
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

Continuous Multi-Query Optimization for
Subgraph Matching over Dynamic Graphs
Xi Wang a, Qianzhen Zhang a, Deke Guo a,* and Xiang Zhao a

a Science and Technology on Information Systems Engineering Laboratory, University of Defense Technology,
China
E-mails: 18342211026@163.com, zhangqianzhen18@nudt.edu.cn, dekeguo@nudt.edu.cn,
xiangzhao@nudt.edu.cn

Abstract.
There is a growing need to perform real-time analytics on dynamic graphs in order to deliver the values of big data to users. An

important problem from such applications is continuously identifying and monitoring critical patterns when fine-grained updates
at a high velocity occur on the graphs. Various approaches for incremental processing of queries have been proposed over the
years. Unfortunately, current approaches are mainly designed for a single query: optimizing and answering each query separately.
When multiple queries arrive at the same time, sequential processing is not always the most efficient. In this paper, we study
the problem of continuous multi-query optimization for subgraph matching over dynamic graph data. (1) We propose annotated
query graph, which is obtained by merging the multi-queries into one. (2) Based on the annotated query, we employ a concise
auxiliary data structure to represent partial solutions in a compact form. (3) In addition, we propose an efficient maintenance
strategy to detect the affected queries for each update and report corresponding matches in one pass. (4) Extensive experiments
over real-life and synthetic datasets verify the effectiveness and efficiency of our approach and confirm a two orders of magnitude
improvement of the proposed solution.

Keywords: Multi-query optimization, Annotated query graph, Incremental maintenance strategy, Dynamic graph

1. Introduction

Dynamic graphs emerge in different domains, such
as financial transaction network, mobile communica-
tion network, etc. These graphs usually contain a very
large number of vertices with different attributes, and
have complex relationships among vertices. In addi-
tion, these graphs are highly dynamic with frequent
updates of edge insertions and deletions.

Identifying and monitoring critical patterns in a dy-
namic graph is important in various application do-
mains [1] such as fraud detection, cyber security, and
emergency response, etc. For example, cyber security
applications should detect cyber intrusions and attack-
s in computer network traffic as soon as they appear
in the data graph [2]. In order to identify and moni-
tor such patterns, existing work [2–4] studies the con-
tinuous subgraph matching problem that focuses on
a-query-at-a-time. Given an initial graph G, a graph

* Corresponding author. E-mail: dekeguo@nudt.edu.cn.

update stream ∆g consisting of edge insertions and
deletions and a query graph Q. Then the continuous
subgraph matching problem is to report positive (resp.
negative) matches for each edge insertion (resp. dele-
tion) operation.
Example 1. Figure 1 shows an example of continu-
ous subgraph matching. Given a query pattern Q as
show in Figure 1(a), and an initial graph G with an
edge insertion operation ∆g1 as show in Figure 1(b),
it is necessary to find all positive matches for each op-
eration. When ∆g occurs, it report a positive match
{v1, v2, v3, v5}.

However, these applications deal with dynamic
graphs in such a setup that is often essential to be
able to support hundreds or thousands of continu-
ous queries simultaneously. Optimizing and answering
each query separately over the dynamic graph is not
always the most efficient. Zervakis et al. [5] first pro-
pose a continuous multi-query process engine, namely,
TRIC, on the dynamic graph. It decomposes the query
graphs into minimum covering paths and constructs an
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Fig. 1. An example of continuous subgraph matching

index. Whenever an update occurs, it continuously e-
valuates queries by leveraging on the shared restric-
tions present in query sets. Although TRIC can achieve
a better performance than a-query-at-a-time approach-
es, it still has some serious performance problems.
(1) TRIC needs to maintain a large number of materi-
alized views, leading to worse performance in storage
cost. (2) Since TRIC decomposes each query graph Q
in the queries set into a set of path conjuncts, and it
will cause inevitably expensive join and exploration
cost for the large sets of query paths; and (3) TRIC has
an expensive maintenance cost of materialized results
when updates occur on the graph.

These problems of existing methods motivated us
to develop a novel concept of annotated query graph
(AQG), which is obtained by merging all the queries
into one. Each edge e in the AQG is annotated by
the queries that contain e. In order to avoid executing
subgraph pattern matching repeatedly whenever some
edges expire or some new edges arrive, we need to
construct an auxiliary data structure to record some in-
termediate query results. Note that data-centric rep-
resentation of intermediate results is claimed to have
the best performance in storage cost [3]. It maintains
candidate query vertices for each data vertex using a
graph structure such that a data vertex can appear at
most once. In this paper, we also adopt this solution
and construct a newly data-centric auxiliary data struc-
ture, namely, MDCG, based on the equivalent query
tree of AQG. The purpose is to take advantage of the
pruning power of all edges in AQG, and execute fast
query evaluation by leveraging tree structure.

In summary, our contributions are :

– We propose an efficient continuous multi-query
matching system, IncMQO, to resolve the prob-
lems of existing methods.

– We define annotated query graph, in which corre-
sponding matching results can be obtained in one
pass instead of multiple.

– We construct a newly data-centric auxiliary data
structure based on the equivalent query tree of the
annotated query graph to represent the partial so-
lution in a compact form.

– We propose an incremental maintenance strate-
gy to efficiently maintain the intermediate result-
s in MDCG for each update and quickly detec-
t the affected queries. Then we propose an effi-
cient matching order for the annotated query to
conduct subgraph pattern matching.

We experimentally evaluate the proposed solution
using three different datasets, and compare the perfor-
mance against the three baselines. The experiment re-
sults show that our solution can achieve up to two or-
ders of magnitude improvement in query processing
time against the sequential processing strategy.

2. Preliminaries and Framework

In this section, we first introduce several essen-
tial notions and formalize the continuous multi-query
processing over dynamic graphs problem. Then, we
overview the proposed solution.

2.1. Preliminaries

We focus on a labeled undirected graph G =
(V, E, L). Here, V is the set of vertices, E ∈ V × V is
the set of edges, and L is a labeling function that as-
signs a label l to each v ∈ V . Note that our techniques
can be readily extended to handle directed graphs.
Definition 1 (Graph Update Stream). A graph up-
date stream ∆g is a sequence of update operations
(∆g1,∆g2, · · · ), where ∆g1 is a triple 〈op, vi, v j〉 such
that op = {I,D} is the type of operations, with I and
D representing edge insertion and deletion of an edge
〈vi, v j〉.

A dynamic graph abstracts an initial graph G and an
update stream ∆g. G transforms to G′ after applying
∆g to G. Note that insertion of a vertex can be repre-
sented by a set of edge insertions; similarly, deletion of
a vertex can be considered as a set of edge deletions.
Definition 2 (Subgraph homomorphism). Given a
query graph Q = (VQ, EQ, LQ), a data graph G =
(VG, EG, LG), Q is homomorphism to a subgraph of
G if there is a mapping (or a match) f between them
such that: (1) ∀v ∈ VQ, LQ(v) = LG( f (v)); and
(2) ∀(vi, v j) ∈ EQ, ( f (vi), f (v j)) ∈ EG, where f (v) is
the vertex in G to which v is mapped.

Since subgraph isomorphism can be obtained by
just checking the injective constraint [3], we use the
graph homomorphism as our default matching seman-
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tics. Note that we omit edge labels for ease of explana-
tion, while the actual implementation of our solution
and our experiments support edge labels.

Based on the above definitions, let us now define
the problem of multi-query processing over dynamic
graphs.

Problem Statement. Given a set of query graphs
QDB = {Q1,Q2, . . . ,Qn}, an initial data graph G and
graph update stream ∆g, the problem of continuous
multi-query processing over dynamic graph consists
of continuously identifying all satisfied query graphs
Qi ∈ QDB when applying incoming updates.

2.2. Overview of solution

In this subsection, we overview the proposed solu-
tion, which is referred to as IncMQO. Specially, we are
to address two technical challenges:

– Representation of intermediate results should be
compact and can be used to calculate the corre-
sponding matches of affected queries in one pass.

– Update operation needs to be efficient such that
the intermediate results can be maintained incre-
mentally to quickly detect the affected queries.

The former challenge corresponds to Continuous Multi-
query Processing Model, while the latter corresponds
to Continuous Multi-Query Evaluation Phase.

Algorithm 1 shows the outline of IncMQO, which
takes an initial data graph graph G, a graph update
stream ∆g and queries set QDB as input, and find the
matching results of affected queries when necessary.
We first merge all the queries in QDB into an anno-
tated query graph (AQG) (Line 1). Then, we extrac-
t from the annotated query graph AQG a equivalen-
t query tree ETree by choosing a root vertex ur (Lines
2–3). The purpose is to take advantage of the pruning
power of all edges in AQG, and execute fast query eval-
uation by leveraging tree structure. Based on ETree,
we construct an auxiliary data structure from each start
vertex us in the ETree (see Section 3), namely, MD-
CG, which is able to provide guidance to get affected
queries and generate corresponding matches with light
computation overhead (Line 4–6), here v∗ is a virtu-
al vertex that conveniently represents the parent ver-
tex of the root vertex. Finally, we perform continuous
multi-query matching for each update operation. Dur-
ing a graph update stream, when an update comes, we
amend the auxiliary data structure MDCG depending
on the update type, and calculate the positive or nega-
tive matching results for affected queries if necessary
(Lines 7–11).

Algorithm 1: IncMQO
Input: QDB is a set of query patterns; G is the

initial data graph; ∆g is the graph
update stream.

1 AQG← Annotated(QDB);
2 ur ← ChooseRootVertex(AQG,G);
3 ETree← ExtractETree(AQG, ur);
4 foreach data vertex vs that matches us do
5 MDCG.setEdgeType((v∗s , us, vs),I);
6 BuildMDCG((v∗s , us, vs),G,ETree)

7 while ∆g is not empty do
8 o← ∆g.pop();
9 foreach edge e of ETree that matches o do

10 if o is an insertion then
insertEval(o, e,MDCG) ;

11 else deleteEval(o, e,MDCG) ;

3. Continuous Multi-query Processing Model

When an edge update occurs, it is costly to con-
duct sequential query processing. The central idea of
multi-query handling is to employ a delicate data struc-
ture, which can be used to compute matches of affected
queries in one pass.

3.1. Annotated query graph

Different from the work proposed in [5] that decom-
poses queries into covering paths and handles updates
by finding affected paths, we provide a novel concept
of annotated query graph, namely, AQG, which merges
all queries in QDB into one. In contrast to convention-
al query graphs, for each edge e in an AQG QA, there
is a condition in terms of query ID, such that e exists
in corresponding queries. Based on AQG, we can com-
pute matches of affected queries in one pass of enu-
meration instead of multiple.
Example 2. The queries in Figure 2(a) are overlaped
and can be merged into an annotated AQG Q4, where
AQG Q4 takes the union of the vertices and edges of
the three query graphs. The edges in Q4 are annotat-
ed by δ such that δ(u1, u2) = {1, 2, 3}, δ(u1, u3) =
δ(u2, u3) = {1, 3}, δ(u1, u4) = {2}, δ(u2, u4) =
{2, 3}, δ(u2, u5) = {2, 3}, δ(u3, u4) = {1, 2} (la-
bels omitted here). Observe that common sub-patterns
of Q1 − Q3 are represented only once in Q4 and the
matches to Q1 − Q3 can be computed in a single enu-
meration of matches of Q4.
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3.2. Auxiliary Data Structure

Since continuous multi-query processing is trig-
gered by each update operation on the data graph, it
is more useful to maintain some intermediate results
for each vertex in the data graph as TurboFlux [3] did
rather than in the query graph. To this end, we propose
a newly data-centric auxiliary data structure based on
the equivalent query tree of AQG.
Definition 3. The equivalent query tree of a rooted
AQG is defined as the tree ETree such that each edge
in AQG corresponds to a tree edge in ETree. (e.g., Fig-
ure 3(a) is the equivalent query tree of AQG Q4 in Fig-
ure 2(b)).

Note that since we will transform all edges of AQG
into tree edges, there are duplicate vertices in ETree
(e.g., u3 and u′3 in Figure 3(a)). To construct ETree, we
need to choose a root vertex of AQG. We first adop-
t the core-forest decomposition strategy of [6] to de-
termine the core part QC(VC , EC). Then, we use edge
overlapping factor o(e) and candidates set cand(u)
(u ∈ VC) to select the root vertex ur in VC . In detail,
we quantify u′s root degree as |cand(u)|/Σ o(u, ui)
(u ∈ VC , (u,ui) ∈ EC) and select the vertex with the
minimum value as the root vertex ur. Here, o(u, ui) is
the overlapping factor of edge (u, ui), defined as the
maximum number of queries annotated on edge (u, ui)
in the AQG (e.g., o(u1, u2) = 3 in Figure 2(b)), and
|cand(u)| represents a set of vertices in G matching
with u. After that, we traverse AQG in a BFS order
from ur, and direct all edges from upper levels to lower
levels to generate the the equivalent query tree of AQG.
Example 3. For each vertex ui in AQG, supposed that
the number of candidates (i.e., |cand(ui)|) is shown in
Figure 2(c). We select the vertex with the lowest root
degree as root vertex (i.e., vertex u1) and then gener-
ate the equivalent query tree ETree as shown in Figure
3(a).
Observation 1. Let (ui, u j) be an edge in ETree. For
each annotated query ID Qi on (ui, u j), there must exist
a path from a vertex us to u j corresponding to Qi and

us has no incoming edge annotated with Qi. Here, us
is called start vertex.
Example 4. Consider the edge (u3, u′′4) in Figure 3(a).
The start vertex corresponding to Q1 and Q2 is u1 and
u3, respectively.

Based on ETree and AQG, we construct a novel data-
centric auxiliary data structure called MDCG. For each
vertex v in the data graph, we store corresponding can-
didate query vertices as incoming edges to v in inter-
mediate results. The MDCG is a complete multigraph
such that every vertex pair (vi, v j) (vi, v j ∈ VG) has
|VQA | − 1 edges. Here, each edge has a query vertex
ID in ETree as edge label, and its state is one of Nul-
l/Incomplete/Complete. Each query vertex ID contain-
s an annotation set σ(u) about query ID that confor-
m corresponding states. Let us be one start vertex of
ETree and vs be one vertex in G to which us match-
es. Given an edge (v, u′, v′) with σ(u) = {Qi, · · · ,Q j}
in the MDCG, it belongs to one of the following three
types.

– Null edge: For each query Qk (k ∈ [i, j]), there is
no data path vs → v.v′ that match us→ P(u′) 1.u′.

– Incomplete edge: u′ is a candidate of v′ such that
for each Qk (k ∈ [i, j]), (1) there exists a data path
vs → v.v′ that match us → P(u′).u′; and (2) there
exists a subtree of u′ does not match any subtree
of v′.

– Complete edge: u′ is a candidate of v′ such that
for each Qk (k ∈ [i, j]), (1) there exists a data path
vs → v.v′ that match us → u.u′; and (2) every
subtree of u′ matches the corresponding subtree
of v′.

Note that we do not store Null edges in the MDCG s-
ince they are hypothetical edges in order to explain the
incremental maintenance strategy (see Section 4). Fur-
thermore, to reduce the storage cost, we use a bitmap
for each vertex v in the MDCG where the i−th bit in-

1 P(u′) means the parent of u′ in ETree
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Fig. 3. Example of constructing MDCG

dicates whether v has any incoming Incomplete edges
whose label is ui.
Example 5. Figure 3(c) gives the MDCG based on E-
Tree in Figure 3(a). Since there is a path u1 → u2.u′4
from start vertex u1 corresponding to Q2 and Q3 that
matches v4 → v2.v5 and u′4 does not have any subtree,
then edge (v2, u′4, v5) with σ(u′4) = {Q2,Q3} in the
MDCG is set to be a Complete edge.

4. Continuous Multi-Query Evaluation Phase

We rely on an incremental maintain strategy to ef-
ficiently maintain MDCG for each edge update op-
eration, and then propose an effective matching or-
der to conduct subgraph pattern matching for affected
queries in single pass of enumeration directly.

4.1. Incremental maintenance of intermediate results

We propose an edge state transition model to ef-
ficiently identify which update operation can affec-
t the current intermediate results and/or contribute to
positive/negative matches for each affected query. The
edge state transition model consists of three states and
six transition rules, which demonstrates how one state
is transited to another.

Handing Edge Insertion. When an edge insertion
(v, v′) occurs, we have the following three edge transi-
tion rules.

From Null to Null. (1) Suppose that edge (v, v′) fails
to match any query edge in the ETree, then the state of
(v, v′) is Null. (2) Suppose that edge (v, v′) matches a
query edge (u, u′) in the ETree. If v in the MDCG has
no Incomplete/Complete incoming edge with label u
such that σ(u) contains one query ID in δ(u, u′), then
the state of (v, u′, v′) remains Null.

From Null to Incomplete. (1) Suppose that edge (v, v′)
matches a query edge (u, u′) in the ETree. If v has an
Incomplete/Complete edge (vp, v) with label u such
that σ(u) ∩ δ(u, u′) = ζ (ζ 6= ∅), then we transit the
state of edge (v, u′, v′) from Null to Incomplete and set
σ(u′) = ζ. (2) Suppose that the state of edge (v, u′, v′)
in the MDCG is translated from Null to Incomplete, we
need to propagate the update downwards. That is, for
each adjacent vertex v′′ of v′, we will check whether
(v′, v′′) matches (u′, u′′) where u′′ is the child vertex
of u′ and σ(u′) ∩ δ(u′, u′′)=ζ′ (ζ′ 6= ∅). If so, we tran-
sit the state of (v′, u′′, v′′) in the MDCG from Null to
Incomplete and set σ(u′′) = ζ′.
Example 6. Figure 4(b)–(c) give the example of edge
transition rule from Null to Incomplete. In Figure 4(a),
when the edge insertion operation ∆g1 (between v1
and v3) occurs, we can find that (v1, v3) matches
(u1, u3) in the ETree. Since v1 has an incoming Incom-
plete edge with label u1 such that σ(u1) ∩ δ(u1, u3) =
{1, 3} in Figure 4(b), then we translate the state
of edge (v1, u3, v3) from Null to Incomplete and set
σ(u3) = {1, 3}. Next, update needs to be propagated
downwards. Here, an Incomplete edge (v3, u′′4 , v5) with
σ(u′′4) = {1} is added into the MDCG, as shown in
Figure 4(c).

From Incomplete to Complete. (1) Suppose that the
state of (v, u′, v′) is transited from Null to Incomplete. If
u′ is a leaf vertex in the ETree for a query Qi in σ(u′),
we transit the state of (v, u′, v′) with σ(u′) = {Qi}
in the MDCG from Incomplete to Complete. The s-
tate of edge (v, u′, v′) with σ(u′)/({Qi}) remains In-
complete. (2) Suppose that the state of (v, u′, v′) in the
MDCG is transited from Incomplete to Complete. If v
has an outgoing Complete edge in the MDCG whose
label is u′′ and σ(u′′) contains Qi for every u′′ in
Children(P(u′)), then transit the state of every Incom-
plete incoming edge (vp, v) of v in the MDCG whose
label is P(u′) and σ(P(u′)) contains Qi from Incom-
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Fig. 4. Maintenance strategy

plete to Complete. The state of edge (vp, P(u′), v) with
σ(P(u′))/({Qi}) remains Incomplete.
Example 7. Figure 4(d)–(e) give the example of edge
transition rule from Incomplete to Complete. In Fig-
ure 4(d), since u3 is the leaf vertex in Q3, the state of
edge (v1, u3, v3) with σ(u3) = {3} is transited from
Incomplete to Complete. Currently, the state of edge
(v3, u′′4 , v5) with σ(u′′4) = {1} in Figure 4(b) is transit-
ed from Null to Incomplete. Since u′′4 is the leaf vertex
of Q1, then the state of edge (v3, u′′4 , v5) with σ(u′′4) =
{1} is transited from Incomplete to Complete. Note
that there is another Complete edge (v3, u′′4 , v5) with
σ(u′′4) = {2}, we can merge them together. Then,
we further check the state of edge (v1, u3, v3) with
σ(u3) = {1}. Since v3 has an outgoing Complete edge
with label u′′4 and σ(u′′4) = {1} for every children of
u3, then the state of edge (v1, u3, v3) with σ(u3) = {1}
is transited from Incomplete to Complete. Next, update
needs to be propagated upwards. Here, the state of
edge (v∗, u1, v1) with σ(u1) = {1, 3} is transited from
Incomplete to Complete, as shown in Figure 4(e).

Handing Edge Deletion. When an edge deletion
(v, v′) occurs, we have the following three reversed
edge transition rules.

From Complete to Null. (1) For each edge (u, u′) in
ETree such that v in the MDCG has an incoming Incom-
plete or Complete edge whose edge label is u, if (v, v′)
matches (u, u′) and the state of (v, u′, v′) in the MDCG
is Complete, then transit the state of (v, u′, v′) in the

MDCG from Complete to Null. (2) Suppose that the s-
tate of edge (v, u′, v′) in the MDCG is transited from
Incomplete or Complete to Null. For each query Qi in
σ(u′), if v′ in the MDCG no longer has any incoming
edge whose label is u′ that contains the annotation Qi,
then for each u′′ in Children(u′), transit the state of ev-
ery outgoing Complete edge of v′ in the MDCG whose
label is u′′ that contain Qi from Complete to Null.
Example 8. Figure 4(f) gives the example of edge
transition rule from Complete to Null. In Figure 4(a),
when the edge deletion operation ∆g2 (between v2 and
v3) occurs, the state of edge (v2, u3, v3) is translated
from Complete to Null in the MDCG as show in Fig-
ure 4(f), since v2 has an incoming Complete edge with
label u2 and (v2, v3) matches (u2, u′3) in the ETree.

From Complete to Incomplete. Suppose that the s-
tate of (v, u′, v′) in the MDCG is transited from Com-
plete to Incomplete or Null. For each query Qi in σ(u′),
if v in the MDCG no longer has any outgoing Complete
edge whose label is u′ that contains Qi, then we tran-
sit the state of every incoming Complete edge of v in
the MDCG whose label is P(u′) that contains Qi from
Complete to Incomplete.
Example 9. Figure 4(g)–(h) give the example of edge
transition rule from Incomplete to Complete. In Fig-
ure 4(g), since the state of edge (v2, u3, v3) is trans-
lated from Complete to Null, for Q1 and Q3, v2 does
not have an outgoing Complete edge for every chil-
dren of u2 in ETree, then the state of edge (v4, u2, v2)
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with σ(u2) = {1, 3} is transited from Complete to
Incomplete. While the state of edge (v4, u2, v2) with
σ(u2) = {2} is still remained Complete, since it meets
the Complete requirement for Q2. Next, update need-
s to be propagated upwards. Here, the state of edge
(v∗, u1, v4) with σ(u1) = {2} is transited from Com-
plete to Incomplete, as shown in Figure 4(h).

From Incomplete to Null. (1) If v in the MDCG has
an incoming Incomplete or Complete edge whose edge
label is u, and the state of (v, u′, v′) in the MDCG is In-
complete, then transit the state of (v, u′, v′) in the MD-
CG from Incomplete to Null. (2) Suppose that the s-
tate of (v, u′, v′) in the MDCG is transited from Incom-
plete or Complete to Null. For each query Qi in σ(u′),
if v′ in the MDCG no longer has any incoming edge
whose label is u′ that contains Qi, then for each u′′ in
Children(u′), transit the state of every outgoing Incom-
plete edge of v′ in the MDCG whose label is u′′ that
contain Qi from Incomplete to Null.

4.2. Subgraph search phase

If the state of an edge (v, u′, v′) is translated to Com-
plete, we say the queries in σ(u′) are affected queries
caused by edge (v, v′). Then, we propose an efficient
algorithm, namely, MMatchinc, to calculate correspond-
ing positive matches including (v, v′) for each affected
query based on the MDCG in single pass of enumera-
tion directly. The main idea of MMatchinc is explained
as follows: (1) We derive a matching order based on
the number of affected queries on each edge in ETree;
and then (2) compute the positive matches for each af-
fected query based on the matching order.

In order to calculate the matching order, MMatchinc
first marks u′ as visited. Subsequently, given a set of
unvisited vertices that is adjacent to u′ in ETree, the
next vertex u∗ is the one such that δ(u∗, u′) contains
the maximal affected queries. If there is a tie, it choos-
es a query vertex having a minimum number of can-
didate data vertices in the MDCG. After that, we mark
u∗ as visited. The matching order for the rest of query
vertices is determined along the same lines.

Remark. Intuitively, MMatchinc outputs a “global”
matching order for the query vertices in the AQG QA.
It prioritizes vertices that are shared by more queries.
Matching such vertices at an early stage could help
avoid the enumeration of many unpromising interme-
diate results since the corresponding pruning benefits
multiple queries at the same time.

In the next stage, MMatchinc enumerates the positive
matches for each affected query graph Qi embedded in
the MDCG following the proposed matching order. It
adopts the generic backtracking approach. During the

matching process, it enumerates and prunes v′ adjacen-
t Complete edge by inspecting edge label whether it
contains the affected query Qi. The same edge for dif-
ferent query graphs is indeed enumerated only once.
Example 10. As show in Figure 3(d), the state of edge
insertion (v1, u3, v3) is translated into Complete. Since
σ(u3) = {1, 3}, then Q1 and Q3 are the affected query
graphs. Firstly, we mark u3 as visited. Then, for each
adjacent vertex (i.e., u1 and u

′′

4 ) in the ETree (see Fig-
ure 2(a)), we choose u1 as the next vertex for match-
ing since δ(u1, u3) contains both Q1 and Q3. Finally,
a matching order {u3, u1, u2, u′3, u5, u4, u′4, u

′′

4} is de-
duced. Based on the matching order, MMatchinc enu-
merates all the positive matches of the affected query
graphs in a single pass.

5. IncMQO Algorithms

In this section, we present detailed algorithms for
IncMQO. In order to efficiently handle the continuous
multi-query, we first construct the auxiliary data struc-
ture MDCG, and then present two major functions in-
sertEval and deleteEval to apply necessary transition
rules to efficiently maintain the intermediate result-
s for each update. Finally, we investigate the match-
ing algorithm MMatchinc to report corresponding posi-
tive/negative matches in one pass based on the MDCG.

5.1. MDCG construction

In this subsection, we explain BuildMDCG (Line 5
of Algorithm 1) which is designed for every v with an

Algorithm 2: BuildMDCG

Input: (P(v), u, v) is a edge in MDCG; G is a
data graph; and ETree is the equivalent
query tree

Output: MDCG is the auxiliary data structure
for AQG

1 foreach child query vertex u′ of u do
2 foreach child data vertex v′ of v do
3 if (u, u′) matches (v, v′) then
4 MDCG.setEdgeType((v, u′, v′),I);
5 if u′ is a non-leaf vertex then
6 BuildMDCG

((v, u′, v′),G,ETree);
7 MDCG.setEdgeType((v, u′, v′),C);

8 if v’s subtree matches u’s subtree for Qi then
9 MDCG.setEdgeType((P(v), u, v),C);
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Algorithm 3: insertEval

Input: (v, v′) is an insertion edge; MDCG is the
auxiliary data structure

1 U ← {u| satisfying ur → u matches vr → v};
2 foreach u ∈ U do
3 foreach child vertex u′ of u in ETree do
4 if (u, u′) matches (v, v′) then
5 MDCG.setEdgeType((v, u′, v′),I);
6 BuildMDCG ((v, u′, v′),G,ETree)
7 if MDCG.getEdgeType(v, u′, v′)=C

then
8 updateMDCG

((P(v), u, v),G,ETree);

Incomplete incoming edge. It uses a depth-first trav-
el strategy to extend each v in MDCG. First, we check
wether there exists an edge (u, u′) matching (v, v′),
where u′ and v′ represent a child vertex of u and v, re-
spectively; if so, we transit the type of edge (v, v′) from
Null to Incomplete (Line 1–4). If u′ is not a leaf vertex,
we call BuildMDCG recursively to match the child ver-
tex of u′ (Lines 5-6). Otherwise, transit the state of the
edge (v, u′, v′) from Incomplete to Complete (Line 8).
After that, we check if the subtree of v matches the cor-
responding subtree of u for Qi; if so, we transit the s-
tate of the edge (p(v), v) from Incomplete to Complete
(Lines 8–9).
Lemma 1. The time complexity of BuildMDCG is
O(|E(G)| ∗ |V(ETree)|).

Proof. In the worst case, BuildMDCG is called for ev-
ery vertex u and every data vertex v. Thus, given u and
v the time complexity for Lines 1–2 of Algorithm 2
is O(|children(v)| ∗ |children(u)|). Note that the time
complexity for Lines 8–9 is O(children(u)). Thus, the
time complexity of BuildMDCG is O(

∑
u∈ETree

∑
v∈G

(|children(v)|∗|children(u)|)) = O(|E(G)|∗|V(ETree)|)

5.2. Edge Insertion

insertEval (Algorithm 3) is invoked for each new ar-
rival edge (v, v′). The main idea of insertEval is ex-
plained as follows: we try to match (v, v′) with the
query edges in ETree and update the MDCG based
on the corresponding maintenance strategy. Then we
build the MDCG downwards for the subtree of v′ and
further update the MDCG upwards until reaching any
of the starting vertex vs. Finally, we execute the sub-
graph matching to report the matching results.

Algorithm 4: updateMDCG

Input: (v, u′, v′) is a edge in MDCG; G is a data
graph; and ETree is the equivalent query
tree

1 foreach parent vertex P(v) of v in ETree do
2 if MDCG.getEdgeType((P(v), u, v))=I then
3 if v’s subtree matches partial u’s subtree

then
4 MDCG.setEdgeType((p(v), u, v),C);

5 if v != vs then
6 updateMDCG ((p(v), u, v),G,ETree);

Note that not all the insertion edge (v, v′) can cause
the update of MDCG. Only when there is a path vs →
v matches the path us → u, the insertion operation can
cause any update to MDCG. Thus we collect all the
path matched vertex u into a vertex set U (Line 1).
To do this, we can guarantee v has an Incomplete or
Complete edge. Then for each child query vertex u′ of
u(u ∈ U), if (u, u′) matches (v, v′), we further set the
type of edge (v, v′) to Incomplete with the transition
rule From Null to Incomplete, and execute BuildMD-
CG downwards to build the new part of MDCG (Lines
2–6). If the type of the insertion edge (v, v′) transit into
Complete finally, we execute updateMDCG to update
the type of the edge which belongs to the path vs → v
(Lines 7–8).

Here, updateMDCG (Algorithm 4) traverses the MD-
CG upwards and performs the transition rules if nec-
essary. It is only called when v has an incoming
edge with Incomplete type (Line 2). Then, when v’s
subtree matches u’s subtree for Qi, we further tran-
sit (P(v), u, v)) to Complete with transit rule From
Incomplete to Complete (Lines 3–4). When it reaches
any starting data vertex vs, we end of the updateMD-
CG. On the contrary, we continue to recurse upward-
s(Lines 5–6).

Remark. deleteEval algorithms for edge deletion
are very similar to those for edge insertion except that
they use different transition rules. Thus, we do not de-
scribe here.

6. Experiments

In this section, we perform extensive experiments
on both real and synthetic datasets to show the per-
formance of IncMQO algorithm for continuous multi-
query matching over dynamic graphs. The perfor-
mance of IncMQO was evaluated using various param-
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eters such as the overlapped rate of query set, average
query size, query database size, edge update size, and
graph size. The proposed algorithms were implement-
ed using C++, running on a Linux machine with two
Core Intel Xeon CPU 2.2Ghz and 32GB main memo-
ry.

6.1. Datasets and Query Generation

The SNB dataset. SNB [7] is a synthetic benchmark
designed to accurately simulate the evolution of a so-
cial network through time. This evolution is modeled
using activities that occur inside a social network.
Based on the SNB generator, we derived 3 datasets:
(1) SNB0.1M with a graph size of |EG|=0.1M edges
and |VG|=57K vertices; (2) SNB1M with a graph size
of |EG| = 1M edges and |VG| = 463K; and (3) SNB10M
with a graph size of |EG| = 10M edges and |VG| =
3.5M, and use the second one as default.

The NYC dataset. NYC 2 is a real world set of tax-
i rides performed in New York City (TAXI) in 2013.
TAXI contains more that 160M entries of taxi rides
with information about the license, pickup and drop-
off location, the trip distance, the date and duration of
the trip, and the fare. We utilized the available data to
generate a data graph with |EG| = 1M edges and |VG|
= 280K vertices.

The BioGRID dataset. BioGRID [8] is a real world
dataset that represents protein to protein interactions.
We used BioGRID to generate a stream of updates that
result in a graph with |EG| = 1M edges and |VG| = 63K
vertices.

In order to construct the set of query graph pattern-
s QDB, we identified two typical distinct query class-
es: trees and graphs. Each type of query graph pat-
tern was chosen equiprobably during the generation of
the query set. The default values for the query set are:
(1) an average size l of 5, where l represents the av-
erage size of the queries in QDB; (2) a query database
QDB size of 500 query graphs; and (3) a factor that de-
notes the percentage of overlap between the queries in
QDB, α = 50%.

6.2. Comparative Evaluation

Our method, denoted as IncMQO, is compared with
a number of related works. TRIC is the state-of-the-
art continuous multi-query processing method over dy-
namic graph [5]. It utilizes the common parts of min-
imum covering paths to amortize the costs of process-

2 https://chriswhong.com/open-data/foil nyc taxi/

ing and answering them. TurboFlux [3] and Graph-
Flow [4] are the state-of-the-art continuous subgraph
matching methods for single query. Both of them can
be utilized for multi-query processing scenarios. That
is, we adopt the sequential query processing strategy
on them.

We measure and evaluate (1) the elapsed time and
the size of intermediate results for IncMQO and its
competitors by varying the percentage of overlap be-
tween the queries in the query set; (2) the elapsed time
and the size of intermediate results for IncMQO and it-
s competitors by varying the average query size and
query database size; (3) the elapsed time and the size
of intermediate results for IncMQO and its competitors
by varying the edge insertion size; (4) the elapsed time
and the size of intermediate results for IncMQO and it-
s competitors by varying the edge deletion size; and
(5) the scalability of IncMQO.

6.3. Evaluating the efficiency of IncMQO

In this subsection, we evaluated the performance
of IncMQO against its competitors from the aspect of
processing time and storage cost on three datasets:
SNB1M, NYC and BioGRID with a default updates
stream |∆g| = 400K.

Time Efficiency Comparison. Figure 5(1) shows
the total processing time of IncMQO and its competi-
tors over different datasets. We can see that IncMQO is
better than its competitors over all datasets. Notably,
IncMQO outperforms TRIC, TurboFlux and GraphFlow
by up to 8.43 times, 28.93 times, and 385.21 times,
respectively. The reason is that TRIC needs to main-
tain a large number of indexes to track the matching
results; TurboFlux and GraphFlow need to process the
multiple queries sequentially, which costs a lot of time
overhead. In specific, GraphFlow has the worst perfor-
mance, since it does not store any intermediate results
and use the re-computing method for each update.

Space Efficiency Comparison. Figure 5(2) shows
the size of intermediate results on each dataset. We on-
ly evaluate the IncMQO, TRIC, and TurboFlux, since
GraphFlow does not maintain any intermediate result-
s. IncMQO outperforms TRIC, and TurboFlux by up to
9.03 times, 29.07 times, respectively. This is because
TRIC maintains a large number of materialized views
and TurboFlux needs to construct auxiliary data struc-
ture for each query in the query set, as a result, leading
to worse performance in storage cost.
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Fig. 5. Performance on SNB1M, NYC and BioGRID

6.4. Varying percentage of query overlap

In Figure 6(1) we give the results of the time effi-
ciency evaluation when varying the parameter α, for
0%, 10%, 20%, 30%, 40%, 50% and 60% of a query
set for |QDB| = 500 on SNB dataset. Here, we fixed
|∆g| = 400K. In this setup, the algorithms are evalu-
ated for varying percentage of query overlap. α = 0%
means that the queries in QDB have no overlap. It is
revealed that IncMQO significantly outperforms oth-
er approaches when α = 0%. A higher number of
query overlap should decrease the number of calcu-
lations performed by algorithms designed to exploit
commonalities among the query set. The results show
that IncMQO and TRIC behave in a similar manner as
previously described, while TurboFlux and GraphFlow
do not since they focus on a-query-at-a-time. Note that
in Figure 6(1), when α = 0%, IncMQO is slightly
worse than that of TurboFlux while still better than that
of TRIC by 1.25 times and GraphFlow by 5.07 times.
Figure 6(2) plots the average size of intermediate re-
sults. IncMQO achieves the smallest size of intermedi-
ate results since it merges all the queries into one and
builds a concise auxiliary data structure. In specific, In-
cMQO is superior to up to TurboFlux 63.2 times when
α = 60%.
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Fig. 6. Performance of varying the percentage of query overlap

6.5. Varying the average query size

In this subsection, we evaluate the impact of the
average query size in QDB on the performance of In-
cMQO and its competitors. Figure 7(1)–(2) show the
performance results on SNB dataset. We set l from 3
to 9 in 2 increments and fixed |∆g| = 400K. Note
that the matching cost does not always increase as
the average query size increases. Figure 7(1) shows
the elapsed time, IncMQO significantly outperforms it-
s competitors regardless of average query size. Spe-
cially, IncMQO outperforms TRIC by 6.40-11.72 times,
TurboFlux by 39.06-49.24 times and GraphFlow by
139.90-172.33 times. Figure 7(2) gives the average
size of intermediate results. It is reviewed that the aver-
age size of intermediate result of TRIC increases rapid-
ly with the increase of the average query size. In spe-
cific, IncMQO outperforms TRIC by up to 12.31 times
when l is 9. Since TRIC uses path join operations, the
larger the query graph pattern, the more join operations
it requires.

6.6. Varying query database size

In this subsection, we evaluate the impact of the size
of query database on the performance of IncMQO and
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Fig. 7. Performance of varying the average query size

its competitors. Figure 8(1)–(2) show the performance
results using SNB for varying the size of the query
database QDB. More specifically, we fix |∆g| = 400K
and vary |QDB| from 250 to 1000 in 250 increments.
Please notice the y-axis is in a logarithmic scale. Fig-
ure 8(1) shows the processing time for each algorithm
when varying |QDB|. It revealed that IncMQO signifi-
cantly outperforms its competitors regardless of query
database size. Specially, IncMQO outperforms TRIC by
up to 8.92 times, TurboFlux by up to 82.73 times and
GraphFlow by up to 287.77 times when |QDB| = 1000.
IncMQO also outperforms its competitors in terms of
the size of intermediate results, as shown in Figure
8(2). The performance gap between IncMQO and TRIC
will increase as |QDB| increases. Specially, the average
size of intermediate results of TRIC and TurboFlux is
larger than that of IncMQO by up to 10.78 times and
50.47 times, respectively, when |QDB| = 1000.

6.7. Varying the edge insertion size

Figure 9(1)–(2) show the performance results using
SNB for varying edge insertion size. Here, we vary the
number of newly-inserted edges from 200K to 800K in
200K increments with respect to the number of triples
in the graph update stream. Figure 9(1) shows the
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Fig. 8. Performance of varying query database size

total processing time for each algorithm. The result-
s demonstrate that all algorithm’s behavior is aligned
with our previous observations. It can be seen that In-
cMQO has consistent better performance than its com-
petitors. Specially, IncMQO outperforms TRIC by up to
8.57 times, TurboFlux by up to 30.04 times and Graph-
Flow by up to 172.33 times. In terms of the size of
intermediate results, IncMQO also has a better perfor-
mance than its competitors, as shown in Figure 9(2).
Specially, the average size of intermediate results of
TRIC and TurboFlux is larger than that of IncMQO by
up to 11.92 times and 59.73 times, respectively, when
the insertion size is 800K.

6.8. Varying the edge deletion size

Figure 10(1)–(2) show the performance results us-
ing SNB for varying edge deletion size. Here, we vary
the number of expired edges from 200K to 500K in
100K increments with respect to the number of triples
in the graph update stream. Figure 10(1) shows the to-
tal processing time for each algorithm. Note that dele-
tion of an edge (v, v′) may affect the auxiliary data
structure. As the edge deletion size increases, incre-
mental subgraph matching times of IncMQO, TRIC,
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Fig. 9. Performance of varying the edge insertion size

and TurboFlux increase, while that of GraphFlow de-
creases. The reason is that the edge deletions reduce
the input data size of GraphFlow directly. Nevertheless,
IncMQO still consistently outperforms its competitors
regardless of the edge deletion size. As shown in Fig-
ure 10(2), the average number of intermediate result-
s of TRIC is larger than that of IncMQO by up to 6.4
times, and TurboFlux is larger than that of IncMQO by
up to 23.4 times when the deletion size is 500K.

6.9. Varying dataset size

Figure 11(1)–(2) show the performance results us-
ing SNB for varying dataset size. Here, we fixed
|∆g| = 200K and varied the size of SNB from 0.1M
to 10M. In Figure 11(1), IncMQO consistently outper-
forms its competitors regardless of the dataset size. In
specific, the figure reads a non-exponential increase as
the dataset size grows. The scalability suggests that In-
cMQO can handle reasonably large real-life graphs as
those existing algorithms for deterministic graphs. Fig-
ure 11(2) shows similar scalability of intermediate re-
sult sizes for IncMQO, TRIC and TurboFlux. Specially,
IncMQO outperforms TRIC by up to 10.70 times and
TurboFlux by up to 53.86 times.
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Fig. 10. Performance of varying the edge deletion size

7. Related Work

We categorize the related work as follows.

Subgraph Isomorphism Research. Subgraph iso-
morphism research is a fundamental requirement for
graph databases and has been widely used in many
fields. While this problem is NP-hard, in recent years,
many algorithm have been proposed to solve it in a
reasonable time for real datasets, such as VF2 [9],
GraphQL [10], TurBOiSO [11], QuickSI [12]. Most
all these algorithms follow the framework of Ullmann
[13], with some pruning strategies, heuristic matching
order algorithm and auxiliary neighborhood informa-
tion to improve the performance of subgraph matching
search. [14] compared these subgraph isomorphism al-
gorithms in a common code base and gave in-depth
analysis. However, these techniques are designed for
static graphs and are not suitable for processing con-
tinuous graph queries on evolving graphs.

Continuous query process. Continuous query pro-
cess has first been considered in [15] which means
continuously monitoring a set of graph streams and re-
porting the appearances of a set of pattern graphs in a
set of graph streams at each timestamp [16] [2]. But
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Fig. 11. Performance of varying dataset size

it offered an approximate answer instead of using sub-
graph isomorphism verification to find the exact query
answers. In the latter study, [17] proposed the concept
of incremental subgraph matching to handle continu-
ous query problem. It only executed subgraph match-
ing over the updated part and avoided recomputing
from scratch. In addition, [18] proposed continuous
graph pattern matching over knowledge graph stream-
s and used two different executional models with an
automata-based model to guide the searching process.
[3] proposed a novel data-centric presentation to pro-
cess continuous subgraph matching. However, all of
the above algorithms evaluate each query separately,
and cannot be directly used for multi-queries problem.

Multi-Query. Multi-query process has been well s-
tudied in relational data-bases [19][20], while that in
graph databases is still in development. [21] studied
SPARQL multi-query over RDF graphs. For a batch
of graph queries, it clustered the graph query into dis-
joint finer groups and then rewrited the patterns into
a single query common pattern graph for each group.
However, it is limited to the RDF data model. Subse-
quently, [22] extended multi-query for undirected la-
beled graph. It detected useful common subgraphs of
the set of queries to answer multi-query problem and

cached the intermediate results to balance memory us-
age and the execution time. However, this technique
mainly focused on static graph. In recently, [5] han-
dled the continuous multi-query problem over graph
streams via indexing and clustering continuous graph
queries. However, it stored too many intermediate re-
sults, and the join operation was also expensive.

8. Conclusion

In this paper, we proposed an efficient continuous
multi-query processing engine, namely, IncMQO, in
dynamic graphs. We showed that IncMQO can resolve
the problems of existing methods and process contin-
uous multiple subgraph matching for each update op-
eration efficiently. We first developed a novel concept
of annotated query graph that merges multi-query into
one. Then we constructed a data-centric auxiliary da-
ta structure based on the equivalent query tree of the
annotated query graph to represent partial solutions in
a concise form. For each update, we proposed an edge
transition strategy to maintain the intermediate results
incrementally and detect the affected queries quickly.
What’s more, we proposed an efficient matching order
to calculate the positive or negative matching results
for each affected query in one pass. Finally, compre-
hensive experiments performed on real and benchmark
datasets demonstrate that our proposed algorithm out-
performs alternatives.
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