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Abstract. Information related to the COVID-19 pandemic ranges from biological to bibliographic, from geographical to
genetic and beyond. The structure of the raw data is highly complex, so converting it to meaningful insight requires data
curation, integration, extraction and visualization, the global crowdsourcing of which provides both additional challenges and
opportunities. Wikidata is an interdisciplinary, multilingual, open collaborative knowledge base of more than 90 million
entities connected by well over a billion relationships. A web-scale platform for broader computer-supported cooperative work
and linked open data, it can be queried in multiple ways in near real time by specialists, automated tools and the public,
including via SPARQL, a semantic query language used to retrieve and process information from databases saved in Resource
Description Framework (RDF) format. Here, we introduce four aspects of Wikidata that enable it to serve as a knowledge base
for general information on the COVID-19 pandemic: its flexible data model, its multilingual features, its alignment to multiple
external databases, and its multidisciplinary organization. The rich knowledge graph created for COVID-19 in Wikidata can be
visualized, explored and analyzed, for purposes like decision support as well as educational and scholarly research.
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1. Introduction

The COVID-19 pandemic is complex and
multifaceted and touches on almost every aspect of
current life [1]. Coordinating efforts to systematize
and formalize knowledge about COVID-19 in a
computable form is key in accelerating our response
to the pathogen and future epidemics [2]. There are
already attempts at creating community-based
ontologies of COVID-19 knowledge and data [3], as
well as efforts to aggregate expert data [4]. Many
open data initiatives have been started spontaneously
[5-7]. The interconnected, multidisciplinary, and
international nature of the pandemic creates both
challenges and opportunities for using knowledge
graphs [2-5, 8-12].

For applications of knowledge graphs in general,
common challenges include the timely assessment of
the relevance and quality of any piece of information
with regards to the characteristics of the graph and
the integration with other pieces of information
within or external to the knowledge graph. Common
opportunities are mainly related to leveraging such
knowledge graphs for real-life applications, which in
the case of COVID-19 could be, for instance,
outbreak management in a specific societal context or
education about the virus or about countermeasures
[2-5, 8-12]. While the manuscript as a whole
emphasizes the opportunities, we think it is
worthwhile to highlight some of the challenges early
on.

1.1. Data integration challenges

The integration of different data sources always
poses a range of challenges [13], for example in
terms of interoperability (e.g. differing criteria for
COVID-19 deaths across jurisdictions), granularity
(e.g. number of tests performed per jurisdiction and
time period), quality control (e.g. whether
aggregations of sub-national data fit with national
data), data accessibility (e.g. whether they are
programmatically and publicly accessible, and under
what license) or scalability (e.g. how many sources to
integrate, or how often to sync between them).

With respect to integrating COVID-19 data in
particular, a number of further challenges need to be
considered. We will refer to them collectively as
COVID-19 data challenges, of which we will briefly
outline four major ones: First, human knowledge
about the COVID-19 disease, the underlying
pathogen and the resulting pandemic is evolving

rapidly [14], so systems representing it need to be
flexible and scalable in terms of their data models
and workflows, yet quick in terms of deployability
and updatability. Second, COVID-19-related
knowledge, while very limited at the start of the
pandemic, was still embedded in a broader set of
knowledge (e.g. about viruses, viral infections, past
disease outbreaks and interventions), and these
relationships - which knowledge bases are meant to
leverage - are growing along with the expansion of
our COVID-19 knowledge [15]. Third, the
COVID-19 pandemic has affected almost every
aspect of our globalized human society, so
knowledge bases capturing information about it need
to reflect that. Fourth, despite the disruptions that the
pandemic has brought to many communities and
infrastructures [1], the curated data about it should
ideally be easily and reliably accessible for humans
and machines across a broad range of use cases [16].

1.2. Organization of the manuscript

In this research paper, we report on the efforts of
the Wikidata community (including our own) to meet
the COVID-19 data challenges outlined in the
previous section by using Wikidata as a platform for
collaboratively collecting, curating and visualizing
COVID-19-related knowledge at scales
commensurate with the pandemic. While the relative
merits of Wikidata with respect to other knowledge
graphs have been discussed previously [17-19], we
focus on leveraging the potential of Wikidata as an
existing platform with an existing community in a
timely fashion for an emerging transdisciplinary
application like the COVID-19 response.

The remainder of the paper is organized as
follows: we start by introducing Wikidata in general
(Section 2) and describe key aspects of its data model
in the context of the COVID-19 pandemic (Section
2.1). Then, we give an overview of the language
support (Section 2.2) and database alignment
(Section 2.3) of COVID-19 information in Wikidata.
Subsequently, we present a snapshot of how the
COVID-19 knowledge graph of Wikidata can be
used to support computer applications, particularly
the SPARQL-based visualization of multidisciplinary
information about COVID-19 (Section 3). These
visualizations cover biological and clinical aspects
(Section 3.1), epidemiology (Section 3.2), research
outputs (Section 3.3) and societal aspects (Section
3.4). Finally, we discuss the outcomes of the open



development of the COVID-19 knowledge graph in
Wikidata (Section 4), draw conclusions and highlight
potential directions for  future research (Section 5).

2. Wikidata as a semantic resource for
COVID-19

Wikidata is a large-scale, collaborative,
open-licensed, multilingual knowledge base that is
both human- and machine-readable. Notably, it is
available in the standardized RDF (Resource
Description Framework) format, where data is
organized into entities (items) and the relationships
that connect them to each other and outside data,
named properties [20].

Wikidata is a peer production project, developed
under the umbrella of the Wikimedia Foundation,
which also hosts Wikipedia and an ecosystem of
open collaborative websites around it. Similarly to
Wikipedia, it relies on community-driven
development and design and is both a-hierarchical
and largely uncoordinated [21]. As a result, it
develops entirely organically, based on the editor
community’s consensus, which may be implicit (e.g.
by the absence of modifications) or explicit (e.g. a
policy on how to handle biographical information
about living people). This community develops
ontologies and typologies used in the database.

This community-centric approach is both a
blessing and a curse. On the one hand, it makes
methodical planning of the whole structure and its
granularity very difficult, if not impossible [22]: there
simply is no central coordination system, and all
major design decisions have to be approved through
a consensus of all interested contributors. On the
other hand, harnessing knowledge and skills of a
broad range of human and automated contributors
provides for an unparalleled flexibility and versatility
of uses, and allows for rapid addressing of emerging
and urgent phenomena, such as disease outbreaks3.

With respect to the COVID-19 data challenges (cf.
Section 1.1), Wikidata addresses them in several
ways: First, it was designed for web scale data with
flexible and evolving data models that can be
updated quickly and frequently [20, 23], and its
existing community has been using it to capture
COVID-19-related knowledge right from the start.
Second, Wikidata already contained a considerable
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and continuously expanding volume of curated
background information - from SARS-CoV-1 and
other coronaviruses to zoonoses, cruise ships, public
health interventions, vaccine development and
relevant publications - ready to be leveraged to
explore the growing COVID-19-related knowledge in
such broader contexts [15]. Third, both the Wikidata
platform and the Wikidata community are highly
multifaceted, multilingual and multidisciplinary [24,
25]. Fourth, the Wikidata infrastructure is
digital-first, with high uptime and low access
barriers, while its community is distributed around
the globe and includes people from many walks of
life [20], such that any particular disruption due to
the pandemic only affects subsets of the Wikidata
community, which also has experience with handling
humanitarian crises, e.g. through the Zika experience
[26] or through overlap with the Wikipedia
community that has been covering disasters for two
decades.4

An important caveat is that data integration
through Wikidata poses some particular challenges of
its own, such as data licensing (being in the public
domain, Wikidata can essentially only ingest
public-domain data [27]) or multilinguality (e.g. how
to handle concepts that are hard to translate [28]),
and for certain kinds of data (e.g. health data from
individual patients), it is not suitable, although
appropriately configured instances of the underlying
technology stack might [29].

One of Wikidata’s key strengths is that each item
can be understood by both machines and humans. It
represents data in the form of items and statements,
which are navigable in a web interface and shared as
semantic triples [20]. However, where a computer
can easily hold the entire knowledge base in its
memory at once, the same is obviously not true for a
human.

Since we still rely on human interpretation to
extract meaning out of complex data, it is necessary
to pass that data from machine to human in an
intuitive manner [30]. The main way of doing this is
by visualising some subset of the data, since the
human eye acts as the input interface with the
greatest bandwidth. Because Wikidata is available in
the RDF format, it can be efficiently queried using
SPARQL5, a semantic query language dynamically

5 The recursive acronym for "SPARQL Protocol and RDF
Query Language", the current version of which is SPARQL 1.1. A
full description of this language is available at
https://www.w3.org/TR/sparql11-query/.

4 Cf. https://w.wiki/VDe
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extracting triple information from large-scale
knowledge graphs.

Here, we present how various types of data related
to the COVID-19 pandemic are currently represented
in Wikidata thanks to the flexible structure of the
database and how useful visualizations for different
subsets of the data linked to COVID-19 within the
Wikidata knowledge base can be generated.

As active editors of Wikidata, the authors have
contributed a significant part of that data modelling,
usage framework and crowdsourcing of the
COVID-19 information in the knowledge graph since
the beginning of the pandemic. We consequently
have a unique perspective to share our experience
and overview how Wikidata as a collaborative
multidisciplinary large-scale knowledge graph can
host COVID-19 data, integrate it with
non-COVID-19 information and feed computer
applications in an open and transparent way.

2.1. Data model

In Wikidata, each concept has an item (a human,
disease, drug, city, etc.) that is assigned a unique
identifier (Q-number; brown in Fig. 1), and
optionally a label, description and aliases in multiple
languages (yellow in Fig. 1). The assignment of a
single language-independent identifier for each entity
in Wikidata helps minimize the size of the knowledge
graph and avoids issues seen in databases such as
DBpedia, where separate items are needed for each
language [19]. Such a feature is allowed thanks to the
use of Wikibase software - a MediaWiki variant
adapted to support structured data - to drive Wikidata
instead of other systems that represent entities using
textual expressions, particularly Virtuoso [19].

The true richness of the knowledge base comes
from the connections between the items: statements
in the form of RDF triples (subject-predicate-object)
where the subject is the respective item, the predicate
is a Wikidata property (red in Fig. 1), and the object
is another Wikidata item or piece of information
(blue in Fig. 1). The properties that relate items are
similarly each assigned an identifier (P-number).
Some properties relate a Wikidata item as the object

and can be taxonomic (e.g. instance of [P31],
subclass of [P279] or part of [P361]) or
non-taxonomic (e.g. significant person [P3342], drug
used for treatment [P2176] or symptoms [P780]).
Conversely, other properties can have an object that
is a value (e.g. number of cases [P1603]), date (e.g.
point in time [P585]), URL (e.g. official website
[P856]), string (e.g. official name [P1448]), or
external identifier (e.g. Library of Congress authority
ID [P244] or Disease Ontology ID [P699]). Each
statement can be given further detail and specificity
via qualifiers (black in Fig. 1) or provenance via
references (purple in Fig. 1), which themselves are
also organised as RDF triples [23]. This process is
called reification, and it is a common feature of many
knowledge graphs such as DBpedia, Freebase, and
YAGO [17]. Although DBpedia and Freebase apply
reification in a similar setting as in Wikidata, YAGO
chooses to use N-Quads to represent the
characteristics of a statement, implying that the
additional feature is linked to the statement as a
couple without the use of any predicate [17].

This comes together to create an integrated
network of over 90 million items interlinked by over
a billion statements. Its volume, variety, velocity and
veracity place it well in the scope of ‘big data’
approaches [31, 32]. The advantage of RDF over
other competing semantic data formats, particularly
property graph, is that it applies reference schemas
and consistency rules before assigning predicates to
statements [33].

Entries in RDF triple stores are predefined entities,
rather than simple text strings, and structured into
uni-directional statements [34]. In Wikidata, this is
further enhanced by the use of qualifiers to provide
additional features of the statements. This structure
makes building semantic databases using RDF more
difficult and time-consuming than alternative
systems, especially property graph [33], but it allows
a fully regular representation of statements in
knowledge graphs where subjects, predicates and
objects are standardized and semantically described.
Avoidance of typos and synonyms of string-based
systems then allows far faster and more precise
information retrieval and usage [34].



Fig. 1. Data Structure of a Wikidata item. The simple, consistent structure of a Wikidata item makes it both human- and machine-readable.
Each Wikidata item has a unique identifier (Brown). Items can have labels, descriptions and aliases in multiple languages (Yellow). They can
include any number of statements having predicates (Red), objects (Blue), qualifiers (Black) and references (Purple) where the subject is the

item. Finally, where additional Wikimedia resources are available about an item’s topic, those are listed (Green). Source:
https://www.wikidata.org/wiki/Q84263196, available at: https://w.wiki/auF. License: CC-BY-SA-4.0.

In the context of the COVID-19 pandemic, an
ontological database representing many aspects of
the SARS-CoV-2 outbreak has been represented in
Wikidata, building on pilot work that was started at
the onset of the Zika pandemic [26] and led to the
formation of WikiProject Zika Corpus6. This Zika
project—itself inspired by dedicated Wikiprojects for
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Medicine7 and for Source Metadata8—laid many of
the foundations for the current COVID-19 work in
managing fast-changing information: it developed,
documented and refined sets of SPARQL queries

8

https://www.wikidata.org/wiki/Wikidata:WikiProject_Source_Met
aData

7

https://www.wikidata.org/wiki/Wikidata:WikiProject_Medicine
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about an ongoing epidemic, the underlying pathogen,
the disease and diagnostic or therapeutic options, and
it piloted workflows for integrating distributed
knowledge from multiple databases to build a

consistent semantic representation of a topic for
which relevant concepts were often not yet readily
available through formal ontologies.

Fig. 2. Simplified skeleton of the data model of COVID-19 information on Wikidata. The three main COVID-related items (the ‘C3 items’)9

are represented in red, selected classes of items related to these are shown in blue, with the relations between them represented as arrows. The
number of statements relating to each item from the relevant class is indicated next to the item (In the case of scholarly articles, relations to
each of the three COVID-related items is indicated by colour). Relation types regularly used to define items within Wikidata classes are
omitted (e.g. chromosome [P1057] for human genes), as of 20 August 202010, available at: https://w.wiki/auD, license: CC BY 4.0.

10 Source queries: https://w.wiki/Ypc, https://w.wiki/Ypd, https://w.wiki/Ype, https://w.wiki/Ypg, https://w.wiki/Yph, and https://w.wiki/Ypi.
9 COVID and C3 stand for any subset of {COVID-19 [Q84263196], SARS-CoV-2 [Q82069695], COVID-19 pandemic [Q81068910]}.

https://w.wiki/auD
https://w.wiki/Ypc
https://w.wiki/Ypd
https://w.wiki/Ype
https://w.wiki/Ypg
https://w.wiki/Yph
https://w.wiki/Ypi
https://www.wikidata.org/wiki/Q84263196
https://www.wikidata.org/wiki/Q82069695
https://www.wikidata.org/wiki/Q81068910


The core of the COVID-19 knowledge graph in
Wikidata is formed by three main items (red in Fig.
2): COVID-19 [Q84263196], SARS-CoV-2
[Q82069695], and COVID-19 pandemic
[Q81068910]. Those three core COVID-19-related
Wikidata items have relatively simple links to one
another. Mainly that SARS-CoV-2 causes
COVID-19, which itself has had the downstream
effect of the COVID-19 pandemic.

These three core items then link out to a vast array
of items related to all aspects of the disease, its
causative virus, and the resulting pandemic (>17,000
Wikidata items as of 20 August 2020; blue in Fig. 2).
The collaborative work to populate and curate this
data has been largely accomplished by WikiProject
COVID-1911, launched in March 2020 [15]. This
WikiProject itself has a Wikidata item [Q87748614],
and items are linked to it using the property on focus
list of Wikimedia project [P5008].

These COVID-19-related items are linked to their
respective classes or types using instance of [P31] or
subclass of [P279] relations, and they are linked
between each other using non-taxonomic relations
defining knowledge about various and
multi-disciplinary aspects of COVID-19 (Fig. 2).
Biomedical relations between Wikidata items can be
assigned nature of statement [P5102] or sourcing
circumstances [P1480] qualifiers to state the status
(e.g. official, hypothesis and de facto) and the
occurrence probability (e.g. rarely, possibly and
often) of the described semantic relation. The
network of these items and relations forms a
large-scale knowledge graph for COVID-19, where
the three core COVID-19-related items noted above
extensively link various classes, most notably:
disease outbreaks [Q3241045] in regions such as
continents, sovereign states, and constituent states,
COVID-19 tracing apps [Q89288125], COVID-19
vaccines [Q87719492] and vaccine candidates
[Q28051899], scholarly articles [Q13442814] and
COVID-19 dashboards [Q90790055]. This graph
with short paths to the core COVID items is
augmented by biomedical, geographical and other
more distantly related entities that are already
available in Wikidata, representing an important
overview of clinical and other knowledge [15, 23].
Such distantly related entities are also available in
other open knowledge graphs, particularly DBpedia
and YAGO, and contribute much to the value of a
semantic resource [17, 18]. In Wikidata, several
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initiatives such as WikiCite for scholarly information
[35-38] and Gene Wiki for genomic data [39] have
enabled COVID-19 knowledge graphs to include
classes like genes [Q7187], proteins [Q8054] or
biological processes [Q2996394], along with the
definition of semantic relations between items
closely and distantly related to COVID-19. This,
consequently, allows the expansion of the coverage
of COVID-19 information in Wikidata and a better
characterization of COVID-19-related items.

In addition to relational statements that link items
within the knowledgebase, non-relational statements
link to external identifiers or numerical values [40].
Wikidata items are assigned their identifiers in
external databases, including semantic resources,
using human efforts and tools such as Mix’n’match
[41]. These links make Wikidata a key node of the
open data ecosystem, not only contributing its own
items and internal links, but also bridging between
other open databases (Fig. 3). Wikidata therefore
supports alignment between disparate knowledge
bases and, consequently, semantic data integration
[39] and federation [41] in the context of the linked
open data cloud [42]. Such statements also permit the
enrichment of Wikidata items with data from external
databases when these resources are updated,
particularly in relation with the regular changes of
the multiple characteristics of COVID-19. Examples
of Wikidata properties used to define external
identifiers can be found in Table 1.

Fig. 3. Wikidata in the Linked Open Data Cloud. Databases
indicated as circles (with Wikidata indicated as ‘WD’), with grey

lines linking databases in the network if their data is aligned,
source dataset last updated May 2020 (available at:

https://w.wiki/bYM, license: CC BY 4.0).

https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19
https://w.wiki/bYM


Numerical statements are assigned to disease
outbreak items for the COVID-19 pandemic to
outline the evolution of the epidemiological status of
different entities, from countries to provinces, cities
and cruise ships. The properties used to define these
statistical statements are shown in Table 1 and
include data about the morbidity, the mortality, the
testing and the clinical management of COVID-19 at
the level of continents, countries and constituent
states and also many smaller entities. Some Wikidata
properties used to store this epidemiological
information have been created in response to
COVID-19 (e.g. Number of recoveries [P8010],
number of clinical tests [P8011], and number of
hospitalized cases [P8049]) proving the flexibility of
the knowledge base. To keep records of the progress
of the COVID-19 pandemic over time, each
statistical statement is assigned a point in time [P585]
relation as a qualifier. These epidemiological
statements are retrieved from CC0 databases such as
the COVID-19 DataHub database12 and are linked to
them as references. These statements can be used to
automatically infer other measures that are not
supported by Wikidata but give a full overview of the
epidemiology of COVID-19: let c be the total
number of confirmed cases at a given day Z when the
epidemiological evaluation takes place, d the number
of confirmed deaths until that day, r the number of
confirmed recoveries by that day, h the number of
confirmed hospitalized cases on that day, t the
number of clinical tests until that day. On the basis of
these values (which could all be represented in
Wikidata if matters related to the multi-level
coverage of COVID-19 knowledge and conflicts of
information from multiple sources are solved), the
following measures can be inferred:
● Confirmed active cases v = c – (d + r)
● Confirmed recovery rate a = r / c
● Confirmed patient-days p =∑h if all infection

days are represented
● New confirmed cases ncZ = cZ - cZ-1
● New confirmed deaths ndZ = dZ - dZ-1
● New clinical tests ntZ = tZ - tZ-1
● New confirmed recoveries nrZ = rZ - rZ-1.
This set of COVID-19 information is integrated

into Wikidata using human efforts, the
QuickStatements tool13, the Wikidata API14, and bots

14 An application programming interface (API) is a
machine-friendly interface of a web service that can be used to

13 QuickStatements (QS) is a web service that can modify
Wikidata, based on a simple text commands:
https://quickstatements.toolforge.org/

12 https://datahub.io/core/covid-19

mainly written in Python (e.g. CovidDatahubBot15),
which explains its quantity and coverage [23]. Later,
the developed semantic database for the pandemic is
checked by multiple layers of validation. Methods
include RDF triples defining conditions for the usage
of Wikidata properties, RDF validation schemas built
in Shape Expressions (ShEx) to verify the structural
accuracy of the statement of an item included in a
given Wikidata class, and logical constraints
implemented in SPARQL to verify the consistency of
relational and non-relational claims in Wikidata as
well as several tools based on edit history of
Wikidata such as ORES to identify and eliminate
database vandalism [43]. Although Web Ontology
Language (OWL) can define knowledge graphs with
a richer semantic characterization of data models by
providing a layer of Description Logics such as in
DBpedia [19], the infrastructure developed for the
validation of RDF data in Wikidata helps assure a
high level of consistency of the Wikidata knowledge
graph.

Table 1

Examples of Wikidata properties used to define non-relational
statements

Wikidata
ID

Name Description

Properties for the alignment with scholarly databases

P496 ORCID iD identifier for a researcher (Open
Researcher and Contributor ID)

P1153 Scopus Author
ID

identifier for an author in the Scopus
bibliographic database

P214 VIAF ID identifier for the Virtual International
Authority File database

P7859 WorldCat
Identities ID

entity on WorldCat for authority
control of authors’ data

P1053 ResearcherID identifier for a researcher in a system
for scientific authors, primarily used in
Web of Science

Properties for the alignment with clinical language resources and
encyclopedias

P494 ICD-10 identifier in the ICD catalogue codes
for diseases - Version 10
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P672 MeSH tree code Medical Subject Headings (MeSH)
codes are an index and thesaurus for
the life sciences (≠ MeSH ID, P486)

P1417 Encyclopædia
Britannica
Online ID

identifier for an article in the online
version of Encyclopædia Britannica

P486 MeSH descriptor
ID

identifier for Descriptor or
Supplementary concept in the Medical
Subject Headings controlled
vocabulary

P3098 ClinicalTrials.go
v Identifier

identifier in the ClinicalTrials.gov
database

P6680 MeSH term ID identifier of a "MeSH term" (Medical
Subject Headings)

P6694 MeSH concept
ID

identifier of a Medical Subject
Headings concept

Properties for the non-relational characterization of Wikidata items

P569 date of birth date on which the subject was born

P856 official website URL of the official homepage of an
item (current or former)

P1603 number of cases cumulative number of confirmed,
probable and suspected occurrences

P1120 number of deaths total (cumulative) number of people
who died since start as a direct result of
an event or cause

P3457 Case fatality rate proportion of patients who die of a
particular medical condition out of all
who have this condition within a given
time frame (equal to the quotient of the
number of cases by the number of
deaths as stated in a given day)

P8010 Number of
recoveries

number of cases that recovered from
disease

P8011 number of
clinical tests

cumulative number of clinical tests

P8049 number of
hospitalized
cases

number of cases that are hospitalized

P3488 minimal
incubation period
in humans

minimal time between an infection and
the onset of disease symptoms in
infected humans

P3487 maximal
incubation period
in humans

maximal time between an infection and
the onset of disease symptoms in
infected humans

P3492 basic
reproduction
number

number of infections caused by one
infection within an uninfected
population

2.2. Multilingual representation

Thanks to its multilingual and
language-independent data model as well as its link
with various biomedical ontologies and knowledge
bases, Wikidata’s biomedical language coverage in
English, French, German and Dutch is comparable to
other semantic resources such as SNOMED-CT16,
BabelMeSH17, and ICD-1018 [23]. Despite the recent
origin of the COVID-19 pandemic, Wikidata’s
coverage on the matter is already quite granular, with
the main three COVID items linked to 17,000 other
items via 55,000 relations at the time of writing. The
degree of translation of that information is
interestingly high with an important representation of
the concepts in more than 50 languages (Fig. 4E). In
fact, more than 40% of the predicates (Curves B and
D) and more than 90% of the objects (Curve C) of
the statements related to COVID are represented in
fifty languages or more. However, this coverage
varies between languages, with English as the
unsurprising front-runner in items with COVID as
the object, since many of those items are journal
articles with untranslated titles (Fig. 4A). The names
of the properties that link them (Fig. 4B,D) have
much more even coverage, as do items with COVID
as the subject (Fig. 4C). This linguistic coverage is
less uneven than other biomedical semantic resources
(e.g. SNOMED-CT and BabelMeSH) [45, 46] and is
in line with efforts of generating multilingual
language resources to be used for natural language
processing purposes in clinical contexts [47].

The better coverage of English is explained in part
by the higher support of this language in both
biomedical language resources [48] and Wikipedia
[49]. Cooperation with publishers such as Cochrane
has a significant effect on English Wikipedia
coverage, too [50]. The significant coverage of other
languages like French, Spanish, German, Chinese

18 ICD-10:  International Classification of Diseases, 10th
Revision [44]: ICD-10 supports Arabic, Chinese, English, French,
Russian, Spanish, Albanian, Armenian, Azeri, Basque, Bulgarian,
Catalan, Croatian, Czech, Danish, Dutch, Estonian, Persian,
Finnish, German, Greek, Hungarian, Icelandic, Italian, Japanese,
Korean, Latvian, Lithuanian, Macedonian, Mongolian, Norwegian,
Polish, Portuguese, Serbian, Slovak, Slovenian, Swedish, Thai,
Turkish, Turkmen, Ukrainian, and Uzbek.

17

https://lhncbc.nlm.nih.gov/project/babelmesh-and-pico-linguist
(Accessed on February 3, 2021): BabelMeSH supports Arabic,
Chinese, Dutch, English, French, German, Italian, Japanese,
Korean, Portuguese, Russian, Spanish, and Swedish.

16 http://www.snomed.org/snomed-ct/sct-worldwide (Accessed
February 3, 2021): SNOMED-CT supports English, French,
Danish, Dutch, Spanish, Swedish, and Lithuanian.

https://lhncbc.nlm.nih.gov/project/babelmesh-and-pico-linguist
http://www.snomed.org/snomed-ct/sct-worldwide


and Swedish in Medical Wikidata fits with their
support by major biomedical multilingual databases:
ICPC-2 [51] supports 24 languages19, SNOMED-CT
supports 7 languages, LOINC20 supports 13
languages, BabelMeSH [52] supports 13 languages,
and ICD-10 supports 42 languages.

Fig. 4. Language representation of COVID-19-related statements.
A-D) Language coverage for items and properties used in

statements when either the object or subject is one of the three
COVID-related items (as per Figure 2; note: log y-axis). The eight

most common languages in Wikidata are shown: en=English,
fr=French, de=German, es=Spanish, zh=Chinese, ar=Arabic,

ja=Japanese, ru=Russian.)  E) Percentage of the items covered in
order from highest to lowest coverage. faceted by categories A-D.

Data shown for top 150 languages in each category (note:
languages not necessarily in same order for each), as of August 15,

2020 (available at: https://w.wiki/auE, license: CC BY 4.0; live
data: https://w.wiki/Yj$, https://w.wiki/Yk3, https://w.wiki/Yk5,

and https://w.wiki/Yk6)

20 https://loinc.org/international/ (Accessed on August 13,
2020): LOINC supports Chinese, Dutch, Estonian, English,
French, German, Greek, Italian, Korean, Portuguese, Russian,
Spanish, and Turkish.

19 ICPC-2 supports Afrikaans, Basque, Chinese, Croatian,
Danish, Dutch, English, Finnish, French, German, Greek, Hebrew,
Hungarian, Italian, Japanese, Norwegian, Polish, Portuguese,
Romanian, Russian, Serbian, Slovenian, Spanish, and Swedish.

The support of other natural languages can also be
explained by the use of bots that extract multilingual
terms representing clinical concepts based on natural
language processing techniques and machine
learning21 [53] and by the involvement of research
institutions and scientists speaking these languages,
particularly German and Dutch, in adding biomedical
information to Wikidata [54, 55]. The near-100%
coverage for properties with COVID-19 as the
subject in the most spoken languages (Fig. 4B)
resulted from early systematic volunteer translation
drives for common properties by WikiProject Labels
and Descriptions22 and others [28].Language
coverage of medical Wikidata labels (particularly for
diseases’ class) seems influenced by several factors.
Most obvious for a collaborative project is the
number of speakers of each language among the
contributor community [24]. However, there also
appears to be an impact from the overall number of
Wikidata labels for each language [25] and to the
number of medical Wikipedia articles in each
language [56] (Table 2).

These correlations can be interrogated by querying
Wikidata to find out the current status of the editing
of this knowledge graph and of Wikipedia in 307
languages (Table S3; top-ranking items for each
variable summarised in Tables 3 and 4). Query
results largely match previously published trends for
Wikipedia and Wikidata (Table 2), though we note
that Arabic (ar) and Chinese (zh), appear in the top
10 languages in the Wikidata COVID-19 subset,
while being absent from the top 10s for other sets
described in Table 4. Coverage differed across
languages and variables, and most of the distributions
showed marked positive skew. Nonparametric
analysis of correlations (Spearman’s rho) found large
magnitude associations (rho .65 to .97, median = .84,
Supplementary Table S4), statistically significant
even following stringent Bonferroni correction. To
account for skew and data spanning multiple orders
of magnitude, log10-transformed data was used for
subsequent analyses. Pearson’s correlation
coefficients between all variables was high (Figure
5). A principal component analysis for the 90

22

https://www.wikidata.org/wiki/Wikidata:WikiProject_Labels_and_
descriptions

21 An example of such a Wikidata bot can be Edoderoobot 2,
which is specifically working on labelling, thereby translating
structured data into prose in the respective language. Further
information about this bot can be found at
https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions
/Bot/Edoderoobot_2.

https://w.wiki/auE
https://w.wiki/Yj$
https://w.wiki/Yk3
https://w.wiki/Yk5
https://w.wiki/Yk6
https://loinc.org/international/
https://www.wikidata.org/wiki/Wikidata:WikiProject_Labels_and_descriptions
https://www.wikidata.org/wiki/Wikidata:WikiProject_Labels_and_descriptions
https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/Edoderoobot_2
https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/Edoderoobot_2


languages with complete data on all 7 indicators
found that a single component explained 81% of the
variance, with loadings ranging from .80 to .95. The
smallest PCA loading and Spearman’s correlation

was for the number of viewers, which though still a
strong association, was less correlated than the other
variables by a substantial margin.

Table 2

Languages ranked by medical content from the literature: Number of medical Wikipedia articles, number of Wikidata labels, number of native
speakers, and number of Wikidata users. Style code: Italic for languages appearing in all four lists; bold for those appearing in only one.

Medical Wikipedia, 2013 [56] Wikidata labels, 2017 [25] Population, 2019 [57] Wikidata users,
2018 [24]

Rank Language Number of
medical
articles

Language Rate of
labels

Language Native
speakers
(millions)

Language

1 English 29072 English 11.04% Chinese 1323 English
2 German 7761 Dutch 6.47% Spanish 463 French
3 French 6372 French 6.02% English 369 German
4 Spanish 6367 German 5.08% Hindi 342 Spanish
5 Polish 5999 Spanish 4.07% Arabic 335 Italian
6 Italian 5677 Italian 3.9% Bengali 228 Russian
7 Portuguese 5269 Swedish 3.89% Portuguese 227 Dutch
8 Russian 4832 Russian 3.54% Russian 154 Japanese
9 Dutch 4391 Cebuano 2.21% Japanese 126 Danish
10 Japanese 4303 Bengali 1.94% Western

Punjabi
82.5 Portuguese

Table 3

Languages ranked by medical content from Wikidata queries (as of August 11, 2020). The Medical Wikipedia query yields Wikipedia articles
associated with Wikidata items that have a Disease Ontology ID [P699] or are in the tree of any of the following classes: medicine [Q11190],
disease [Q12136], medical procedure [Q796194] or medication [Q12140]. The Medical Wikidata labels query yields labels of Wikidata items
that have a Disease Ontology ID [P699] or a MeSH Descriptor ID [P486] or are in the tree of any of the same four classes. The Wikipedia and
Wikidata users column provides a snapshot from the Wikidata dashboard that lists Wikidata users who also edit Wikipedia by number of such

users per Wikipedia language. Style code: Italic for languages appearing in all three lists; bold for those appearing in only one.
Medical Wikipedia articles
https://w.wiki/Z6a

Medical Wikidata labels
https://w.wiki/Z6h

Wikipedia and Wikidata users
https://w.wiki/Z6W

Rank Language Number of
medical articles

Language Number of
labels

Language Number of
users

1 English 16670 English 65986 English 9600
2 German 8911 French 37053 French 2580
3 Arabic 8596 German 22432 German 2490
4 French 7258 Spanish 21505 Spanish 2330
5 Spanish 6979 Arabic 18581 Russian 1790
6 Italian 6498 Italian 18074 Italian 1430
7 Polish 6071 Japanese 17992 Chinese 1120
8 Portuguese 5652 Dutch 17985 Japanese 1090
9 Russian 5564 Chinese 17462 Portuguese 979
10 Japanese 4651 Russian 17165 Arabic 688

Similarly, the current representation of COVID-19
Wikidata items in natural languages seems to be
linked with COVID-19-related Wikipedia pages,
edits and pageviews for a given language, as shown
in Table 4. This is confirmed by the high correlation
(Pearson r = 0.93) of the language distribution of
COVID-related Wikidata labels with the number of
COVID Wikipedia pages in language editions and
the moderate correlation (Pearson r > 0.65) between

the number of Wikidata COVID-related labels in a
given language and the quantity and edit statistics of
medical content in Wikidata and Wikipedia (Fig. 5).
Such relationships are strengthened by the high
correlation (Pearson r > 0.9) between the number of
medical Wikidata labels in a given language and the
number of medical Wikipedia articles in language
editions as well as the number of native speakers
jointly editing Wikipedia and Wikidata.

https://w.wiki/Z6a
https://w.wiki/Z6h
https://w.wiki/Z6W


To investigate the possible causes of these highly
correlated datasets, we compared them to two
external metrics for each language: the number of
native speakers of each language [57] and the
maximum human development index for countries
where that language is an official language [58]. This
data was available for fewer languages (N = 57 each,
19 pairs) and the sparse overlap precluded including
both simultaneously in analyses. The number of
native speakers showed similar positive skew to
earlier data, so was also log10-transformed. Even
though these analyses are necessarily exploratory,
maximum development correlated more strongly than
did the number of speakers (Figure 5B; Table S4).
Cohen’s q values (an effect size for differences
between correlation coefficients) of a size considered
unusually large for the social sciences (> 0.5) were
observed when comparing correlation of
development index versus number of speakers with
the number of medical Wikidata labels and with the
number of users. Further medium q values
(differences > 0.3) were observed for correlation to
the number of medical Wikipedia articles and to the
number of COVID Wikipedia pages. Correlation
differences were negligible with regard to
development versus number of speakers as associated
with the number of edits or pageviews [59].

The observation here that current language
coverage in Wikidata and Wikipedia correlates more
closely to countries' development index than to the
number of speakers of each natural language aligns
with previous work demonstrating low correlation of
Wikidata to the number of speakers [25].
Consequently, encouraging the contribution by
speakers of under-resourced and unrepresented
languages to medical Wikipedia projects23 and to
Medical Wikidata is highly valuable to ameliorate
and increase the language coverage of Wikidata as
well as culturally appropriate contextualizations in
medical and other domains.

23 Current efforts to enhance the coverage and language support
of medical knowledge in Wikipedia are mainly driven by
Wikimedia Medicine. For further information, please refer to
https://meta.wikimedia.org/wiki/Wiki_Project_Med. An example
of the initiatives under this umbrella is the Special Wikipedia
Awareness Scheme for The Healthcare Affiliates project, focused
on languages of India. An explanation of this project can be found
at https://en.wikipedia.org/wiki/Wikipedia:SWASTHA.

Fig. 5. A) All-versus-all pairwise correlations of
log10-transformed values of seven metrics for 307 languages (data
from sources detailed in tables 3 and 4). Histograms on diagonal

indicate skew, scatter plots below diagonal indicate data and
trendlines, ellipsoids above diagonal indicate Spearman’s r
correlation coefficient. B) Cohen’s q coefficient comparing

correlation of the seven metrics to maximum human development
index versus to the number of native speakers. C) Highest

correlated variable pair. D) Lowest correlated variable pair.
[Available at: https://w.wiki/zV6, License: CC-BY 4.0].

https://meta.wikimedia.org/wiki/Wiki_Project_Med
https://en.wikipedia.org/wiki/Wikipedia:SWASTHA
https://w.wiki/zV6


Table 4

Languages ranked by COVID-19-related content from Wikidata queries and other live data (as of August 13, 2020). The COVID-19 pandemic
Wikipedia pageviews column represents daily average user traffic (averaged over 2020) to the article about the COVID-19 pandemic in the

respective language. The COVID Wikidata labels query sorts languages by the number of labels of Wikidata items with a direct link to and/or
from any of the core COVID-19 items - Q84263196 (COVID-19), Q81068910 (COVID-19 pandemic) and Q82069695 (SARS-CoV-2) -

excluding items about humans (3131) or scholarly publications (40164). The COVID Wikipedia articles query filters those Wikidata items for
associated Wikipedia articles and sorts languages by the number of such articles. The values in the COVID Wikipedia edits column represent

the revision counts per Wikipedia language as taken from the dashboard listing Wikimedia projects by total number of revisions to
COVID-19-related articles. Style code: Italic for languages appearing in all four lists; bold for those appearing in only one.

COVID-19 pandemic
Wikipedia pageviews
https://w.wiki/ZTG

COVID Wikipedia articles
https://w.wiki/ZSt

COVID Wikidata labels
https://w.wiki/ZSq

COVID Wikipedia edits
https://w.wiki/y9u

Rank Language Avg. daily
pageviews

Language Number of
articles

Language Number of
labels

Language Number of
edits

1 English 52872 English 561 English 1429 English 250306
2 Russian 41246 Arabic 517 Dutch 785 German 126359
3 Spanish 37722 German 431 Arabic 623 French 42029
4 Chinese 27598 Portuguese 427 Catalan 579 Chinese 41545
5 German 20707 Korean 408 German 561 Spanish 30869
6 Italian 8490 Chinese 396 French 517 Arabic 19963
7 French 7959 Vietnamese 392 Japanese 503 Russian 18719
8 Portuguese 7648 French 379 Chinese 483 Japanese 11508
9 Japanese 5227 Spanish 370 Portuguese 463 Ukrainian 10599
10 Arabic 4300 Indonesian 363 Spanish 433 Hebrew 10386

2.3. Database alignment

As shown in the “Data model” section, Wikidata
items are linked to their equivalents in other semantic
databases using statements where the property
provides details about a given resource and the object
is the external identifier of the item in the aligned
database. Similarly to Wikidata items, these database
alignment properties are defined by labels,
descriptions and aliases in various languages and by
statements describing logical conditions for their
usage including formatting constraints and allowed
values of subject classes [43].

The alignment of Wikidata entities to other entries
on different databases is a collaborative process
which, as everything in Wikidata, is done via
combination of manual and automatic curation. As an
example of automation, items concerning scholarly
entries (i.e. articles and reports) were often aligned to
other databases using DOIs (Digital Object
Identifiers) as unique keys for locating the database
ID. As Wikidata is an open database, the precision of
the alignments is largely based on trust in the
community, and misalignments are promptly
corrected once identified. At the scale of curation
happening on Wikidata, quality issues in aligned
databases are surfacing regularly, e.g. invalid DOIs
stated in PubMed and PMC Europe24. While most of

24 https://github.com/br2s/bug-reports-to-science/issues/8

these databases have some feedback channels, no
mechanisms exist for informing them systematically
about issues with their data that have been identified
at the scale of Wikidata-based curation.

As of September 1, 2020, 530225 out of 787726

Wikidata properties are used to state external
identifiers of the Wikidata items. These properties
facilitate interoperability between Wikidata and other
databases and consequently the regular enrichment of
Wikidata with detailed information from online
ontologies and knowledge graphs updated on a daily
basis [20, 17, 60]. The output using such Wikidata
properties can be adapted as an open license
framework for the automatic evaluation and learning
of knowledge graph alignment approaches [20, 61]
and for the integration of scholarly knowledge [62].

In the circumstances of the COVID-19 outbreak, a
SPARQL query27 has been formulated to analyze the
integration of external identifiers in Wikidata. This
query succeeded in returning the main aligned
external resources to the set of scholarly articles and
clinical trials, of diseases, of symptoms, of drugs, of
humans, of sovereign states, of genes, of proteins,
and of other items related to the ongoing COVID-19
pandemic in Wikidata. This confirms the centrality of

27 https://w.wiki/auR

26 For the updated count of all the properties, refer to
https://w.wiki/ayo.

25 For the updated count of the properties defining external
identifiers, refer to https://w.wiki/ayn.

https://w.wiki/ZTG
https://w.wiki/ZSt
https://w.wiki/ZSq
https://w.wiki/y9u
https://github.com/br2s/bug-reports-to-science/issues/8
https://w.wiki/auR
https://w.wiki/ayo
https://w.wiki/ayn


Wikidata within the linked open data cloud (cf. Fig. 3
and [42]) and consequently the usefulness of
Wikidata to address the COVID-19 data challenges
and dynamically integrate various types of semantic
data in the context of the disease outbreak.

As shown in Table 5, scholarly articles and clinical
trials have been linked to numerous external
identifiers, particularly the Digital Object Identifier
(DOI), the PubMed ID, the Dimensions Publication
ID, the PubMed Central ID (PMCID) and the
ClinicalTrials.gov Identifier. Most of these identifiers
are added thanks to WikiProject WikiCite aiming to
add support of bibliographic information on Wikidata
[35-37]. The current representation of external
identifiers for the scientific literature in Wikidata
seems to be similar to the general one for the
bibliographic data in the knowledge graph. As of
September 3, 2020, 36208373 scholarly articles28 are
currently represented in Wikidata. 31425586 of
which have PubMed IDs and 25896956, 6016452,
and 346114 scientific publications respectively have
DOIs, PubMed Central IDs and ArXiv IDs.

However, this Wikidata coverage of the
availability of COVID-19-related publications in
external research databases does not seem to fully
represent full records of COVID-19 literature in
aligned resources. By way of comparison, we
performed a simple search for “COVID-19” in a set
of literature databases, and there were 103796
COVID-19-related records available on PubMed29,
110323 COVID-19 full texts accessible on PubMed
Central30, 296450 COVID-19 publications on
Dimensions31, 211000 records on Semantic Scholar32,
4778 records at ClinicalTrials.gov33, 3295 records on
arXiv ID34, and 183 records on NIOSHTIC-235 as of
February 17, 2021.

Wikidata’s relatively incomplete coverage of the
literature is mainly explained by Wikidata’s
development of scientific metadata being based on

35

https://www2a.cdc.gov/nioshtic-2/Buildqyr.asp?S1=COVID-19&S
ubmit=Search

34

https://arxiv.org/search/?query=COVID-19&searchtype=all&sourc
e=header

33

https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=&cntr
y=&state=&city=&dist=

32

https://www.semanticscholar.org/search?q=COVID-19&sort=relev
ance

31 https://tinyurl.com/y6kwrdth
30 https://www.ncbi.nlm.nih.gov/pmc/?term=COVID-19
29 https://pubmed.ncbi.nlm.nih.gov/?term=COVID-19
28 https://scholia.toolforge.org/

latent crowdsourcing of information from multiple
sources through bots and human efforts and not on
the real-time screening of the external scholarly
resources [37, 38]. In addition to such sampling
biases, there are also differences in annotation
workflows, e.g. in terms of the multilinguality of or
the hierarchical relationships between topic tags in
Wikidata versus comparable systems like Medical
Subject Headings.

Table 5

Main Wikidata properties used to represent the external identifiers
of scholarly articles and clinical trials (as of August 31, 2020).

Wikidata ID Wikidata Property Count

P356 DOI 45101

P698 PubMed ID 42294

P6179 Dimensions Publication ID 16944

P932 PMCID 12590

P8150 COVIDWHO ID 11718

P8299 Semantic Scholar corpus ID 4612

P3098 ClinicalTrials.gov Identifier 246

P818 arXiv ID 47

P2880 NIOSHTIC-2 ID 23

As for the diseases and symptoms related to
COVID-19, Wikidata maps to multiple external
identifiers in the main biomedical semantic databases
such as MeSH, ICD-1036, and UMLS37 as well as in
open lexical databases like OBO Foundry ontologies
(e.g. Human Phenotype Ontology) and Freebase as
shown in Table 6. This is mainly due to the use of
machine learning algorithms to align these major
online biomedical resources to Wikipedia articles and
consequently to Wikidata items [63]. The
representation of open license resources is
particularly explained by the use of these databases
to form the core of the biomedical knowledge in
Wikidata through mass uploads and timely updates
[64]. Items about diseases and symptoms are also
aligned to several online encyclopedias (e.g.
eMedicine, Encyclopedia Britannica, and

37 Unified Medical Language System
(https://www.nlm.nih.gov/research/umls/index.html)

36 International Classification of Diseases, Tenth Revision
(https://www.who.int/classifications/icd/en/)

https://www2a.cdc.gov/nioshtic-2/Buildqyr.asp?S1=COVID-19&Submit=Search
https://www2a.cdc.gov/nioshtic-2/Buildqyr.asp?S1=COVID-19&Submit=Search
https://arxiv.org/search/?query=COVID-19&searchtype=all&source=header
https://arxiv.org/search/?query=COVID-19&searchtype=all&source=header
https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=COVID-19&term=&cntry=&state=&city=&dist=
https://www.semanticscholar.org/search?q=COVID-19&sort=relevance
https://www.semanticscholar.org/search?q=COVID-19&sort=relevance
https://tinyurl.com/y6kwrdth
https://www.ncbi.nlm.nih.gov/pmc/?term=COVID-19
https://pubmed.ncbi.nlm.nih.gov/?term=COVID-19
https://scholia.toolforge.org/
https://www.nlm.nih.gov/research/umls/index.html
https://www.who.int/classifications/icd/en/


MedlinePlus) and to non-medical databases such as
scholarly repositories (e.g. JSTOR38) and
bibliographic databases (e.g. Microsoft Academic39)
using external identifiers’ statements. This can be
explained by the efforts of WikiProject Source
Metadata40 and the WikiCite initiative to align topic
pages in research databases to Wikidata items, so that
active members of this project can easily extract
topics of research publications from source databases
and assign them to the corresponding Wikidata items
using main subject [P921] relations [35]. The linking
from Wikidata items about between diseases and
symptoms to online first-class encyclopedias is not
restricted to the context of the COVID-19 pandemic
[64] and is a rather established practice to provide
Wikidata users with pointers to further specialized
information pertaining to a given Wikidata item [65]
and to allow comparison of medical data quality
between Wikipedia and other encyclopedias [56].

Table 6

Main Wikidata properties used to represent the external identifiers
of diseases and symptoms (as of August 31, 2020).

Wikidata ID Wikidata Property Diseases
count

Symptoms
count

P672 MeSH tree code 40 12

P2892 UMLS CUI 38 11

P494 ICD-10 32 8

P4229 ICD-10-CM41 32 1

P3827 JSTOR topic ID 32 10

P6366 Microsoft
Academic ID

29 11

P493 ICD-942 26 5

P673 eMedicine ID 24 2

P1417 Encyclopedia
Britannica Online
ID

23 7

42 International Classification of Diseases, Ninth Revision

41 International Classification of Diseases, Tenth Revision,
Clinical Modification

40 https://www.wikidata.org/wiki/WD:WikiProject_Source
39 https://academic.microsoft.com/
38 https://www.jstor.org/

P486 MeSH descriptor
ID

23 9

P646 Freebase ID 21 10

P3841 Human Phenotype
Ontology ID

18 9

P604 MedlinePlus ID 19 9

P508 BNCF43

Thesaurus ID
17 7

P1296 Gran Enciclopedia
Catalana ID

10 7

P8408 KBpedia44 ID 16 7

The matching between Wikidata items and online
encyclopedias and non-medical resources is not
restricted to disease and symptoms. It additionally
covers humans and sovereign states (Table 7) as well
as films, computer applications and disease outbreaks
(Table 8). The alignment to various metadata
databases like VIAF45, WorldCat46, Library of
Congress and IMDb47 is motivated by the mass
import of authority control data for the
interoperability between library metadata and for the
prevention of the duplication of items including book
authors, actors and films [65, 66]. Wikidata items
about sovereign states and humans are aligned to
corresponding topic pages and user pages in social
networking services (Twitter) and question answering
forums (Quora and Reddit). This enables tracking the
effect of the information provided by Wikimedia
projects, particularly Wikipedia, on online
communities [67]. Information about items in social
media can also be retrieved to support the topic
modelling of the coverage of the pandemic in social
networks [68]. Taken together, these database
alignments are useful to integrate new non-clinical
information to Wikidata, to allow correlations
between epidemiological data and non-medical
information about countries, individuals,
masterpieces and disease outbreaks such as
geopolitical, software programming and economic
data, and to provide further readings about the
concerned items [62].

47 Internet Movie Database (https://www.imdb.com/)
46 https://www.worldcat.org/
45 Virtual International Authority File (http://viaf.org/)
44 https://kbpedia.org/

43 Biblioteca Nazionale Centrale di Firenze (Central National
Library of Florence, Italy)

https://www.wikidata.org/wiki/WD:WikiProject_Source
https://academic.microsoft.com/
https://www.jstor.org/
https://www.imdb.com/
https://www.worldcat.org/
http://viaf.org/
https://kbpedia.org/


Table 7

Main Wikidata properties used to represent the external identifiers
of humans and sovereign states (as of August 31, 2020).

Wikidata
ID

Wikidata Property Sovereign
states

Humans

P214 VIAF ID 159 654

P7859 WorldCat Identities ID 146 548

P244 Library of Congress
authority ID

125 458

P213 ISNI48 100 443

P646 Freebase ID 124 379

P2002 Twitter username 16 353

P227 GND49 ID 125 308

P345 IMDb ID 274

P268 Bibliothèque nationale de
France ID

177 269

P269 IdRef50 ID 84 265

P998 DMOZ51 ID 158

P3417 Quora topic ID 141 73

P1417 Encyclopedia Britannica
Online ID

138 53

P5400 GeoNLP ID 128

P349 National Diet Library ID 127 54

P4801 LoC MARC52 vocabularies
ID

126

Concerning drugs, proteins, genes and taxons,
Wikidata items are mainly assigned external
identifiers in the major knowledge graphs for
pharmacology (e.g. MassBank53), for biodiversity

53 https://massbank.eu/MassBank/
52 https://www.loc.gov/marc/
51 Directory Mozilla (https://dmoz-odp.org/)

50 Identifiants et Référentiels pour l’enseignement supérieur et
la recherche (Identifiers and credentials for higher education and
research in France)

49 Gemeinsame Normdatei (German National Library,
Germany),
https://www.dnb.de/DE/Professionell/Standardisierung/GND/gnd_
node.html

48 https://isni.org/

(e.g. IRMNG54), for genomics (e.g. Entrez Gene) and
for proteomics (e.g. PDB55) and are rarely linked to
non-medical databases or to encyclopedias, as shown
in Table 8. The lack of alignment between these
biomedical Wikidata items and their equivalents in
social web services is explained by the higher interest
of social media users in the health policies and
epidemiology of COVID-19 rather than the
therapeutic options and molecular aspects related to
the disease [69]. The most important interest in
matching these concepts in Wikidata to graph
databases (e.g. Massbank, PDB, and KEGG56) and
semi-structured databases (e.g. Guide to
Pharmacology57) for bioinformatics rather than online
encyclopedias is due to the better availability of
genomic and proteomic information in these
specialized semantic resources [64, 70]. The
alignment of taxon items in Wikidata to biodiversity
knowledge graphs (e.g. NCBI58 taxonomy and
IRMNG) is to permit the discussion of the
pathogenesis of coronavirus and mainly COVID-19
through the analysis of the physiological features of
infected taxons [71]. The sum of these biomedical
alignments is developed using human edits and
computer tools thanks to large initiatives to develop
open ontological databases for curating advanced
molecular biology data such as WikiGenomes [55]
and Gene Wiki [39] and is enhanced in the context of
the current pandemic through the contributions of
WikiProject COVID-19 [15].

Table 8

Main Wikidata properties used to represent the external identifiers
for other Wikidata classes (as of August 31, 2020).

Wikidata Class Wikidata ID Wikidata Property Count

drug [Q11173] P6689 MassBank accession
ID

44

drug [Q11173] P4964 SPLASH59 31

protein [Q8054] P638 PDB structure ID 31

film [Q11424] P345 IMDb ID 25

59 Spectral Hash Identifier (https://splash.fiehnlab.ucdavis.edu/)

58 National Center for Biotechnology Information
(https://www.ncbi.nlm.nih.gov/)

57 IUPHAR/BPS Guide to Pharmacology
(https://www.guidetopharmacology.org/)

56 Kyoto Encyclopedia of Genes and Genomes
(https://www.genome.jp/kegg/)

55 Protein Data Bank (https://www.rcsb.org/)

54 Interim Register of Marine and Nonmarine Genera
(https://www.irmng.org/)

https://massbank.eu/MassBank/
https://www.loc.gov/marc/
https://dmoz-odp.org/
https://www.dnb.de/DE/Professionell/Standardisierung/GND/gnd_node.html
https://www.dnb.de/DE/Professionell/Standardisierung/GND/gnd_node.html
https://isni.org/
https://splash.fiehnlab.ucdavis.edu/
https://www.ncbi.nlm.nih.gov/
https://www.guidetopharmacology.org/
https://www.genome.jp/kegg/
https://www.rcsb.org/
https://www.irmng.org/


film [Q11424] P2603 Kinopoisk film ID 23

film [Q11424] P7177 Cinestaan film ID 22

disease outbreak
[Q3241045]

P3984 subreddit 22

protein [Q8054] P637 RefSeq60 protein ID 18

committee group
motion
[Q97695005]

P8433 Swedish Riksdag
document ID

18

film [Q11424] P2529 ČSFD61 film ID 17

drug [Q11173] P267 ATC62 code 17

protein [Q8054] P352 UniProt protein ID 16

protein [Q8054] P5458 Guide to
Pharmacology Target
ID

15

COVID-19 app
[Q89288125]

P7771 PersonalData.IO ID 14

gene [Q7187] P351 Entrez Gene ID 12

COVID-19 app
[Q89288125]

P3418 Google Play Store
app ID

12

gene [Q7187] P2393 NCBI locus tag 11

macromolecular
complex
[Q22325163]

P7718 Complex Portal
accession ID

11

protein fragment
[Q78782478]

P638 PDB structure ID 11

drug [Q11173] P231 CAS Registry63

Number
9

drug [Q11173] P715 DrugBank ID 9

drug [Q11173] P665 KEGG ID 9

drug [Q11173] P638 PDB structure ID 9

drug [Q11173] P652 UNII64 9

64 Unique Ingredient Identifier (https://fdasis.nlm.nih.gov/srs/)

63

https://www.cas.org/support/documentation/chemical-substances

62 Anatomical Therapeutic Chemical (ATC) Classification
System (https://www.whocc.no/atc_ddd_index/)

61 Česko-Slovenská filmová databáze (Czech-Slovak Film
Database, https://www.csfd.cz/)

60 NCBI Reference Sequence Database
(https://www.ncbi.nlm.nih.gov/refseq/)

protein [Q8054] P705 Ensembl protein ID 8

COVID-19 app
[Q89288125]

P3861 App Store app ID
(global)

8

drug [Q11173] P595 Guide to
Pharmacology
Ligand ID

8

drug [Q11173] P6366 Microsoft Academic
ID

8

disease outbreak
[Q3241045]

P3479 Omni topic ID 7

taxon [Q16521] P5055 IRMNG ID 6

taxon [Q16521] P685 NCBI taxonomy ID 6

3. Visualizing facets of COVID-19 via SPARQL

The flexible data model of Wikidata enables it to
be highly multidisciplinary, including information
ranging from medical to geopolitical to social aspects
of the pandemic. Given the breadth of Wikidata’s
COVID-19-related information (examples in
Supplementary Figure S1), extracting specific
subsets of that information using SPARQL65 can
illustrate different aspects of the COVID-19 disease,
its causative virus, and the resulting pandemic
(extended list, Supplementary Table S1). Sample
SPARQL queries for data visualizations commonly
included in Wikidata-based COVID-19 dashboards
are available at Supplementary Table S2 to show the
variety of visualizations that can be generated using
the Wikidata Query Service from both a quantitative
perspective (amount of statistical data that can be
generated through the integration of COVID-19
information with non-COVID-19 data) and a
qualitative one (visualization types and topics). This
section will present examples across different aspects
of COVID-19, adapted from five main sources to

65 Technical documentation about SPARQL can be found at
https://en.wikibooks.org/wiki/SPARQL.

https://fdasis.nlm.nih.gov/srs/
https://www.whocc.no/atc_ddd_index/
https://www.csfd.cz/
https://www.ncbi.nlm.nih.gov/refseq/
https://en.wikibooks.org/wiki/SPARQL


Fig. 6. SARS-CoV-2 interactions with the human proteome as of September 14, 2020 (available at: https://w.wiki/c3D, license: CC BY 4.0).
Proteins encoded by SARS-CoV-2 genes (note that some genes encode multiple proteins) and the currently known human protein interaction

partners (live data: https://w.wiki/beR).

which we have contributed substantially66,67,68,69,70.
Several similar query collections exist, e.g. for
COVID-19 in India71.

3.1. Biological and clinical aspects

A simple demonstration of Wikidata’s encoding of
SARS-CoV-2’s basic biology is in its genetics (Fig.
6) and resulting symptoms (Fig. 7). The viral genome
contains 11 genes that encode 30 proteins (and
variants), which are currently known to interact with
over 170 different human proteins. Although there
are two genome browsers based on Wikidata [55,

71 https://w.wiki/LsK

70 Covid-19 Summary queries: queries visualizing COVID-19
information in Wikidata linked to the epidemiological information
of the outbreak and to the characteristics of the infected famous
people;
https://public.paws.wmcloud.org/User:99of9/Covid-19.ipynb

69 Scholia queries: queries underlying COVID-19-related
visualizations from the Wikidata-based scholarly profiling tool
Scholia [35]; https://scholia.toolforge.org/

68 SPEED queries: extracts from the Wikidata-based
epidemiological surveillance dashboard for COVID-19 pandemic
in Tunisia (https://speed.ieee.tn). It was partially built upon
COVID-19 Wikidata dashboard
(https://sites.google.com/view/covid19-dashboard).

67 SARS-CoV-2-Queries: extracts from the book “Wikidata
Queries around the SARS-CoV-2 virus and pandemic” [72];
https://egonw.github.io/SARS-CoV-2-Queries/

66 WikiProject COVID-19 (WPCOVID) queries: extracts from
the query collection of Wikidata’s WikiProject COVID-19;
https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/
Queries

73], neither yet display the SARS-CoV-2 genome.
SPARQL visualizations provide a broader way to
explore biomedical knowledge about the studied
virus and the related infectious disease. As the
knowledge graph grows, this is allowing linking
together complex knowledge on biochemistry (e.g.
genes and proteins), biology (e.g. host taxa), clinical
medicine (e.g. interventions) [64]. Such queries can
be expanded by considering the qualifiers that
modulate biomedical statements. These qualifiers
allow the assignment of weights to assumptions
according to their importance and certainty. For
instance, some treatments are indicated as
hypothetical, or symptoms are listed as rare, as
defined by their nature of statement [P5102] or
sourcing circumstances [P1480] qualifiers, with
references to back these up (live data:
https://w.wiki/bmJ).

3.2. Epidemiology

Wikidata also contains the necessary information
to calculate common epidemiology data for different
countries, such as mortality per day per capita, and
case number to mortality rate correlation. In some
cases this is stored as aggregate data, such as the case
mortality rate [P3457] statements for regional
epidemics stored as numeric data (Fig. 8A), whereas
other common visualisations can be calculated from
granular data such as the individual date of birth
[P569] and date of death [P570] of notable

https://w.wiki/c3D
https://w.wiki/beR
https://w.wiki/LsK
https://public.paws.wmcloud.org/User:99of9/Covid-19.ipynb
https://scholia.toolforge.org/
https://speed.ieee.tn
https://sites.google.com/view/covid19-dashboard
https://egonw.github.io/SARS-CoV-2-Queries/
https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Queries
https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Queries
https://w.wiki/bmJ


individuals deceased from COVID-19 (Figure 8B).
Although this reflects the age distribution of COVID
mortality, it is also influenced by the demographics

of persons sufficiently notable to have Wikidata
items.

Fig. 7. Symptoms of COVID-19 and similar conditions as of September 10, 2020 (available at: https://w.wiki/byX, license: CC BY 4.0). A)
Currently listed symptoms of COVID-19, with qualifiers indicating their frequency. (live data: https://w.wiki/N8f). B) Other medical

conditions sorted by the number of shared symptoms with COVID-19. (live data: https://w.wiki/bqV; adapted from
https://scholia.toolforge.org/disease/Q84263196)

Fig. 8. Summary epidemiological data on the COVID-19
pandemic as of September 10, 2020 (available at:

https://w.wiki/byW, license: CC BY 4.0). A) Correlation between
the current number of cases and mortality rates in every country,

calculated from numeric summary data for each region. Countries
coloured randomly (live data: https://w.wiki/bf$). B) Age

distribution of notable persons who have died of COVID-19
(blue), compared to the death age distribution for notable persons

who were born after 1901 (green), calculated from individual dates
of birth and death (live data: https://w.wiki/be7 and

https://w.wiki/but).

In some cases, summary data is also time-resolved,
allowing inquiry of its change over time
(Supplementary Figure S2), capturing features not
depicted in several statistical predictions of the
epidemiological evolution of COVID-19 outbreaks
[74] and clearly seen in other data sources, such that
mortality peaks at the beginning of a disease
outbreak [75]. Wikidata’s granularity (i.e. the
representation of COVID-19 information at the scale
of individual cases, days and incidents) and

https://w.wiki/byX
https://w.wiki/N8f
https://w.wiki/bqV
https://scholia.toolforge.org/disease/Q84263196
https://w.wiki/byW
https://w.wiki/bf$
https://w.wiki/be7
https://w.wiki/but


collaborative editing have also made it highly up to
date on queries such as the most recent death of
notable persons due to COVID-19. This result is
difficult to achieve with other datasets
(Supplementary Figure S3), and mirrors Wikipedia’s
well-known rapid response to updating information
on deaths [76, 77].

3.3. Research outputs

A large portion of Wikidata is dedicated to
publication metadata and citation links. There are
several ways to investigate the relevant topics in
publications regarding COVID-19. Firstly, topic
keywords can be extracted directly from the titles of
articles with COVID-19 as a main topic (Fig. 9A).
This is a useful and rapid first approximation of
topics covered by those publications, extracted as
plain text. These can be expanded upon by querying
for the main subject [P921] of a set of publications in
Wikidata. This property acts analogously to the
narrower but more granular Medical Subject
Headings (MeSH) descriptors [78]. Such statements
allow broader querying of the literature as a network
via co-occurrence of topics as the main subject of
articles (Fig. 9B)72. This enables rapid traversal and
faceting of the literature on topics in addition to the
traditional links made by tracing citations [79], such
as extracting common pharmacological and
non-pharmacological interventions (live data:
https://w.wiki/N8i). The ‘WikiCite’ project is
working on importing the citation network into
Wikidata to make a fully open citation network (Fig.
S4) [80].

Because Wikidata is agnostic to the exact type of
research output, its structure is equally suited to
representing information on research publications,
preprints (Fig. S5), clinical trials (Fig. S6) or
computer applications (Fig. S7). However, preprints
are not yet thoroughly covered in Wikidata, a
limitation for this context as preprints have become
particularly important during the rapid pace of
COVID-19 research [80, 81]. Further, Wikidata’s rich
biographical and institutional data makes extracting
information on authors, institutions or others
straightforward (Fig. S8), and eventually for other
contributors too [82].

72 https://ts404.shinyapps.io/topicnetwork

Fig. 9. COVID-19 publication topics as of September 10, 2020
(available at: https://w.wiki/byV, license: CC BY 4.0). A)

Common words and word combinations (ngrams) in the titles of
publications (live data: https://w.wiki/cFu). B) Co-occurrence of
topics in publications with one of the COVID-related items as a

topic, with ribbon widths proportional to the number of
publications sharing those topics (log scale). Topics coloured by

group as determined by Louvain clustering, topics shared in fewer
than 5 publications omitted (interactive version:

https://csisc.github.io/WikidataCOVID19SPARQL/Fig8B.html;
live data: https://w.wiki/bww).

https://w.wiki/N8i
https://ts404.shinyapps.io/topicnetwork
https://query.wikidata.org/#%23defaultView%3ABubbleChart%0A%23%20Most%20frequent%20n-grams%20from%20a%20random%20set%20of%201000%20COVID-19%20publications%0ASELECT%20DISTINCT%20%3FNgram%20%3FScore%0A%0AWITH%0A%7B%20%23%20Generating%20a%20list%20of%20entities%20to%20be%20analyzed%0A%
https://w.wiki/byV
https://w.wiki/cFu
https://csisc.github.io/WikidataCOVID19SPARQL/Fig8B.html
https://w.wiki/bww


3.4. Societal aspects

Further emphasising the multidisciplinary nature
of Wikidata, there are also significant social aspects
of the pandemic contained in the knowledge base.
This includes simple collation of information, such as
regional official COVID websites, and unofficial but
common hashtags (Fig. S9), or relevant images under
Creative Commons licenses (Fig. S10). It also
includes more cross-disciplinary information, such as
companies that have reported bankruptcy, with the
pandemic recorded as the main cause (Fig. 10), or the
locations of those working on COVID (Fig. S8B).

Fig. 10. Bankruptcies of publicly listed businesses due to the
COVID-19 pandemic as of September 13, 2020 (available at:
https://w.wiki/byY, license: CC BY 4.0). A) Tabular output of

SPARQL query B) Bankruptcies per month C) ratios of different
industries associated with bankrupt companies. (live data:

https://w.wiki/cG6).

However, this also exemplifies how misleading
missing data can be: Wikidata currently has highly
inconsistent coverage of companies that are not
publicly listed, which heavily biases the results. For
example, the current lack of yearly updated
socio-economic information such as unemployment
rates [P1198] and nominal GDP [P2131] for
countries in Wikidata limits the use of the knowledge
graph for the study of the effect of the pandemic on
global economies, although this is theoretically
possible. Likewise, Wikidata is very incomplete with
respect to COVID-19-related regulations like
stay-at-home orders, school closures or policies

regarding face masks. Standardised methods to audit
and validate Wikidata’s content on various topics are
still under investigation and development [43].

4. Discussion

Many knowledge graphs have been recently
developed to represent various types of
COVID-19-related information, including
government responses [5], epidemiology [8], clinical
data [4], scholarly outputs and outcomes [9],
economic impacts [10], physiopathology [2], social
networking [11] among other features related to the
COVID-19 pandemic. These semantic databases are
mainly built using a combination of human efforts
and crowdsourcing techniques [5]. Such resources
can also be developed through the automatic
extraction - using natural language processing
techniques - of information from scholarly
publications about the outbreak, as is the case with
the Covid-19 Open Research Dataset [7].

Despite the importance of such resources, they
tend to cover a narrow range of aspects of the
disease, and despite the challenges (cf. Section 1.1),
more integrated approaches are necessary to support
advanced decision making related to the outbreak. In
response, integrated semantic databases have been
launched to combine more divergent information,
such as CIDO (combining clinical data with
genomics) [3] and COVID-19 data hub (combining
epidemiological data with social interactions) [12].

While clearly a valuable part of the data
ecosystem, these projects rely on small groups of
data curators, a model that has struggled to keep pace
when data and scholarly literature grow sharply, as is
the case with topics like COVID-19 [14]. This
observation fits with the considerably limited volume
of knowledge graphs exclusively enriched and
verified by a dedicated expert group - such as
OpenCyc - when compared to the volume of open
and collaborative knowledge graphs, particularly
Wikidata, YAGO, DBpedia and Freebase [17].

Whereas most knowledge graphs tend to be
specialized and developed by a limited team,
Wikidata deliberately takes a multidisciplinary,
multilingual position anchored in the linked open
data ecosystem. It is this breadth, combined with its
interoperability, that makes it unique amongst even
other user-generated collaborative projects. Indeed, it
becomes uniquely suited to highly dynamic topics
such as the COVID-19 pandemic [15, 64]. In

https://w.wiki/byY
https://w.wiki/cG6


comparison to other resources like DBpedia,
Wikidata is not just edited by machines and built
from data automatically extracted from textual
resources like Wikipedia [83]. Wikidata is mainly
enriched and adjusted by a community of over 25000
active human users on a daily basis73 and is released
under the CC0 license allowing the free and
unconditional reuse and interoperability of its
information in other systems and datasets and
consequently the growth of interest of many people
in using, enriching and adjusting it [43]. By being
highly multilingual, its human-readability extends
well beyond English to support international
contributions and reuse [23, 43]. Also, its flexible
editing policy and RDF structure permit the easy
creation of new classes, properties and data models to
rapidly support emerging data topics [23, 43]. One of
the features of Wikidata is also providing hundreds of
exemplary SPARQL queries74, which even beginner
users can immediately explore and easily modify,
assisted with features like default prefixes,
autosuggestions, autocomplete and straightforward
conversion between Wikidata identifiers and natural
language [41]. As a result, Wikidata users do not
have to be SPARQL experts to arrive at results that
are useful to them.

These factors have facilitated Wikidata’s rapid
growth since its creation in 2012 into a richly
interconnected and interdisciplinary network of >90
million items [23, 43]. In the context of the
COVID-19 outbreak, Wikidata has proven its
efficiency in representing multiple facets of the
pandemic ranging from biomedical information to
social impacts. This stands in marked contrast to
other integrated semantic graphs that only combine
two to three distinct features of the pandemic (e.g.
CIDO [3], COVID-19 data hub [12], COVID-19
Living Data75 [84] and Knowledge4COVID-1976

[85]) as shown in the “data model” and “Visualizing
facets of COVID-19 via SPARQL” sections. This
large-scale information is supported in multiple
languages as explained in the “language
representation” section and is matched to its
equivalents in other semantic databases as revealed
by the “database alignment” section. Moreover, the
semantic nature of the SPARQL query language has
enabled in-depth analysis of the multifaceted,
multidisciplinary COVID-19 information in

76 https://devpost.com/software/covid-19-kg
75 https://covid-nma.com/
74 https://w.wiki/pGw
73 https://www.wikidata.org/wiki/Special:Statistics

Wikidata. This confirms previous findings about the
importance of querying COVID-19 semantic
resources such as CIDO [3] to compare clinical
information with other types of COVID-19
information and consequently to generate new
insights into or new perspectives on characteristics of
the disease or the pandemic [86]. The primary
advantage of applying SPARQL to extract and
visualize COVID-19 information from a generalized
knowledge graph such as Wikidata when compared
to domain-specific knowledge graphs developed for
the pandemic like CIDO [3] is the possibility of
integration of outbreak data with non-COVID-19
information such as economic, industrial, climatic
and social facts that can be used to generate summary
information to explain the reasons behind the
dynamics of the studied pandemic.

Despite the advantages of collaborative editing
and free reuse of open knowledge graphs like
Wikidata to support and enrich COVID-19
information, these two features have several
drawbacks related to data quality and legal concerns.
It is true that the use of fully open licenses (CC0 or
Public domain) in centralized knowledge graphs
removes all legal barriers to their reuse in other
knowledge graphs or to drive knowledge-based
systems and encourages the development of
intelligent support to tasks related to COVID-19.
However, application of CC0 on these databases
causes them not to integrate information for semantic
resources and datasets with partially open licenses
(e.g. CC BY and MIT), as these licenses require
either the attribution of the source work to authors or
the use of the same license to process the data [87,
88]. This situation is similar to the status of regular
group O red blood cells as a universal donor but
restricted recipient [89].

Although collaborative editing contributed to the
development of large-scale information about all
aspects of the disease, there are currently still
significant gaps and biases in the dataset that can lead
to imprecise results if not interpreted with caution.
For example, the COVID-19 outbreaks on cruise77

and naval78 ships are better covered in Wikipedia
than in Wikidata (or most other online resources).
Similarly, scholarly citations are not yet evenly
covered, since systematic curation will require more

78

https://en.wikipedia.org/wiki/COVID-19_pandemic_on_naval_shi
ps

77

https://en.wikipedia.org/wiki/COVID-19_pandemic_on_cruise_shi
ps
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scalable workflows. Although many of these gaps are
rapidly being addressed and closed over time, errors
of omission and bias are inevitable to some extent.
Such deficiencies can only be detected and solved by
applying algorithms that assess data completeness of
items included in a given class within open
knowledge graphs. Solutions involve cross-checking
knowledge bases or subsets of the same
knowledgebase [90, 91], systematically exposing the
content of Wikidata to many eyes through its reuse in
Wikipedia and SPARQL-based tools such as Scholia
and COVID dashboards [15, 35], and using
knowledge graph learning techniques to update items
directly from textual databases like scholarly
publications [92] and electronic health records [93].
Moreover, collaborative editing can cause several
inaccuracies in the declaration of statements in open
knowledge graphs disregarding the metadata
standards of the knowledge bases [94]. These
inconsistencies can persist particularly when the
database and the largely growing scholarly literature
about COVID-19 is managed by a limited number of
administrators79 and can consequently cause matters
about the trustworthiness of the reuse of data [94].
However, critical problems related to structural
deficiencies in defining statements or to the inclusion
of mistaken data in open knowledge graphs seem to
happen less frequently in Wikidata [17]. Greater
consistency of structure and accuracy is partly due to
the involvement of more contributors in Wikidata
than in other open knowledge graphs [17]. But it also
stems from importing data from other
rapidly-updated and curated databases (mainly from
the linked open data cloud [23]) and from
verification by overlapping methods (e.g. ShEx
schemas80, SPARQL-based logical constraints and
bot edits [43, 95]). The data validation infrastructure
of Wikidata seems to be in accordance with the latest
updates in knowledge graph evaluation and
refinement techniques [96, 97] and explains in part
the reasons behind the robustness of the data model
of COVID-19 information in this open knowledge
graph.

80 The validation schemas for COVID-19 information in
Wikidata are currently available at
https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/
Data_models.

79 As of February 18, 2021, there are only 62 Wikidata
administrators, as shown at
https://www.wikidata.org/wiki/Special:Statistics.

5. Conclusion

In this research paper, we demonstrate the ability
of open and collaborative knowledge graphs such as
Wikidata to represent and integrate a large number of
the multidisciplinary aspects of the COVID-19
information and to use SPARQL to generate
summary visualizations about the infectious disease,
the underlying pathogen, the resulting pandemic and
related topics. We have shown how the
community-driven and not centrally coordinated
approach to editing has contributed to the success of
Wikidata in tackling emerging and rapidly changing
phenomena, such as the pandemic. We have also
discussed the disadvantages of collaborative editing
for systematic knowledge representation. As an open
semantic resource in the RDF format, Wikidata has
become a hub for COVID-19 knowledge. The
insertion of information in the Linked Open Data
format provides the flexibility to integrate data from
many facets of COVID-19 data with non-COVID-19
data. By its multilingual structure, these inputs are
contributed to (and reused by) people all over the
world, with different backgrounds. Effectively, the
WikiProject COVID-19 has made COVID-19
knowledge more FAIR: Findable, Accessible,
Interoperable and Reusable [64].

An important aspect of Wikidata’s FAIRness is the
Wikidata SPARQL query service
(https://query.wikidata.org) [64]. More than an
endpoint, the query service provides a visual
interface to create queries, and makes it easier for
beginners to customize queries. Additionally,
community-contributed data visualization tools like
Scholia provide human-friendly interfaces to surf the
data [35]. As shown here, SPARQL visualizations are
an entrypoint for deeper insights into COVID-19,
both regarding the biomedical facets of this still new
disease, as well as into the societal details of the
pandemic.

Another partner for FAIRness is user-friendly
programmatic data access. Wikidata database dumps
are available for download and local processing
(https://www.wikidata.org/wiki/Wikidata:Database_d
ownload) in RDF, JSON and XML formats. Beyond
dumps, the Wikibase API makes data retrievable via
HTTP requests, which facilitates integration into
analysis and reuse workflows. API wrappers are also
available for popular programming languages like R
(https://cran.r-project.org/web/packages/WikidataR/)
and Python (https://pypi.org/project/Wikidata/),
arguably exposing the content even further.

https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Data_models
https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Data_models
https://www.wikidata.org/wiki/Special:Statistics
https://query.wikidata.org/
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download
https://cran.r-project.org/web/packages/WikidataR/
https://pypi.org/project/Wikidata/


Even though Wikidata is rich in COVID-19
knowledge, there is always room for future
improvement. As a collaborative endeavour,
Wikidata and the WikiProject COVID-19 are likely
to become further enriched over time. By the
collective efforts of contributors, we hope that the
database will grow in quality and coverage,
supporting other types of information - such as the
outcomes of the ongoing COVID-19-related research
efforts - and contributing to higher pandemic
preparedness globally.

As Wikidata is community-oriented and broadly
themed, virtually any researcher can take advantage
of its knowledge, and contribute to it. SPARQL
queries can complement and enrich research
publications, providing both an overview of
domain-specific knowledge for original research, as
well as serving as the base for systematic reviews or
scientometric studies. Of note, SPARQL queries can
be inserted into living publications, which can keep
up to date with the advancements both in human
knowledge and its coverage on Wikidata.
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Supplementary Data
Supplementary tables

Table S1. List of the tasks fulfilled by the SPARQL queries for the visualization of the COVID-19 information in
Wikidata

Task Description

Genomic data and clinical knowledge

Z1 Symptoms of COVID-19 (SPEED, SARS-CoV-2-Queries)

Z2 Potential treatments of COVID-19 (SPEED)

Z3 Linnean Taxonomy of SARS-CoV-2 (SPEED)

Z4 All SARSr viruses (SARS-CoV-2-Queries)

Z5 Coronaviruses that infect humans (SARS-CoV-2-Queries)

Z6 All betacoronaviruses (SARS-CoV-2-Queries, WPCOVID)

Z7 All coronaviruses (SARS-CoV-2-Queries)

Z8 Comparing viruses with SARS-CoV-2 (SARS-CoV-2-Queries)

Z9 NCBI Taxonomy IDs of coronaviruses (SARS-CoV-2-Queries)

Z10 SARS-CoV-2 genomes (SARS-CoV-2-Queries)

Z11 SARS-CoV-2 genes (SARS-CoV-2-Queries)

Z12 SARS-CoV-2 proteins (SARS-CoV-2-Queries)

Z13 SARS-CoV-2 protein complexes (SARS-CoV-2-Queries)

Z14 SARSr genes (SARS-CoV-2-Queries)

Z15 SARSr proteins (SARS-CoV-2-Queries)

Z16 Human coronavirus’ genes (SARS-CoV-2-Queries)

Z17 Human coronavirus’ proteins (SARS-CoV-2-Queries)

Z18 Coronavirus’ proteins interacting with human proteins (SARS-CoV-2-Queries)

Z19 Biological process for the pathogenesis of coronaviruses (SARS-CoV-2-Queries)

Z20 Antibodies for the coronaviruses (SARS-CoV-2-Queries)

Z21 Vaccines for the coronaviruses (SARS-CoV-2-Queries)

Z22 Drugs for the coronaviruses (SARS-CoV-2-Queries)

Z23 COVID-19, COVID-19 pandemic and SARS-CoV-2 in the context of the Wikidata knowledge graph (Scholia)

Epidemiology

Z24 Daily evolution of the global number of COVID-19 cases (SARS-CoV-2-Queries, WPCOVID, COVID-19 Summary)

Z25 Daily evolution of the number of COVID-19 Cases by Country (SPEED)

Z26 Daily evolution of the number of COVID-19 Deaths by Country (SPEED)

Z27 Daily evolution of the COVID-19 Mortality Rate by Country (SPEED)

Z28 Daily evolution of the number of COVID-19 Clinical Tests by Country (SPEED)

Z29 Daily evolution of the COVID-19 Positive Test Rate by Country (SPEED)

Z30 Daily evolution of the number of COVID-19 Recoveries by Country (SPEED)

Z31 Daily evolution of the COVID-19 Recovery Rate by Country (SPEED)

Z32 Daily evolution of the number of COVID-19 Cases in a given country (SPEED, SARS-CoV-2-Queries)

Z33 Daily evolution of the number of COVID-19 Deaths in a given country (SPEED, SARS-CoV-2-Queries)

Z34 Daily evolution of the number of COVID-19 Clinical Tests in a given country (SPEED)

Z35 Daily evolution of the number of COVID-19 Recoveries in a given country (SPEED)

Z36 Daily evolution of the COVID-19 Mortality Rate in a given country (SPEED)

Z37 Daily evolution of the COVID-19 Positive Clinical Test Rate in a given country (SPEED)

Z38 Daily evolution of the COVID-19 Recovery Rate in a given country (SPEED)

Z39 Daily evolution of the number of COVID-19 Cases by administrative subdivision of a given country (SPEED)

Z40 Daily evolution of the number of COVID-19 Deaths by administrative subdivision of a given country (SPEED)

Z41 Daily evolution of the COVID-19 Mortality Rate by administrative subdivision of a given country (SPEED)



Z42 Daily evolution of the number of COVID-19 New Cases (SPEED)

Z43 Daily evolution of the number of COVID-19 New Deaths (SPEED)

Z44 Daily evolution of the number of COVID-19 New Clinical Tests (SPEED)

Z45 Daily evolution of the number of COVID-19 New Recoveries (SPEED)

Z46 Daily evolution of the number of COVID-19 Active Cases (SPEED)

Z47 Daily evolution of the number of COVID-19 Clinical Tests by Laboratory in a given country (SPEED)

Z48 Number of COVID-19 Cases by administrative subdivision of a given country (SPEED)

Z49 Number of COVID-19 Deaths by administrative subdivision of a given country (SPEED)

Z50 COVID-19 Mortality Rate by administrative subdivision of a given country (SPEED)

Z51 Number of COVID-19 Cases per Capita by administrative subdivision of a given country (SPEED)

Z52 Number of COVID-19 Deaths per Capita by administrative subdivision of a given country (SPEED)

Z53 Number of COVID-19 Cases per Area by administrative subdivision of a given country (SPEED)

Z54 Number of COVID-19 Deaths per Area by administrative subdivision of a given country (SPEED)

Z55 Current Epidemiological Status in a given country (SPEED)

Z56 Number of COVID-19 Clinical Tests by Laboratory in a given country (SPEED)

Z57 Map of Affected Countries (SPEED, WPCOVID)

Z58 Number of COVID-19 Cases by Country (SPEED, WPCOVID)

Z59 Number of COVID-19 Cases per 100000 inhabitants by Country (SPEED)

Z60 Number of COVID-19 Deaths by Country (SPEED)

Z61 Number of COVID-19 Deaths per 100000 inhabitants by Country (SPEED)

Z62 COVID-19 Mortality rates by Country (SPEED)

Z63 Number of COVID-19 Clinical Tests by Country (SPEED)

Z64 Number of COVID-19 Clinical Tests per 100000 inhabitants by Country (SPEED)

Z65 Number of COVID-19 Recoveries by Country (SPEED)

Z66 Number of COVID-19 Recoveries per 100000 inhabitants by Country (SPEED)

Z67 Famous COVID-19 Victims (SPEED, WPCOVID, COVID-19 Summary)

Z68 Age distribution of Famous COVID-19 Victims (COVID-19 Summary)

Z69 Field of work of Famous COVID-19 Victims (COVID-19 Summary)

Z70 Place of birth of Famous COVID-19 Victims (COVID-19 Summary)

Z71 Number of COVID-19 Cases per area by Country (SPEED, COVID-19 Summary)

Z72 Number of COVID-19 Deaths per area by Country (SPEED)

Z73 Number of COVID-19 Clinical Tests per area by Country (SPEED)

Z74 Number of COVID-19 Recoveries per area by Country (SPEED)

Z75 Number of COVID-19 Cases in function of the number of clinical tests in a given country (SPEED)

Z76 Number of COVID-19 Deaths in function of the number of cases in a given country (SPEED)

Z77 COVID-19 Mortality Rate in function of the number of cases in a given country (SPEED)

Z78 Number of COVID-19 cases in an administrative subdivision of a given country in function of population (SPEED)

Z79 Number of COVID-19 cases in an administrative subdivision of a given country in function of area (SPEED)

Z80 Number of COVID-19 cases in an administrative subdivision of a given country in function of population Density Rate (SPEED)

Z81 Number of COVID-19 deaths in an administrative subdivision of a given country in function of population (SPEED)

Z82 Number of COVID-19 deaths in an administrative subdivision of a given country in function of area (SPEED)

Z83 Number of COVID-19 deaths in an administrative subdivision of a given country in function of population Density Rate (SPEED)

Z84 COVID-19 Mortality Rate in an administrative subdivision of a given country in function of population (SPEED)

Z85 COVID-19 Mortality Rate in an administrative subdivision of a given country in function of area (SPEED)

Z86 COVID-19 Mortality Rate in an administrative subdivision of a given country in function of population Density Rate (SPEED)

Z87 Number of COVID-19 new cases in a given country in function of number of old cases (SPEED)

Z88 Global number of COVID-19 Cases in function of the global number of clinical tests (SPEED)

Z89 Global number of COVID-19 Deaths in function of the global number of cases (SPEED)

Z90 COVID-19 Global Mortality Rate in function of the global number of cases (SPEED)

Z91 Country-level number of COVID-19 Cases in function of Country Population (SPEED)

Z92 Country-level number of COVID-19 Cases in function of  Country Area (SPEED)

Z93 Country-level number of COVID-19 Cases in function of  Country Population Density Rate (SPEED)

Z94 Country-level number of COVID-19 Deaths in function of Country Population (SPEED)

Z95 Country-level number of COVID-19 Deaths in function of Country Area (SPEED)

Z96 Country-level number of COVID-19 Deaths in function of Country Density Rate (SPEED)

Z97 Country-level COVID-19 Mortality Rate in function of Country Population (SPEED)

Z98 Country-level COVID-19 Mortality Rate in function of Country Area (SPEED)



Z99 Country-level COVID-19 Mortality Rate in function of Country Population Density Rate (SPEED)

Z100 Duration between first case and first death based on number of cases and number of deaths in a given country
(SARS-CoV-2-Queries)

Z101 Lockdowns due to the COVID-19 pandemic (WPCOVID)

Research outputs and computer applications

Z102 Scholarly publications about COVID-19 pandemic and SARS-CoV-2 (SPEED, SARS-CoV-2-Queries, WPCOVID, Scholia)

Z103 Tools and Resources about COVID-19 pandemic by type (SPEED)

Z104 Tools and Resources about COVID-19 pandemic (SPEED)

Z105 Tools and Resources about COVID-19 pandemic by publisher (SPEED)

Z106 Tools and Resources about COVID-19 pandemic by license (SPEED)

Z107 Tools and Resources about COVID-19 pandemic by field of work (SPEED)

Z108 Clinical trials about COVID-19 pandemic (SARS-CoV-2-Queries)

Z109 Scholarly publications about the virus transmission of coronaviruses (SARS-CoV-2-Queries)

Z110 Scholarly publications about the SARS-CoV-2 genes (SARS-CoV-2-Queries)

Z111 Scholarly publications about the SARS-CoV-2 proteins (SARS-CoV-2-Queries)

Z112 Scholarly publications about coronaviruses (SARS-CoV-2-Queries)

Z113 Scholarly publications about human coronaviruses (SARS-CoV-2-Queries)

Z114 Contact tracing protocols related to the COVID-19 pandemic (WPCOVID)

Z115 Scholarly publications about COVID-19 pandemic and SARS-CoV-2 by year (Scholia)

Z116 Research scientists mostly publishing scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z117 Collaboration network of the research scientists working on COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z118 Topics of the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z119 Co-occurring topic graph of the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z120 Map of cities and countries evocated by the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z121 Research scientists mostly cited by the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z122 Venues and series mostly publishing research works about the COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z123 Most cited research publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z124 Map of institutions publishing research works about COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z125 Citation network of research countries working on COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z126 Awards received by authors who published on COVID-19 pandemic and SARS-CoV-2 (Scholia)

Z127 Scholarly publications about COVID-19 and SARS-CoV-2 with missing main subject [P921] values (SARS-CoV-2-Queries, WPCOVID)

Other

Z128 Images from Wikimedia Commons about COVID-19 pandemic and SARS-CoV-2 (SPEED)

Z129 COVID-19 Factbook (SPEED)

Z130 Bankrupt businesses due to the COVID-19 pandemic (WPCOVID)

Z131 Properties used to model COVID-19 knowledge in Wikidata (WPCOVID)

Table S2. List of sample queries on COVID-19. The information contained therein is similar to visualizations in
many stand-alone COVID-19 dashboards, covering an overview of COVID-19, international situation,
international daily epidemiological evolution, Tunisian daily epidemiological evolution, Tunisian
governorate-level situation, Tunisian correlations, and worldwide correlations. Each of the sheets has a Title
column with a brief summary for each query and a URL column with a link to the live record on Wikidata.

Table available as Query/COVID-19.xlsx in
http://doi.org/10.5281/zenodo.4022591.

Table S3. Raw data and correlation statistics for datasets summarised in tables 3 and 4, including Pearson’s,
Spearman’s, and Cohen’s coefficients for the raw data and Spearman’s coefficients and principal component
analysis of the log-10 transformed data.

Table available as docs/Fig5Corr/T3+4.xlsx in
http://doi.org/10.5281/zenodo.4022591.

http://doi.org/10.5281/zenodo.4022591
http://doi.org/10.5281/zenodo.4022591


Table S4. Spearman's rho on raw data (pairwise) of untransformed variables from tables 3 and 4 against max
development index for countries speaking each language as an official language, and number of native speakers.
Final column indicates Cohen's q value (calculated as the difference between the Fisher-transformed Spearman's
rho values i.e., q = z’(r(development,Wikidata med labels))– z’(r(number of speakers, Wikidata med labels))), comparing these two for the
stronger correlate for variables from tables 3 and 4. Positive values indicate max development index as the
stronger correlate, while negative values would indicate number of native speakers as the stronger correlate.
Differences of >.5 are considered “large” and unusual for the social sciences, .3 “medium” and .1 “small”.

Spearman’s rho Spearman’s rho Cohen’s q

Max development Number speakers development - speakers

Medical Wikipedia articles .71 .48 .36

Medical Wikidata labels .76 .38 .59

Wikipedia and Wikidata Users .62 .21 .51

COVID19 pandemic Wikipedia pageviews .53 .53 .00

COVID Wikipedia pages .71 .52 .31

COVID Wikidata content .69 .53 .26

COVID Wikipedia edits .63 .55 .12

Supplementary figures

This section of the supplementary data includes additional array of visualizations that were not able to fit in the
main text but that exemplify the diversity of additional valuable information that can be extracted out of the
Wikidata knowledge base.

Fig. S1. Snapshot of the extended graph of the three main COVID items and the statements for which they are the subject. Linked items
demonstrate the variety of topics for which the three main COVID items (indicated in red) are the subject and present a small subset of the

classes indicated in Fig. 2. (Available at: https://w.wiki/cPa, live data: https://w.wiki/xYE, Access Date: August 19, 2020)

https://w.wiki/cPa
https://w.wiki/xYE


Fig. S2. Epidemiological data for Tunisia as of August 16, 2020. The SPEED website was set up as a COVID-19 data dashboard for Tunisia
(Available at: https://w.wiki/cQC). A) Daily mortality rate from COVID-19 in Tunisia (live data: https://w.wiki/N2p). B) Tunisian

governorate-level cases (live data: https://w.wiki/N9Y). C) Daily Evolution of Clinical tests by laboratory in Tunisia (live data:
https://w.wiki/NEb).

https://w.wiki/cQC
https://w.wiki/N2p
https://w.wiki/N9Y
https://w.wiki/NEb


Figure S3. People listed in Wikidata deceased due to COVID-19 as of August 16, 2020 (Available at: https://w.wiki/cQK). A) As tabular
output, ranked by date of death (live data: https://w.wiki/Mgv). B) Portrait images available under a CC BY-compatible license, ranked by how

well-described the depicted individuals are in Wikidata (number of identifiers + statements + sitelinks) (live data: https://w.wiki/bzJ). C) as
bubble diagram of professions (live data: https://w.wiki/bTz).

https://w.wiki/cQK
https://w.wiki/Mgv
https://w.wiki/bzJ
https://w.wiki/bTz


Figure S4. Partial citation network within Wikidata as of August 16, 2020 (Available at: https://w.wiki/cQV). The citation network around
COVID-19 is currently rather incomplete but part of the larger, ongoing WikiCite project to represent all citation data within Wikidata as a

fully open citation network. A) publications cited from C3 papers (live data: https://w.wiki/b$h) B) authors most frequently cited by C3 papers
(live data: https://w.wiki/b$i).

Figure S5. Most common publication venues for C3-themed papers (published and preprint) as of August 16, 2020. Even with Wikidata’s
currently incomplete coverage of articles hosted on preprint servers, they are clearly a significant location for COVID-related publications

(Available at: https://w.wiki/cQX, live data: https://w.wiki/bd$).

https://w.wiki/cQV
https://w.wiki/b$h
https://w.wiki/b$i
https://w.wiki/cQX
https://w.wiki/bd$


Fig. S6. Information regarding clinical trials on interventions to treat COVID-19 as of August 16, 2020 (Available at https://w.wiki/cQb, live
data: https://w.wiki/bav)

Fig. S7. Computer applications and their types as of August 16, 2020 (Available at: https://w.wiki/cQg, live data: https://w.wiki/NVp)

https://w.wiki/cQb
https://w.wiki/bav
https://w.wiki/cQg
https://w.wiki/NVp


Fig. S8. Information on authors of articles on COVID-related topics as of August 16, 2020 (Available at: https://w.wiki/cQh). A) Awards most
frequently received by authors of C3 papers (live data: https://w.wiki/ban), B) Map of organizations associated with works about C3 with

institutions that have published a single paper on the topic in green, those that have published 1-10 in orange, and those having published >10
in blue (live data: https://w.wiki/cG4).

https://w.wiki/cQh
https://w.wiki/ban
https://w.wiki/cG4


Fig. S9. Online resource locations for information on COVID-19 regional outbreaks as of August 16, 2020 (Available at: https://w.wiki/cQo).
A) Official websites (live data: https://w.wiki/bdt). B) Main hashtags (live data: https://w.wiki/bds)

https://w.wiki/cQo
https://w.wiki/bdt
https://w.wiki/bds


Fig. S10. COVID-related images based on structured data as of August 16, 2020 (Available at: https://w.wiki/cQt). Images in wikimedia
commons used to be organised solely by a hierarchical category structure. Since 2019, structured data can be associated with images via

Wikidata statements. A) Images from Wikimedia Commons about COVID-19 pandemic and SARS-CoV-2 with a CC-BY-compatible license
(live data: https://w.wiki/Zsn). B) Images of face masks used during COVID-19 pandemic with a CC-BY-compatible license (live data:

https://w.wiki/bzG).

https://w.wiki/cQt
https://w.wiki/Zsn
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Author responses to the comments 
Article title: Representing COVID-19 information in collaborative knowledge 

graphs: the case of Wikidata 

Tracking Number: 2572-3786 

Authors: Turki et al. 

Many thanks for the referee comments which have helped us improve the presentation and 

quality of the manuscript. We have responded to these point-by-point. Please find below our 

detailed response to the comments made by the reviewers. Adjusted parts are highlighted in 

yellow.  

Editor comments 

Comments Responses 

In light of the reviews I share the sentiment of 

one of the reviewers that the paper is better 

suited for a dataset description (i.e., a subgraph 

of Wikidata) rather than as a research paper.  

We believe we are offering a research 
contribution, by showing on the basis of a specific 
dataset how collaborative editing and 
decentralized knowledge production can be 
particularly successful in addressing new, rapid 
phenomena. We also point out shortcomings of 
the model. This cannot be explained in the few 
pages that a dataset description allows for. For 
that reason, we believe that our paper fits the 
research criterion, even though we are happy 
that you find our contribution valuable as a 
dataset paper, too.  

Contribution: Better define the novel 

contributions of the paper.  

DONE 
We’ve reworked the abstract and introduction to 
better clarify and summarise what is new in the 
work presented. 
We have also highlighted how we are able to give 
a unique ‘insider perspective’ on the topic from 
being contributors to the development of the 
COVID-19 facets of Wikidata:  
“In this research paper, we report on the efforts 
of the Wikidata community (including our own) to 
meet the COVID-19 data challenges outlined in 
the previous section by using Wikidata as a 
platform for collaboratively collecting, curating 



and visualizing COVID-19-related knowledge at 
scales commensurate with the pandemic. While 
the relative merits of Wikidata with respect to 
other knowledge graphs have been discussed 
previously, we focus on leveraging the potential 
of Wikidata as an existing platform with an 
existing community in a timely fashion for an 
emerging transdisciplinary application like the 
COVID-19 response.” 
 
“As active editors of Wikidata, the authors have 
contributed a significant part of that data 
modelling, usage framework and crowdsourcing 
of the COVID-19 information in the knowledge 
graph since the beginning of the pandemic. We 
consequently have a unique perspective to share 
our experience and overview how Wikidata as a 
collaborative multidisciplinary large-scale 
knowledge graph can host COVID-19 data, 
integrate it with non-COVID-19 information and 
feed computer applications in an open and 
transparent way.” 

Coverage: Detail the exact coverage of the COVID 

data on Wikidata, e.g., are there data points 

missing such as economic data, what to do with 

conflicting/inconsistent information etc.? 

The coverage of the COVID-19-related 
information is given with details in Section 3, 
“Visualizing facets of COVID-19 via SPARQL”. The 
coverage includes not only epidemiological 
information but also biological and clinical 
aspects, research aspects and societal aspects for 
the pandemic including economic ones. The 
missing points for these aspects that are not 
efficiently covered in Wikidata are explained with 
examples in the same section. 
Concerning the management of conflicting and 
inconsistent COVID-19 information, this is a good 
point. Indeed, this is the topic of a second 
research paper just submitted for review to SWJ 
(available at 
https://doi.org/10.5281/zenodo.4008358, 
Tracking number: 2677-3891). We thought it 
necessary to keep these two papers separate to 
avoid the length getting overwhelming. However, 
we added a paragraph at the end of the Data 
Model and Discussion sections to explain this:  

“Later, the developed semantic database for      
the pandemic is checked by multiple layers of        
validation. Methods include RDF triples defining      

https://doi.org/10.5281/zenodo.4008358


conditions for the usage of Wikidata properties,       
RDF validation schemas built in Shape Expressions       
(ShEx) to verify the structural accuracy of the        
statement of an item included in a given Wikidata         
class, and logical constraints implemented in      
SPARQL to verify the consistency of relational and        
non-relational claims in Wikidata as well as       
several tools based on edit history of Wikidata        
such as ORES to identify and eliminate database        
vandalism. Although Web Ontology Language     
(OWL) can define knowledge graphs with a richer        
semantic characterization of data models by      
providing a layer of Description Logics such as in         
DBpedia, the infrastructure developed for the      
validation of RDF data in Wikidata helps assure a         
high level of consistency of the Wikidata       
knowledge graph.” 
 
“Greater consistency of structure and accuracy is 
partly due to the involvement of more 
contributors in Wikidata than in other open 
knowledge graphs. But it also stems from 
importing data from other rapidly-updated and 
curated databases (mainly from the linked open 
data cloud) and from verification by overlapping 
methods (e.g. ShEx schemas, SPARQL-based 
logical constraints and bot edits). The data 
validation infrastructure of Wikidata seems to be 
in accordance with the latest updates in 
knowledge graph evaluation and refinement 
techniques and explains in part the reasons 
behind the robustness of the data model of 
COVID-19 information in this open knowledge 
graph.” 

Statistical Rigor: Include statistical analysis to 

verify correlation analysis. 

A very good point. For the observed correlations 
between content, editorship and readership in 
medical and COVID-19 content, we’ve added in 
all-vs-all statistical comparisons to rigorously back 
up the observations noted from tables 2-4. 
We have rephrased also the sentences for that 
claim to make it clear that the observations are 
descriptive in the phrase “Query results largely 
match previously published trends for Wikipedia 
and Wikidata (Table 2), though we note that 
Arabic (ar) and Chinese (zh), appear  in the top 10 
languages in the Wikidata COVID-19 subset, while 



being absent from the top 10s for other sets 
described in Table 4.”  
We agree that more in-depth tests, if planned a 
priori, could allow stronger causative claims. That 
is why, we have added correlation analysis of the 
statistical data about language representation: 
“These correlations can be interrogated by 
querying Wikidata to find out the current status 
of the editing of this knowledge graph and of 
Wikipedia in 307 languages (Table S3; top-ranking 
items for each variable summarised in Tables 3 
and 4). Query results largely match previously 
published trends for Wikipedia and Wikidata 
(Table 2), though we note that Arabic (ar) and 
Chinese (zh), appear  in the top 10 languages in 
the Wikidata COVID-19 subset, while being 
absent from the top 10s for other sets described 
in Table 4. Coverage differed across languages 
and variables, and most of the distributions 
showed marked positive skew. Nonparametric 
analysis of correlations (Spearman’s rho) found 
large magnitude associations (rho .65 to .97, 
median = .84, Supplementary Table S4), 
statistically significant even following stringent 
Bonferroni correction. To account for skew and 
data spanning multiple orders of magnitude, 
log10-transformed data was used for subsequent 
analyses. Pearson’s correlation coefficients 
between all variables was high (Figure 5). A 
principal component analysis for the 90 
languages with complete data on all 7 indicators 
found that a single component explained 81% of 
the variance, with loadings ranging from .80 to 
.95. The smallest PCA loading and Spearman’s 
correlation was for the number of viewers, which 
though still a strong association, was less 
correlated than the other variables by a 
substantial margin.” 
 
“This is confirmed by the high correlation 
(Pearson r = 0.93) of the language distribution of 
COVID-related Wikidata labels with the number 
of COVID Wikipedia pages in language editions 
and the moderate correlation (Pearson r > 0.65) 
between the number of Wikidata COVID-related 
labels in a given language and the quantity and 
edit statistics of medical content in Wikidata and 



Wikipedia (Fig. 5). Such relationships are 
strengthened by the high correlation (Pearson r > 
0.9) between the number of medical Wikidata 
labels in a given language and the number of 
medical Wikipedia articles in language editions as 
well as the number of native speakers jointly 
editing Wikipedia and Wikidata. 

To investigate the possible causes of these       
highly correlated datasets, we compared them to       
two external metrics for each language: the       
number of native speakers of each language and        
the maximum human development index for      
countries where that language is an official       
language. This data was available for fewer       
languages (N = 57 each, 19 pairs) and the sparse          
overlap precluded including both simultaneously     
in analyses. The number of native speakers       
showed similar positive skew to earlier data, so        
was also log10-transformed. Even though these      
analyses are necessarily exploratory, maximum     
development correlated more strongly than did      
the number of speakers (Figure 5B; Table S4).        
Cohen’s q values (an effect size for differences        
between correlation coefficients) of a size      
considered unusually large for the social sciences       
(> 0.5) were observed when comparing      
correlation of development index versus number      
of speakers with the number of medical Wikidata        
labels and with the number of users. Further        
medium q values (differences > 0.3) were       
observed for correlation to the number of       
medical Wikipedia articles and to the number of        
COVID Wikipedia pages. Correlation differences     
were negligible with regard to development      
versus number of speakers as associated with the        
number of edits or pageviews.”.  

Usage: How can users access the information 

beyond the proposed SPARQL queries. 

Good recommendation. We have now mentioned 
the web interface introduction: 
 
“One of Wikidata’s key strengths is that each item 
can be understood by both machines and 
humans. It represents data in the form of items 
and statements, which are navigable in a web 
interface and shared as semantic triples. 
However, where a computer can easily hold the 
entire knowledge base in its memory at once, the 



same is obviously not true for a human.  
Since we still rely on human interpretation to 
extract meaning out of complex data, it is 
necessary to pass that data from machine to 
human in an intuitive manner. The main way of 
doing this is by visualising some subset of the 
data, since the human eye acts as the input 
interface with the greatest bandwidth.”  
 
We also expanded the final section on the 
SPARQL query service: 
 
“An important aspect of Wikidata’s FAIRness is 
the Wikidata SPARQL query service 
(https://query.wikidata.org). More than an 
endpoint, the query service provides a visual 
interface to create queries, and makes it easier 
for beginners to customize queries. Additionally, 
community-contributed data visualization tools 
like Scholia provide human-friendly interfaces to 
surf the data. As shown here, SPARQL 
visualizations are an entrypoint for deeper 
insights into COVID-19, both regarding the 
biomedical facets of this still new disease, as well 
as into the societal details of the pandemic.” 
 
Further, we added a note on data availability, 
making it clear that data on Wikidata can be 
downloaded via database dumps, the Wikibase 
API and API wrappers: 
 

“Another partner for FAIRness is user-friendly      
programmatic data access. Wikidata database     
dumps are available for download and local       
processing 
(https://www.wikidata.org/wiki/Wikidata:Databa
se_download) in RDF, JSON and XML formats.       
Beyond dumps, the Wikibase API makes data       
retrievable via HTTP requests, which facilitates      
integration into analysis and reuse workflows. API       
wrappers are also available for popular      
programming languages like R    
(https://cran.r-project.org/web/packages/Wikida
taR/) and Python   
(https://pypi.org/project/Wikidata/), arguably  
exposing the content even further.” 

 

https://query.wikidata.org/
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download
https://cran.r-project.org/web/packages/WikidataR/
https://cran.r-project.org/web/packages/WikidataR/
https://pypi.org/project/Wikidata/


 

Reviewer 1 

1 https://en.wikipedia.org/wiki/COVID-19_pandemic_on_cruise_ships 
2 https://en.wikipedia.org/wiki/COVID-19_pandemic_on_naval_ships 

Comments Responses 

Overall, the paper is written clearly, but it could 

be improved regarding the organisation to make 

its logical flow more manifest. The authors 

explain how Wikidata works briefly and illustrate 

the COVID related data in Wikidata. However, 

according to the paper's goal, the fitness of 

Wikidata for handling COVID related data, the 

following discussions would be insightful, i. 

COVID data specific issues, ii. different available 

methods and technologies for handling these 

issues and iii. the advantages of Wikidata's 

techniques for addressing the raised issues. 

We have streamlined the organization of the 
sections (as outlined in the new section 1.2 
“Organization of the manuscript”) and the logical 
flow within and between them. 
The purpose of this paper is to highlight the value 
of Wikidata as a readily usable platform that can 
be quickly and flexibly customized to address 
emerging needs like visual representations of 
knowledge graphs pertaining to the COVID-19 
pandemic.  
With regards to the suggested discussions, we 
have added a brief outline of COVID data specific 
issues  to the introduction (cf. Section 1.1 “Data 
integration challenges”) and refer to it when 
discussing related matters in various parts of the 
manuscript: 
“Although collaborative editing contributed to 
the development of large-scale information about 
all aspects of the disease, there are currently still 
significant gaps and biases in the dataset that can 
lead to imprecise results if not interpreted with 
caution. For example, the COVID-19 outbreaks on 
cruise1 and naval2 ships are better covered in 
Wikipedia than in Wikidata (or most other online 
resources). Similarly, scholarly citations are not 
yet evenly covered, since systematic curation will 
require more scalable workflows. Although many 
of these gaps are rapidly being addressed and 
closed over time, errors of omission and bias are 
inevitable to some extent. Such deficiencies can 
only be detected and solved by applying 
algorithms that assess data completeness of 
items included in a given class within open 
knowledge graphs. Solutions involve 
cross-checking knowledge bases or subsets of the 
same knowledgebase, systematically exposing 
the content of Wikidata to many eyes through its 
reuse in Wikipedia and SPARQL-based tools such 

https://en.wikipedia.org/wiki/COVID-19_pandemic_on_cruise_ships
https://en.wikipedia.org/wiki/COVID-19_pandemic_on_naval_ships


as Scholia and COVID dashboards, and using 
knowledge graph learning techniques to update 
items directly from textual databases like 
scholarly publications and electronic health 
records. Moreover, collaborative editing can 
cause several inaccuracies in the declaration of 
statements in open knowledge graphs 
disregarding the metadata standards of the 
knowledge bases. These inconsistencies can 
persist particularly when the database and the 
largely growing scholarly literature about 
COVID-19 is managed by a limited number of 
administrators and can consequently cause 
matters about the trustworthiness of the reuse of 
data. However, critical problems related to 
structural deficiencies in defining statements or 
to the inclusion of mistaken data in open 
knowledge graphs seem to happen less 
frequently in Wikidata. Greater consistency of 
structure and accuracy is partly due to the 
involvement of more contributors in Wikidata 
than in other open knowledge graphs. But it also 
stems from importing data from other 
rapidly-updated and curated databases (mainly 
from the linked open data cloud) and from 
verification by overlapping methods (e.g. ShEx 
schemas, SPARQL-based logical constraints and 
bot edits). The data validation infrastructure of 
Wikidata seems to be in accordance with the 
latest updates in knowledge graph evaluation and 
refinement techniques and explains in part the 
reasons behind the robustness of the data model 
of COVID-19 information in this open knowledge 
graph.” 
 
“However, this also exemplifies how misleading 
missing data can be: Wikidata currently has highly 
inconsistent coverage of companies that are not 
publicly listed, which heavily biases the results. 
For example, the current lack of yearly updated 
socio-economic information such as 
unemployment rates [P1198] and nominal GDP 
[P2131] for countries in Wikidata limits the use of 
the knowledge graph for the study of the effect 
of the pandemic on global economies, although 
this is theoretically possible. Likewise, Wikidata is 
very incomplete with respect to COVID-19-related 



regulations like stay-at-home orders, school 
closures or policies regarding face masks. 
Standardised methods to audit and validate 
Wikidata’s content on various topics are still 
under investigation and development.” 
 
“Concerning drugs, proteins, genes and taxons, 
Wikidata items are mainly assigned external 
identifiers in the major knowledge graphs for 
pharmacology (e.g. MassBank), for biodiversity 
(e.g. IRMNG), for genomics (e.g. Entrez Gene) and 
for proteomics (e.g. PDB) and are rarely linked to 
non-medical databases or to encyclopedias, as 
shown in Table 8.” 
 
“this Wikidata coverage of the availability of 
COVID-19-related publications in external 
research databases does not seem to fully 
represent full records of COVID-19 literature in 
aligned resources. By way of comparison, we 
performed a simple search for “COVID-19” in a 
set of literature databases, and there were 
103796 COVID-19-related records available on 
PubMed, 110323 COVID-19 full texts accessible 
on PubMed Central, 296450 COVID-19 
publications on Dimensions, 211000 records on 
Semantic Scholar, 4778 records at 
ClinicalTrials.gov, 3295 records on arXiv ID, and 
183 records on NIOSHTIC-2 as of February 17, 
2021.” 
 
“An important caveat is that data integration 
through Wikidata poses some particular 
challenges of its own, such as data licensing 
(being in the public domain, Wikidata can 
essentially only ingest public-domain data [27]) or 
multilinguality (e.g. how to handle concepts that 
are hard to translate), and for certain kinds of 
data (e.g. health data from individual patients), it 
is not suitable, although appropriately configured 
instances of the underlying technology stack 
might.” 
 

The paper avoids the discussion of underlying 

semantic technologies that are proposed and 

deployed for handling various aspects of complex 

The purpose of the research paper was not to 
study the advantages of different semantic 
technologies to represent large-scale COVID-19 



real data, including geospatial and time 

characteristics of data. For example, for 

quantifying a fact, there are different competing 

approaches, including property graph and RDF*. 

The explanation of  Wikidata's quantifiers is not 

adequate regarding characterizing syntax and 

semantic of the deployed quantifying method 

and how Wikidata's way is more apt for 

modelling COVID data in comparison with the 

other methods. 

information. The main aim of the paper is to 
demonstrate the usefulness of knowledge bases 
to handle and especially visualize COVID-19 data. 
Here, Wikidata's model offers a "good-enough" 
model to assess this statement.  
 
We agree that there might be other semantic 
technologies that are, rigorously, more adequate 
to represent specific bits of knowledge in general. 
However, in the context of COVID-19, RDF is a 
better choice than a property graph. In fact, 
property graphs are generally used in the context 
of social media, where the predicates of semantic 
relations do not matter as much. We further 
developed the Data Model section to explain this 
statement in details: 
 
“The advantage of RDF over other competing 
semantic data formats, particularly property 
graph, is that it applies reference schemas and 
consistency rules before assigning predicates to 
statements.  
Entries in RDF triple stores are predefined 
entities, rather than simple text strings, and 
structured into uni-directional statements [13]. In 
Wikidata, this is further enhanced by the use of 
qualifiers to provide additional features of the 
statements. This structure makes building 
semantic databases using RDF more difficult and 
time-consuming than alternative systems, 
especially property graph, but it allows a fully 
regular representation of statements in 
knowledge graphs where subjects, predicates and 
objects are standardized and semantically 
described. Avoidance of typos and synonyms of 
string-based systems then allows far faster and 
more precise information retrieval and usage.” 
 
We have also provided several other comparisons 
in favor of the Wikidata data model and the use 
of the RDF Format: 
 
“Although Web Ontology Language (OWL) can 
define knowledge graphs with a richer semantic 
characterization of data models by providing a 
layer of Description Logics such as in DBpedia, the 
infrastructure developed for the validation of RDF 



data in Wikidata helps assure a high level of 
consistency of the Wikidata knowledge graph.” 
 
“This observation fits with the considerably      
limited volume of knowledge graphs exclusively      
enriched and verified by a dedicated expert group        
- such as OpenCyc - when compared to the         
volume of open and collaborative knowledge      
graphs, particularly Wikidata, YAGO, DBpedia and      
Freebase.” 
 
“In comparison to other resources like DBpedia,       
Wikidata is not just edited by machines and built         
from data automatically extracted from textual      
resources like Wikipedia. Wikidata is mainly      
enriched and adjusted by a community of over        
25000 active human users on a daily basis and is          
released under the CC0 license allowing the free        
and unconditional reuse and interoperability of      
its information in other systems and datasets and        
consequently the growth of interest of many       
people in using, enriching and adjusting it.” 
 
“Such distantly related entities are also available       
in other open knowledge graphs, particularly      
DBpedia and YAGO, and contribute much to the        
value of a semantic resource. In Wikidata, several        
initiatives such as WikiCite for scholarly      
information and Gene Wiki for genomic data have        
enabled COVID-19 knowledge graphs to include      
classes like genes [Q7187], proteins [Q8054] or       
biological processes [Q2996394], along with the      
definition of semantic relations between items      
closely and distantly related to COVID-19. This,       
consequently, allows the expansion of the      
coverage of COVID-19 information in Wikidata      
and a better characterization of COVID-19-related      
items.” 
 
“Although Web Ontology Language (OWL) can      
define knowledge graphs with a richer semantic       
characterization of data models by providing a       
layer of Description Logics such as in DBpedia, the         
infrastructure developed for the validation of RDF       
data in Wikidata helps assure a high level of         
consistency of the Wikidata knowledge graph.” 
 



“This process is called reification, and it is a         
common feature of many knowledge graphs such       
as DBpedia, Freebase, and YAGO. Although      
DBpedia and Freebase apply reification in a       
similar setting as in Wikidata, YAGO chooses to        
use N-Quads to represent the characteristics of a        
statement, implying that the additional feature is       
linked to the statement as a couple without the         
use of any predicate.” 
 
“The assignment of a single     
language-independent identifier for each entity in      
Wikidata helps minimize the size of the       
knowledge graph and avoids issues seen in       
databases such as DBpedia, where separate items       
are needed for each language. Such a feature is         
allowed thanks to the use of Wikibase software -         
a MediaWiki variant adapted to support      
structured data - to drive Wikidata instead of        
other systems that represent entities using      
textual expressions, particularly Virtuoso.” 

 

The authors do not provide convincing arguments 

to support how the characteristics of Wikidata 

addresses the specific issues that COVID-19 

related data raised. 

Our main argument is that Wikidata’s versatility 
(and the community-centric approach)  are 
particularly relevant for addressing rapid and 
emerging phenomena, such as COVID-19 
pandemic. As mentioned in response to your first 
comment, we also added an outline of 
COVID-specific data issues and comment on how 
Wikidata addresses them. 
We additionally focus on showcasing a snapshot 
of how the COVID-19 knowledge graph of 
Wikidata can be used to support computer 
applications, particularly the SPARQL-based 
visualization of multidisciplinary information 
about COVID-19.  
We have added a paragraph in the conclusions to 
clarify this for systematic knowledge 
representation.intent: “We have shown how the 
community-driven and not centrally coordinated 
approach to editing has contributed to the 
success of Wikidata in tackling emerging and 
rapidly changing phenomena, such as the 
pandemic. We have also discussed the 
disadvantages of collaborative editing for 
systematic knowledge representation.“ 



 

Reviewer 2 

Arguing a Knowledge Base (e.g. Wikidata) is a 

reasonable solution for handling COVID-19 

related data is an exciting idea. However, the 

authors do not provide convincing arguments to 

support how the characteristics of Wikidata 

addresses the specific issues that COVID-19 

related data raised. 

As detailed in response to your first comment, we 
have added a brief outline of COVID data specific 
issues  to the introduction (cf. Section 1.1 “Data 
integration challenges”) and highlighted more 
clearly (particularly in Section 2 “Wikidata as a 
semantic resource for COVID-19”) how Wikidata 
addresses these challenges. 

Comments Responses 

In Introduction, the authors talk about the benefit 

and drawback of the ‘community developed 

ontology and typology’ (second paragraph). In 

terms of the drawback, it claims that “it makes 

methodical planning of the whole structure and its 

granularity very difficult”. However, in the main 

text I do not clearly see how these issues are 

addressed in this project. 

We have expanded the sentence to clarify that 
we specifically mean the pros and cons of a lack 
of a centralized coordination: 
“This community-centric approach is both a      
blessing and a curse. On the one hand, it makes          
methodical planning of the whole structure and       
its granularity very difficult, if not impossible [10]:        
there simply is no central coordination system,       
and all major design decisions have to be        
approved through a consensus of all interested       
contributors. On the other hand, harnessing      
knowledge and skills of a broad range of human         
and automated contributors provides for an      
unparalleled flexibility and versatility of uses, and       
allows for rapid addressing of emerging and       
urgent phenomena, such as disease outbreaks.” 
 
We have also expanded this part to explain how 
these issues are addressed in this project: 
With respect to the COVID-19 data challenges (cf.        
Section 1.1), Wikidata addresses them in several       
ways: First, it was designed for web scale data         
with flexible and evolving data models that can        
be updated quickly and frequently, and its       
existing community has been using it to capture        
COVID-19-related knowledge right from the start.      
Second, Wikidata already contained a     
considerable and continuously expanding volume     
of curated background information - from      
SARS-CoV-1 and other coronaviruses to zoonoses,      
cruise ships, public health interventions, vaccine      



development and relevant publications - ready to       
be leveraged to explore the growing      
COVID-19-related knowledge in such broader     
contexts. Third, both the Wikidata platform and       
the Wikidata community are highly multifaceted,      
multilingual and multidisciplinary. Fourth, the     
Wikidata infrastructure is digital-first, with high      
uptime and low access barriers, while its       
community is distributed around the globe and       
includes people from many walks of life, such        
that any particular disruption due to the       
pandemic only affects subsets of the Wikidata       
community, which also has experience with      
handling humanitarian crises, e.g. through the      
Zika experience or through overlap with the       
Wikipedia community that has been covering      
disasters for two decades. 
 

Data Model section: The authors claim that ‘… an 

ontological database representing all aspects of 

the outbreak’. Is it really the case? For example, 

does it cover economic aspects that include 

information about the unemployment rate and 

supply chain disruption during this outbreak? I 

think it is a too ambitious statement. 

Wikidata represents many facets of the COVID-19 
pandemic and the cited examples can be 
represented too. Indeed, a Wikidata property for 
unemployment rate already exists (P1198). 
However, the representation of these facts using 
SPARQL queries is limited by the lack of 
volunteers enriching socio-economic information 
of countries in Wikidata. We adjusted the claim 
to be “an ontological database representing many 
aspects of the SARS-CoV-2 outbreak”. An example 
of the limitation of Wikidata for assessing societal 
aspects of the COVID-19 pandemic is added to 
Visualizing facets of COVID-19 via SPARQL section 
(Societal aspects):  “It also includes more 
cross-disciplinary information, such as companies 
that have reported bankruptcy, with the 
pandemic recorded as the main cause (Fig. 10), or 
the locations of those working on COVID (Fig. 
S8B). However, this also exemplifies how 
misleading missing data can be: Wikidata 
currently has highly inconsistent coverage of 
companies that are not publicly listed, which 
heavily biases the results. For example, the 
current lack of yearly updated socio-economic 
information such as unemployment rates [P1198] 
and nominal GDP [P2131] for countries in 
Wikidata limits the use of the knowledge graph 
for the study of the effect of the pandemic on 



global economies, although this is theoretically 
possible. Likewise, Wikidata is very incomplete 
with respect to COVID-19-related regulations like 
stay-at-home orders, school closures or policies 
regarding face masks. Standardised methods to 
audit and validate Wikidata’s content on various 
topics are still under investigation and 
development.” 

Data Model section: What exact lessons are 

learned from the Zika pandemic? 

DONE 
We added several lines about the lessons learned 
from the Zika pandemic throughout the 
manuscript:  
 
“Fourth, the Wikidata infrastructure is 
digital-first, with high uptime and low access 
barriers, while its community is distributed 
around the globe and includes people from many 
walks of life, such that any particular disruption 
due to the pandemic only affects subsets of the 
Wikidata community, which also has experience 
with handling humanitarian crises, e.g. through 
the Zika experience or through overlap with the 
Wikipedia community that has been covering 
disasters for two decades.” 
 
“In the context of the COVID-19 pandemic, an 
ontological database representing many aspects 
of the SARS-CoV-2 outbreak has been 
represented in Wikidata, building on pilot work 
that was started at the onset of the Zika 
pandemic and led to the formation of WikiProject 
Zika Corpus. This Zika project—itself inspired by 
dedicated Wikiprojects for Medicine and for 
Source Metadata— laid many of the foundations 
for the current COVID-19 work in managing 
fast-changing information: it developed, 
documented and refined sets of SPARQL queries 
about an ongoing epidemic, the underlying 
pathogen, the disease and diagnostic or 
therapeutic options, and it piloted workflows for 
integrating distributed knowledge from multiple 
databases to build a consistent semantic 
representation of a topic for which relevant 
concepts were often not yet readily available 
through formal ontologies.” 



Data Model section: The authors mention ‘… could 

all be represented in Wikidata if matters related to 

the coverage and conflicts of information from 

multiple sources are solved’. In fact, it would be 

great if the authors can discuss about how does 

the model solve the issue about conflicting 

statements in the project? In Covid-19, it becomes 

particularly essential as we see various reported 

‘facts’ that are conflicting/inconsistent with each 

other. In addition, what does ‘coverage’ mean 

here? Spatial coverage? Temporal coverage? Or 

property coverage? A little bit confusing. 

The coverage of the COVID-19-related 
information is given with details in “Visualizing 
facets of COVID-19 via SPARQL”. The coverage 
includes not only spatial information but also 
temporal and social information for the pandemic 
including economic ones. The missing points for 
these aspects that are not efficiently covered in 
Wikidata are explained with examples in the 
same section. The statement in the Data Model 
section has been adjusted: “… could all be 
represented in Wikidata if matters related to the 
multi-level coverage of COVID-19 knowledge and 
conflicts of information from multiple sources are 
solved”. 
Concerning the management of conflicting and 
inconsistent COVID-19 information, it will be the 
topic of a second research paper sent for review 
to SWJ (available at 
https://doi.org/10.5281/zenodo.4008358, 
Tracking number: 2677-3891). It would be 
overwhelming to explain this in this research 
paper. However, we added a paragraph at the 
Data Model and Discussion sections to explain 
this: “Later, the developed semantic database for 
the pandemic is checked by multiple layers of 
validation. Methods include RDF triples defining 
conditions for the usage of Wikidata properties, 
RDF validation schemas built in Shape Expressions 
(ShEx) to verify the structural accuracy of the 
statement of an item included in a given Wikidata 
class, and logical constraints implemented in 
SPARQL to verify the consistency of relational and 
non-relational claims in Wikidata as well as 
several tools based on edit history of Wikidata 
such as ORES to identify and eliminate database 
vandalism. Although Web Ontology Language 
(OWL) can define knowledge graphs with a richer 
semantic characterization of data models by 
providing a layer of Description Logics such as in 
DBpedia, the infrastructure developed for the 
validation of RDF data in Wikidata helps assure a 
high level of consistency of the Wikidata 
knowledge graph.” 
 
“Greater consistency of structure and accuracy is 
partly due to the involvement of more 
contributors in Wikidata than in other open 

https://doi.org/10.5281/zenodo.4008358


knowledge graphs. But it also stems from 
importing data from other rapidly-updated and 
curated databases (mainly from the linked open 
data cloud) and from verification by overlapping 
methods (e.g. ShEx schemas, SPARQL-based 
logical constraints and bot edits). The data 
validation infrastructure of Wikidata seems to be 
in accordance with the latest updates in 
knowledge graph evaluation and refinement 
techniques and explains in part the reasons 
behind the robustness of the data model of 
COVID-19 information in this open knowledge 
graph.” 

Language Representation section: Figure 4E is 

confusing, the x-axis is the rank of languages based 

on their usages? What does y-axis mean then? The 

sentence: “The degree of translation of that 

information is increasingly high with an important 

representation of the concepts in more than 50 

languages (Figure 4E)” does not help to 

understand the figure. 

We have reformulated the inline description of 
Figure 4E to reflect its outcomes: 
 
“The degree of translation of that information is 
interestingly high with an important 
representation of the concepts in more than 50 
languages (Fig. 4E). In fact, more than 40% of the 
predicates (Curves B and D) and more than 90% 
of the objects (Curve C) of the statements related 
to COVID are represented in fifty languages or 
more.” 
 
We have adjusted the title of the Figure to clarify: 
 
“Percentage of the items covered in order from 
highest to lowest coverage. faceted by categories 
A-D. Data shown for top 150 languages in each 
category” 
 
 
We have also added titles to the x-axis and y-axis 
of the Figure to improve its understandability: 
 
x-axis: Rank of language (per each category A-D) 
y-axis: Coverage of concepts 

Language Representation section: More 

importantly, there are multiple correlation 

analyses in this section. However, no statistical 

analysis is applied at all. The conclusions are all 

made by arbitrarily checking the tables. For 

example, the statement “Despite several 

Well noticed, thank you for pointing that out. We 
have rephrased the sentences for that claim to 
make it clear that the observations are 
descriptive in the phrase “Query results largely 
match previously published trends for Wikipedia 
and Wikidata (Table 2), though we note that 
Arabic (ar) and Chinese (zh), appear  in the top 10 



differences like the higher visibility of Asian 

language… the query results largely match the 

literature-derived data …” has to be justified in a 

more scientific way, e.g., by statistical testing. 

languages in the Wikidata COVID-19 subset, while 
being absent from the top 10s for other sets 
described in Table 4.”  
 
We agree that more in-depth tests, if planned a 
priori, could allow stronger causative claims. That 
is why, we have added correlation analysis of the 
statistical data about language representation: 
“These correlations can be interrogated by 
querying Wikidata to find out the current status 
of the editing of this knowledge graph and of 
Wikipedia in 307 languages (Table S3; top-ranking 
items for each variable summarised in Tables 3 
and 4). Query results largely match previously 
published trends for Wikipedia and Wikidata 
(Table 2), though we note that Arabic (ar) and 
Chinese (zh), appear  in the top 10 languages in 
the Wikidata COVID-19 subset, while being 
absent from the top 10s for other sets described 
in Table 4. Coverage differed across languages 
and variables, and most of the distributions 
showed marked positive skew. Nonparametric 
analysis of correlations (Spearman’s rho) found 
large magnitude associations (rho .65 to .97, 
median = .84, Supplementary Table S4), 
statistically significant even following stringent 
Bonferroni correction. To account for skew and 
data spanning multiple orders of magnitude, 
log10-transformed data was used for subsequent 
analyses. Pearson’s correlation coefficients 
between all variables was high (Figure 5). A 
principal component analysis for the 90 
languages with complete data on all 7 indicators 
found that a single component explained 81% of 
the variance, with loadings ranging from .80 to 
.95. The smallest PCA loading and Spearman’s 
correlation was for the number of viewers, which 
though still a strong association, was less 
correlated than the other variables by a 
substantial margin.” 
 
“This is confirmed by the high correlation 
(Pearson r = 0.93) of the language distribution of 
COVID-related Wikidata labels with the number 
of COVID Wikipedia pages in language editions 
and the moderate correlation (Pearson r > 0.65) 
between the number of Wikidata COVID-related 



labels in a given language and the quantity and 
edit statistics of medical content in Wikidata and 
Wikipedia (Fig. 5). Such relationships are 
strengthened by the high correlation (Pearson r > 
0.9) between the number of medical Wikidata 
labels in a given language and the number of 
medical Wikipedia articles in language editions as 
well as the number of native speakers jointly 
editing Wikipedia and Wikidata. 

To investigate the possible causes of these       
highly correlated datasets, we compared them to       
two external metrics for each language: the       
number of native speakers of each language and        
the maximum human development index for      
countries where that language is an official       
language. This data was available for fewer       
languages (N = 57 each, 19 pairs) and the sparse          
overlap precluded including both simultaneously     
in analyses. The number of native speakers       
showed similar positive skew to earlier data, so        
was also log10-transformed. Even though these      
analyses are necessarily exploratory, maximum     
development correlated more strongly than did      
the number of speakers (Figure 5B; Table S4).        
Cohen’s q values (an effect size for differences        
between correlation coefficients) of a size      
considered unusually large for the social sciences       
(> 0.5) were observed when comparing      
correlation of development index versus number      
of speakers with the number of medical Wikidata        
labels and with the number of users. Further        
medium q values (differences > 0.3) were       
observed for correlation to the number of       
medical Wikipedia articles and to the number of        
COVID Wikipedia pages. Correlation differences     
were negligible with regard to development      
versus number of speakers as associated with the        
number of edits or pageviews.”.  
 
We have expanded our treatment of the 
language representation in the following ways: 
We present more descriptive information, we 
have switched to nonparametric statistical 
analysis to better model the data distributions, 
we note that for the core set of variables, the 
effect sizes are all large enough to survive even 
stringent post hoc correction to control 



family-wise type I error rate.  
We added the number of speakers and maximum 
economic development as additional variables for 
supplemental analyses. These were available for 
fewer languages, so here we emphasize 
differences in effect size (Cohen’s q) rather than 
significance testing. The results indicate that 
maximum economic development is substantially 
more related than the number of speakers to the 
medical and Wikidata metrics, but with negligible 
differences in association in number of page 
views. 

Database Alignment section: This section lists 

multiple alignment tables for different domains. 

However, how are these alignments 

accomplished? Any automated algorithms are 

used or totally based on human efforts? Have 

these alignments been evaluated? 

Excellent point. As Wikidata's graph is 
collaborative, any effort of database alignment 
does include some parts of manual, human 
efforts.  
 
Some of the work has been via reconciling of 
databases and semi-automatic triple adding via 
tools such as 
https://github.com/SuLab/WikidataIntegrator or 
https://quickstatements.toolforge.org/#/. A 
match based on identifiers like DOI or PubMed ID 
is usually enough for a reliable key to reconcile to 
Wikidata.  
 
It would be great to evaluate these alignments. It 
is hard, however, to devise an automatic way, as 
there is no gold standard. The alignments 
generally follow an "Anyone can say Anything 
about Anything" assumption.  
 
We added a paragraph to the database alignment 
section to try to clarify it: “The alignment of 
Wikidata entities to other entries on different 
databases is a collaborative process which, as 
everything in Wikidata, is done via combination 
of manual and automatic curation. As an example 
of automation, items concerning scholarly entries 
(i.e. articles and reports) were often aligned to 
other databases using DOIs (Digital Object 
Identifiers) as unique keys for locating the 
database ID. As Wikidata is an open database, the 
precision of the alignments is largely based on 
trust in the community, and misalignments are 
promptly corrected once identified.”. 

https://github.com/SuLab/WikidataIntegrator
https://quickstatements.toolforge.org/#/


 
We also added several lines to data model section 
in this particular context: “Wikidata items are 
assigned their identifiers in external databases, 
including semantic resources, using human 
efforts and tools such as Mix’n’match. These links 
make Wikidata a key node of the open data 
ecosystem, not only contributing its own items 
and internal links, but also bridging between 
other open databases (Fig. 3). Wikidata therefore 
supports alignment between disparate 
knowledge bases and, consequently, semantic 
data integration and federation in the context of 
the linked open data cloud.” 
 

Visualizing facets of COVID-19 via SPARQL and 

Conclusion: It is great to see the authors bring up a 

relative comprehensive and well organized list of 

SPARQL queries, and demonstrated several 

promising visualization in the paper. However, I 

am wondering how accessible and easy for a 

non-SPARQL expert to explore the graph (or simply 

understand the query)? Do the authors have any 

empirical examples/cases to show how useful the 

graph has been to domain experts/general public? 

In Table S2, it seems to be a list about fulfilled 

tasks; but I do not find more contexts related to 

this table. Maybe use one of the rows in this table 

as an example to elaborate would help readers 

understand the value of the proposed graph. 

We do not have an analysis of popularity of 
SPARQL use by the general public. However, we 
would like to note that - typically for the open 
source movement - most beginners find copying 
ready-made examples and paragon syntax useful, 
and Wikidata provides plenty of examples, which 
are easily modifiable. One of the advantages of 
this approach is that users do not have to have 
expert understanding of SPARQL to be able to 
slightly modify the code to reach satisfactory 
results. We added a note on that in the 
discussion: “One of the features of Wikidata is 
also providing hundreds of exemplary SPARQL 
queries, which even beginner users can 
immediately explore and easily modify, assisted 
with features like default prefixes, 
autosuggestions, autocomplete and 
straightforward conversion between Wikidata 
identifiers and natural language. As a result, 
Wikidata users do not have to be SPARQL experts 
to arrive at results that are useful to them.” 
 
With regards to Table S2, we have clarified both 
its purpose and content: 
“Sample SPARQL queries for data visualizations 
commonly included in Wikidata-based COVID-19 
dashboards are available at Supplementary Table 
S2 to show the variety of visualizations that can 
be generated using the Wikidata Query Service 
from both a quantitative perspective (amount of 
statistical data that can be generated through the 



integration of COVID-19 information with 
non-COVID-19 data) and a qualitative one 
(visualization types and topics).” 
 
“List of sample queries on COVID-19. The 
information contained therein is similar to 
visualizations in many stand-alone COVID-19 
dashboards, covering an overview of COVID-19, 
international situation, international daily 
epidemiological evolution, Tunisian daily 
epidemiological evolution, Tunisian 
governorate-level situation, Tunisian correlations, 
and worldwide correlations. Each of the sheets 
has a Title column with a brief summary for each 
query and a URL column with a link to the live 
record on Wikidata.” 

Last but not least, the authors have to proofread 

the paper substantially. There are many long 

sentences, inconsistent uses of terms, typos, 

duplicates, and many weird sentences. In general, 

the paper is not that easy to follow. 

For example, solely in the first paragraph of 

Section 5.2: 

a). whereas others common visualization -->  other 

b). from scratch from granularity --> one ‘from’ has 

to be deleted 

c). its change over time over time --> duplicates 

d). Wikidata’s granularity and collaborating … --> 

What does ‘wikidata’s granularity’ mean here? 

DONE 
We have gone through the manuscript and 
brushed its grammar. As for the definition of 
granularity, it is the representation of the 
COVID-19 information at a narrow and specific 
scale such as the famous COVID-19 mortality and 
morbidity cases. We have adjusted the 
manuscript to make this very clear:  

“Wikidata’s granularity (i.e. the representation     
of COVID-19 information at the scale of individual        
cases, days and incidents) and collaborative      
editing have also made it highly up to date on          
queries such as the most recent death of notable         
persons due to COVID-19.” 

Page 2: 

a). basing --> based 

b). entities named items --> entities, named items 

DONE 
Adjusted 

Page 3: DONE 
Adjusted 



 

Reviewer 3 

    >17,000 (what is this number? Cases? Deaths?) 

Page 5: 

    Table S1 --> Table 1 

DONE 
Adjusted 

page 13: 

    table S2 --> Table S2 

DONE 
Adjusted 

page 14: 

a). allowed --> allows 

b). WIkidata --> Wikidata 

DONE 
Adjusted 

Comments Responses 

Some features the authors discussed about 

Wikidata are in fact well-known. For example, the 

data model, the multilingual features as well as 

its alignment to other databases. Since this paper 

is explicitly about the COVID-19 efforts of 

Wikidata. I suggest the authors highlight the 

specific features Wikidata considers for 

COVID-19. 

It is a fair comment - Wikidata’s systemic features 
have certainly been discussed before. However, 
the interactions between these features and the 
user community in a global disaster response 
context have not been discussed in detail before, 
and given the diversity of topics covered by SWJ, 
a longer introduction could make it easier for 
some readers to understand the work in its 
sociotechnical context. We also streamlined the 
text such that it conveys more clearly why 
Wikidata is so well suited for addressing rapid, 
emerging phenomena such as the COVID-19 
pandemic. Even though we focus on COVID-19 
efforts, we believe that our conclusions reach 
beyond that - yet, for the reader, it is crucial to 
understand the background. For that reason, we 
would like to keep the remaining descriptions of 
relatively well-known Wikidata, even though we 
understand that for some readers, it will be 
repetitive (but for some others, it will provide a 
crucial introduction to the discussed topic). 
 



3 https://en.wikipedia.org/wiki/COVID-19_pandemic_on_cruise_ships 
4 https://en.wikipedia.org/wiki/COVID-19_pandemic_on_naval_ships 

With regards to the specific Wikidata features 
relevant for COVID-19 and as mentioned in 
response to a similar comment by Reviewer 1, we 
have added a brief outline of COVID data specific 
issues to the introduction (cf. Section 1.1 “Data 
integration challenges”) and highlighted more 
clearly (particularly in Section 2 “Wikidata as a 
semantic resource for COVID-19”) how Wikidata 
addresses these challenges. 
“Although collaborative editing contributed to 
the development of large-scale information about 
all aspects of the disease, there are currently still 
significant gaps and biases in the dataset that can 
lead to imprecise results if not interpreted with 
caution. For example, the COVID-19 outbreaks on 
cruise3 and naval4 ships are better covered in 
Wikipedia than in Wikidata (or most other online 
resources). Similarly, scholarly citations are not 
yet evenly covered, since systematic curation will 
require more scalable workflows. Although many 
of these gaps are rapidly being addressed and 
closed over time, errors of omission and bias are 
inevitable to some extent. Such deficiencies can 
only be detected and solved by applying 
algorithms that assess data completeness of 
items included in a given class within open 
knowledge graphs. Solutions involve 
cross-checking knowledge bases or subsets of the 
same knowledgebase, systematically exposing 
the content of Wikidata to many eyes through its 
reuse in Wikipedia and SPARQL-based tools such 
as Scholia and COVID dashboards, and using 
knowledge graph learning techniques to update 
items directly from textual databases like 
scholarly publications and electronic health 
records. Moreover, collaborative editing can 
cause several inaccuracies in the declaration of 
statements in open knowledge graphs 
disregarding the metadata standards of the 
knowledge bases. These inconsistencies can 
persist particularly when the database and the 
largely growing scholarly literature about 
COVID-19 is managed by a limited number of 
administrators and can consequently cause 
matters about the trustworthiness of the reuse of 

https://en.wikipedia.org/wiki/COVID-19_pandemic_on_cruise_ships
https://en.wikipedia.org/wiki/COVID-19_pandemic_on_naval_ships


data. However, critical problems related to 
structural deficiencies in defining statements or 
to the inclusion of mistaken data in open 
knowledge graphs seem to happen less 
frequently in Wikidata. Greater consistency of 
structure and accuracy is partly due to the 
involvement of more contributors in Wikidata 
than in other open knowledge graphs. But it also 
stems from importing data from other 
rapidly-updated and curated databases (mainly 
from the linked open data cloud) and from 
verification by overlapping methods (e.g. ShEx 
schemas, SPARQL-based logical constraints and 
bot edits). The data validation infrastructure of 
Wikidata seems to be in accordance with the 
latest updates in knowledge graph evaluation and 
refinement techniques and explains in part the 
reasons behind the robustness of the data model 
of COVID-19 information in this open knowledge 
graph.” 
 
“However, this also exemplifies how misleading 
missing data can be: Wikidata currently has highly 
inconsistent coverage of companies that are not 
publicly listed, which heavily biases the results. 
For example, the current lack of yearly updated 
socio-economic information such as 
unemployment rates [P1198] and nominal GDP 
[P2131] for countries in Wikidata limits the use of 
the knowledge graph for the study of the effect 
of the pandemic on global economies, although 
this is theoretically possible. Likewise, Wikidata is 
very incomplete with respect to COVID-19-related 
regulations like stay-at-home orders, school 
closures or policies regarding face masks. 
Standardised methods to audit and validate 
Wikidata’s content on various topics are still 
under investigation and development.” 
 
“Concerning drugs, proteins, genes and taxons, 
Wikidata items are mainly assigned external 
identifiers in the major knowledge graphs for 
pharmacology (e.g. MassBank), for biodiversity 
(e.g. IRMNG), for genomics (e.g. Entrez Gene) and 
for proteomics (e.g. PDB) and are rarely linked to 
non-medical databases or to encyclopedias, as 
shown in Table 8.” 



 
“this Wikidata coverage of the availability of 
COVID-19-related publications in external 
research databases does not seem to fully 
represent full records of COVID-19 literature in 
aligned resources. By way of comparison, we 
performed a simple search for “COVID-19” in a 
set of literature databases, and there were 
103796 COVID-19-related records available on 
PubMed, 110323 COVID-19 full texts accessible 
on PubMed Central, 296450 COVID-19 
publications on Dimensions, 211000 records on 
Semantic Scholar, 4778 records at 
ClinicalTrials.gov, 3295 records on arXiv ID, and 
183 records on NIOSHTIC-2 as of February 17, 
2021.” 
 
“An important caveat is that data integration 
through Wikidata poses some particular 
challenges of its own, such as data licensing 
(being in the public domain, Wikidata can 
essentially only ingest public-domain data [27]) or 
multilinguality (e.g. how to handle concepts that 
are hard to translate), and for certain kinds of 
data (e.g. health data from individual patients), it 
is not suitable, although appropriately configured 
instances of the underlying technology stack 
might.” 

The contribution of this paper is not clear enough 

to me in the beginning. In the end, I realize the 

authors are responsible for managing COVID-19 

information in Wikidata. I suggest the author list 

the contribution at the beginning of this paper. 

DONE 
We added our contribution to the development 
of Wikidata’s COVID-19:  
“In this research paper, we report on the efforts 
of the Wikidata community (including our own) to 
meet these challenges by serving as a platform 
for collaboratively collecting, curating and 
visualizing COVID-19-related knowledge at scales 
commensurate with the pandemic. While the 
relative merits of Wikidata with respect to other 
knowledge graphs have been discussed 
previously, we focus on leveraging the potential 
of Wikidata as an existing platform with an 
existing community in a timely fashion for an 
emerging transdisciplinary application like the 
COVID-19 response.” 
 
“As active editors of Wikidata, the authors have 



 

Thank you again for helping us to improve the quality and presentation of this manuscript. 

contributed a significant part of that data 
modelling, usage framework and crowdsourcing 
of the COVID-19 information in the knowledge 
graph since the beginning of the pandemic. We 
consequently have a unique perspective to share 
our experience and overview how Wikidata as a 
collaborative multidisciplinary large-scale 
knowledge graph can host COVID-19 data, 
integrate it with non-COVID-19 information and 
feed computer applications in an open and 
transparent way.” 

The author claims this paper is a research paper 

while I think this is a dataset paper. I do think 

dataset papers are also very important, especially 

for the Semantic Web community. So please 

rethink the paper type you want to submit here. 

We believe we are offering a research 
contribution, by showing on a specific dataset 
how collaborative editing and decentralized 
knowledge production can be particularly 
successful in addressing new, rapid phenomena. 
We also point out the shortcomings of the model. 
For that reason, we believe that our paper fits the 
research criterion, even though we are happy 
that you find our contribution valuable as a 
dataset paper, too.  


