorland, Ranjith Siji, Michal Josef gpaéek, Ralf Stephan, Andrew I. Su, Hilary Thorsen, Houcemeddine Turki,
Lisa M. Verhagen, Denny Vrandeci¢, Andra Waagmeester, and Egon Willighagen.



Keywords: Public health surveillance, Wikidata, Knowledge graph, COVID-19, SPARQL, Community curation, FAIR data,

Linked Open Data

1. Introduction

The COVID-19 pandemic is complex and
multifaceted and touches on almost every aspect of
current life [1]. Coordinating efforts to systematize
and formalize knowledge about COVID-19 in a
computable form is key in accelerating our response
to the pathogen and future epidemics [2]. There are
already attempts at creating community-based
ontologies of COVID-19 knowledge and data [3], as
well as efforts to aggregate expert data [4]. Many
open data initiatives have been started spontaneously
[5-7]. The interconnected, multidisciplinary, and
international nature of the pandemic creates both
challenges and opportunities for using knowledge
graphs [2-5, 8-12]. However, there have been no
systematic studies of crowd-sourced knowledge
graph generation by spontaneous groups of self-
coordinated users, under the pressure of rapidly
occurring phenomena, such as the pandemic. Our
paper fills this gap.

For applications of knowledge graphs in general,
common challenges include the timely assessment of
the relevance and quality of any piece of information
with regards to the characteristics of the graph and
the integration with other pieces of information
within or external to the knowledge graph. Common
opportunities are mainly related to leveraging such
knowledge graphs for real-life applications, which in
the case of COVID-19 could be, for instance,
outbreak management in a specific societal context or
education about the virus or about countermeasures
[2-5, 8-12]. While this manuscript as a whole
emphasizes the opportunities, we think it is
worthwhile to highlight some of the challenges early
on.

1.1 COVID-19 data challenges

The integration of different data sources always
poses a range of challenges [13], for example in terms
of interoperability (e.g. differing criteria for COVID-
19 deaths across jurisdictions), granularity (e.g.
number of tests performed per jurisdiction and time
period), quality control (e.g. whether aggregations of
sub-national data fit with national data), data
accessibility (e.g. whether they are programmatically
and publicly accessible, and under what license) or

scalability (e.g. how many sources to integrate, or
how often to sync between them).

Integrating COVID-19 data presents particular
challenges: First, human knowledge about the
COVID-19 disease, the underlying pathogen and the
resulting pandemic is evolving rapidly [14], so
systems representing it need to be flexible and
scalable in terms of their data models and workflows,
yet quick in terms of deployability and updatability.
Second, COVID-19-related knowledge, while very
limited at the start of the pandemic, was still
embedded in a broader set of knowledge (e.g. about
viruses, viral infections, past disease outbreaks and
interventions), and these relationships - which
knowledge bases are meant to leverage - are growing
along with the expansion of our COVID-19
knowledge [15]. Third, the COVID-19 pandemic has
affected almost every aspect of our globalized human
society, so knowledge bases capturing information
about it need to reflect that. Fourth, despite the
disruptions that the pandemic has brought to many
communities and infrastructures [1], the curated data
about it should ideally be easily and reliably
accessible for humans and machines across a broad
range of use cases [16].

1.2. Organization of the manuscript

In this research paper, we report on the efforts of
the Wikidata community (including our own) to meet
the COVID-19 data challenges outlined in the
previous section by using Wikidata as a platform for
collaboratively collecting, curating and visualizing
COVID-19-related knowledge at scales
commensurate with the pandemic. While the relative
merits of Wikidata with respect to other knowledge
graphs have been discussed previously [17-19], we
focus on leveraging the potential of Wikidata as an
existing platform with an existing community in a
timely fashion for an emerging transdisciplinary
application like the COVID-19 response.

As active editors of Wikidata, the authors have
contributed a significant part of that data modelling,
usage framework and crowdsourcing of the COVID-
19 information in the knowledge graph since the
beginning of the pandemic. We consequently have a
unique perspective to share our experience and



overview how to use Wikidata to host COVID-19
data, integrate it with non-COVID-19 information
and feed computer applications in an open and
transparent way.

The remainder of the paper is organized as follows:
we start by introducing Wikidata in general (Section
2) and describe key aspects of its data model in the
context of the COVID-19 pandemic (Section 2.1).
Then, we give an overview of the language support
(Section 2.2) and database alignment (Section 2.3) of
COVID-19 information in Wikidata. Subsequently,
we present snapshots of applications of the
Wikidata’s COVID-19 knowledge graph to
visualizing multidisciplinary information about
COVID-19 (Section 3). These visualizations cover
biological and clinical aspects (Section 3.1),
epidemiology (Section 3.2), research outputs
(Section 3.3) and societal aspects (Section 3.4).
Finally, we discuss the outcomes of the open
development of the COVID-19 knowledge graph in
Wikidata (Section 4), draw conclusions and highlight
potential directions for future research (Section 5).

2.  Wikidata as a semantic resource for
COVID-19

Wikidata is a large-scale, collaborative, open-
licensed, multilingual knowledge base that is both
human- and machine-readable. Notably, it is
available in the standardized RDF (Resource
Description Framework) format, where data is
organized into entities (items) and the relationships
that connect them to each other and outside data,
named properties [20].

Wikidata is a peer production project, developed
under the umbrella of the Wikimedia Foundation,
which also hosts Wikipedia and an ecosystem of open
collaborative websites around it. Similarly to
Wikipedia, it relies on community-driven
development and design and is both a-hierarchical
and largely uncoordinated [21]. As a result, it
develops entirely organically, based on the editor
community’s consensus, which may be implicit (e.g.

3
https://www.wikidata.org/wiki/Wikidata:WikiProject Humanitari
an_Wikidata

4 The creation dates of the three core items: "COVID-19
pandemic" (Q81068910) 2020-01-05 https://w.wiki/3PCe (note
that labels may change), "SARS-CoV-2" (Q82069695) 2020-01-
14 https://w.wiki/3PCf and "COVID-19" (Q84263196) 2020-02-
02 https://w.wiki/3PCi.

by the absence of modifications) or explicit (e.g. a
policy on how to handle biographical information
about living people). This community develops
ontologies and typologies used in the database.

This community-centric approach is both a
blessing and a curse. On the one hand, it makes
methodical planning of the whole structure and its
granularity very difficult, if not impossible [22]: there
simply is no central coordination system, and all
major design decisions have to be approved through
a consensus of all interested contributors. On the
other hand, harnessing knowledge and skills of a
broad range of human and automated contributors
provides for an unparalleled flexibility and versatility
of uses, and allows for rapid addressing of emerging
and urgent phenomena, such as disease outbreaks®.

The novelty of a bottom-up developed Knowledge
Graph relies on an entirely organic growth of
taxonomies and content, negotiated continuously by
the involved parties. While the benefits of peer
production and collaborative editing are well known,
they are particularly visible in contemporary and fast
changing topics [23]. This is because the crowd-
sourced coordination does not require a long
decision-making process, nor a chain of command.
Additionally, the bottom-up approach allows for a
better optimization of topics, by relying on “free
market” spontaneous forces of individual editors. It
is already known that the search habits of users
seeking medical content changed dramatically as a
result of the COVID pandemic [24]. However, the
exact dynamics of how this peer network responded
to the challenge, in particular to the urgent need for
new taxonomies and knowledge graphs, has not been
a topic of systematic analysis. Our paper fills this gap.

With respect to the COVID-19 data challenges (cf.
Section 1.1), Wikidata addresses them in several
ways: First, it was designed for web scale data with
flexible and evolving data models that can be updated
quickly and frequently [20, 25], and its existing
community has been using it to capture COVID-19-
related knowledge right from the start.* Second,

The creation and curation of these core items was accompanied
by the creation of more specialized ones like “Category:COVID-
19 pandemic” (Q83189805; 2020-01-19), “Wuhan Huanan
Seafood Wholesale Market” (Q83264280; 2020-01-20), “Timeline
of the COVID-19 pandemic” (Q83493517; 2020-01-24) or
“Huoshenshan Hospital” (Q83554783; 2020-01-24).

As these items became available, they were quickly put to use
for enriching the knowledge graph around them. For instance,
when the paper “Recent advances in the detection of respiratory
virus infection in humans” was published on 2020-01-15, the item



Wikidata already contained a considerable and
continuously expanding volume of curated
background information - from SARS-CoV-1 and
other coronaviruses to zoonoses, cruise ships, public
health interventions, vaccine development and
relevant publications - ready to be leveraged to
explore the growing COVID-19-related knowledge
in such broader contexts [15]. Third, both the
Wikidata platform and the Wikidata community are
highly multifaceted, multilingual and
multidisciplinary [26, 27]. Fourth, the Wikidata
infrastructure is digital-first, with high uptime and
low access barriers, while its community is
distributed around the globe and includes people
from many walks of life [20], such that any particular
disruption due to the pandemic only affects subsets
of the Wikidata community, which also has
experience with handling humanitarian crises, e.g.
through the Zika experience [28] and through overlap
with the Wikipedia community that has been
covering disasters for two decades.’

An important caveat is that data integration
through Wikidata poses some particular challenges of
its own, such as data licensing (being in the public
domain, Wikidata can essentially only ingest public-
domain data [29]) or multilinguality (e.g. how to
handle concepts that are hard to translate [30]), and
for certain kinds of data (e.g. health data from
individual patients), it is not suitable, although
appropriately configured instances of the underlying
technology stack might [31].

Here, we present how various types of data related
to the COVID-19 pandemic are currently represented
in Wikidata thanks to the flexible structure of the
database and how useful visualizations for different
subsets of the data linked to COVID-19 within the
Wikidata knowledge base can be generated.

2.1. Data model flexibility

In Wikidata, each concept has an item (a human,
disease, drug, city, etc.) that is assigned a unique
identifier (Q-number; brown in Fig. 1), and
optionally a label, description and aliases in multiple
languages (yellow in Fig. 1). The assignment of a
single language-independent identifier for each entity
in Wikidata helps minimize the size of the knowledge
graph and avoids issues seen in databases such as

Q82838328 about it had been linked to the "SARS-CoV-2" item
within less than three days: https:/w.wiki/3XAt .

DBpedia, where separate items are needed for each
language [19]. Such a feature is allowed thanks to the
use of Wikibase software - a MediaWiki variant
adapted to support structured data - to drive Wikidata
instead of other systems that represent entities using
textual expressions, particularly Virtuoso in the
context of DBpedia [19] and NewsReader [32].

The true richness of the knowledge base comes
from the connections between the items: statements
in the form of RDF triples (subject-predicate-object)
where the subject is the respective item, the predicate
is a Wikidata property (red in Fig. 1), and the object
is another Wikidata item or piece of information
(blue in Fig. 1). The properties that relate items are
similarly each assigned an identifier (P-number).
Some properties relate a Wikidata item as the object
and can be taxonomic (e.g. instance of [P31],
subclass of [P279] or part of [P361]) or non-
taxonomic (e.g. significant person [P3342], drug
used for treatment [P2176] or symptoms [P780]).
Conversely, other properties can have an object that
is a value (e.g. number of cases [P1603]), date (e.g.
point in time [P585]), URL (e.g. official website
[P856]), string (e.g. official name [P1448]), or
external identifier (e.g. Library of Congress authority
ID [P244] or Disease Ontology ID [P699]). Each
statement can be given further detail and specificity
via qualifiers (black in Fig. 1) or provenance via
references (purple in Fig. 1), which themselves can
be represented as RDF triples [25]. This process of
adding statements about statements is generally
known as reification [33] and differs from other
projects like DBpedia, which are based on a simple
RDF representation without qualifiers and references
[34]. The lack of reification in DBpedia makes it
difficult to analyze epidemiological information as
time series because values are not assigned dates. On
the other hand, the excessive use of generic
properties, particularly dbo:wikiPageWikiLink, to
link DBpedia items according to how their
corresponding Wikipedia articles are related in
Wikipedia (e.g. wikilink or subcategory) does not
always capture semantic relatedness as generic
relations can sometimes represent comparisons and
simultaneity and does not seem to be useful to drive
automatic biomedical reasoning requiring knowledge
resources with well-defined relation types to
efficiently work. An example of such a deficiency is
the consideration in DBpedia of a link to COVID-19
pandemic in Tunisia from the Wikipedia article about

3 Cf. https://w.wiki/VDe



2020 Nice Stabbing although the statement including
the wikilink declares that the perpetrator had arrived
as a migrant in late September 2020 at the island of
Lampedusa, Italy, amidst the COVID-19 pandemic in
Tunisia.

The only situation where DBpedia retrieves
precise relational statements (e.g. dbp:symptoms,
dbp:treatment) as well as non-relational statements
(e.g. dbo:confirmedCases, dbp:arrivalDate) from
Wikipedia is when the information is extracted from
infoboxes [35]. Even in this situation, the infobox-
based creation of DBpedia statements suffers from
several inconsistencies requiring the use of logical
constraints and human efforts for their efficient
elimination although properties are quite defined in
infoboxes [35]. A practical example of this problem
is the DBpedia item about Ahmed Al-Qadri, a former
Syrian minister of Agriculture and Agrarian Reform,
as of June 20, 20218, This item is described as having
COVID-19 pandemic as a place of death
(dbp:deathPlace) and not as a cause of death.

The advantage of Wikidata’s use of RDF over
other competing semantic data formats, particularly
property graphs, is that it applies reference schemas
and consistency rules before assigning predicates to
statements [36]. Its volume, variety, velocity and
veracity place it at the forefront of ‘big data’
approaches [37, 38]. Entries in RDF triple stores are
predefined entities, rather than simple text strings,
and structured into uni-directional statements [39]. In
Wikidata, this is further enhanced by the use of
qualifiers to provide additional features of the
statements. This structure makes building semantic
databases using RDF more difficult and time-
consuming than alternative systems, especially
property graphs [36], but it allows a fully regular
representation of statements in knowledge graphs
where subjects, predicates and objects are
standardized and semantically described. Avoidance
of typos and synonyms of string-based systems then
allows far faster and more precise information
retrieval and usage [39].
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https://web.archive.org/web/20210620223556/https://dbpedia.org
/page/Ahmed Al-Qadri
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https://www.wikidata.org/wiki/Wikidata:WikiProject Zika Corp
us

In the context of the COVID-19 pandemic, an
ontological database representing many aspects of
the SARS-CoV-2 outbreak has been represented in
Wikidata, building on pilot work that was started at
the onset of the Zika pandemic [28] and led to the
formation of WikiProject Zika Corpus’. This Zika
project—itself inspired by dedicated Wikiprojects for
Medicine® and for Source Metadata®—laid many of
the foundations for the current COVID-19 work in
managing fast-changing information: it developed,
documented and refined sets of SPARQL queries
about an ongoing epidemic, the underlying pathogen,
the disease and diagnostic or therapeutic options, and
it piloted workflows for integrating distributed
knowledge from multiple databases to build a
consistent semantic representation of a topic for
which relevant concepts were often not yet readily
available through formal ontologies.

Wikidata is apt to cover gaps in ontologies, as any
user is entitled to create new classes and propose new
properties. In contrast to DBpedia, which is based on
scheduled scraping of Wikipedia, the openness of the
Wikidata data model allows flexible, immediate
representation by any stakeholder interested on a
subject. For example, Wikidata has a concept for
vaccine candidate [Q28051899] , but as it is not on a
particular Wikipedia page, the concept has never
been represented on DBpedia.

The core of the COVID-19 knowledge graph in
Wikidata is formed by three main items (red in Fig.
2): COVID-19  [Q84263196], SARS-CoV-2
[Q82069695], and COVID-19 pandemic
[Q81068910]. Those three core COVID-19-related
Wikidata items have relatively simple links to one
another. Mainly that SARS-CoV-2 causes COVID-
19, which itself has had the downstream effect of the
COVID-19 pandemic.

These three core items then link to a vast array of
items related to all aspects of the disease, its causative
virus, and the resulting pandemic (>17,000 Wikidata
items as of 20 August 2020; blue in Fig. 2).

8
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Fig. 1. Data Structure of a Wikidata item. The simple, consistent structure of a Wikidata item makes it both human- and machine-readable.
Each Wikidata item has a unique identifier (Brown). Items can have labels, descriptions and aliases in multiple languages (Yellow). They can
include any number of statements having predicates (Red), objects (Blue), qualifiers (Black) and references (Purple) where the subject is the
item. Finally, where additional Wikimedia resources are available about an item’s topic, those are listed (Green). Source:
https://www.wikidata.org/wiki/Q84263196, available at: https://w.wiki/auF. License: CC BY-SA 4.0.
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Fig. 2. Simplified skeleton of the data model of COVID-19 information on Wikidata. The three main COVID-related items (the ‘C3 items’)'°
are represented in red, selected classes of items related to these are shown in blue, with the relations between them represented as arrows. The
number of statements relating to each item from the relevant class is indicated next to the item (In the case of scholarly articles, relations to
each of the three COVID-related items is indicated by colour). Relation types regularly used to define items within Wikidata classes are
omitted (e.g. chromosome [P1057] for human genes), as of 20 August 2020'!, available at: https://w.wiki/auD, license: CC BY 4.0.

When comparing the number of COVID-related
Wikidata items with the number of COVID-related
entries on the English DBpedia as of May 26, 2021,
we find that only 8727 DBpedia entities have been
defined for COVID-19 information, presumably only
the entities having a corresponding article in English
Wikipedia!2. The limitation of DBpedia in this context
is explained by the narrower notability criteria used in
Wikipedia for deciding whether a topic can have a
Wikipedia article or not. This criterion disallows
multiple aspects of COVID-19 from being included in
Wikipedia and consequently in DBpedia [40].

The collaborative work in Wikidata to populate and
curate this data has been largely accomplished by
WikiProject COVID-19'3, launched in March 2020
[15]. This WikiProject itself has a Wikidata item
[Q87748614], and items are linked to it using the
property on focus list of Wikimedia project [P5008].
The Wikipedia wing of the project similarly works to
enrich and validate COVID-19 information through
manual fact-checking from referred scholarly
publications and trustworthy mass media to prevent
vandalism [41] and verify the coverage of the disease
through Wikidata-driven analysis of the online
encyclopedia [42]. This replication mainly serves to
ensure the manual extraction of accurate COVID-19
information from Wikipedia to further enrich
Wikidata by contrast to DBpedia that gives less
interest to the verification and vandalism
identification of Wikipedia information before
automatically retrieving it to enrich DBpedia with
updated statements [40].

These COVID-19-related items are linked to their
respective classes or types using instance of [P31] or
subclass of [P279] relations, and they are linked
between each other using non-taxonomic relations
defining knowledge about various and multi-
disciplinary aspects of COVID-19 (Fig. 2).
Biomedical relations between Wikidata items can be
assigned nature of statement [P5102] or sourcing

circumstances [P1480] qualifiers to state the status
(e.g. official, hypothesis and de facto) and the
occurrence probability (e.g. rarely, possibly and often)
of the described semantic relation. The network of
these items and relations forms a large-scale
knowledge graph for COVID-19, where the three core
COVID-19-related items noted above extensively link
various classes, most notably: disease outbreaks
[Q3241045] in regions such as continents, sovereign
states, and constituent states, COVID-19 tracing apps
[Q89288125], COVID-19 vaccines [Q87719492] and
vaccine candidates [Q28051899], scholarly articles
[Q13442814] and COVID-19 dashboards
[Q90790055]. This graph with short paths to the core
COVID items is augmented by biomedical,
geographical and other more distantly related entities
that are already available in Wikidata, representing an
important overview of clinical and other knowledge
[15, 25]. Such distantly related entities are also
available in other open knowledge graphs, particularly
DBpedia and YAGO, and contribute much to the value
of a semantic resource [17, 18]. In Wikidata, several
initiatives such as WikiCite for scholarly information
[43-46] and Gene Wiki for genomic data [47] have
enabled COVID-19 knowledge graphs to include
classes like genes [Q7187], proteins [Q8054] or
biological processes [Q2996394], along with the
definition of semantic relations between items closely
and distantly related to COVID-19. This,
consequently, allows the expansion of the coverage of
COVID-19 information in Wikidata and a better
characterization of COVID-19-related items.

In addition to relational statements that link items
within the knowledgebase, non-relational statements
link to external identifiers or numerical values [48].
Wikidata items are assigned their identifiers in
external databases, including semantic resources,
using human efforts and tools such as Mix’n’match
[49]. These links make Wikidata a key node of the
open data ecosystem, not only contributing its own
items and internal links, but also bridging between

19 COVID and C3 stand for any subset of {COVID-19 [Q84263196], SARS-CoV-2 [Q82069695], COVID-19 pandemic [Q81068910]}.

1 Source queries: https://w.wiki/Ypc, https://w.wiki/Ypd, https://w.wiki/Ype, https://w.wiki/Ypg, https://w.wiki/Yph, and

https://w.wiki/Ypi.

12 For an update of the number of COVID-related items in English DBpedia, please see https:/tinyurl.com/ftnSaef3 .

13 https://www.wikidata.org/wiki/Wikidata:WikiProject COVID-19




other open databases (Fig. 3). Wikidata therefore
supports alignment between disparate knowledge
bases and, consequently, semantic data integration
[47] and federation [49] in the context of the linked
open data cloud [50]. Such statements also permit the
enrichment of Wikidata items with data from external
databases when these resources are updated,
particularly in relation with the regular changes of the
multiple characteristics of COVID-19. By contrast,
DBpedia mainly uses Wikipedia for its enrichment
and this does not support the coverage of multiple
aspects of the analyzed disease [19, 34, 51]. Examples
of Wikidata properties used to define external
identifiers can be found in Table 1.

User Generated
Life Science

Fig. 3. Wikidata in the Linked Open Data Cloud. Databases
indicated as circles (with Wikidata indicated as “WD’), with grey
lines linking databases in the network if their data is aligned,
source dataset last updated May 2020 (available at:
https://w.wiki/bYM, license: CC BY 4.0).

Numerical statements are assigned to disease
outbreak items for the COVID-19 pandemic to outline
the evolution of the epidemiological status of different
entities, from countries to provinces, cities and cruise
ships. The properties used to define these statistical
statements are shown in Table 1 and include data
about the morbidity, the mortality, the testing and the

14 https://datahub.io/core/covid-19

15 QuickStatements (QS) is a web service that can modify
Wikidata, based on a simple text commands:
https://quickstatements.toolforge.org/

16 An application programming interface (API) is a machine-
friendly interface of a web service that can be used to feed another

clinical management of COVID-19 at the level of
continents, countries and constituent states and also
many smaller entities. Some Wikidata properties used
to store this epidemiological information have been
created in response to COVID-19 (e.g. Number of
recoveries [P8010], number of clinical tests [P8011],
and number of hospitalized cases [P8049]) proving the
flexibility of the knowledge base. To keep records of
the progress of the COVID-19 pandemic over time,
each statistical statement is assigned a point in time
[P585] relation as a qualifier. These epidemiological
statements are retrieved from CCO databases such as
the COVID-19 DataHub database'* and are linked to
them as references. These statements can be used to
automatically infer other measures that are not
supported by Wikidata but give a full overview of the
epidemiology of COVID-19: let ¢ be the total number
of confirmed cases at a given day Z when the
epidemiological evaluation takes place, d the number
of confirmed deaths until that day, » the number of
confirmed recoveries by that day, /# the number of
confirmed hospitalized cases on that day, # the number
of clinical tests until that day. On the basis of these
values (which could all be represented in Wikidata if
matters related to the multi-level coverage of COVID-
19 knowledge and conflicts of information from
multiple sources are solved), the following measures
can be inferred:

e Confirmed active cases v=c—(d +r)
e Confirmed recoveryratea=r/c

e Confirmed patient-days p =234 if all infection
days are represented

e New confirmed cases ncz=cz - cz.i

e New confirmed deaths ndz = dz - dz.:

o New clinical tests ntz =tz - tz-1

o New confirmed recoveries nrz =rz - rz.i.

This set of COVID-19 information is integrated into
Wikidata using human efforts, the QuickStatements
tool!3, the Wikidata API'S, and bots mainly written in
Python (e.g. CovidDatahubBot!”), which explains its
quantity and coverage [25]. Data validation is
accomplished at multiple layers:

computer program with needed information. The Wikidata API is

available at https://www.wikidata.org/w/api.php
17

https://www.wikidata.org/wiki/Wikidata:Requests for permission
s/Bot/CovidDatahubBot




e Wikidata properties can have constraint
declarations associated with them which
represent conditions on the use of those
properties. As an example, property drug or
therapy used for treatment [P2176] has a type
constraint that states that the items described
by it should be instances of health problem
[Q2057971] and a value-type constraint that
states that the referenced items should be
instances of medication [Q12140].

e In 2019, Wikidata added a new namespace to
define Entity schemas using the Shape
Expressions (ShEx) language [53]. Entity
schemas can be used to define expectations
about the topology associated with some
entities. Entity schemas are human readable
and machine processable, facilitating their
creation by domain experts and their use for
validation. During the pandemic, entity
schemas related to COVID-19 entities were
created like virus taxon [E192], strain [E174],
disease [E69], virus strain [E170], virus gene
[E165], coronavirus pandemic local outbreaks
[E188] and so on [15]. A remarkable aspect of
entity schemas in Wikidata is their
collaborative nature, which allows the entity
schema ecosystem to evolve by users creating
new schemas with different constraints or
reusing existing schemas by importing existing
ones.

e Another approach to validate the data has been
the use of SPARQL queries. SPARQL is
available as part of the Wikidata Query Service
and it can be used not only to query the
knowledge graph, but also to detect
inconsistencies and check logical constraints
and more complex patterns based on heuristics.
It is also possible to check the edit history and
use the ORES service to eliminate database
vandalism [53].

Although Web Ontology Language (OWL) can define
knowledge graphs with a richer semantic
characterization of data models by providing a layer of

'8 This can be illustrated, for instance, by a query for the number
of COVID-related items that have been last modified in May and
June 2021 (as of June 21, 2021): https://w.wiki/3XBL.

19
https://web.archive.org/web/20210602140025/https://dbpedia.org/
page/COVID-19 pandemic in Brazil

20 https://en.wikipedia.org/w/index.php?title=COVID-
19 pandemic_in Brazil&oldid=10260573

Description Logics such as in DBpedia [19], the
infrastructure developed for the validation of RDF
data in Wikidata helps assure a high level of
consistency of the Wikidata knowledge graph.

In the context of COVID-19, numerical statements
related to epidemiology are constantly changing, and
Wikidata’s structure benefits it in terms of recency'®.
Wikidata's speed can be tailored by independent users
to be as fast as needed. In the case of COVID-19,
while death counts on Wikidata might lag behind
Wikipedia, bots and humans fill the data model
directly, and do not wait for update cycles. As of June
2, 2021, DBpedia counts less than 160.000 deaths in
Brazil'® while both English Wikipedia and Wikidata
present counts of over 460.000%. This is mainly due
to the long delays between the regular updates of the
DBpedia statements from Wikipedia. In fact, as of
June 2, 2021, DBpedia information for COVID-19
pandemic in Brazil is inferred from the edition of
October 30, 2020%!, leaving it currently outdated. Even
if DBpedia has been timely updated from infoboxes,
the information infoboxes include can remain
outdated in several languages due to the lack of
activity on a particular page. An example of such a
limitation is the epidemiological data in the infobox of
the article about COVID-19 pandemic in France in
Simple English Wikipedia as of May 28, 2021 that
shows outdated values of confirmed cases and deaths
going back to May 13, 2021%2 In that direction, the
Wikidata Bridge project® aims to develop Wikidata-
driven infoboxes that can be editable in Wikipedia.
That may benefit non-English Wikipedia projects in
particular to have updated information in infoboxes.

Table 1
Examples of Wikidata properties used to define non-relational
statements
Wikidata | Name Description

1D

Properties for the alignment with scholarly databases

P496 ORCID iD identifier for a researcher (Open

Researcher and Contributor ID)

https://www.wikidata.org/w/index.php?title=Q86597695&oldid=1

433353285
21

https://en.wikipedia.org/w/index.php?title=COVID-

19 pandemic in Brazil&oldid=986289428
22

https://simple.wikipedia.org/w/index.php?title=COVID-
19 pandemic in France&oldid=7562853

23 https://www.mediawiki.org/wiki/Wikidata Bridge




P1153 Scopus Author identifier for an author in the Scopus number of cases by the number of
1D bibliographic database deaths as stated in a given day)
P214 VIAF ID identifier for the Virtual International P8010 Number of number of cases that recovered from
Authority File database recoveries disease
P7859 WorldCat entity on WorldCat for authority P8011 number of cumulative number of clinical tests
Identities ID control of authors’ data clinical tests
P1053 ResearcherID identifier for a researcher in a system P8049 number of number of cases that are hospitalized
for scientific authors, primarily used in hospitalized
Web of Science cases
Properties for the alignment with clinical language resources and P3488 minimal minimal time between an infection and
encyclopedias incubation period | the onset of disease symptoms in
in humans infected humans
P494 ICD-10 identifier in the ICD catalogue codes
for diseases - Version 10 P3487 maximal maximal time between an infection and
- - - incubation period | the onset of disease symptoms in
P672 MeSH tree code | Medical Subject Headings in humans infected humans
(MeSH) codes are an index
and thesaurus for the life P3492 basicd . pufmbf:r ofi‘n}ffctions c_al;sed gy one
sciences (# MeSH ID, P486) reproduction n ectlop within an uninfecte
number population
P1417 Encyclopadia identifier for an article in the online
Britannica Online | version of Encyclopadia Britannica . .
D 2.2. Broad multilingual representation
P486 MeSH descriptor | identifier for Descriptor or - Wikidata’s language—independent data model
ID Supplementary concept in the Medical X o .
Subject Headings controlled makes 1.t well-adapted for multilingual r.epre.sentatl.on.
vocabulary In English, French, German and Dutch, its biomedical
P3098 ClinicalTrials.go | identifier in the ClinicalTrials.gov 1anguage coverage 1s compara‘t;ﬂe to other serzrgantlc
v Identifier database resources such as SNOMED-CT**, BabelMeSH*>, and
— : ICD-10%® (largely due to links with other biomedical
P6680 MeSH term ID identifier of a "MeSH term" (Medical tologi d knowledee b 251 H it
Subject Headings) ontologies an owledge ases) [25]. However, its
— . - coverage over a larger lange set is markedly broader
P6694 ?}’;"SH concept ﬁen:i‘_ﬁer ofa Metdlcal Subject than those resources [55, 56]. Looking at the coverage
caqines coneep of'the 17,000 items that link to and from the three main
Properties for the non-relational characterization of Wikidata items COVID items (Fig. 2) and the 55,000 statements that
P569 date of birth date on which the subject was born relate them, distinct .pattems emerge (Flg' 4E)' More
: : - than 40% of the predicates (Curves B and D) and more
P856 official website URL of the official homepage of an than 90% of the ObjCCtS (Curve C) of the statements
item (current or former) .
related to COVID are represented in fifty languages or
P1603 number of cases | cumulative number of confirmed, more. English is the unsurprising front-runner in items
probable and suspected occurrences with COVID as the object, since many of those items
P1120 number of deaths | total (cumulative) number of people are journal articles with untranslated titles (Fig. 4A).
who died since start as a direct result of [ The names of the properties that link them (Fig. 4B,D)
an event or cause have much more even coverage, as do items with
P3457 Case fatality rate | proportion of patients who die of a COVID as the subject (Fig. 4C). This broad but
particular medical condition outofall "} yneven coverage is particularly relevant for
who have this condition within a given
time frame (equal to the quotient of the

2 http://www.snomed.org/snomed-ct/sct-worldwide (Accessed

February 3, 2021): SNOMED-CT supports English, French,
Danish, Dutch, Spanish, Swedish, and Lithuanian.

25 https://lhncbe.nlm.nih.gov/project/babelmesh-and-pico-

linguist (Accessed on February 3, 2021): BabelMeSH supports
Arabic, Chinese, Dutch, English, French, German, Italian,
Japanese, Korean, Portuguese, Russian, Spanish, and Swedish.

26 [CD-10: International Classification of Diseases, 10th
Revision [54]: ICD-10 supports Arabic, Chinese, English, French,
Russian, Spanish, Albanian, Armenian, Azeri, Basque, Bulgarian,
Catalan, Croatian, Czech, Danish, Dutch, Estonian, Persian,
Finnish, German, Greek, Hungarian, Icelandic, Italian, Japanese,
Korean, Latvian, Lithuanian, Macedonian, Mongolian, Norwegian,
Polish, Portuguese, Serbian, Slovak, Slovenian, Swedish, Thai,
Turkish, Turkmen, Ukrainian, and Uzbek.




multilingual resources for natural language processing
purposes in clinical contexts [57].

The better coverage in English is explained in part
by the higher support of this language in both
biomedical language resources [58] and Wikipedia
[59]. Cooperation with publishers such as Cochrane
has a significant effect on English Wikipedia
coverage, too [60]. The significant coverage of
languages like French, Spanish, German, Chinese and
Swedish in Medical Wikidata fits with their support by
major biomedical multilingual databases: ICPC-2 [61]
supports 24 languages®’, SNOMED-CT supports 7
languages, LOINC?® supports 13 languages,
BabelMeSH [62] supports 13 languages, and ICD-10
supports 42 languages. The situation is even worse for
other multilingual open knowledge graphs,
particularly DBpedia which failed to develop COVID-
19 information in major languages like French and
German as of June 20, 2020%.

The support of other natural languages can also be
explained by the use of bots that extract multilingual
terms representing clinical concepts based on natural
language processing techniques and machine
learning®® [63] and by the involvement of research
institutions and scientists speaking these languages,
particularly German and Dutch, in adding biomedical
information to Wikidata [64, 65]. The near-100%
coverage for properties with COVID-19 as the subject
in the most spoken languages (Fig. 4B) resulted from
early systematic volunteer translation drives for
common properties by WikiProject Labels and
Descriptions®! and others [30]. Language coverage of
medical Wikidata labels (particularly for diseases’
class) seems influenced by several factors. Most
obvious for a collaborative project is the number of
speakers of each language among the contributor
community [26]. However, there also appears to be an
impact from the overall number of Wikidata labels for
each language [27] and to the number of medical
Wikipedia articles in each language [66] (Table 2).

27 1cPC-2 supports Afrikaans, Basque, Chinese, Croatian,
Danish, Dutch, English, Finnish, French, German, Greek, Hebrew,
Hungarian, Italian, Japanese, Norwegian, Polish, Portuguese,
Romanian, Russian, Serbian, Slovenian, Spanish, and Swedish.

28 https://loinc.org/international/ (Accessed on August 13,
2020): LOINC supports Chinese, Dutch, Estonian, English,
French, German, Greek, Italian, Korean, Portuguese, Russian,
Spanish, and Turkish.

29 please refer to
https://web.archive.org/web/20210620132047/http://fr.dbpedia.org
/page/COVID-19 and
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Fig. 4. Language representation of COVID-19-related statements.
A-D) Language coverage for items and properties used in
statements when either the object or subject is one of the three
COVID-related items (as per Figure 2; note: log y-axis). The eight
most common languages in Wikidata are shown: en=English,
fr=French, de=German, es=Spanish, zh=Chinese, ar=Arabic,
ja=Japanese, ru=Russian.) E) Percentage of the items covered in
order from highest to lowest coverage. faceted by categories A-D.
Data shown for top 150 languages in each category (note:
languages not necessarily in same order for each), as of August 15,
2020 (available at: https://w.wiki/auE, license: CC BY 4.0; live
data: https://w.wiki/Y]$, https://w.wiki/Yk3, https://w.wiki/Yk5

and https://w.wiki/Yk6)

https://web.archive.org/web/20210620132401/http://de.dbpedia.or
2/page/COVID-19 as a proof of this assumption.

30 An example of such a Wikidata bot can be Edoderoobot 2,
which is specifically working on labelling, thereby translating
structured data into prose in the respective language. Further
information about this bot can be found at
https://www.wikidata.org/wiki/Wikidata:Requests for permission
s/Bot/Edoderoobot_2.

31

https://www.wikidata.org/wiki/Wikidata:WikiProject Labels and
descriptions




These correlations can be interrogated by querying
Wikidata to find out the current status of the editing of
this knowledge graph and of Wikipedia in 307
languages (Table S3; top-ranking items for each
variable summarised in Tables 3 and 4). Query results
largely match previously published trends for
Wikipedia and Wikidata (Table 2), though we note
that Arabic (ar) and Chinese (zh), appear in the top 10
languages in the Wikidata COVID-19 subset, while
being absent from the top 10s for other sets described
in Table 4. Coverage differed across languages and
variables, and most of the distributions showed
marked positive skew. Nonparametric analysis of
correlations (Spearman’s rho) found large magnitude

Supplementary Table S4), statistically significant
even following stringent Bonferroni correction. To
account for skew and data spanning multiple orders of
magnitude, loglO-transformed data was used for
subsequent  analyses.  Pearson’s  correlation
coefficients between all variables was high (Figure 5).
A principal component analysis for the 90 languages
with complete data on all 7 indicators found that a
single component explained 81% of the variance, with
loadings ranging from .80 to .95. The smallest PCA
loading and Spearman’s correlation were for the
number of viewers, which though still a strong
association, was less correlated than the other
variables by a substantial margin.

associations (rho .65 to .97, median = .84,
Table 2

Languages ranked by medical content from the literature: Number of medical Wikipedia articles, number of Wikidata labels, number of native
speakers, and number of Wikidata users. Style code: [talic for languages appearing in all four lists; bold for those appearing in only one.

Medical Wikipedia, 2013 [66] Wikidata labels, 2017 [27] Population, 2019 [67] Wikidata users,
2018 [26]
Rank Language Number of Language Rate of Language Native Language
medical labels speakers
articles (millions)
1 English 29072 English 11.04% Chinese 1323 English
2 German 7761 Dutch 6.47% Spanish 463 French
3 French 6372 French 6.02% English 369 German
4 Spanish 6367 German 5.08% Hindi 342 Spanish
5 Polish 5999 Spanish 4.07% Arabic 335 Italian
6 Italian 5677 Italian 3.9% Bengali 228 Russian
7 Portuguese 5269 Swedish 3.89% Portuguese 227 Dutch
8 Russian 4832 Russian 3.54% Russian 154 Japanese
9 Dutch 4391 Cebuano 2.21% Japanese 126 Danish
10 Japanese 4303 Bengali 1.94% Western 82.5 Portuguese
Punjabi
Table 3

Languages ranked by medical content from Wikidata queries (as of August 11, 2020). The Medical Wikipedia query yields Wikipedia articles

associated with Wikidata items that have a Disease Ontology ID [P699] or are in the tree of any of the following classes: medicine [Q11190],

disease [Q12136], medical procedure [Q796194] or medication [Q12140]. The Medical Wikidata labels query yields labels of Wikidata items

that have a Disease Ontology ID [P699] or a MeSH Descriptor ID [P486] or are in the tree of any of the same four classes. The Wikipedia and

Wikidata users column provides a snapshot from the Wikidata dashboard that lists Wikidata users who also edit Wikipedia by number of such
users per Wikipedia language. Style code: [talic for languages appearing in all three lists; bold for those appearing in only one.

Medical Wikipedia articles Medical Wikidata labels Wikipedia and Wikidata users
https://w.wiki/Z6a https://w.wiki/Z6h https://w.wiki/Z6W

Rank Language Number of Language Number of Language Number of users

medical articles labels

1 English 16670 English 65986 English 9600

2 German 8911 French 37053 French 2580

3 Arabic 8596 German 22432 German 2490

4 French 7258 Spanish 21505 Spanish 2330

5 Spanish 6979 Arabic 18581 Russian 1790

6 Italian 6498 Italian 18074 Italian 1430

7 Polish 6071 Japanese 17992 Chinese 1120

8 Portuguese 5652 Dutch 17985 Japanese 1090

9 Russian 5564 Chinese 17462 Portuguese 979

10 Japanese 4651 Russian 17165 Arabic 688




Similarly, the current representation of COVID-19
Wikidata items in natural languages seems to be
linked with COVID-19-related Wikipedia pages,
edits and pageviews for a given language, as shown
in Table 4. This is confirmed by the high correlation
(Pearson r = 0.93) of the language distribution of
COVID-related Wikidata labels with the number of
COVID Wikipedia pages in language editions and the
moderate correlation (Pearson r > 0.65) between the
number of Wikidata COVID-related labels in a given
language and the quantity and edit statistics of
medical content in Wikidata and Wikipedia (Fig. 5).
Such relationships are strengthened by the high
correlation (Pearson r > 0.9) between the number of
medical Wikidata labels in a given language and the
number of medical Wikipedia articles in language
editions as well as the number of native speakers
jointly editing Wikipedia and Wikidata.

To investigate the possible causes of these highly
correlated datasets, we compared them to two
external metrics for each language: the number of
native speakers of each language [67] and the
maximum Human Development Index for countries
where that language is an official language [68]. This
data was available for fewer languages (N = 57 each,
19 pairs) and the sparse overlap precluded including
both simultaneously in analyses. The number of
native speakers showed a similar positive skew to
earlier data, so was also loglO-transformed. Even
though these analyses are necessarily exploratory,
maximum development correlated more strongly
than did the number of speakers (Figure 5B; Table
S4). Cohen’s q values (an effect size for differences
between correlation coefficients) of a size considered
unusually large for the social sciences (> 0.5) were
observed when comparing correlation  of
development index versus number of speakers with
the number of medical Wikidata labels and with the
number of wusers. Further medium q values
(differences > 0.3) were observed for correlation to
the number of medical Wikipedia articles and to the
number of COVID Wikipedia pages. Correlation
differences were negligible with regard to
development versus number of speakers as associated
with the number of edits or pageviews [69].

32 Current efforts to enhance the coverage and language
support of medical knowledge in Wikipedia are mainly driven by
Wikimedia Medicine. For further information, please refer to
https://meta.wikimedia.org/wiki/Wiki Project Med. An example
of the initiatives under this umbrella is the Special Wikipedia

The observation here that current language
coverage in Wikidata and Wikipedia correlates more
closely to countries' development index than to the
number of speakers of each natural language aligns
with previous work demonstrating low correlation of
Wikidata to the number of speakers [27].

We interpret this as a potential ‘need gap’, where
languages that have a large number of relatively low-
income speakers remain relatively underserved. To
address this, it may be necessary to encourage and/or
support contribution by speakers of under-resourced
and unrepresented languages to medical Wikidata
projects, analogous to those Wikipedia projects®?
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Fig. 5. A) All-versus-all pairwise correlations of log10-
transformed values of seven metrics for 307 languages (data from
sources detailed in tables 3 and 4). Histograms on diagonal
indicate skew, scatter plots below diagonal indicate data and
trendlines, ellipsoids above diagonal indicate Spearman’s r

Awareness Scheme for The Healthcare Affiliates project, focused
on languages of India. An explanation of this project can be
found at https://en.wikipedia.org/wiki/Wikipedia:SWASTHA.




correlation coefficient. B) Cohen’s q coefficient comparing
correlation of the seven metrics to maximum human development
index versus to the number of native speakers. C) Highest
correlated variable pair. D) Lowest correlated variable pair.
[Available at: https://w.wiki/zV6, License: CC-BY 4.0].

Table 4

In addition to the intrinsic value of increased
language coverage, it would also help in ensuring
culturally relevant contextualizations in Wikidata’s
medical and other domains.

Languages ranked by COVID-19-related content from Wikidata queries and other live data (as of August 13, 2020). The COVID-19 pandemic
Wikipedia pageviews column represents daily average user traffic (averaged over 2020) to the article about the COVID-19 pandemic in the
respective language. The COVID Wikidata labels query sorts languages by the number of labels of Wikidata items with a direct link to and/or
from any of the core COVID-19 items - Q84263196 (COVID-19), Q81068910 (COVID-19 pandemic) and Q82069695 (SARS-CoV-2) -
excluding items about humans (3131) or scholarly publications (40164). The COVID Wikipedia articles query filters those Wikidata items for
associated Wikipedia articles and sorts languages by the number of such articles. The values in the COVID Wikipedia edits column represent
the revision counts per Wikipedia language as taken from the dashboard listing Wikimedia projects by total number of revisions to COVID-19-
related articles. Style code: [talic for languages appearing in all four lists; bold for those appearing in only one.

COVID-19 pandemic COVID Wikipedia articles COVID Wikidata labels COVID Wikipedia edits
Wikipedia pageviews https://w.wiki/ZSt - -
P https://w.wiki/ZSq https://w.wiki/y9u
https://w.wiki/ZTG
Rank Language Avg. daily Language Nu.mber of Language Number of Language Number of
. articles .
pageviews labels edits
! English 52872 English >61 English 1429 English 250306
2 Russian 41246 Arabic >17 Dutch 785 German 126359
3 Spanish 37722 German ik Arabic 623 French 42029
4 Chinese 27598 Portuguese | 427 Catalan 579 Chinese 41545
> German 20707 Korean 408 German 561 Spanish 30869
6 Italian 8490 Chinese 396 French 517 Arabic 19963
7 French 7959 Vietnamese 392 Japanese 503 Russian 18719
8 Portuguese 7648 French 379 Chinese 483 Japanese 11508
i Japanese 5227 Spanish 370 Portuguese | 463 Ukrainian__| 10599
101 4rabic 4300 Indonesian | 363 Spanish 433 Hebrew 10386
example of automation, items concerning scholarly
2.3. Alignment to external databases entries (i.e. articles and reports) were often aligned to

As shown in the “Data model” section, Wikidata
items are linked to their equivalents in other semantic
databases using statements where the property
provides details about a given resource and the object
is the external identifier of the item in the aligned
database. Similarly to Wikidata items, these database
alignment properties are defined by labels,
descriptions and aliases in various languages and by
statements describing logical conditions for their
usage including formatting constraints and allowed
values of subject classes [53].

The alignment of Wikidata entities to other entries
on different databases is a collaborative process
which, as with everything in Wikidata, is done via
combination of manual and automatic curation. As an

33 https://github.com/br2s/bug-reports-to-science/issues/8

other databases using DOIs (Digital Object
Identifiers) as unique keys. As Wikidata is an open
database, the precision of the alignments is largely
based on trust in the community, and misalignments
are promptly corrected once identified. At the scale of
curation happening on Wikidata, quality issues in
aligned databases regularly surface, e.g. invalid DOIs
stated in PubMed and PMC Europe*?. While most of
these databases have some feedback channels, no
mechanisms exist for informing them systematically
about issues with their data that have been identified

at the scale of Wikidata-based curation.




As of September 1, 2020, 5302% out of 7877%
Wikidata properties are used to state external
identifiers of the Wikidata items. These properties
facilitate interoperability between Wikidata and other
databases and consequently the regular enrichment of
Wikidata with detailed information from online
ontologies and knowledge graphs updated on a daily
basis [17, 20, 70]. The output using such Wikidata
properties can be adapted as an open license
framework for the automatic evaluation and learning
of knowledge graph alignment approaches [20, 71]
and for the integration of scholarly knowledge [72].

In the circumstances of the COVID-19 outbreak, a
SPARQL query*® has been formulated to analyze the
integration of external identifiers in Wikidata. This
query succeeded in returning the main aligned external
resources to the set of scholarly articles and clinical
trials, of diseases, of symptoms, of drugs, of humans,
of sovereign states, of genes, of proteins, and of other
items related to the ongoing COVID-19 pandemic in
Wikidata. This confirms the centrality of Wikidata
within the linked open data cloud (cf. Fig. 3 and [50])
and consequently the usefulness of Wikidata to
address the COVID-19 data challenges and
dynamically integrate various types of semantic data
in the context of the disease outbreak.

Scholarly articles and clinical trials have been
linked to numerous external identifiers, particularly
the Digital Object Identifier (DOI), the PubMed ID,
the Dimensions Publication ID, the PubMed Central
ID (PMCID) and the ClinicalTrials.gov Identifier
(Table S5). Most of these identifiers are added thanks
to WikiProject WikiCite aiming to add support of
bibliographic information on Wikidata [43-45]. The
current representation of external identifiers for the
scientific literature in Wikidata seems to be similar to
the general one for the bibliographic data in the
knowledge graph. As of September 3, 2020, 36208373
scholarly articles’’ are currently represented in

34 For the updated count of the properties defining external
identifiers, refer to https://w.wiki/ayn.

33 For the updated count of all the properties, refer to

36 https://w.wiki/auR

37 https://scholia.toolforge.org/

38

https://pubmed.ncbi.nlm.nih.gov/?term=COVID-19

39 https://www.ncbi.nlm.nih.gov/pme/?term=COVID-19

40 https://tinyurl.com/y6kwrdth

41 https://www.semanticscholar.org/search?q=COVID-
19&sort=relevance

Wikidata. 31425586 of which have PubMed IDs and
25896956, 6016452, and 346114 scientific
publications respectively have DOIs, PubMed Central
IDs and ArXiv IDs.

However, this Wikidata coverage of the availability
of COVID-19-related publications in external research
databases does not seem to fully represent full records
of COVID-19 literature in aligned resources. By way
of comparison, we performed a simple search for
“COVID-19” in a set of literature databases, and there
were 103796 COVID-19-related records available on
PubMed?®, 110323 COVID-19 full texts accessible on
PubMed Central*®, 296450 COVID-19 publications
on Dimensions*, 211000 records on Semantic
Scholar*', 4778 records at ClinicalTrials.gov*?, 3295
records on arXiv ID*®, and 183 records on
NIOSHTIC-2* as of February 17, 2021.

Wikidata’s relatively incomplete coverage of the
literature is mainly explained by Wikidata’s
development of scientific metadata being based on
latent crowdsourcing of information from multiple
sources through bots and human efforts and not on the
real-time screening of the external scholarly resources
[45, 46]. In addition to such sampling biases, there are
also differences in annotation workflows, e.g. in terms
of the multilinguality of or the hierarchical
relationships between topic tags in Wikidata versus
comparable systems like Medical Subject Headings.

As for the disecases and symptoms related to
COVID-19, Wikidata maps to multiple external
identifiers in the main biomedical semantic databases
such as MeSH, ICD-10%, and UMLS*® as well as in
open lexical databases like OBO Foundry ontologies
(e.g. Human Phenotype Ontology) and Freebase
(Table S6). This is mainly due to the use of machine
learning algorithms to align these major online
biomedical resources to Wikipedia articles and
consequently to Wikidata items [73]. The
representation of open license resources is particularly

42 https://clinicaltrials.gov/ct2/results?cond=COVID-
19&term=&cntry=&state=&city=&dist=

43 https://arxiv.org/search/?query=COVID-
19&searchtype=all&source=header

44 https://www2a.cdc.gov/nioshtic-2/Buildgyr.asp?S1=COVID-
19&Submit=Search

43 International Classification of Diseases, Tenth Revision
(https://www.who.int/classifications/icd/en/)

46 Unified Medical Language System
(https://www.nlm.nih.gov/research/umls/index.html)



explained by the use of these databases to form the
core of the biomedical knowledge in Wikidata through
mass uploads and timely updates [74]. Items about
diseases and symptoms are also aligned to several
online encyclopedias (e.g. eMedicine, Encyclopedia
Britannica, and MedlinePlus) and to non-medical
databases such as scholarly repositories (e.g.
JSTOR*") and bibliographic databases (e.g. Microsoft
Academic*®) using external identifiers’ statements.
This can be explained by the efforts of WikiProject
Source Metadata®® and the WikiCite initiative to align
topic pages in research databases to Wikidata items,
so that active members of this project can easily
extract topics of research publications from source
databases and assign them to the corresponding
Wikidata items using main subject [P921] relations
[43]. The linking from Wikidata items about between
disecases and symptoms to online first-class
encyclopedias is not restricted to the context of the
COVID-19 pandemic [74] and is a rather established
practice to provide Wikidata users with pointers to
further specialized information pertaining to a given
Wikidata item [75] and to allow comparison of
medical data quality between Wikipedia and other
encyclopedias [66].

Since Wikidata is multidisciplinary, it has extensive
matching to humans and sovereign states (Table S7)
as well as films, computer applications and disease
outbreaks (Table S8). The alignment to various
metadata databases like VIAF*°, WorldCat’!, Library
of Congress and IMDb? is motivated by the mass
import of authority control data for the interoperability
between library metadata and for the prevention of the
duplication of items including book authors, actors
and films [75, 76]. Wikidata items about sovereign
states and humans are aligned to corresponding topic
pages and user pages in social networking services
(Twitter) and question answering forums (Quora and
Reddit). This enables tracking the effect of the
information provided by Wikimedia projects,
particularly Wikipedia, on online communities [77].
Information about items in social media can also be

47 https://www.jstor.org/

48 https://academic.microsoft.com/

49 https://www.wikidata.org/wiki/WD:WikiProject Source
30 Viirtual Tnternational Authority File (http://viaf.org/)

51 https://www.worldcat.org/

52 Internet Movie Database (https://www.imdb.com/)
53 https://massbank.eu/MassBank/

4 Interim Register of Marine and Nonmarine Genera
(https://www.irmng.org/)

retrieved to support the topic modelling of the
coverage of the pandemic in social networks [78].
Taken together, these database alignments are useful
to integrate new non-clinical information to Wikidata,
to allow correlations between epidemiological data
and non-medical information about countries,
individuals, masterpieces and disease outbreaks such
as geopolitical, software programming and economic
data, and to provide further readings about the
concerned items [72].

Concerning drugs, proteins, genes and taxons,
Wikidata items are mainly assigned external
identifiers in the major knowledge graphs for
pharmacology (e.g. MassBank®), for biodiversity
(e.g. IRMNG>"), for genomics (e.g. Entrez Gene) and
for proteomics (e.g. PDB*) and are rarely linked to
non-medical databases or to encyclopedias, as shown
in Table 8. The lack of alignment between these
biomedical Wikidata items and their equivalents in
social web services is explained by the higher interest
of social media users in the health policies and
epidemiology of COVID-19 rather than the
therapeutic options and molecular aspects related to
the disease [79]. The most important interest in
matching these concepts in Wikidata to graph
databases (e.g. Massbank, PDB, and KEGG*®) and
semi-structured  databases  (e.g.  Guide to
Pharmacology®”) for bioinformatics rather than online
encyclopedias is due to the better availability of
genomic and proteomic information in these
specialized semantic resources [74, 80]. The
alignment of taxon items in Wikidata to biodiversity
knowledge graphs (e.g. NCBI®® taxonomy and
IRMNG) is to permit the discussion of the
pathogenesis of coronavirus and mainly COVID-19
through the analysis of the physiological features of
infected taxons [81]. The sum of these biomedical
alignments is developed using human edits and
computer tools thanks to large initiatives to develop
open ontological databases for curating advanced
molecular biology data such as WikiGenomes [65]
and Gene Wiki [47] and is enhanced in the context of

55 Protein Data Bank (https://www.rcsb.org/)

36 Kyoto Encyclopedia of Genes and Genomes
(https://www.genome.jp/kegg/)

57 TUPHAR/BPS Guide to Pharmacology
(https://www.guidetopharmacology.org/)

38 National Center for Biotechnology Information
(https://www.ncbi.nlm.nih.gov/)



the current pandemic through the contributions of
WikiProject COVID-19 [15].

Despite the volume and variety of database
alignment in Wikidata, particularly related to COVID-
19, the Wikidata statements providing external
identifiers do not provide the extent of matching
between the subject and its equivalent in the aligned
database. By contrast, DBpedia assigns different
properties for database matching according to the level
of correspondence between the aligned entities (e.g.
rdfs:seeAlso, skos:broader, or owl:sameAs) [82]. As a
solution to this matter, a new Wikidata property
entitled "mapping relation type" (P4390) has been
created. This property is assigned as the predicate to
the qualifier of a statement providing an external
identifier of an item. The object of this qualifier has to
be one of the SKOS generic mapping relation types:
"close match" (Q39893184), '"exact match"
(Q39893449), "narrow match" (Q39893967), "broad
match"  (Q39894595) or  "related  match"
(Q39894604). When the object is an “exact match”,
the two aligned items are equivalent. However, when
the object is a “broad match”, this means that the
external entity is a hypernym to the corresponding
Wikidata items (i.e. skos:broader), etc.

3.  Visualizing facets of COVID-19 via
SPARQL

One of Wikidata’s key strengths is that each item
can be understood by both machines and humans. It
represents data in the form of items and statements,
which are navigable in a web interface and shared as
semantic triples [20]. However, where a computer can
easily hold the entire knowledge base in its memory at
once, the same is obviously not true for a human.

3 The recursive acronym for "SPARQL Protocol and RDF
Query Language", the current version of which is SPARQL 1.1. A
full  description of this language is available at
https://www.w3.org/TR/sparqgll 1-query/.

60 Technical documentation about SPARQL can be found at
https://en.wikibooks.org/wiki/SPARQL.

o1 WikiProject COVID-19 (WPCOVID) queries: extracts from
the query collection of Wikidata’s WikiProject COVID-19;
https://www.wikidata.org/wiki/Wikidata:WikiProject COVID-
19/Queries

62 SARS-CoV-2-Queries: extracts from the book “Wikidata
Queries around the SARS-CoV-2 virus and pandemic” [84];
https://egonw.github.io/SARS-CoV-2-Queries/

3 SPEED queries: extracts from the Wikidata-based
epidemiological surveillance dashboard for COVID-19 pandemic

Since we still rely on human interpretation to
extract meaning out of complex data, it is necessary to
pass that data from machine to human in an intuitive
manner [83]. The main way of doing this is by
visualising some subset of the data, since the human
eye acts as the input interface with the greatest
bandwidth. Because Wikidata is available in the RDF
format, it can be efficiently queried using SPARQL?,
a semantic query language dynamically extracting
triple information from large-scale knowledge graphs.

Given the breadth of Wikidata’s COVID-19-related
information (examples in Supplementary Figure S1),
extracting specific subsets of that information using
SPARQL® can illustrate different aspects of the
COVID-19 disease, its causative virus, and the
resulting pandemic (Supplementary Table Sl).
Several Wikidata-based COVID-19 dashboards take
advantage of the variety of visualizations that can be
generated using the Wikidata Query Service
(Supplementary Table S2) from both a quantitative
perspective (amount of statistical data that can be
generated through the integration of COVID-19
information with non-COVID-19 data) and a
qualitative one (visualization types and topics). This
section will present examples across different aspects
of COVID-19, adapted from five main sources to
which we have contributed substantially®!:6%:63:64.65,
Several similar query collections exist, e.g. for
COVID-19 in India®® and Indonesia [85].

3.1 Biological and clinical aspects

A simple demonstration of Wikidata’s encoding of
SARS-CoV-2’s basic biology is in its genetics (Fig. 6)
and resulting symptoms (Fig. 7). The viral genome
contains 11 genes that encode 30 proteins (and
variants), which are currently known to interact with
over 170 different human proteins. Although there are

in Tunisia (https:/speed.ieee.tn). It was partially built upon
COVID-19 Wikidata dashboard
(https://sites.google.com/view/covid19-dashboard).

64 Scholia queries: queries underlying COVID-19-related
visualizations from the Wikidata-based scholarly profiling tool
Scholia [35]; https://scholia.toolforge.org/

%5 Covid-19 Summary queries: queries visualizing COVID-19
information in Wikidata linked to the epidemiological information
of the outbreak and to the characteristics of the infected famous
people; https://public.paws.wmcloud.org/User:990f9/Covid-

19.ipynb
66 https://w.wiki/LsK




two genome browsers based on Wikidata [65, 86],
neither yet display the SARS-CoV-2 genome.
SPARQL visualizations provide a broader way to
explore biomedical knowledge about the studied virus
and the related infectious disease. As the knowledge
graph grows, this is allowing linking together complex
knowledge on biochemistry (e.g. genes and proteins),
biology (e.g. host taxa), clinical medicine (e.g.
interventions) [74]. Such queries can be expanded by
considering the qualifiers that modulate biomedical
statements. These qualifiers allow the assignment of
weights to assumptions according to their importance
and certainty. For instance, some treatments are
indicated as hypothetical, or symptoms are listed as
rare, as defined by their nature of statement [P5102]
or sourcing circumstances [P1480] qualifiers, with
references to back these up (live data:
https://w.wiki/bmlJ).

Gene Protein
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ORF6 protein- _ORF1ab polyproféi”n*-

. ORF6 protein-
ORF8 protein{-—__
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Viroporin 3a+.

ORF10 protein
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envelope protein 4
| enveiope proteind

membrane glycoprotein 4
membra

3.2 Epidemiology

Wikidata also contains the necessary information to
calculate common epidemiology data for different
countries, such as mortality per day per capita, and
case number to mortality rate correlation. In some
cases this is stored as aggregate data, such as the case
mortality rate [P3457] statements for regional
epidemics stored as numeric data (Fig. 8A), whereas
other common visualisations can be calculated from
granular data such as the individual date of birth
[P569] and date of death [P570] of notable individuals
deceased from COVID-19 (Figure 8B). Although this
reflects the age distribution of COVID mortality, it is
also influenced by the demographics of persons
sufficiently notable to have Wikidata items.
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Fig. 6. SARS-CoV-2 interactions with the human proteome as of September 14, 2020 (available at: https://w.wiki/c3D, license: CC BY 4.0).
Proteins encoded by SARS-CoV-2 genes (note that some genes encode multiple proteins) and the currently known human protein interaction
partners (live data: https://w.wiki/beR).
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Fig. 8. Summary epidemiological data on the COVID-19
pandemic as of September 10, 2020 (available at:
https://w.wiki/byW, license: CC BY 4.0). A) Correlation between
the current number of cases and mortality rates in every country,
calculated from numeric summary data for each region. Countries
coloured randomly (live data: https://w.wiki/bf$). B) Age
distribution of notable persons who have died of COVID-19
(blue), compared to the death age distribution for notable persons
who were born after 1901 (green), calculated from individual dates
of birth and death (live data: https://w.wiki/be7 and

https://w.wiki/but).

In some cases, summary data is also time-resolved,
allowing inquiry of its change over time
(Supplementary Figure S2), capturing features not
depicted in several statistical predictions of the
epidemiological evolution of COVID-19 outbreaks
[87] and clearly seen in other data sources, such that
mortality peaks at the beginning of a disease outbreak
[88]. Wikidata’s granularity (i.e. the representation of
COVID-19 information at the scale of individual
cases, days and incidents) and collaborative editing
have also made it highly up to date on queries such as
the most recent death of notable persons due to
COVID-19. This result is difficult to achieve with
other datasets (Supplementary Figure S3), and mirrors
Wikipedia’s well-known rapid response to updating
information on deaths [42, 89].

3.3. Research outputs

A large portion of Wikidata is dedicated to
publication metadata and citation links. There are
several ways to investigate the relevant topics in
publications regarding COVID-19. Firstly, topic
keywords can be extracted directly from the titles of

67 https://ts404.shinyapps.io/topicnetwork

articles with COVID-19 as a main topic (Fig. 9A).
This is a useful and rapid first approximation of topics
covered by those publications, extracted as plain text.
These can be expanded upon by querying for the main
subject [P921] of a set of publications in Wikidata.
This property acts analogously to the narrower but
more granular Medical Subject Headings (MeSH)
descriptors [90]. Such statements allow broader
querying of the literature as a network via co-
occurrence of topics as the main subject of articles
(Fig. 9B). This enables rapid traversal and faceting
of the literature on topics in addition to the traditional
links made by tracing citations [91], such as extracting
common pharmacological and non-pharmacological
interventions (live data: https:/w.wiki/N8i). The
‘WikiCite’ project is working on importing the
citation network into Wikidata to make a fully open
citation network (Fig. S4) [92].

Because Wikidata is agnostic to the exact type of
research output, its structure is equally suited to
representing information on research publications,
preprints (Fig. S5), clinical trials (Fig. S6) or computer
applications (Fig. S7). However, preprints are not yet
thoroughly covered in Wikidata, a limitation for this
context as preprints have become particularly
important during the rapid pace of COVID-19
research [92, 93]. Further, Wikidata’s rich
biographical and institutional data makes extracting
information on authors, institutions or others
straightforward (Fig. S8), and eventually for other
contributors too [94].
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Fig. 9. COVID-19 publication topics as of September 10, 2020
(available at: https://w.wiki/byV, license: CC BY 4.0). A)
Common words and word combinations (ngrams) in the titles of
publications (live data: https://w.wiki/cFu). B) Co-occurrence of
topics in publications with one of the COVID-related items as a
topic, with ribbon widths proportional to the number of
publications sharing those topics (log scale). Topics coloured by
group as determined by Louvain clustering, topics shared in fewer
than 5 publications omitted (interactive version:
https://csisc.github.io/WikidataCOVID19SPARQL/Fig8B.html;
live data: https://w.wiki/bww).

3.4. Societal aspects

Further emphasising the multidisciplinary nature of
Wikidata, there are also significant social aspects of
the pandemic contained in the knowledge base. This
includes simple collation of information, such as
regional official COVID websites, and unofficial but
common hashtags (Fig. S9), or relevant images under
Creative Commons licenses (Fig. S10). It also
includes more cross-disciplinary information, such as
companies that have reported bankruptcy, with the
pandemic recorded as the main cause (Fig. 10), or the
locations of those working on COVID (Fig. S8B).
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Fig. 10. Bankruptcies of publicly listed businesses due to the
COVID-19 pandemic as of September 13, 2020 (available at:
https://w.wiki/byY, license: CC BY 4.0). A) Tabular output of
SPARQL query B) Bankruptcies per month C) ratios of different
industries associated with bankrupt companies. (live data:

https://w.wiki/cG6).

However, this also exemplifies how misleading
missing data can be: Wikidata currently has highly
inconsistent coverage of companies that are not
publicly listed, which heavily biases the results. For
example, the current lack of yearly updated socio-
economic information such as unemployment rates
[P1198] and nominal GDP [P2131] for countries in
Wikidata limits the use of the knowledge graph for the
study of the effect of the pandemic on global
economies, although this is theoretically possible.
Likewise, Wikidata is very incomplete with respect to
COVID-19-related regulations like stay-at-home
orders, school closures or policies regarding face



masks. Standardised methods to audit and validate
Wikidata’s content on various topics are still under
investigation and development [53].

4. Discussion

Many knowledge graphs have been rapidly
developed to represent various types of COVID-19-
related information, including government responses
[5], epidemiology [8], clinical data [4], scholarly
outputs and outcomes [9], economic impacts [10],
physiopathology [2], social networking [11] among
other features related to the COVID-19 pandemic.
These semantic databases are mainly built using a
combination of human efforts and crowdsourcing
techniques [5]. Such resources can also be developed
through the automatic extraction - using natural
language processing techniques - of information from
scholarly publications about the outbreak, as is the
case with the COVID-19 Open Research Dataset [7].

Despite the importance of such resources, they tend
to cover a narrow range of aspects of the disease, and
despite the challenges (cf. Section 1.1), more
integrated approaches are necessary to support
advanced decision-making related to the outbreak. In
response, integrated semantic databases have been
launched to combine more divergent information,
such as CIDO (combining clinical data with
genomics) [3] and COVID-19 data hub (combining
epidemiological data with social interactions) [12].

While clearly a valuable part of the data ecosystem,
these projects rely on small groups of data curators, a
model that has struggled to keep pace when data and
scholarly literature grow sharply, as is the case with
topics like COVID-19 [14]. This observation fits with
the considerably limited volume of knowledge graphs
exclusively enriched and verified by a dedicated
expert group - such as OpenCyc - when compared to
the volume of open and collaborative knowledge
graphs, particularly Wikidata, YAGO, DBpedia and
Freebase [17].

Whereas most knowledge graphs tend to be
specialized and developed by a limited team, Wikidata
deliberately takes a multidisciplinary, multilingual
position anchored in the linked open data ecosystem.
It is this breadth, combined with its interoperability,
that makes it unique among even other user-generated

68 https://www.wikidata.org/wiki/Special:Statistics
69 https://w.wiki/pGw

collaborative projects. Indeed, it becomes uniquely
suited to highly dynamic topics such as the COVID-
19 pandemic [15, 74].
In comparison to other resources like DBpedia,
Wikidata is not just edited by machines and built from
data automatically extracted from textual resources
like Wikipedia [51]. Wikidata complements
automated edits from trusted sources with enrichments
and adjustments by a community of over 25000 active
human users on a daily basis®® and is released under
the CCO license allowing the free and unconditional
reuse and interoperability of its information in other
systems and datasets and consequently the growth of
interest of many people in using, enriching and
adjusting it [53]. By being highly multilingual, its
human-readability extends well beyond English to
support international contributions and reuse [25, 53].
Also, its flexible editing policy and RDF structure
permit the easy creation of new classes, properties and
data models to rapidly support emerging data topics
[25, 53]. One of the features of Wikidata is also
providing hundreds of exemplary SPARQL queries®’,
which even beginner users can immediately explore
and easily modify, assisted with features like default
prefixes,  autosuggestions, autocomplete and
straightforward conversion between Wikidata
identifiers and natural language [49]. As a result,
Wikidata users do not have to be SPARQL experts to
arrive at results that are useful to them.

These factors have facilitated Wikidata’s rapid
growth since its creation in 2012 into an
interdisciplinary network of >90 million items, richly
interconnected by more than a billion statements [25,
53]. In the context of the COVID-19 outbreak,
Wikidata has proven its efficiency in representing
multiple facets of the pandemic ranging from
biomedical information to social impacts. This stands
in marked contrast to other integrated semantic graphs
that only combine two to three distinct features of the
pandemic (e.g. CIDO [3], COVID-19 data hub [12],
COVID-19 Living Data’® [95] and
Knowledge4COVID-19"! [96]) as shown in the “data
model” and “Visualizing facets of COVID-19 via
SPARQL” sections. This large-scale information is
supported in multiple languages as explained in the
“language representation” section and is matched to its
equivalents in other semantic databases as revealed by
the “database alignment” section. Moreover, the
semantic nature of the SPARQL query language has

70 https://covid-nma.com/
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enabled in-depth analysis of the multifaceted,
multidisciplinary COVID-19 information in Wikidata.
This confirms previous findings about the importance
of querying COVID-19 semantic resources such as
CIDO [3] to compare clinical information with other
types of COVID-19 information and consequently to
generate new insights into or new perspectives on
characteristics of the disease or the pandemic [97].
The primary advantage of applying SPARQL to
extract and visualize COVID-19 information from a
generalized knowledge graph such as Wikidata when
compared to domain-specific knowledge graphs
developed for the pandemic like CIDO [3] is the
possibility of integration of outbreak data with non-
COVID-19 information such as economic, industrial,
climatic and social facts that can be used to generate
summary information to explain the reasons behind
the dynamics of the studied pandemic.

Despite the advantages of collaborative editing and
free reuse of open knowledge graphs like Wikidata to
support and enrich COVID-19 information, these two
features have several drawbacks related to data quality
and legal concerns. It is true that the use of fully open
licenses (CCO or Public domain) in centralized
knowledge graphs removes all legal barriers to their
reuse in other knowledge graphs or to drive
knowledge-based systems and encourages the
development of intelligent support for tasks related to
COVID-19. However, application of CCO on these
databases causes them not to integrate information for
semantic resources and datasets with only partially
open licenses (e.g. CC BY and MIT), as these licenses
require either the attribution of the source work to
authors or the use of the same license to process the
data [98, 99]. This situation is analogous to the status
of regular group O red blood cells as a universal donor
but restricted recipient [100].

It is worth noting that crowd-sourced collaborative
editing is often prone to the law of diminishing
returns: the quality of human curation reaches a
certain point, beyond which it is difficult to achieve
additional major improvements. For instance, the
quality of Wikidata relies partly on, e.g. automatically
extracted infoboxes, which will only be verified and
checked by editors some time in the future. However,
research shows that the Wikidata community is
already quite responsive to the needs of the database
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for all practical purposes. It is also worth remembering
that machine-based systems are not immune to that
effect neither [101]. Although collaborative editing
contributed to the development of large-scale
information about all aspects of the disease, there are
currently still significant gaps and biases in the dataset
that can lead to imprecise results if not interpreted with
caution. For example, the COVID-19 outbreaks on
cruise’? and naval”® ships are better covered in
Wikipedia than in Wikidata (or most other online
resources). Similarly, scholarly citations are not yet
evenly covered, since systematic curation will require
more scalable workflows. Although many of these
gaps are rapidly being addressed and closed over time,
errors of omission and bias are inevitable to some
extent. Such deficiencies can only be detected and
solved by applying algorithms that assess data
completeness of items included in a given class within
open knowledge graphs. Solutions involve cross-
checking knowledge bases or subsets of the same
knowledgebase [102, 103], systematically exposing
the content of Wikidata to many eyes through its reuse
in Wikipedia and SPARQL-based tools such as
Scholia and COVID dashboards [15, 43], and using
knowledge graph learning techniques to update items
directly from textual databases like scholarly
publications [104] and electronic health records [105].
Moreover, collaborative editing can cause several
inaccuracies in the declaration of statements in open
knowledge graphs disregarding the metadata
standards of the knowledge bases [106]. These
inconsistencies can persist particularly when the
database and the largely growing scholarly literature
about COVID-19 is managed by a limited number of
administrators’* and can consequently cause matters
about the trustworthiness of the reuse of data [106].
However, critical problems related to structural
deficiencies in defining statements or to the inclusion
of mistaken data in open knowledge graphs seem to
happen less frequently in Wikidata [17]. Greater
consistency of structure and accuracy is partly due to
the involvement of more contributors in Wikidata than
in other open knowledge graphs [17]. But it also stems
from importing data from other rapidly-updated and
curated databases (mainly from the linked open data
cloud [25]) and from verification by overlapping

7+ As of February 18, 2021, there are only 62 Wikidata
administrators, as shown at
https://www.wikidata.org/wiki/Special:Statistics.




methods (e.g. ShEx schemas”™, SPARQL-based
logical constraints and bot edits [53, 107]). The data
validation infrastructure of Wikidata seems to be in
accordance with the latest updates in knowledge graph
evaluation and refinement techniques [108, 109] and
explains in part the reasons behind the robustness of
the data model of COVID-19 information in this open
knowledge graph.

5. Conclusion

In this research paper, we demonstrate the ability of
open and collaborative knowledge graphs such as
Wikidata to represent and integrate multidisciplinary
COVID-19 information and the use of SPARQL to
generate summary visualizations about the infectious
disease, the underlying pathogen, the resulting
pandemic and related topics. We have shown how the
community-driven approach to editing without
centralized coordination has contributed to the success
of Wikidata in tackling emerging and rapidly changing
phenomena, such as the pandemic. We have also
discussed the disadvantages of collaborative editing
for systematic knowledge representation, mainly the
difficulty of ensuring sustainability for COVID-19
information in open knowledge graphs, the tricky
validation of conflicting semantic data, the lack of
coverage of several aspects of the analyzed pandemic,
and the significant underrepresentation of advanced
semantics for several types of Wikidata statements.
Then, we described how the Wikimedia Community
is currently trying to solve them through a series of
advanced technical and organizational solutions. As
an open semantic resource in the RDF format,
Wikidata has become a hub for COVID-19 knowledge
due to its alignment with major external resources and
to its broad multidisciplinarity. The insertion of
information in the Linked Open Data format provides
the flexibility to integrate data from many facets of
COVID-19 data with non-COVID-19 data. By its
multilingual structure, these inputs are contributed to
(and reused by) people all over the world, with
different backgrounds. Effectively, the WikiProject
COVID-19 has made COVID-19 knowledge more
FAIR: Findable, Accessible, Interoperable and
Reusable [74].

An important aspect of Wikidata’s FAIRness is the
Wikidata SPARQL query service

75 The validation schemas for COVID-19 information in
Wikidata are currently available at

(https://query.wikidata.org) [74]. More than an
endpoint, the query service provides a visual interface
to create queries, and makes it easier for beginners to
customize queries. Additionally, community-
contributed data visualization tools like Scholia
provide human-friendly interfaces to surf the data
[43]. As shown here, SPARQL visualizations are an
entry point for deeper insights into COVID-19,
including the integration of data from various fields
and resources, and acquiring valuable implicit
knowledge, both regarding the biomedical facets of
this still new disease, as well as into the societal details
of the pandemic.

As Wikidata is community-oriented and broadly
themed, virtually any researcher can take advantage of
its knowledge, and contribute to it. SPARQL queries
can complement and enrich research publications,
providing both an overview of domain-specific
knowledge for original research, as well as serving as
the base for systematic reviews or scientometric
studies. Of note, SPARQL queries can be inserted into
living publications, which can keep up to date with the
advancements both in human knowledge and its
coverage on Wikidata.

Another part of FAIRness is user-friendly
programmatic data access. Wikidata database dumps
are available for download and local processing in
RDF, JSON and XML formats
(https://www.wikidata.org/wiki/Wikidata:Database _d
ownload). Beyond dumps, the Wikibase API makes
data retrievable via HTTP requests, which facilitates
integration into analysis and reuse workflows. API
wrappers are also available for popular programming
languages like R (https://cran.r-
project.org/web/packages/WikidataR/) and Python
(https://pypi.org/project/Wikidata/), further boosting
interoperability.

Even though Wikidata is rich in COVID-19
knowledge, there is always room for improvement. As
a collaborative endeavour, Wikidata and the
WikiProject COVID-19 are likely to become further
enriched over time. By the collective efforts of
contributors, we hope that the database will grow in
quality and coverage, supporting other types of
information - such as the outcomes of the ongoing
COVID-19-related research efforts - and contributing
to higher pandemic preparedness globally.

https://www.wikidata.org/wiki/Wikidata: WikiProject COVID-
19/Data_models.
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1. Supplementary Data

° Supplementary Tables

Table S1. List of the tasks fulfilled by the SPARQL queries for the visualization of the COVID-19 information in
Wikidata

Task | Description

Genomic data and clinical knowledge

71 Symptoms of COVID-19 (SPEED, SARS-CoV-2-Queries)

72 Potential treatments of COVID-19 (SPEED)

73 Linnean Taxonomy of SARS-CoV-2 (SPEED)

74 All SARSr viruses (SARS-CoV-2-Queries)

75 Coronaviruses that infect humans (SARS-CoV-2-Queries)

76 All betacoronaviruses (SARS-CoV-2-Queries, WPCOVID)

77 All coronaviruses (SARS-CoV-2-Queries)

78 Comparing viruses with SARS-CoV-2 (SARS-CoV-2-Queries)

79 NCBI Taxonomy IDs of coronaviruses (SARS-CoV-2-Queries)

710 SARS-CoV-2 genomes (SARS-CoV-2-Queries)

711 SARS-CoV-2 genes (SARS-CoV-2-Queries)

712 SARS-CoV-2 proteins (SARS-CoV-2-Queries)

713 SARS-CoV-2 protein complexes (SARS-CoV-2-Queries)

714 SARSr genes (SARS-CoV-2-Queries)

715 SARSr proteins (SARS-CoV-2-Queries)

716 Human coronavirus’ genes (SARS-CoV-2-Queries)

717 Human coronavirus’ proteins (SARS-CoV-2-Queries)

718 Coronavirus’ proteins interacting with human proteins (SARS-CoV-2-Queries)

719 Biological process for the pathogenesis of coronaviruses (SARS-CoV-2-Queries)

720 Antibodies for the coronaviruses (SARS-CoV-2-Queries)

721 Vaccines for the coronaviruses (SARS-CoV-2-Queries)

722 Drugs for the coronaviruses (SARS-CoV-2-Queries)

723 COVID-19, COVID-19 pandemic and SARS-CoV-2 in the context of the Wikidata knowledge graph (Scholia)
Epidemiology

224 Daily evolution of the global number of COVID-19 cases (SARS-CoV-2-Queries, WPCOVID, COVID-19 Summary)
725 Daily evolution of the number of COVID-19 Cases by Country (SPEED)

726 Daily evolution of the number of COVID-19 Deaths by Country (SPEED)

727 Daily evolution of the COVID-19 Mortality Rate by Country (SPEED)

728 Daily evolution of the number of COVID-19 Clinical Tests by Country (SPEED)

729 Daily evolution of the COVID-19 Positive Test Rate by Country (SPEED)

730 Daily evolution of the number of COVID-19 Recoveries by Country (SPEED)

731 Daily evolution of the COVID-19 Recovery Rate by Country (SPEED)

732 Daily evolution of the number of COVID-19 Cases in a given country (SPEED, SARS-CoV-2-Queries)

733 Daily evolution of the number of COVID-19 Deaths in a given country (SPEED, SARS-CoV-2-Queries)

734 Daily evolution of the number of COVID-19 Clinical Tests in a given country (SPEED)

735 Daily evolution of the number of COVID-19 Recoveries in a given country (SPEED)

736 Daily evolution of the COVID-19 Mortality Rate in a given country (SPEED)

737 Daily evolution of the COVID-19 Positive Clinical Test Rate in a given country (SPEED)

738 Daily evolution of the COVID-19 Recovery Rate in a given country (SPEED)

739 Daily evolution of the number of COVID-19 Cases by administrative subdivision of a given country (SPEED)
7240 Daily evolution of the number of COVID-19 Deaths by administrative subdivision of a given country (SPEED)
741 Daily evolution of the COVID-19 Mortality Rate by administrative subdivision of a given country (SPEED)
742 Daily evolution of the number of COVID-19 New Cases (SPEED)

743 Daily evolution of the number of COVID-19 New Deaths (SPEED)

244 Daily evolution of the number of COVID-19 New Clinical Tests (SPEED)




745 Daily evolution of the number of COVID-19 New Recoveries (SPEED)

746 Daily evolution of the number of COVID-19 Active Cases (SPEED)

747 Daily evolution of the number of COVID-19 Clinical Tests by Laboratory in a given country (SPEED)

748 Number of COVID-19 Cases by administrative subdivision of a given country (SPEED)

749 Number of COVID-19 Deaths by administrative subdivision of a given country (SPEED)

750 COVID-19 Mortality Rate by administrative subdivision of a given country (SPEED)

751 Number of COVID-19 Cases per Capita by administrative subdivision of a given country (SPEED)

752 Number of COVID-19 Deaths per Capita by administrative subdivision of a given country (SPEED)

753 Number of COVID-19 Cases per Area by administrative subdivision of a given country (SPEED)

754 Number of COVID-19 Deaths per Area by administrative subdivision of a given country (SPEED)

755 Current Epidemiological Status in a given country (SPEED)

756 Number of COVID-19 Clinical Tests by Laboratory in a given country (SPEED)

757 Map of Affected Countries (SPEED, WPCOVID)

758 Number of COVID-19 Cases by Country (SPEED, WPCOVID)

759 Number of COVID-19 Cases per 100000 inhabitants by Country (SPEED)

7260 Number of COVID-19 Deaths by Country (SPEED)

761 Number of COVID-19 Deaths per 100000 inhabitants by Country (SPEED)

762 COVID-19 Mortality rates by Country (SPEED)

763 Number of COVID-19 Clinical Tests by Country (SPEED)

264 Number of COVID-19 Clinical Tests per 100000 inhabitants by Country (SPEED)

765 Number of COVID-19 Recoveries by Country (SPEED)

766 Number of COVID-19 Recoveries per 100000 inhabitants by Country (SPEED)

767 Famous COVID-19 Victims (SPEED, WPCOVID, COVID-19 Summary)

768 Age distribution of Famous COVID-19 Victims (COVID-19 Summary)

769 Field of work of Famous COVID-19 Victims (COVID-19 Summary)

Z70 Place of birth of Famous COVID-19 Victims (COVID-19 Summary)

771 Number of COVID-19 Cases per area by Country (SPEED, COVID-19 Summary)

772 Number of COVID-19 Deaths per area by Country (SPEED)

773 Number of COVID-19 Clinical Tests per area by Country (SPEED)

774 Number of COVID-19 Recoveries per area by Country (SPEED)

775 Number of COVID-19 Cases in function of the number of clinical tests in a given country (SPEED)

776 Number of COVID-19 Deaths in function of the number of cases in a given country (SPEED)

777 COVID-19 Mortality Rate in function of the number of cases in a given country (SPEED)

778 Number of COVID-19 cases in an administrative subdivision of a given country in function of population (SPEED)

779 Number of COVID-19 cases in an administrative subdivision of a given country in function of area (SPEED)

780 Number of COVID-19 cases in an administrative subdivision of a given country in function of population Density Rate (SPEED)

781 Number of COVID-19 deaths in an administrative subdivision of a given country in function of population (SPEED)

782 Number of COVID-19 deaths in an administrative subdivision of a given country in function of area (SPEED)

783 Number of COVID-19 deaths in an administrative subdivision of a given country in function of population Density Rate (SPEED)

784 COVID-19 Mortality Rate in an administrative subdivision of a given country in function of population (SPEED)

785 COVID-19 Mortality Rate in an administrative subdivision of a given country in function of area (SPEED)

786 COVID-19 Mortality Rate in an administrative subdivision of a given country in function of population Density Rate (SPEED)

787 Number of COVID-19 new cases in a given country in function of number of old cases (SPEED)

788 Global number of COVID-19 Cases in function of the global number of clinical tests (SPEED)

789 Global number of COVID-19 Deaths in function of the global number of cases (SPEED)

790 COVID-19 Global Mortality Rate in function of the global number of cases (SPEED)

791 Country-level number of COVID-19 Cases in function of Country Population (SPEED)

792 Country-level number of COVID-19 Cases in function of Country Area (SPEED)

793 Country-level number of COVID-19 Cases in function of Country Population Density Rate (SPEED)

794 Country-level number of COVID-19 Deaths in function of Country Population (SPEED)

795 Country-level number of COVID-19 Deaths in function of Country Area (SPEED)

796 Country-level number of COVID-19 Deaths in function of Country Density Rate (SPEED)

797 Country-level COVID-19 Mortality Rate in function of Country Population (SPEED)

798 Country-level COVID-19 Mortality Rate in function of Country Area (SPEED)

799 Country-level COVID-19 Mortality Rate in function of Country Population Density Rate (SPEED)

7100 Duration between first case and first death based on number of cases and number of deaths in a given country (SARS-CoV-2-
Queries)

7101 Lockdowns due to the COVID-19 pandemic (WPCOVID)

Research outputs and computer applications




72102 Scholarly publications about COVID-19 pandemic and SARS-CoV-2 (SPEED, SARS-CoV-2-Queries, WPCOVID, Scholia)
7103 Tools and Resources about COVID-19 pandemic by type (SPEED)

7104 Tools and Resources about COVID-19 pandemic (SPEED)

7105 Tools and Resources about COVID-19 pandemic by publisher (SPEED)

7106 Tools and Resources about COVID-19 pandemic by license (SPEED)

7107 Tools and Resources about COVID-19 pandemic by field of work (SPEED)

7108 Clinical trials about COVID-19 pandemic (SARS-CoV-2-Queries)

7109 Scholarly publications about the virus transmission of coronaviruses (SARS-CoV-2-Queries)

7110 Scholarly publications about the SARS-CoV-2 genes (SARS-CoV-2-Queries)

7111 Scholarly publications about the SARS-CoV-2 proteins (SARS-CoV-2-Queries)

7112 Scholarly publications about coronaviruses (SARS-CoV-2-Queries)

7113 Scholarly publications about human coronaviruses (SARS-CoV-2-Queries)

7114 Contact tracing protocols related to the COVID-19 pandemic (WPCOVID)

7115 Scholarly publications about COVID-19 pandemic and SARS-CoV-2 by year (Scholia)

7116 Research scientists mostly publishing scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)
7117 Collaboration network of the research scientists working on COVID-19 pandemic and SARS-CoV-2 (Scholia)

7118 Topics of the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

7119 Co-occurring topic graph of the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

72120 Map of cities and countries evocated by the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)
7121 Research scientists mostly cited by the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)
72122 Venues and series mostly publishing research works about the COVID-19 pandemic and SARS-CoV-2 (Scholia)
7123 Most cited research publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

7124 Map of institutions publishing research works about COVID-19 pandemic and SARS-CoV-2 (Scholia)

7125 Citation network of research countries working on COVID-19 pandemic and SARS-CoV-2 (Scholia)

72126 Awards received by authors who published on COVID-19 pandemic and SARS-CoV-2 (Scholia)

7127 Scholarly publications about COVID-19 and SARS-CoV-2 with missing main subject [P921] values (SARS-CoV-2-Queries, WPCOVID)
Other

7128 Images from Wikimedia Commons about COVID-19 pandemic and SARS-CoV-2 (SPEED)

7129 COVID-19 Factbook (SPEED)

7130 Bankrupt businesses due to the COVID-19 pandemic (WPCOVID)

7131 Properties used to model COVID-19 knowledge in Wikidata (WPCOVID)

Table S2. List of sample queries on COVID-19. The information contained therein is similar to visualizations in
many stand-alone COVID-19 dashboards, covering an overview of COVID-19, international situation, international
daily epidemiological evolution, Tunisian daily epidemiological evolution, Tunisian governorate-level situation,
Tunisian correlations, and worldwide correlations. Each of the sheets has a Title column with a brief summary for
each query and a URL column with a link to the live record on Wikidata.

Table available as Query/COVID-19.xlsx in
http://doi.org/10.5281/zen0d0.4022591.

Table S3. Raw data and correlation statistics for datasets summarised in tables 3 and 4, including Pearson’s,
Spearman’s, and Cohen’s coefficients for the raw data and Spearman’s coefficients and principal component
analysis of the log-10 transformed data.

Table available as docs/Fig5Corr/T3+4 xlsx in
http://doi.org/10.5281/zen0d0.4022591.




Table S4. Spearman's rho on raw data (pairwise) of untransformed variables from tables 3 and 4 against max
development index for countries speaking each language as an official language, and number of native speakers.
Final column indicates Cohen's q value (calculated as the difference between the Fisher-transformed Spearman's
rho values i.e., g = zl(r(development,Wikidata med Iabels))_ Z’(r(number of speakers, Wikidata med Iabels))), comparing these two for
the stronger correlate for variables from tables 3 and 4. Positive values indicate max development index as the
stronger correlate, while negative values would indicate number of native speakers as the stronger correlate.
Differences of >.5 are considered “large” and unusual for the social sciences, .3 “medium” and .1 “small”.

Spearman’s rho Spearman’s rho Cohen’s q
Max development Number speakers development - speakers
Medical Wikipedia articles 71 .48 .36
Medical Wikidata labels .76 .38 .59
Wikipedia and Wikidata Users .62 21 .51
COVID19 pandemic Wikipedia pageviews .53 .53 .00
COVID Wikipedia pages 71 .52 31
COVID Wikidata content .69 .53 .26
COVID Wikipedia edits .63 .55 12




Table S5. Main Wikidata properties used to represent the external identifiers of scholarly articles and clinical trials
related to the COVID-19 pandemic (as of August 31, 2020).

Wikidata ID Wikidata Property Count
P356 DOI 45101
P698 PubMed ID 42294
P6179 Dimensions Publication ID 16944
P932 PMCID 12590
P8150 COVIDWHO ID 11718
P8299 Semantic Scholar corpus ID 4612
P3098 ClinicalTrials.gov Identifier 246
P818 arXiv ID 47
P2880 NIOSHTIC-2 ID 23




Table S6. Main Wikidata properties used to represent the external identifiers of diseases and symptoms related
to the COVID-19 pandemic (as of August 31, 2020).

Wikidata ID Wikidata Diseas Sympt
Property €s count oms count
P672 MeSH tree 40 12
code
P2892 UMLS CUI 38 11
P494 ICD-10 32 8
P4229 ICD-10-CM”’ 32 1
P3827 JSTOR topic 32 10
1D
P6366 Microsoft 29 11

Academic ID

P493 ICD-97 26 5

P673 eMedicine ID 24 2

P1417 Encyclopedia 23 7
Britannica Online
D

P486 MeSH 23 9
descriptor ID

P646 Freebase ID 21 10

P3841 Human 18 9
Phenotype
Ontology ID

P604 MedlinePlus 19 9
D

P508 BNCF” 17 7
Thesaurus ID

P1296 Gran 10 7
Enciclopedia
Catalana ID

P8408 KBpedia®® ID 16 7

77 International Classification of Diseases, Tenth Revision, Clinical Modification
78 International Classification of Diseases, Ninth Revision

79 Biblioteca Nazionale Centrale di Firenze (Central National Library of Florence, Italy)
80 https://kbpedia.org/



Table S7. Main Wikidata properties used to represent the external identifiers of humans and sovereign states
related to the COVID-19 pandemic (as of August 31, 2020).

Wikida Wikidata Property Soverei Hum
ta ID gn states ans
P214 VIAF ID 159 654
P7859 WorldCat Identities ID 146 548
P244 Library of Congress 125 458
authority ID
P213 ISNI¥! 100 443
P646 Freebase ID 124 379
P2002 Twitter username 16 353
P227 GND* ID 125 308
P345 IMDb ID 274
P268 Bibliothéque nationale 177 269
de France ID
P269 IdRef® ID 84 265
P998 DMOZ* ID 158 -
P3417 Quora topic ID 141 73
P1417 Encyclopedia Britannica 138 53
Online ID
P5400 GeoNLP ID 128 -
P349 National Diet Library 127 54
ID
P4801 LoC MARC® 126

vocabularies ID

81 https://isni.org/

82 Gemeinsame Normdatei (German National Library, Germany),
https://www.dnb.de/DE/Professionell/Standardisierung/GND/gnd node.html

83 dentifiants et Référentiels pour ’enseignement supérieur et la recherche (Identifiers and credentials for higher education and research in
France)

84 Directory Mozilla (https://dmoz-odp.org/)
85 https://www.loc.gov/marc/




Table S8. Main Wikidata properties used to represent the external identifiers for other Wikidata classes related
to the COVID-19 pandemic (as of August 31, 2020).

Wikidata Class Wikidata Wikidata Property Coun
ID t

drug [Q11173] P6689 MassBank accession ID 44
drug [Q11173] P4964 SPLASH®* 31
protein [Q8054] P638 PDB structure ID 31
film [Q11424] P345 IMDb ID 25
film [Q11424] P2603 Kinopoisk film ID 23
film [Q11424] P7177 Cinestaan film ID 22
disease outbreak [Q3241045] P3984 subreddit 22
protein [Q8054] P637 RefSeq®’ protein ID 18
committee group motion [Q97695005] P8433 Swedish Riksdag document ID 18
film [Q11424] P2529 CSFD® film ID 17
drug [Q11173] P267 ATC* code 17
protein [Q8054] P352 UniProt protein ID 16
protein [Q8054] P5458 Guide to Pharmacology Target ID 15
COVID-19 app [Q89288125] P7771 PersonalData.1O ID 14
gene [Q7187] P351 Entrez Gene ID 12
COVID-19 app [Q89288125] P3418 Google Play Store app ID 12
gene [Q7187] P2393 NCBI locus tag 11
macromolecular complex [Q22325163] P7718 Complex Portal accession ID 11
protein fragment [Q78782478] P638 PDB structure ID 11
drug [Q11173] P231 CAS Registry®® Number 9
drug [Q11173] P715 DrugBank ID 9
drug [Q11173] P665 KEGG ID 9
drug [Q11173] P638 PDB structure ID 9
drug [Q11173] P652 UNII*! 9
protein [Q8054] P705 Ensembl protein ID 8
COVID-19 app [Q89288125] P3861 App Store app ID (global) 8
drug [Q11173] P595 Guide to Pharmacology Ligand ID 8
drug [Q11173] P6366 Microsoft Academic ID 8
disease outbreak [Q3241045] P3479 Omni topic ID 7
taxon [Q16521] P5055 IRMNG ID 6
taxon [Q16521] P685 NCBI taxonomy ID 6

86 Spectral Hash Identifier (https://splash.fiehnlab.ucdavis.edu/)
87 NCBI Reference Sequence Database (https://www.ncbi.nlm.nih.gov/refseq/)

88 (esko-Slovenska filmové databaze (Czech-Slovak Film Database, https://www.csfd.cz/)
89 Anatomical Therapeutic Chemical (ATC) Classification System (https://www.whocc.no/atc_ddd_index/)

90 https://www.cas.org/support/documentation/chemical-substances

ol Unique Ingredient Identifier (https:/fdasis.nlm.nih.gov/srs/)




° Supplementary Figures

This section of the supplementary data includes an additional array of visualizations that were not able to fit in
the main text but that exemplify the diversity of additional valuable information that can be extracted out of the
Wikidata knowledge base.
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Fig. S1. Snapshot of the extended graph of the three main COVID items and the statements for which they are the subject. Linked items
demonstrate the variety of topics for which the three main COVID items (indicated in red) are the subject and present a small subset of the
classes indicated in Fig. 2. (Available at: https://w.wiki/cPa, live data: https://w.wiki/xYE, Access Date: August 19, 2020)
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Fig. S2. Epidemiological data for Tunisia as of August 16, 2020 as used by the https://speed.iece.tn dashboard website (Available at:
https://w.wiki/cQC). A) Daily mortality rate from COVID-19 in Tunisia (live data: https://w.wiki/N2p). B) Tunisian governorate-level cases
(live data: https://w.wiki/N9Y). C) Daily change in clinical tests by laboratory in Tunisia (live data: https://w.wiki/NEb).



A

dateOfDeath name citizenship profession
16 August 2020  Chetan Chauhan India cricketer

14 August 2020  Moisés Mamani Colquehuanca  Peru politician
13 August 2020  Dario Vivas Venezuela politician
13 August 2020  Gulnazar Keldi Tajikistan journalist

11 August 2020  Trini Lopez United States of America film actor
11 August 2020  Rahat Indori India lyricist

11 August 2020  Sixto Brillantes Philippines lawyer

9 August 2020 Kamala United States of America professional wrestler
9 August 2020 Tony Moussa Syria actor

8 August 2020 Alfredo Lim Philippines police officer

8 August 2020 Buruju Kashamu Nigeria politician

B

Figure S3. People listed in Wikidata deceased due to COVID-19 as of August 16, 2020 (Available at: https://w.wiki/cQK). A) As tabular
output, ranked by date of death (live data: https://w.wiki/Mgv). B) Portrait images available under a CC BY-compatible license, ranked by how
well-described the depicted individuals are in Wikidata (number of identifiers + statements + sitelinks) (live data: https://w.wiki/bzJ). C) as
bubble diagram of professions (live data: https://w.wiki/bTz).
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Figure S4. Partial citation network within Wikidata as of August 16, 2020 (Available at: https://w.wiki/cQV). The citation network around
COVID-19 is currently rather incomplete but part of the larger, ongoing WikiCite project to represent all citation data within Wikidata as a
fully open citation network. A) publications cited from C3 papers (live data: https://w.wiki/bSh) B) authors most frequently cited by C3 papers
(live data: https://w.wiki/b$i).



count venue

2036 Q wd:Q58465838
1155 Q wd:Q546003
823 Q wd:Q15716684
532 Q wd:Q19835482
507 Q wd:Q5133764
469 Q wd:Q939416
428 Q wd:Q6051382
420 Q wd:Q6295344
389 Q wd:Q1470970
356 Q wd:Q15262334
347 Q wd:Q15766374
329 Q wd:Q582728
3n Q wd:Q6029185
274 Q wd:Q15724248

venuelabel

medRxiv

The BMJ

Journal of Medical Virology

bioRxiv

Clinical Infectious Diseases

The Lancet

International Journal of Environmental Research and Public Health
Journal of Infection

Journal of the American Medical Association
International Journal of Infectious Diseases
Dermatologic Therapy

The New England Joumnal of Medicine
Infection Control and Hospital Epidemiology

The Lancet Infectious Diseases

publisherLabel

Cold Spring Harbor Laboratory
BMJ

Wiley-Blackwell

Cold Spring Harbor Laboratory
Oxford University Press
Elsevier

MDPI

Elsevier

American Medical Association
Elsevier

Wiley-Blackwell
Massachusetts Medical Society
University of Chicago Press

Elsevier

Figure S5. Most common publication venues for C3-themed papers (published and preprint) as of August 16, 2020. Even with Wikidata’s
currently incomplete coverage of articles hosted on preprint servers, they are clearly a significant location for COVID-related publications

(Available at: https://w.wiki/cQX, live data: https://w.wiki/bd$).



Start date Trial Intervention Sponsor
2020-05-12  Acalabrutinib Study With Best Supportive Care Versus Best Supportive Care in Subjects AstraZeneca
Hospitalized With COVID-19.
2020-05-10 COVID-19 Pneumonitis Low Dose Lung Radiotherapy (COLOR-19)
2020-05-05 Levamisole and Isoprinosine in the Treatment of COVID19: A Proposed Therapeutic Trial azithromycin
2020-05-05 Levamisole and Isoprinosine in the Treatment of COVID19: A Proposed Therapeutic Trial levamisole
2020-05-05 Levamisole and Isoprinosine in the Treatment of COVID19: A Proposed Therapeutic Trial hydroxychloroquine
2020-05-05 Levamisole and Isoprinosine in the Treatment of COVID19: A Proposed Therapeutic Trial inosine pranobex
2020-04-24 Acalabrutinib Study With Best Supportive Care Versus Best Supportive Care in Subjects AstraZeneca
Hospitalized With COVID-19. CALAVI (Calquence Against the Virus)
2020-04-16  Austrian CoronaVirus Adaptive Clinical Trial (COVID-19) candesartan Medical
University of
Vienna
2020-04-16  Austrian CoronaVirus Adaptive Clinical Trial (COVID-19) hydroxychloroquine  Medical
University of
Vienna
2020-04-16  Austrian CoronaVirus Adaptive Clinical Trial (COVID-19) chloroquine Medical
University of
Vienna

Fig. S6. Information regarding clinical trials on interventions to treat COVID-19 as of August 16, 2020 (Available at https://w.wiki/cQb, live

toolLabel

tool

typeLabel

URL
publisherLabel
licenseLabel

toolLabel
tool

typeLabel

toolLabel
tool

typelLabel

toolLabel
tool

typeLabel

toolLabel
tool
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data: https://w.wiki/bav)

COVID-19 European Dashboard

Q wd:Q91219501

COVID-19 dashboard
<https://qap.ecdc.europa.eu/public/extensions/COVID-19/COVID-19.html>
European Centre for Disease Prevention and Control

All Rights Reserved

COVID Racial Data Tracker
Q wd:Q96655300
COVID-19 dashboard

COVID Atlas
Q wd:Q96777164
COVID-19 dataset

COVID Atlas
Q wd:Q96777164
COVID-19 search engine

Apturi Covid
Q wd:Q97058482
COVID-19 abp

Fig. S7. Computer applications and their types as of August 16, 2020 (Available at: https://w.wiki/cQg, live data: https:/w.wiki/NVp)
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count  award
Q wd Q15631401
Q wd 024081923
Qwd Q7241433

Qwd Q10762848
Q wd:Q26204035
Q wd Q59767813
Q wd 063208574
Qwd Q5442484

Qwd Q23697744
Q wd: Q59771498
Q wd Q59771619
Q wd 061744587

NONNNNN W W W W W e e

Q wd Q72859645

~ awardLabel

Fellow of the Royal Society
Fellow of the Academy of Medical Sciences

Presidential Early Career Award for Scientists and Engineers.

Officer of the Order of the British Empire

Fellow of the Royal College of Physicians

Fellow of the American Institute for Medical and Biological Engineering
Fellow of the Aican Academy of Sciences

AAAS Fellow

Kurt Lewin Medal

Fellow of the Acadamy of the Soclal Sclences in Australia

Fellow of the Australian Academy of Health and Medical Sciences
Fellow of the American Statistical Association

Assodiate Fellow of the African Academy of Sciences

~ reciplents

Bryan Geenfell, Malik Peiris, Edward C. Holmes, Gagandeep Kang
Simon Wessely. Maria Zambon, Neil M. Ferguson, Clive Ballard
Russ Altman, John Brownstein, Namandjé N. Bumpus

Bryan Grenfell, W. John Edmunds, Neil M. Ferguson

Simon Wessely. Francine Ntoumi, Philip | Murray

Russ Altman, Cato T Laurencin, Elizabeth Krupinski
Alimuddin Zumia, Abba Gumel. Francine Nioumi

Ira Longini. Betz Halloran

Alexander Haslam, Jolanda Jetten

Helen Christensen, Jolanda Jetten

Helen Christensen, Katherine Kedzierska

Ira Longini. Betz Halloran

Fig. S8. Information on authors of articles on COVID-related topics as of August 16, 2020 (Available at: https://w.wiki/cQh). A) Awards most
frequently received by authors of C3 papers (live data: https://w.wiki/ban), B) Map of organizations associated with works about C3 with
institutions that have published a single paper on the topic in green, those that have published 1-10 in orange, and those having published >10

in blue (live data: https://w.wiki/cG4).



outbreak label URL
Q 2020 COVID-19 pandemic in the ) )
wd-Q89713663 of Saio Paulo <https//www.seade gov.bricoronavirus/>
Q COVID-19 pandemic in Scotland <hitps//www.gov.scoticoronavirus-covid-19/>
wd:Q87743858
Q 2020 COVID-19 pandemic in Ohio <https/icoronavirus.ohio.govl>
wd:Q87743873
Q 2020 COVID-19 pandemic in Alberta  <https/www.alberta ca/coronavirus-info-for-albertans aspx>
wd:Q87901408
Q 2020 COVID-19 pandemic in Gujarat  <https-/igujcovid 19.gujarat. gov.in/>
wd:Q88097247
Q 2020 COVID-19 pandemic in

Jiwww,gov.mb.calcovid 1
we:Q88973921  Manitoba <hitps:/www: gow.mb. caleovia 19>
Q 2020 COVID-19 pandemic in )
Wa:Q87245450  Lebanon <hiipe:/www.moph.gov.ty/>
Q 220 COVID-19 pandemio s <https:/icorona.ministryinfo.gov.b/>

wa:Q87245450  Lebanon

Q 2020 COVID-19 pandemic in

U
w:Q8724545%  Lebanon <https//www.thed6 1.com/coronavirus/>

& .. |252000VID-10pendemiols <hitps-icoronavirusecuador.com/>
B
item label hashtag
Q wd:QB7705884 2020 COVID-19 pandemic in Kenya COVID19KE
Q wd:Q87718451 2020 COVID-19 pandemic in Nigeria CoronaVirusNigeria
Q wd:QB8622881 2020 COVID-19 pandemic in the European Union CoronavirusEU
Q wd:Q88622881 2020 COVID-19 pandemic in the European Union COVID19EU
Q wd:QB1068910 COVID-19 pandemic COVID19FOAM
Q wd: Q86597695 COVID-18 pandemic in Brazil covid19brasil
Q wd:Q87250732 2020 COVID-19 pandemic in Croatia OstaniDoma
Q wd:Q87483673 2020 COVID-19 pandemic in Colombia Covid19Colombia
Q wd:Q83873057 COVID-19 pandemic in Vietnam CoronavirusVietnam
Q wd:Q83873387 2020 COVID-19 pandemic in Singapore corcnavirussingapore
Q wd:QB83872271 COVID-18 pandemic in mainland China CoronaVirusChina
Q wd:QB3872271 COVID-19 pandemic in mainland China coronaviruswuhan
Q wd:Q83872291 COVID-19 pandemic In Japan CoronaVirusJapan
Q wd:QB3872398 2019-20 COVID-19 outbreak in South Korea CoronaVirusSouthKorea
Q wd:QB3873548 2020 COVID-19 pandemic in Australia coronavirusaus

Fig. S9. Online resource locations for information on COVID-19 regional outbreaks as of August 16, 2020 (Available at: https://w.wiki/cQo).
A) Official websites (live data: https://w.wiki/bdt). B) Main hashtags (live data: https://w.wiki/bds)
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Fig. S10. COVID-related images based on structured data as of August 16, 2020 (Available at: https://w.wiki/cQt). Images in wikimedia
commons used to be organised solely by a hierarchical category structure. Since 2019, structured data can be associated with images via
Wikidata statements. A) Images from Wikimedia Commons about COVID-19 pandemic and SARS-CoV-2 with a CC-BY-compatible license
(live data: https://w.wiki/Zsn). B) Images of face masks used during COVID-19 pandemic with a CC-BY-compatible license (live data:

https://w.wiki/bzG).



