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for general information on the COVID-19 pandemic: its flexible data model, its multilingual features, its alignment to multiple
external databases, and its multidisciplinary organization. The rich knowledge graph created for COVID-19 in Wikidata can be
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1. Introduction

The COVID-19 pandemic is complex and
multifaceted and touches on almost every aspect of
current life [1]. Coordinating efforts to systematize
and formalize knowledge about COVID-19 in a
computable form is key in accelerating our response
to the pathogen and future epidemics [2]. There are
already attempts at creating community-based
ontologies of COVID-19 knowledge and data [3], as
well as efforts to aggregate expert data [4]. Many
open data initiatives have been started spontaneously
[5-7]. The interconnected, multidisciplinary, and
international nature of the pandemic creates both
challenges and opportunities for using knowledge
graphs [2-5, 8-12].

For applications of knowledge graphs in general,
common challenges include the timely assessment of
the relevance and quality of any piece of information
with regards to the characteristics of the graph and
the integration with other pieces of information
within or external to the knowledge graph. Common
opportunities are mainly related to leveraging such
knowledge graphs for real-life applications, which in
the case of COVID-19 could be, for instance,
outbreak management in a specific societal context or
education about the virus or about countermeasures
[2-5, 8-12]. While the manuscript as a whole
emphasizes the opportunities, we think it is
worthwhile to highlight some of the challenges early
on.

1.1 Data integration challenges

The integration of different data sources always
poses a range of challenges [13], for example in
terms of interoperability (e.g. differing criteria for
COVID-19 deaths across jurisdictions), granularity
(e.g. number of tests performed per jurisdiction and
time period), quality control (e.g. whether
aggregations of sub-national data fit with national
data), data accessibility (e.g. whether they are
programmatically and publicly accessible, and under
what license) or scalability (e.g. how many sources to
integrate, or how often to sync between them).

With respect to integrating COVID-19 data in
particular, a number of further challenges need to be
considered. We will refer to them collectively as
COVID-19 data challenges, of which we will briefly
outline four major ones: First, human knowledge
about the COVID-19 disease, the underlying
pathogen and the resulting pandemic is evolving

rapidly [14], so systems representing it need to be
flexible and scalable in terms of their data models
and workflows, yet quick in terms of deployability
and updatability. Second, COVID-19-related
knowledge, while very limited at the start of the
pandemic, was still embedded in a broader set of
knowledge (e.g. about viruses, viral infections, past
disease outbreaks and interventions), and these
relationships - which knowledge bases are meant to
leverage - are growing along with the expansion of
our COVID-19 knowledge [15]. Third, the
COVID-19 pandemic has affected almost every
aspect of our globalized human society, so
knowledge bases capturing information about it need
to reflect that. Fourth, despite the disruptions that the
pandemic has brought to many communities and
infrastructures [1], the curated data about it should
ideally be easily and reliably accessible for humans
and machines across a broad range of use cases [16].

1.2. Organization of the manuscript

In this research paper, we report on the efforts of
the Wikidata community (including our own) to meet
the COVID-19 data challenges outlined in the
previous section by using Wikidata as a platform for
collaboratively collecting, curating and visualizing
COVID-19-related knowledge at scales
commensurate with the pandemic. While the relative
merits of Wikidata with respect to other knowledge
graphs have been discussed previously [17-19], we
focus on leveraging the potential of Wikidata as an
existing platform with an existing community in a
timely fashion for an emerging transdisciplinary
application like the COVID-19 response.

The remainder of the paper is organized as
follows: we start by introducing Wikidata in general
(Section 2) and describe key aspects of its data model
in the context of the COVID-19 pandemic (Section
2.1). Then, we give an overview of the language
support (Section 2.2) and database alignment
(Section 2.3) of COVID-19 information in Wikidata.
Subsequently, we present a snapshot of how the
COVID-19 knowledge graph of Wikidata can be
used to support computer applications, particularly
the SPARQL-based visualization of multidisciplinary
information about COVID-19 (Section 3). These
visualizations cover biological and clinical aspects
(Section 3.1), epidemiology (Section 3.2), research
outputs (Section 3.3) and societal aspects (Section
3.4). Finally, we discuss the outcomes of the open



development of the COVID-19 knowledge graph in
Wikidata (Section 4), draw conclusions and highlight
potential directions for future research (Section 5).

2. Wikidata as a semantic resource for
COVID-19

Wikidata is a large-scale, collaborative,
open-licensed, multilingual knowledge base that is
both human- and machine-readable. Notably, it is
available in the standardized RDF (Resource
Description Framework) format, where data is
organized into entities (items) and the relationships
that connect them to each other and outside data,
named properties [20].

Wikidata is a peer production project, developed
under the umbrella of the Wikimedia Foundation,
which also hosts Wikipedia and an ecosystem of
open collaborative websites around it. Similarly to
Wikipedia, it relies on community-driven
development and design and is both a-hierarchical
and largely uncoordinated [21]. As a result, it
develops entirely organically, based on the editor
community’s consensus, which may be implicit (e.g.
by the absence of modifications) or explicit (e.g. a
policy on how to handle biographical information
about living people). This community develops
ontologies and typologies used in the database.

This community-centric approach is both a
blessing and a curse. On the one hand, it makes
methodical planning of the whole structure and its
granularity very difficult, if not impossible [22]: there
simply is no central coordination system, and all
major design decisions have to be approved through
a consensus of all interested contributors. On the
other hand, harnessing knowledge and skills of a
broad range of human and automated contributors
provides for an unparalleled flexibility and versatility
of uses, and allows for rapid addressing of emerging
and urgent phenomena, such as disease outbreaks?.

With respect to the COVID-19 data challenges (cf.
Section 1.1), Wikidata addresses them in several
ways: First, it was designed for web scale data with
flexible and evolving data models that can be
updated quickly and frequently [20, 23], and its
existing community has been using it to capture
COVID-19-related knowledge right from the start.
Second, Wikidata already contained a considerable
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and continuously expanding volume of curated
background information - from SARS-CoV-1 and
other coronaviruses to zoonoses, cruise ships, public
health interventions, vaccine development and
relevant publications - ready to be leveraged to
explore the growing COVID-19-related knowledge in
such broader contexts [15]. Third, both the Wikidata
platform and the Wikidata community are highly
multifaceted, multilingual and multidisciplinary [24,
25]. Fourth, the Wikidata infrastructure is
digital-first, with high uptime and low access
barriers, while its community is distributed around
the globe and includes people from many walks of
life [20], such that any particular disruption due to
the pandemic only affects subsets of the Wikidata
community, which also has experience with handling
humanitarian crises, e.g. through the Zika experience
[26] or through overlap with the Wikipedia
community that has been covering disasters for two
decades.*

An important caveat is that data integration
through Wikidata poses some particular challenges of
its own, such as data licensing (being in the public
domain, Wikidata can essentially only ingest
public-domain data [27]) or multilinguality (e.g. how
to handle concepts that are hard to translate [28]),
and for certain kinds of data (e.g. health data from
individual patients), it is not suitable, although
appropriately configured instances of the underlying
technology stack might [29].

One of Wikidata’s key strengths is that each item
can be understood by both machines and humans. It
represents data in the form of items and statements,
which are navigable in a web interface and shared as
semantic triples [20]. However, where a computer
can easily hold the entire knowledge base in its
memory at once, the same is obviously not true for a
human.

Since we still rely on human interpretation to
extract meaning out of complex data, it is necessary
to pass that data from machine to human in an
intuitive manner [30]. The main way of doing this is
by visualising some subset of the data, since the
human eye acts as the input interface with the
greatest bandwidth. Because Wikidata is available in
the RDF format, it can be efficiently queried using
SPARQL?®, a semantic query language dynamically

* Cf. https://wwiki/VDe

> The recursive acronym for "SPARQL Protocol and RDF
Query Language", the current version of which is SPARQL 1.1. A
full  description of this language is available at
https://www.w3.org/TR/spargl11-query/.
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extracting triple information from large-scale
knowledge graphs.

Here, we present how various types of data related
to the COVID-19 pandemic are currently represented
in Wikidata thanks to the flexible structure of the
database and how useful visualizations for different
subsets of the data linked to COVID-19 within the
Wikidata knowledge base can be generated.

As active editors of Wikidata, the authors have
contributed a significant part of that data modelling,
usage framework and crowdsourcing of the
COVID-19 information in the knowledge graph since
the beginning of the pandemic. We consequently
have a unique perspective to share our experience
and overview how Wikidata as a collaborative
multidisciplinary large-scale knowledge graph can
host COVID-19 data, integrate it with
non-COVID-19 information and feed computer
applications in an open and transparent way.

2.1. Data model

In Wikidata, each concept has an item (a human,
disease, drug, city, etc.) that is assigned a unique
identifier (Q-number; brown in Fig. 1), and
optionally a label, description and aliases in multiple
languages (yellow in Fig. 1). The assignment of a
single language-independent identifier for each entity
in Wikidata helps minimize the size of the knowledge
graph and avoids issues seen in databases such as
DBpedia, where separate items are needed for each
language [19]. Such a feature is allowed thanks to the
use of Wikibase software - a MediaWiki variant
adapted to support structured data - to drive Wikidata
instead of other systems that represent entities using
textual expressions, particularly Virtuoso [19].

The true richness of the knowledge base comes
from the connections between the items: statements
in the form of RDF triples (subject-predicate-object)
where the subject is the respective item, the predicate
is a Wikidata property (red in Fig. 1), and the object
is another Wikidata item or piece of information
(blue in Fig. 1). The properties that relate items are
similarly each assigned an identifier (P-number).
Some properties relate a Wikidata item as the object

and can be taxonomic (e.g. instance of [P31],
subclass of [P279] or part of [P361]) or
non-taxonomic (e.g. significant person [P3342], drug
used for treatment [P2176] or symptoms [P780]).
Conversely, other properties can have an object that
is a value (e.g. number of cases [P1603]), date (e.g.
point in time [P585]), URL (e.g. official website
[P856]), string (e.g. official name [P1448]), or
external identifier (e.g. Library of Congress authority
ID [P244] or Disease Ontology ID [P699]). Each
statement can be given further detail and specificity
via qualifiers (black in Fig. 1) or provenance via
references (purple in Fig. 1), which themselves are
also organised as RDF triples [23]. This process is
called reification, and it is a common feature of many
knowledge graphs such as DBpedia, Freebase, and
YAGO [17]. Although DBpedia and Freebase apply
reification in a similar setting as in Wikidata, YAGO
chooses to use N-Quads to represent the
characteristics of a statement, implying that the
additional feature is linked to the statement as a
couple without the use of any predicate [17].

This comes together to create an integrated
network of over 90 million items interlinked by over
a billion statements. Its volume, variety, velocity and
veracity place it well in the scope of ‘big data’
approaches [31, 32]. The advantage of RDF over
other competing semantic data formats, particularly
property graph, is that it applies reference schemas
and consistency rules before assigning predicates to
statements [33].

Entries in RDF triple stores are predefined entities,
rather than simple text strings, and structured into
uni-directional statements [34]. In Wikidata, this is
further enhanced by the use of qualifiers to provide
additional features of the statements. This structure
makes building semantic databases using RDF more
difficult and time-consuming than alternative
systems, especially property graph [33], but it allows
a fully regular representation of statements in
knowledge graphs where subjects, predicates and
objects are standardized and semantically described.
Avoidance of typos and synonyms of string-based
systems then allows far faster and more precise
information retrieval and usage [34].
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Fig. 1. Data Structure of a Wikidata item. The simple, consistent structure of a Wikidata item makes it both human- and machine-readable.
Each Wikidata item has a unique identifier (Brown). Items can have labels, descriptions and aliases in multiple languages (Yellow). They can
include any number of statements having predicates (Red), objects (Blue), qualifiers (Black) and references (Purple) where the subject is the

item. Finally, where additional Wikimedia resources are available about an item’s topic, those are listed (Green). Source:

hitps://www.wikidata.org/wiki/Q84263196, available at: hitps://w.wiki/auF'. License: CC-BY-SA-4.0.

In the context of the COVID-19 pandemic, an
ontological database representing many aspects of
the SARS-CoV-2 outbreak has been represented in
Wikidata, building on pilot work that was started at
the onset of the Zika pandemic [26] and led to the
formation of WikiProject Zika Corpus®. This Zika
project—itself inspired by dedicated Wikiprojects for
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Medicine’ and for Source Metadata®—laid many of
the foundations for the current COVID-19 work in
managing fast-changing information: it developed,
documented and refined sets of SPARQL queries
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about an ongoing epidemic, the underlying pathogen, consistent semantic representation of a topic for
the disease and diagnostic or therapeutic options, and which relevant concepts were often not yet readily
it piloted workflows for integrating distributed available through formal ontologies.

knowledge from multiple databases to build a

Fig. 2. Simplified skeleton of the data model of COVID-19 information on Wikidata. The three main COVID-related items (the ‘C3 items’)’
are represented in red, selected classes of items related to these are shown in blue, with the relations between them represented as arrows. The
number of statements relating to each item from the relevant class is indicated next to the item (In the case of scholarly articles, relations to
each of the three COVID-related items is indicated by colour). Relation types regularly used to define items within Wikidata classes are
omitted (e.g. chromosome [P1057] for human genes), as of 20 August 2020, available at: https://w.wiki/auD, license: CC BY 4.0.

> COVID and C3 stand for any subset of {COVID-19 [Q84263196], SARS-CoV-2 [Q82069695], COVID-19 pandemic [Q81068910]}.
19 Source queries: https:/w.wiki/Ype, https://w.wiki/Ypd, https://w.wiki/Ype, https://w.wiki/Ypg, https://w.wiki/Yph, and https://w.wiki/Ypi.
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The core of the COVID-19 knowledge graph in
Wikidata is formed by three main items (red in Fig.
2): COVID-19  [Q84263196],  SARS-CoV-2
[Q82069695], and COVID-19 pandemic
[Q81068910]. Those three core COVID-19-related
Wikidata items have relatively simple links to one
another.  Mainly that SARS-CoV-2  causes
COVID-19, which itself has had the downstream
effect of the COVID-19 pandemic.

These three core items then link out to a vast array
of items related to all aspects of the disease, its
causative virus, and the resulting pandemic (>17,000
Wikidata items as of 20 August 2020; blue in Fig. 2).
The collaborative work to populate and curate this
data has been largely accomplished by WikiProject
COVID-19", launched in March 2020 [15]. This
WikiProject itself has a Wikidata item [Q87748614],
and items are linked to it using the property on focus
list of Wikimedia project [P5008].

These COVID-19-related items are linked to their
respective classes or types using instance of [P31] or
subclass of [P279] relations, and they are linked
between each other using non-taxonomic relations
defining knowledge about  various  and
multi-disciplinary aspects of COVID-19 (Fig. 2).
Biomedical relations between Wikidata items can be
assigned nature of statement [P5102] or sourcing
circumstances [P1480] qualifiers to state the status
(e.g. official, hypothesis and de facto) and the
occurrence probability (e.g. rarely, possibly and
often) of the described semantic relation. The
network of these items and relations forms a
large-scale knowledge graph for COVID-19, where
the three core COVID-19-related items noted above
extensively link various classes, most notably:
disease outbreaks [Q3241045] in regions such as
continents, sovereign states, and constituent states,
COVID-19 tracing apps [Q89288125], COVID-19
vaccines [Q87719492] and vaccine candidates
[Q28051899], scholarly articles [Q13442814] and
COVID-19 dashboards [Q90790055]. This graph
with short paths to the core COVID items is
augmented by biomedical, geographical and other
more distantly related entities that are already
available in Wikidata, representing an important
overview of clinical and other knowledge [15, 23].
Such distantly related entities are also available in
other open knowledge graphs, particularly DBpedia
and YAGO, and contribute much to the value of a
semantic resource [17, 18]. In Wikidata, several
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initiatives such as WikiCite for scholarly information
[35-38] and Gene Wiki for genomic data [39] have
enabled COVID-19 knowledge graphs to include
classes like genes [Q7187], proteins [Q8054] or
biological processes [Q2996394], along with the
definition of semantic relations between items
closely and distantly related to COVID-19. This,
consequently, allows the expansion of the coverage
of COVID-19 information in Wikidata and a better
characterization of COVID-19-related items.

In addition to relational statements that link items
within the knowledgebase, non-relational statements
link to external identifiers or numerical values [40].
Wikidata items are assigned their identifiers in
external databases, including semantic resources,
using human efforts and tools such as Mix’n’match
[41]. These links make Wikidata a key node of the
open data ecosystem, not only contributing its own
items and internal links, but also bridging between
other open databases (Fig. 3). Wikidata therefore
supports alignment between disparate knowledge
bases and, consequently, semantic data integration
[39] and federation [41] in the context of the linked
open data cloud [42]. Such statements also permit the
enrichment of Wikidata items with data from external
databases when these resources are updated,
particularly in relation with the regular changes of
the multiple characteristics of COVID-19. Examples
of Wikidata properties used to define external
identifiers can be found in Table 1.

o
(o]

User Generated
ife Science

Other

Al R

Fig. 3. Wikidata in the Linked Open Data Cloud. Databases
indicated as circles (with Wikidata indicated as “WD’), with grey
lines linking databases in the network if their data is aligned,
source dataset last updated May 2020 (available at:
https://w.wiki/bYM, license: CC BY 4.0).
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Numerical statements are assigned to disease
outbreak items for the COVID-19 pandemic to
outline the evolution of the epidemiological status of
different entities, from countries to provinces, cities
and cruise ships. The properties used to define these
statistical statements are shown in Table 1 and
include data about the morbidity, the mortality, the
testing and the clinical management of COVID-19 at
the level of continents, countries and constituent
states and also many smaller entities. Some Wikidata
properties used to store this epidemiological
information have been created in response to
COVID-19 (e.g. Number of recoveries [P8010],
number of clinical tests [P8011], and number of
hospitalized cases [P8049]) proving the flexibility of
the knowledge base. To keep records of the progress
of the COVID-19 pandemic over time, each
statistical statement is assigned a point in time [P585]
relation as a qualifier. These epidemiological
statements are retrieved from CCO databases such as
the COVID-19 DataHub database'? and are linked to
them as references. These statements can be used to
automatically infer other measures that are not
supported by Wikidata but give a full overview of the
epidemiology of COVID-19: let ¢ be the total
number of confirmed cases at a given day Z when the
epidemiological evaluation takes place, d the number
of confirmed deaths until that day, » the number of
confirmed recoveries by that day, /4 the number of
confirmed hospitalized cases on that day, ¢ the
number of clinical tests until that day. On the basis of
these values (which could all be represented in
Wikidata if matters related to the multi-level
coverage of COVID-19 knowledge and conflicts of
information from multiple sources are solved), the
following measures can be inferred:

e Confirmed active casesv=c—(d +r)

e Confirmed recovery ratea =r/c

e Confirmed patient-days p =>4 if all infection
days are represented
New confirmed cases nc; =c; - ¢,

New confirmed deaths nd, =d, - d,,
New clinical tests nt; =1, -t
New confirmed recoveries nr, =r; - r,,.

This set of COVID-19 information is integrated
into  Wikidata using human efforts, the
QuickStatements tool'?, the Wikidata API'*, and bots

12 https://datahub.io/core/covid-19

13 QuickStatements (QS) is a web service that can modify
Wikidata, based on a simple text commands:
hitps://quickstatements.toolfor:

!4 An application programming interface (API) is a
machine-friendly interface of a web service that can be used to

mainly written in Python (e.g. CovidDatahubBot'"),
which explains its quantity and coverage [23]. Later,
the developed semantic database for the pandemic is
checked by multiple layers of validation. Methods
include RDF triples defining conditions for the usage
of Wikidata properties, RDF validation schemas built
in Shape Expressions (ShEx) to verify the structural
accuracy of the statement of an item included in a
given Wikidata class, and logical constraints
implemented in SPARQL to verify the consistency of
relational and non-relational claims in Wikidata as
well as several tools based on edit history of
Wikidata such as ORES to identify and eliminate
database vandalism [43]. Although Web Ontology
Language (OWL) can define knowledge graphs with
a richer semantic characterization of data models by
providing a layer of Description Logics such as in
DBpedia [19], the infrastructure developed for the
validation of RDF data in Wikidata helps assure a
high level of consistency of the Wikidata knowledge
graph.

Table 1
Examples of Wikidata properties used to define non-relational
statements
Wikidata | Name Description

ID

Properties for the alignment with scholarly databases

P496 ORCID iD identifier for a researcher (Open

Researcher and Contributor ID)

P1153 Scopus Author identifier for an author in the Scopus
1D bibliographic database

P214 VIAF ID identifier for the Virtual International

Authority File database

P7859 WorldCat
Identities ID

entity on WorldCat for authority
control of authors’ data

P1053 ResearcherID identifier for a researcher in a system
for scientific authors, primarily used in

Web of Science

Properties for the alignment with clinical language resources and
encyclopedias

P494 ICD-10 identifier in the ICD catalogue codes

for diseases - Version 10

feed another computer program with needed information. The

Wikidata API is available at https://www.wikidata.org/w/api.php
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P672 MeSH tree code | Medical Subject Headings (MeSH)
codes are an index and thesaurus for
the life sciences (# MeSH ID, P486)

P1417 Encyclopadia identifier for an article in the online

Britannica version of Encyclopadia Britannica
Online ID
P486 MeSH descriptor | identifier for Descriptor or
ID Supplementary concept in the Medical
Subject Headings controlled
vocabulary
P3098 ClinicalTrials.go | identifier in the ClinicalTrials.gov
v Identifier database

P6680 MeSH term ID identifier of a "MeSH term" (Medical
Subject Headings)

P6694 MeSH concept identifier of a Medical Subject

ID Headings concept

Properties for the non-relational characterization of Wikidata items

P569 date of birth date on which the subject was born

P856 official website | URL of the official homepage of an
item (current or former)

P1603 number of cases | cumulative number of confirmed,
probable and suspected occurrences

P1120 number of deaths | total (cumulative) number of people
who died since start as a direct result of
an event or cause

P3457 Case fatality rate | proportion of patients who die of a
particular medical condition out of all
who have this condition within a given
time frame (equal to the quotient of the
number of cases by the number of
deaths as stated in a given day)

P8010 Number of number of cases that recovered from

recoveries disease

P8011 number of cumulative number of clinical tests

clinical tests

P8049 number of number of cases that are hospitalized

hospitalized
cases

P3488 minimal minimal time between an infection and

incubation period | the onset of disease symptoms in
in humans infected humans

P3487 maximal maximal time between an infection and

incubation period | the onset of disease symptoms in
in humans infected humans

P3492 basic number of infections caused by one

reproduction infection within an uninfected
number population

2.2. Multilingual representation

Thanks to its multilingual and
language-independent data model as well as its link
with various biomedical ontologies and knowledge
bases, Wikidata’s biomedical language coverage in
English, French, German and Dutch is comparable to
other semantic resources such as SNOMED-CT!®,
BabelMeSH', and ICD-10'® [23]. Despite the recent
origin of the COVID-19 pandemic, Wikidata’s
coverage on the matter is already quite granular, with
the main three COVID items linked to 17,000 other
items via 55,000 relations at the time of writing. The
degree of translation of that information is
interestingly high with an important representation of
the concepts in more than 50 languages (Fig. 4E). In
fact, more than 40% of the predicates (Curves B and
D) and more than 90% of the objects (Curve C) of
the statements related to COVID are represented in
fifty languages or more. However, this coverage
varies between languages, with English as the
unsurprising front-runner in items with COVID as
the object, since many of those items are journal
articles with untranslated titles (Fig. 4A). The names
of the properties that link them (Fig. 4B,D) have
much more even coverage, as do items with COVID
as the subject (Fig. 4C). This linguistic coverage is
less uneven than other biomedical semantic resources
(e.g. SNOMED-CT and BabelMeSH) [45, 46] and is
in line with efforts of generating multilingual
language resources to be used for natural language
processing purposes in clinical contexts [47].

The better coverage of English is explained in part
by the higher support of this language in both
biomedical language resources [48] and Wikipedia
[49]. Cooperation with publishers such as Cochrane
has a significant effect on English Wikipedia
coverage, too [50]. The significant coverage of other
languages like French, Spanish, German, Chinese

1 http://www.snomed.org/snomed-ct/sct-worldwide (Accessed
February 3, 2021): SNOMED-CT supports English, French,
Danish, Dutch, Spanish, Swedish, and Lithuanian.
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(Accessed on February 3, 2021): BabelMeSH supports Arabic,
Chinese, Dutch, English, French, German, Italian, Japanese,
Korean, Portuguese, Russian, Spanish, and Swedish.

8 ICD-10: International Classification of Diseases, 10th
Revision [44]: ICD-10 supports Arabic, Chinese, English, French,
Russian, Spanish, Albanian, Armenian, Azeri, Basque, Bulgarian,
Catalan, Croatian, Czech, Danish, Dutch, Estonian, Persian,
Finnish, German, Greek, Hungarian, Icelandic, Italian, Japanese,
Korean, Latvian, Lithuanian, Macedonian, Mongolian, Norwegian,
Polish, Portuguese, Serbian, Slovak, Slovenian, Swedish, Thai,
Turkish, Turkmen, Ukrainian, and Uzbek.
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http://www.snomed.org/snomed-ct/sct-worldwide

and Swedish in Medical Wikidata fits with their
support by major biomedical multilingual databases:
ICPC-2 [51] supports 24 languages', SNOMED-CT
supports 7 languages, LOINC? supports 13
languages, BabelMeSH [52] supports 13 languages,
and ICD-10 supports 42 languages.
A B
100000 100000
10000 10000
1000 1000

o R - CE W Yo s ® 3
g+ s o~ & 2 % - 0N & = T

Items with covid as object Properties with covid as object

Q
-  — Wb
C Items with covid as subject D Properties with covid as subject
100000 100000
10000 1 10000
1000 4 1000 {4 4 o o o o o o
100 1% & o ¢ v @ 6 x w1 33358323
e g gg 23333883
nlRARERERER 10

1 T

n
fr
e
es
zh
ar
ja
ru

-
.
s
h
ar
ja
u

100%

80% -
60%
40% -

20%

Coverage of concepts m

0%

50 100 150
Rank of language (per category A-D)

Fig. 4. Language representation of COVID-19-related statements.
A-D) Language coverage for items and properties used in
statements when either the object or subject is one of the three
COVID-related items (as per Figure 2; note: log y-axis). The eight
most common languages in Wikidata are shown: en=English,
fr=French, de=German, es=Spanish, zh=Chinese, ar=Arabic,
ja=Japanese, ru=Russian.) E) Percentage of the items covered in
order from highest to lowest coverage. faceted by categories A-D.
Data shown for top 150 languages in each category (note:
languages not necessarily in same order for each), as of August 15,
2020 (available at: https://w.wiki/auE, license: CC BY 4.0; live
data: https://w.wiki/Yj$, https:/w.wiki/Yk3, https://w.wiki/Yk5
and hitps:/w.wiki/Yk6)

19 ICPC-2 supports Afrikaans, Basque, Chinese, Croatian,
Danish, Dutch, English, Finnish, French, German, Greek, Hebrew,
Hungarian, Italian, Japanese, Norwegian, Polish, Portuguese,
Romanian, Russian, Serbian, Slovenian, Spanish, and Swedish.

2 https:/loinc.org/international/ (Accessed on August 13,
2020): LOINC supports Chinese, Dutch, Estonian, English,
French, German, Greek, Italian, Korean, Portuguese, Russian,
Spanish, and Turkish.

The support of other natural languages can also be
explained by the use of bots that extract multilingual
terms representing clinical concepts based on natural
language processing techniques and machine
learning®' [53] and by the involvement of research
institutions and scientists speaking these languages,
particularly German and Dutch, in adding biomedical
information to Wikidata [54, 55]. The near-100%
coverage for properties with COVID-19 as the
subject in the most spoken languages (Fig. 4B)
resulted from early systematic volunteer translation
drives for common properties by WikiProject Labels
and Descriptions® and others [28].Language
coverage of medical Wikidata labels (particularly for
diseases’ class) seems influenced by several factors.
Most obvious for a collaborative project is the
number of speakers of each language among the
contributor community [24]. However, there also
appears to be an impact from the overall number of
Wikidata labels for each language [25] and to the
number of medical Wikipedia articles in each
language [56] (Table 2).

These correlations can be interrogated by querying
Wikidata to find out the current status of the editing
of this knowledge graph and of Wikipedia in 307
languages (Table S3; top-ranking items for each
variable summarised in Tables 3 and 4). Query
results largely match previously published trends for
Wikipedia and Wikidata (Table 2), though we note
that Arabic (ar) and Chinese (zh), appear in the top
10 languages in the Wikidata COVID-19 subset,
while being absent from the top 10s for other sets
described in Table 4. Coverage differed across
languages and variables, and most of the distributions
showed marked positive skew. Nonparametric
analysis of correlations (Spearman’s tho) found large
magnitude associations (rho .65 to .97, median = .84,
Supplementary Table S4), statistically significant
even following stringent Bonferroni correction. To
account for skew and data spanning multiple orders
of magnitude, loglO-transformed data was used for
subsequent  analyses.  Pearson’s  correlation
coefficients between all variables was high (Figure
5). A principal component analysis for the 90

2! An example of such a Wikidata bot can be Edoderoobot 2,
which is specifically working on labelling, thereby translating
structured data into prose in the respective language. Further
information about this bot can be found at

https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions
[Bot/Edoderoobot_2.
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languages with complete data on all 7 indicators
found that a single component explained 81% of the
variance, with loadings ranging from .80 to .95. The
smallest PCA loading and Spearman’s correlation

was for the number of viewers, which though still a
strong association, was less correlated than the other
variables by a substantial margin.

Table 2

Languages ranked by medical content from the literature: Number of medical Wikipedia articles, number of Wikidata labels, number of native

speakers, and number of Wikidata users. Style code: [talic for languages appearing in all four lists; bold for those appearing in only one.
Medical Wikipedia, 2013 [56] Wikidata labels, 2017 [25] Population, 2019 [57] Wikidata users,
2018 [24]
Rank Language Number of Language Rate of Language Native Language
medical labels speakers
articles (millions)
1 English 29072 English 11.04% Chinese 1323 English
2 German 7761 Dutch 6.47% Spanish 463 French
3 French 6372 French 6.02% English 369 German
4 Spanish 6367 German 5.08% Hindi 342 Spanish
5 Polish 5999 Spanish 4.07% Arabic 335 Italian
6 Italian 5677 Italian 3.9% Bengali 228 Russian
7 Portuguese 5269 Swedish 3.89% Portuguese 227 Dutch
8 Russian 4832 Russian 3.54% Russian 154 Japanese
9 Dutch 4391 Cebuano 2.21% Japanese 126 Danish
10 Japanese 4303 Bengali 1.94% Western 82.5 Portuguese
Punjabi
Table 3

Languages ranked by medical content from Wikidata queries (as of August 11, 2020). The Medical Wikipedia query yields Wikipedia articles
associated with Wikidata items that have a Disease Ontology ID [P699] or are in the tree of any of the following classes: medicine [Q11190],
disease [Q12136], medical procedure [Q796194] or medication [Q12140]. The Medical Wikidata labels query yields labels of Wikidata items
that have a Disease Ontology ID [P699] or a MeSH Descriptor ID [P486] or are in the tree of any of the same four classes. The Wikipedia and
Wikidata users column provides a snapshot from the Wikidata dashboard that lists Wikidata users who also edit Wikipedia by number of such

users per Wikipedia language. Style code: [talic for languages appearing in all three lists; bold for those appearing in only one.

Medical Wikipedia articles Medical Wikidata labels Wikipedia and Wikidata users
https://w.wiki/Z6a https://w.wiki/Z6h https://w.wiki/Z6 W

Rank Language Number of Language Number of Language Number of

medical articles labels users

1 English 16670 English 65986 English 9600

2 German 8911 French 37053 French 2580

3 Arabic 8596 German 22432 German 2490

4 French 7258 Spanish 21505 Spanish 2330

5 Spanish 6979 Arabic 18581 Russian 1790

6 Italian 6498 Italian 18074 Italian 1430

7 Polish 6071 Japanese 17992 Chinese 1120

8 Portuguese 5652 Dutch 17985 Japanese 1090

9 Russian 5564 Chinese 17462 Portuguese 979

10 Japanese 4651 Russian 17165 Arabic 688

Similarly, the current representation of COVID-19
Wikidata items in natural languages seems to be
linked with COVID-19-related Wikipedia pages,
edits and pageviews for a given language, as shown
in Table 4. This is confirmed by the high correlation
(Pearson r = 0.93) of the language distribution of
COVID-related Wikidata labels with the number of
COVID Wikipedia pages in language editions and
the moderate correlation (Pearson r > 0.65) between

the number of Wikidata COVID-related labels in a
given language and the quantity and edit statistics of
medical content in Wikidata and Wikipedia (Fig. 5).
Such relationships are strengthened by the high
correlation (Pearson r > 0.9) between the number of
medical Wikidata labels in a given language and the
number of medical Wikipedia articles in language
editions as well as the number of native speakers
jointly editing Wikipedia and Wikidata.


https://w.wiki/Z6a
https://w.wiki/Z6h
https://w.wiki/Z6W

To investigate the possible causes of these highly
correlated datasets, we compared them to two
external metrics for each language: the number of
native speakers of each language [57] and the
maximum human development index for countries
where that language is an official language [58]. This
data was available for fewer languages (N = 57 each,
19 pairs) and the sparse overlap precluded including
both simultaneously in analyses. The number of
native speakers showed similar positive skew to
earlier data, so was also loglO-transformed. Even
though these analyses are necessarily exploratory,
maximum development correlated more strongly than
did the number of speakers (Figure 5B; Table S4).
Cohen’s q values (an effect size for differences
between correlation coefficients) of a size considered
unusually large for the social sciences (> 0.5) were
observed when  comparing correlation  of
development index versus number of speakers with
the number of medical Wikidata labels and with the
number of wusers. Further medium q values
(differences > 0.3) were observed for correlation to
the number of medical Wikipedia articles and to the
number of COVID Wikipedia pages. Correlation
differences were negligible with regard to
development versus number of speakers as associated
with the number of edits or pageviews [59].

The observation here that current language
coverage in Wikidata and Wikipedia correlates more
closely to countries' development index than to the
number of speakers of each natural language aligns
with previous work demonstrating low correlation of
Wikidata to the number of speakers [25].
Consequently, encouraging the contribution by
speakers of under-resourced and unrepresented
languages to medical Wikipedia projects® and to
Medical Wikidata is highly valuable to ameliorate
and increase the language coverage of Wikidata as
well as culturally appropriate contextualizations in
medical and other domains.

3 Current efforts to enhance the coverage and language support
of medical knowledge in Wikipedia are mainly driven by
Wikimedia Medicine. For further information, please refer to
https://meta.wikimedia.org/wiki/Wiki_Project Med. An example
of the initiatives under this umbrella is the Special Wikipedia
Awareness Scheme for The Healthcare Affiliates project, focused
on languages of India. An explanation of this project can be found

at https://en.wikipedia.org/wiki/Wikipedia:SWASTHA.
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Fig. 5. A) All-versus-all pairwise correlations of
log10-transformed values of seven metrics for 307 languages (data
from sources detailed in tables 3 and 4). Histograms on diagonal
indicate skew, scatter plots below diagonal indicate data and
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correlation coefficient. B) Cohen’s q coefficient comparing
correlation of the seven metrics to maximum human development
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correlated variable pair. D) Lowest correlated variable pair.
[Available at: https:/w.wiki/zV6, License: CC-BY 4.0].
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Table 4

Languages ranked by COVID-19-related content from Wikidata queries and other live data (as of August 13, 2020). The COVID-19 pandemic
Wikipedia pageviews column represents daily average user traffic (averaged over 2020) to the article about the COVID-19 pandemic in the
respective language. The COVID Wikidata labels query sorts languages by the number of labels of Wikidata items with a direct link to and/or
from any of the core COVID-19 items - Q84263196 (COVID-19), Q81068910 (COVID-19 pandemic) and Q82069695 (SARS-CoV-2) -
excluding items about humans (3131) or scholarly publications (40164). The COVID Wikipedia articles query filters those Wikidata items for
associated Wikipedia articles and sorts languages by the number of such articles. The values in the COVID Wikipedia edits column represent
the revision counts per Wikipedia language as taken from the dashboard listing Wikimedia projects by total number of revisions to
COVID-19-related articles. Style code: Italic for languages appearing in all four lists; bold for those appearing in only one.

COVID-19 pandemic COVID Wikipedia articles COVID Wikidata labels COVID Wikipedia edits
Wikipedia pageviews https://w.wiki/ZSt hitps://w.wiki/ZSq https:/w.wiki/yOu
Dttos//wwikiiZTG
Rank | Language Avg. daily Language Number of Language Number of Language Number of
pageviews articles labels edits
1 English 52872 English 561 English 1429 English 250306
2 Russian 41246 Arabic 517 Dutch 785 German 126359
3 Spanish 37722 German 431 Arabic 623 French 42029
4 Chinese 27598 Portuguese 427 Catalan 579 Chinese 41545
5 German 20707 Korean 408 German 561 Spanish 30869
6 Italian 8490 Chinese 396 French 517 Arabic 19963
7 French 7959 Vietnamese 392 Japanese 503 Russian 18719
8 Portuguese 7648 French 379 Chinese 483 Japanese 11508
9 Japanese 5227 Spanish 370 Portuguese 463 Ukrainian 10599
10 Arabic 4300 Indonesian 363 Spanish 433 Hebrew 10386
these databases have some feedback channels, no
2.3. Database alignment mechanisms exist for informing them systematically

As shown in the “Data model” section, Wikidata
items are linked to their equivalents in other semantic
databases using statements where the property
provides details about a given resource and the object
is the external identifier of the item in the aligned
database. Similarly to Wikidata items, these database
alignment properties are defined by labels,
descriptions and aliases in various languages and by
statements describing logical conditions for their
usage including formatting constraints and allowed
values of subject classes [43].

The alignment of Wikidata entities to other entries
on different databases is a collaborative process
which, as everything in Wikidata, is done via
combination of manual and automatic curation. As an
example of automation, items concerning scholarly
entries (i.e. articles and reports) were often aligned to
other databases wusing DOIs (Digital Object
Identifiers) as unique keys for locating the database
ID. As Wikidata is an open database, the precision of
the alignments is largely based on trust in the
community, and misalignments are promptly
corrected once identified. At the scale of curation
happening on Wikidata, quality issues in aligned
databases are surfacing regularly, e.g. invalid DOIs
stated in PubMed and PMC Europe*. While most of

about issues with their data that have been identified

at the scale of Wikidata-based curation.

As of September 1, 2020, 5302% out of 7877%
Wikidata properties are used to state external
identifiers of the Wikidata items. These properties
facilitate interoperability between Wikidata and other
databases and consequently the regular enrichment of
Wikidata with detailed information from online
ontologies and knowledge graphs updated on a daily
basis [20, 17, 60]. The output using such Wikidata
properties can be adapted as an open license
framework for the automatic evaluation and learning
of knowledge graph alignment approaches [20, 61]
and for the integration of scholarly knowledge [62].

In the circumstances of the COVID-19 outbreak, a
SPARQL query*’ has been formulated to analyze the
integration of external identifiers in Wikidata. This
query succeeded in returning the main aligned
external resources to the set of scholarly articles and
clinical trials, of diseases, of symptoms, of drugs, of
humans, of sovereign states, of genes, of proteins,
and of other items related to the ongoing COVID-19
pandemic in Wikidata. This confirms the centrality of

% For the updated count of the properties defining external
identifiers, refer to https://w.wiki/ayn.
% For the updated count of all the properties, refer to

/

https://w.wiki/auR
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Wikidata within the linked open data cloud (cf. Fig. 3
and [42]) and consequently the usefulness of
Wikidata to address the COVID-19 data challenges
and dynamically integrate various types of semantic
data in the context of the disease outbreak.

As shown in Table 5, scholarly articles and clinical
trials have been linked to numerous external
identifiers, particularly the Digital Object Identifier
(DOI), the PubMed ID, the Dimensions Publication
ID, the PubMed Central ID (PMCID) and the
ClinicalTrials.gov Identifier. Most of these identifiers
are added thanks to WikiProject WikiCite aiming to
add support of bibliographic information on Wikidata
[35-37]. The current representation of external
identifiers for the scientific literature in Wikidata
seems to be similar to the general one for the
bibliographic data in the knowledge graph. As of
September 3, 2020, 36208373 scholarly articles® are
currently represented in Wikidata. 31425586 of
which have PubMed IDs and 25896956, 6016452,
and 346114 scientific publications respectively have
DOlIs, PubMed Central IDs and ArXiv IDs.

However, this Wikidata coverage of the
availability of COVID-19-related publications in
external research databases does not seem to fully
represent full records of COVID-19 literature in
aligned resources. By way of comparison, we
performed a simple search for “COVID-19” in a set
of literature databases, and there were 103796
COVID-19-related records available on PubMed?,
110323 COVID-19 full texts accessible on PubMed
Central®®, 296450 COVID-19 publications on
Dimensions?!, 211000 records on Semantic Scholar®?,
4778 records at ClinicalTrials.gov*, 3295 records on
arXiv ID*, and 183 records on NIOSHTIC-2* as of
February 17, 2021.

Wikidata’s relatively incomplete coverage of the
literature is mainly explained by Wikidata’s
development of scientific metadata being based on
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latent crowdsourcing of information from multiple
sources through bots and human efforts and not on
the real-time screening of the external scholarly
resources [37, 38]. In addition to such sampling
biases, there are also differences in annotation
workflows, e.g. in terms of the multilinguality of or
the hierarchical relationships between topic tags in
Wikidata versus comparable systems like Medical
Subject Headings.
Table 5

Main Wikidata properties used to represent the external identifiers
of scholarly articles and clinical trials (as of August 31, 2020).

Wikidata ID Wikidata Property Count
P356 DOI 45101
P698 PubMed ID 42294
P6179 Dimensions Publication ID 16944
P932 PMCID 12590
P8150 COVIDWHO ID 11718
P8299 Semantic Scholar corpus ID 4612
P3098 ClinicalTrials.gov Identifier 246
P818 arXiv ID 47
P2880 NIOSHTIC-2 ID 23

As for the diseases and symptoms related to
COVID-19, Wikidata maps to multiple external
identifiers in the main biomedical semantic databases
such as MeSH, ICD-10%, and UMLS?” as well as in
open lexical databases like OBO Foundry ontologies
(e.g. Human Phenotype Ontology) and Freebase as
shown in Table 6. This is mainly due to the use of
machine learning algorithms to align these major
online biomedical resources to Wikipedia articles and
consequently to Wikidata items [63]. The
representation of open license resources is
particularly explained by the use of these databases
to form the core of the biomedical knowledge in
Wikidata through mass uploads and timely updates
[64]. Items about diseases and symptoms are also
aligned to several online encyclopedias (e.g.
eMedicine, Encyclopedia Britannica, and

% International Classification of Diseases, Tenth Revision

37 Unified Medical Language System

https://www.nlm.nih.gov/research/umls/index.html)
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MedlinePlus) and to non-medical databases such as
scholarly  repositories  (e.g. JSTOR*) and
bibliographic databases (e.g. Microsoft Academic®)
using external identifiers’ statements. This can be
explained by the efforts of WikiProject Source
Metadata* and the WikiCite initiative to align topic
pages in research databases to Wikidata items, so that
active members of this project can easily extract
topics of research publications from source databases
and assign them to the corresponding Wikidata items
using main subject [P921] relations [35]. The linking
from Wikidata items about between diseases and
symptoms to online first-class encyclopedias is not
restricted to the context of the COVID-19 pandemic
[64] and is a rather established practice to provide
Wikidata users with pointers to further specialized
information pertaining to a given Wikidata item [65]
and to allow comparison of medical data quality
between Wikipedia and other encyclopedias [56].

Table 6

Main Wikidata properties used to represent the external identifiers
of diseases and symptoms (as of August 31, 2020).

P486 MeSH descriptor 23 9
ID

P646 Freebase ID 21 10

P3841 Human Phenotype | 18 9
Ontology ID

P604 MedlinePlus ID 19 9

P508 BNCF* 17 7
Thesaurus ID

P1296 Gran Enciclopedia | 10 7
Catalana ID

P8408 KBpedia* ID 16 7

Wikidata ID Wikidata Property | Diseases Symptoms
count count
P672 MeSH tree code 40 12
P2892 UMLS CUI 38 11
P494 ICD-10 32 8
P4229 ICD-10-CM*! 32 1
P3827 JSTOR topic ID 32 10
P6366 Microsoft 29 11
Academic ID
P493 ICD-9* 26 5
P673 eMedicine ID 24 2
P1417 Encyclopedia 23 7
Britannica Online
ID
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https://www.jstor.org/
3 https://academic.microsoft.com/

4 https://www.wikidata.org/wiki/WD:WikiProject_Source

4! International Classification of Diseases, Tenth Revision,
Clinical Modification

“ International Classification of Diseases, Ninth Revision

The matching between Wikidata items and online
encyclopedias and non-medical resources is not
restricted to disease and symptoms. It additionally
covers humans and sovereign states (Table 7) as well
as films, computer applications and disease outbreaks
(Table 8). The alignment to various metadata
databases like VIAF*, WorldCat*, Library of
Congress and IMDb* is motivated by the mass
import of authority control data for the
interoperability between library metadata and for the
prevention of the duplication of items including book
authors, actors and films [65, 66]. Wikidata items
about sovereign states and humans are aligned to
corresponding topic pages and user pages in social
networking services (Twitter) and question answering
forums (Quora and Reddit). This enables tracking the
effect of the information provided by Wikimedia
projects,  particularly =~ Wikipedia, on online
communities [67]. Information about items in social
media can also be retrieved to support the topic
modelling of the coverage of the pandemic in social
networks [68]. Taken together, these database
alignments are useful to integrate new non-clinical
information to Wikidata, to allow correlations
between epidemiological data and non-medical
information about countries, individuals,
masterpieces and disease outbreaks such as
geopolitical, software programming and economic
data, and to provide further readings about the
concerned items [62].

“ Biblioteca Nazionale Centrale di Firenze (Central National
Library of Florence, Italy)

“ https:/kbpedia.org/

4 Virtual International Authority File (hitp:/viaf.org/)

46 - 1dc

47 Internet Movie Database (https://www.imdb.com/)
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Table 7

Main Wikidata properties used to represent the external identifiers
of humans and sovereign states (as of August 31, 2020).

Wikidata Wikidata Property Sovereign | Humans
ID states
P214 VIAF ID 159 654
P7859 WorldCat Identities ID 146 548
P244 Library of Congress 125 458
authority ID
P213 ISNI* 100 443
P646 Freebase ID 124 379
P2002 Twitter username 16 353
P227 GND* ID 125 308
P345 IMDb ID 274
P268 Bibliothéque nationale de 177 269
France ID
P269 IdRef* ID 84 265
P998 DMOZ*' ID 158 -
P3417 Quora topic ID 141 73
P1417 Encyclopedia Britannica 138 53
Online ID
P5400 GeoNLP ID 128 -
P349 National Diet Library ID 127 54
P4801 LoC MARC® vocabularies | 126
1D

Concerning drugs, proteins, genes and taxons,
Wikidata items are mainly assigned external
identifiers in the major knowledge graphs for
pharmacology (e.g. MassBank™), for biodiversity

48

https://isni.org/
# Gemeinsame Normdatei (German National Library,
Germany),

| inb.de/DE/Professi . )

0 Identifiants et Référentiels pour 1’enseignement supérieur et
la recherche (Identifiers and credentials for higher education and
research in France)

*! Directory Mozilla (hitps://dmoz-odp.org/)

53

https://massbank.cu/MassBank/

(e.g. IRMNG?*), for genomics (e.g. Entrez Gene) and
for proteomics (e.g. PDB*) and are rarely linked to
non-medical databases or to encyclopedias, as shown
in Table 8. The lack of alignment between these
biomedical Wikidata items and their equivalents in
social web services is explained by the higher interest
of social media users in the health policies and
epidemiology of COVID-19 rather than the
therapeutic options and molecular aspects related to
the disease [69]. The most important interest in
matching these concepts in Wikidata to graph
databases (e.g. Massbank, PDB, and KEGG®®) and
semi-structured  databases (e.g.  Guide to
Pharmacology®”) for bioinformatics rather than online
encyclopedias is due to the better availability of
genomic and proteomic information in these
specialized semantic resources [64, 70]. The
alignment of taxon items in Wikidata to biodiversity
knowledge graphs (e.g. NCBI*® taxonomy and
IRMNG) is to permit the discussion of the
pathogenesis of coronavirus and mainly COVID-19
through the analysis of the physiological features of
infected taxons [71]. The sum of these biomedical
alignments is developed using human edits and
computer tools thanks to large initiatives to develop
open ontological databases for curating advanced
molecular biology data such as WikiGenomes [55]
and Gene Wiki [39] and is enhanced in the context of
the current pandemic through the contributions of
WikiProject COVID-19 [15].
Table 8

Main Wikidata properties used to represent the external identifiers
for other Wikidata classes (as of August 31, 2020).

Wikidata Class Wikidata ID | Wikidata Property Count

drug [Q11173] P6689 MassBank accession | 44

ID
drug [Q11173] P4964 SPLASH* 31
protein [Q8054] P638 PDB structure ID 31
film [Q11424] P345 IMDb ID 25

54 Interim Register of Marine and Nonmarine Genera

(https://www.irmng.org/)

% Protein Data Bank (https://www.rcsb.org/)

56 Kyoto Encyclopedia of Genes and Genomes
(https://www.genome.jp/kegg/)

S [TUPHAR/BPS Guide to Pharmacology
(https://www.guidetopharmacology.org/)

%8 National Center for Biotechnology Information

(https://www.ncbi.nlm.nih.gov/)
%9 Spectral Hash Identifier (https:/splash.fichnlab.ucdavis.edu/)
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film [Q11424] P2603 Kinopoisk film ID 23 protein [Q8054] P705 Ensembl protein ID 8
film [Q11424] P7177 Cinestaan film ID 22 COVID-19 app P3861 App Store app ID | 8
[Q89288125] (global)
disease outbreak | P3984 subreddit 22
[Q3241045] drug [Q11173] P595 Guide to | 8
Pharmacology
protein [Q8054] P637 RefSeq® protein ID 18 Ligand ID
committee group | P8433 Swedish Riksdag | 18 drug [Q11173] P6366 Microsoft Academic | 8
motion document ID ID
[Q97695005]
disease outbreak P3479 Omni topic ID 7
film [Q11424] P2529 CSFD® film ID 17 [Q3241045]
drug [Q11173] P267 ATC® code 17 taxon [Q16521] P5055 IRMNG ID 6
protein [Q8054] | P352 UniProt protein ID 16 taxon [Q16521] [ P685 NCBI taxonomy ID 6
protein [Q8054] P5458 Guide to | 15
Pharmacology Target
D
3.  Visualizing facets of COVID-19 via SPARQL
COVID-19 app P7771 PersonalData.IO ID 14
[Q89288125] The flexible data model of Wikidata enables it to
gene [Q7187] P351 Entrez Gene ID 12 be highly multidisciplinary, including information
ranging from medical to geopolitical to social aspects
COVID-19 app P3418 Google Play Store | 12 of the pandemic. Given the breadth of Wikidata’s
[Q89288125] app ID COVID-19-related  information (examples in
Supplementary Figure S1), extracting specific
gene [Q7187] P2393 NCBI locus tag 1 subsets of that information using SPARQL® can
macromolecular | P7718 Complex portal | 11 @llustrate Qifferegt aspects of the COV.ID-19 diseas;,
complex accession ID its causative virus, and the resulting pandemic
[Q22325163] (extended list, Supplementary Table S1). Sample
SPARQL queries for data visualizations commonly
protein fragment | P638 PDB structure ID 1 included in Wikidata-based COVID-19 dashboards
[Q78782478] are available at Supplementary Table S2 to show the
drug [Q11173] P23l CAS Registry® | 9 variety Qf visualizations 'that can be generated'usi.ng
Number the Wikidata Query Service from both a quantitative
perspective (amount of statistical data that can be
drug [Q11173] P715 DrugBank ID 9 generated through the integration of COVID-19
information with non-COVID-19 data) and a
drug [Q11173] P665 KEGG ID 9 qualitative one (visualization types and topics). This
section will present examples across different aspects
drug [QIIT73] Pess PDB structure ID ’ of COVID-19, adapted from five main sources to
drug [Q11173] P652 UNII* 9

% NCBI Reference Sequence Database

¢! Cesko-Slovenska filmova databaze (Czech-Slovak Film

Database, https://www.csfd.cz/)
2 Anatomical Therapeutic Chemical (ATC) Classification

System (https://www.whocc.no/atc_ddd_index/)
63

https://www.cas.org/support/documentation/chemical-substances

 Unique Ingredient Identifier (https:/fdasis.nlm.nih.gov/srs/)

% Technical documentation about SPARQL can be found at

https://en.wikibooks.org/wiki/SPARQL.
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Fig. 6. SARS-CoV-2 interactions with the human proteome as of September 14, 2020 (available at: https://w.wiki/c3D, license: CC BY 4.0).
Proteins encoded by SARS-CoV-2 genes (note that some genes encode multiple proteins) and the currently known human protein interaction

partners (live data: https://w.wiki/beR).

which we have contributed substantially®®67-6%6%70,

Several similar query collections exist, e.g. for
COVID-19 in India’".

3.1 Biological and clinical aspects

A simple demonstration of Wikidata’s encoding of
SARS-CoV-2’s basic biology is in its genetics (Fig.
6) and resulting symptoms (Fig. 7). The viral genome
contains 11 genes that encode 30 proteins (and
variants), which are currently known to interact with
over 170 different human proteins. Although there
are two genome browsers based on Wikidata [55,

% WikiProject COVID-19 (WPCOVID) queries: extracts from
the query collection of Wikidata’s WikiProject COVID-19;

https://www.wikidata.org/wiki/Wikidata: WikiProject COVID-19/

¢ SARS-CoV-2-Queries: extracts from the book “Wikidata
Queries around the SARS-CoV-2 virus and pandemic” [72];
https://egonw.github.io/SARS-CoV-2-Queries/

® SPEED queries: extracts from the Wikidata-based
epidemiological surveillance dashboard for COVID-19 pandemic
in Tunisia (https:/speed.iece.tn). It was partially built upon
COVID-19 Wikidata dashboard
(https://sites.google.com/view/covid19-dashboard).

% Scholia queries: queries underlying COVID-19-related
visualizations from the Wikidata-based scholarly profiling tool
Scholia [35]; https://scholia.toolforge.org/

" Covid-19 Summary queries: queries visualizing COVID-19
information in Wikidata linked to the epidemiological information
of the outbreak and to the characteristics of the infected famous
people;
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https://w.wiki/LsK

73], neither yet display the SARS-CoV-2 genome.
SPARQL visualizations provide a broader way to
explore biomedical knowledge about the studied
virus and the related infectious disease. As the
knowledge graph grows, this is allowing linking
together complex knowledge on biochemistry (e.g.
genes and proteins), biology (e.g. host taxa), clinical
medicine (e.g. interventions) [64]. Such queries can
be expanded by considering the qualifiers that
modulate biomedical statements. These qualifiers
allow the assignment of weights to assumptions
according to their importance and certainty. For
instance, some treatments are indicated as
hypothetical, or symptoms are listed as rare, as
defined by their nature of statement [P5102] or
sourcing circumstances [P1480] qualifiers, with
references to back these wup (live data:
https://w.wiki/bmJ).

3.2 Epidemiology

Wikidata also contains the necessary information
to calculate common epidemiology data for different
countries, such as mortality per day per capita, and
case number to mortality rate correlation. In some
cases this is stored as aggregate data, such as the case
mortality rate [P3457] statements for regional
epidemics stored as numeric data (Fig. 8A), whereas
other common visualisations can be calculated from
granular data such as the individual date of birth
[P569] and date of death [P570] of notable
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individuals deceased from COVID-19 (Figure 8B). of persons sufficiently notable to have Wikidata
Although this reflects the age distribution of COVID items.
mortality, it is also influenced by the demographics
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Fig. 7. Symptoms of COVID-19 and similar conditions as of September 10, 2020 (available at: https://w.wiki/byX, license: CC BY 4.0). A)
Currently listed symptoms of COVID-19, with qualifiers indicating their frequency. (live data: https://w.wiki/N8f). B) Other medical
conditions sorted by the number of shared symptoms with COVID-19. (live data: https:/w.wiki/bqV; adapted from

https://scholia.tool forge org/disease/084263196)

https://w.wiki/byW, license: CC BY 4.0). A) Correlation between

the current number of cases and mortality rates in every country,
i calculated from numeric summary data for each region. Countries
) coloured randomly (live data: https://w.wiki/bf$). B) Age

distribution of notable persons who have died of COVID-19

(blue), compared to the death age distribution for notable persons
who were born after 1901 (green), calculated from individual dates
’ of birth and death (live data: https://w.wiki/be7 and

https://w.wiki/but).

Mortality rate

Case number

i In some cases, summary data is also time-resolved,
allowing inquiry of its change over time
(Supplementary Figure S2), capturing features not
depicted in several statistical predictions of the
epidemiological evolution of COVID-19 outbreaks
[74] and clearly seen in other data sources, such that

Age

Fig. 8. Summary epidemiological data on the COVID-19
pandemic as of September 10, 2020 (available at:

mortality peaks at the beginning of a disease
outbreak [75]. Wikidata’s granularity (i.e. the
representation of COVID-19 information at the scale
of individual cases, days and incidents) and
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collaborative editing have also made it highly up to
date on queries such as the most recent death of
notable persons due to COVID-19. This result is
difficult to achieve with other datasets
(Supplementary Figure S3), and mirrors Wikipedia’s
well-known rapid response to updating information
on deaths [76, 77].

3.3. Research outputs

A large portion of Wikidata is dedicated to
publication metadata and citation links. There are
several ways to investigate the relevant topics in
publications regarding COVID-19. Firstly, topic
keywords can be extracted directly from the titles of
articles with COVID-19 as a main topic (Fig. 9A).
This is a useful and rapid first approximation of
topics covered by those publications, extracted as
plain text. These can be expanded upon by querying
for the main subject [P921] of a set of publications in
Wikidata. This property acts analogously to the
narrower but more granular Medical Subject
Headings (MeSH) descriptors [78]. Such statements
allow broader querying of the literature as a network
via co-occurrence of topics as the main subject of
articles (Fig. 9B)™. This enables rapid traversal and
faceting of the literature on topics in addition to the
traditional links made by tracing citations [79], such
as extracting common pharmacological and
non-pharmacological  interventions (live data:
https://w.wiki/N8i). The ‘WikiCite’ project is
working on importing the citation network into
Wikidata to make a fully open citation network (Fig.
S4) [80].

Because Wikidata is agnostic to the exact type of
research output, its structure is equally suited to
representing information on research publications,
preprints (Fig. S5), clinical trials (Fig. S6) or
computer applications (Fig. S7). However, preprints
are not yet thoroughly covered in Wikidata, a
limitation for this context as preprints have become
particularly important during the rapid pace of
COVID-19 research [80, 81]. Further, Wikidata’s rich
biographical and institutional data makes extracting
information on authors, institutions or others
straightforward (Fig. S8), and eventually for other
contributors too [82].
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Fig. 9. COVID-19 publication topics as of September 10, 2020
(available at: https:/w.wiki/bvV, license: CC BY 4.0). A)
Common words and word combinations (ngrams) in the titles of
publications (live data: https:/w.wiki/cFu). B) Co-occurrence of
topics in publications with one of the COVID-related items as a
topic, with ribbon widths proportional to the number of
publications sharing those topics (log scale). Topics coloured by
group as determined by Louvain clustering, topics shared in fewer
than 5 publications omitted (interactive version:
https://csisc.github.io/WikidataCOVID 19SPARQL /Fig8B.html;
live data: https:/w.wiki/bww).
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3.4. Societal aspects

Further emphasising the multidisciplinary nature
of Wikidata, there are also significant social aspects
of the pandemic contained in the knowledge base.
This includes simple collation of information, such as
regional official COVID websites, and unofficial but
common hashtags (Fig. S9), or relevant images under
Creative Commons licenses (Fig. S10). It also
includes more cross-disciplinary information, such as
companies that have reported bankruptcy, with the
pandemic recorded as the main cause (Fig. 10), or the
locations of those working on COVID (Fig. S§B).
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Fig. 10. Bankruptcies of publicly listed businesses due to the
COVID-19 pandemic as of September 13, 2020 (available at:
https://w.wiki/bvY, license: CC BY 4.0). A) Tabular output of
SPARQL query B) Bankruptcies per month C) ratios of different
industries associated with bankrupt companies. (live data:

hittps://w, wiki/cG6).

However, this also exemplifies how misleading
missing data can be: Wikidata currently has highly
inconsistent coverage of companies that are not
publicly listed, which heavily biases the results. For
example, the current lack of yearly updated
socio-economic information such as unemployment
rates [P1198] and nominal GDP [P2131] for
countries in Wikidata limits the use of the knowledge
graph for the study of the effect of the pandemic on
global economies, although this is theoretically
possible. Likewise, Wikidata is very incomplete with
respect to COVID-19-related regulations like
stay-at-home orders, school closures or policies

regarding face masks. Standardised methods to audit
and validate Wikidata’s content on various topics are
still under investigation and development [43].

4. Discussion

Many knowledge graphs have been recently
developed to represent various types of
COVID-19-related information, including
government responses [5], epidemiology [8], clinical
data [4], scholarly outputs and outcomes [9],
economic impacts [10], physiopathology [2], social
networking [11] among other features related to the
COVID-19 pandemic. These semantic databases are
mainly built using a combination of human efforts
and crowdsourcing techniques [5]. Such resources
can also be developed through the automatic
extraction - using natural language processing
techniques - of information from scholarly
publications about the outbreak, as is the case with
the Covid-19 Open Research Dataset [7].

Despite the importance of such resources, they
tend to cover a narrow range of aspects of the
disease, and despite the challenges (cf. Section 1.1),
more integrated approaches are necessary to support
advanced decision making related to the outbreak. In
response, integrated semantic databases have been
launched to combine more divergent information,
such as CIDO (combining clinical data with
genomics) [3] and COVID-19 data hub (combining
epidemiological data with social interactions) [12].

While clearly a wvaluable part of the data
ecosystem, these projects rely on small groups of
data curators, a model that has struggled to keep pace
when data and scholarly literature grow sharply, as is
the case with topics like COVID-19 [14]. This
observation fits with the considerably limited volume
of knowledge graphs exclusively enriched and
verified by a dedicated expert group - such as
OpenCyc - when compared to the volume of open
and collaborative knowledge graphs, particularly
Wikidata, YAGO, DBpedia and Freebase [17].

Whereas most knowledge graphs tend to be
specialized and developed by a limited team,
Wikidata deliberately takes a multidisciplinary,
multilingual position anchored in the linked open
data ecosystem. It is this breadth, combined with its
interoperability, that makes it unique amongst even
other user-generated collaborative projects. Indeed, it
becomes uniquely suited to highly dynamic topics
such as the COVID-19 pandemic [15, 64]. In
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comparison to other resources like DBpedia,
Wikidata is not just edited by machines and built
from data automatically extracted from textual
resources like Wikipedia [83]. Wikidata is mainly
enriched and adjusted by a community of over 25000
active human users on a daily basis™ and is released
under the CCO license allowing the free and
unconditional reuse and interoperability of its
information in other systems and datasets and
consequently the growth of interest of many people
in using, enriching and adjusting it [43]. By being
highly multilingual, its human-readability extends
well beyond English to support international
contributions and reuse [23, 43]. Also, its flexible
editing policy and RDF structure permit the easy
creation of new classes, properties and data models to
rapidly support emerging data topics [23, 43]. One of
the features of Wikidata is also providing hundreds of
exemplary SPARQL queries™, which even beginner
users can immediately explore and easily modify,
assisted with features like default prefixes,
autosuggestions, autocomplete and straightforward
conversion between Wikidata identifiers and natural
language [41]. As a result, Wikidata users do not
have to be SPARQL experts to arrive at results that
are useful to them.

These factors have facilitated Wikidata’s rapid
growth since its creation in 2012 into a richly
interconnected and interdisciplinary network of >90
million items [23, 43]. In the context of the
COVID-19 outbreak, Wikidata has proven its
efficiency in representing multiple facets of the
pandemic ranging from biomedical information to
social impacts. This stands in marked contrast to
other integrated semantic graphs that only combine
two to three distinct features of the pandemic (e.g.
CIDO [3], COVID-19 data hub [12], COVID-19
Living Data” [84] and Knowledge4COVID-197
[85]) as shown in the “data model” and “Visualizing
facets of COVID-19 via SPARQL” sections. This
large-scale information is supported in multiple
languages as explained in the “language
representation” section and is matched to its
equivalents in other semantic databases as revealed
by the “database alignment” section. Moreover, the
semantic nature of the SPARQL query language has
enabled in-depth analysis of the multifaceted,
multidisciplinary ~ COVID-19  information in

7 https://www.wikidata.org/wiki/Special:Statistics

™ hitps://w.wiki/pGw
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Wikidata. This confirms previous findings about the
importance of querying COVID-19 semantic
resources such as CIDO [3] to compare clinical
information with other types of COVID-19
information and consequently to generate new
insights into or new perspectives on characteristics of
the disease or the pandemic [86]. The primary
advantage of applying SPARQL to extract and
visualize COVID-19 information from a generalized
knowledge graph such as Wikidata when compared
to domain-specific knowledge graphs developed for
the pandemic like CIDO [3] is the possibility of
integration of outbreak data with non-COVID-19
information such as economic, industrial, climatic
and social facts that can be used to generate summary
information to explain the reasons behind the
dynamics of the studied pandemic.

Despite the advantages of collaborative editing
and free reuse of open knowledge graphs like
Wikidata to support and enrich COVID-19
information, these two features have several
drawbacks related to data quality and legal concerns.
It is true that the use of fully open licenses (CCO or
Public domain) in centralized knowledge graphs
removes all legal barriers to their reuse in other
knowledge graphs or to drive knowledge-based
systems and encourages the development of
intelligent support to tasks related to COVID-19.
However, application of CCO on these databases
causes them not to integrate information for semantic
resources and datasets with partially open licenses
(e.g. CC BY and MIT), as these licenses require
either the attribution of the source work to authors or
the use of the same license to process the data [87,
88]. This situation is similar to the status of regular
group O red blood cells as a universal donor but
restricted recipient [89].

Although collaborative editing contributed to the
development of large-scale information about all
aspects of the disease, there are currently still
significant gaps and biases in the dataset that can lead
to imprecise results if not interpreted with caution.
For example, the COVID-19 outbreaks on cruise’’
and naval”™ ships are better covered in Wikipedia
than in Wikidata (or most other online resources).
Similarly, scholarly citations are not yet evenly
covered, since systematic curation will require more
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scalable workflows. Although many of these gaps are
rapidly being addressed and closed over time, errors
of omission and bias are inevitable to some extent.
Such deficiencies can only be detected and solved by
applying algorithms that assess data completeness of
items included in a given class within open
knowledge graphs. Solutions involve cross-checking
knowledge bases or subsets of the same
knowledgebase [90, 91], systematically exposing the
content of Wikidata to many eyes through its reuse in
Wikipedia and SPARQL-based tools such as Scholia
and COVID dashboards [15, 35], and using
knowledge graph learning techniques to update items
directly from textual databases like scholarly
publications [92] and electronic health records [93].
Moreover, collaborative editing can cause several
inaccuracies in the declaration of statements in open
knowledge graphs disregarding the metadata
standards of the knowledge bases [94]. These
inconsistencies can persist particularly when the
database and the largely growing scholarly literature
about COVID-19 is managed by a limited number of
administrators” and can consequently cause matters
about the trustworthiness of the reuse of data [94].
However, critical problems related to structural
deficiencies in defining statements or to the inclusion
of mistaken data in open knowledge graphs seem to
happen less frequently in Wikidata [17]. Greater
consistency of structure and accuracy is partly due to
the involvement of more contributors in Wikidata
than in other open knowledge graphs [17]. But it also
stems from importing data from  other
rapidly-updated and curated databases (mainly from
the linked open data cloud [23]) and from
verification by overlapping methods (e.g. ShEx
schemas®, SPARQL-based logical constraints and
bot edits [43, 95]). The data validation infrastructure
of Wikidata seems to be in accordance with the latest
updates in knowledge graph evaluation and
refinement techniques [96, 97] and explains in part
the reasons behind the robustness of the data model
of COVID-19 information in this open knowledge
graph.

™ As of February 18, 2021, there are only 62 Wikidata
administrators, as shown at
https://www.wikidata.org/wiki/Special:Statistics.

% The validation schemas for COVID-19 information in
Wikidata are currently available at

Data_models.

5. Conclusion

In this research paper, we demonstrate the ability
of open and collaborative knowledge graphs such as
Wikidata to represent and integrate a large number of
the multidisciplinary aspects of the COVID-19
information and to use SPARQL to generate
summary visualizations about the infectious disease,
the underlying pathogen, the resulting pandemic and
related topics. We have shown how the
community-driven and not centrally coordinated
approach to editing has contributed to the success of
Wikidata in tackling emerging and rapidly changing
phenomena, such as the pandemic. We have also
discussed the disadvantages of collaborative editing
for systematic knowledge representation. As an open
semantic resource in the RDF format, Wikidata has
become a hub for COVID-19 knowledge. The
insertion of information in the Linked Open Data
format provides the flexibility to integrate data from
many facets of COVID-19 data with non-COVID-19
data. By its multilingual structure, these inputs are
contributed to (and reused by) people all over the
world, with different backgrounds. Effectively, the
WikiProject COVID-19 has made COVID-19
knowledge more FAIR: Findable, Accessible,
Interoperable and Reusable [64].

An important aspect of Wikidata’s FAIRness is the
Wikidata SPARQL query service
(https://query.wikidata.org) [64]. More than an
endpoint, the query service provides a visual
interface to create queries, and makes it easier for
beginners to customize queries. Additionally,
community-contributed data visualization tools like
Scholia provide human-friendly interfaces to surf the
data [35]. As shown here, SPARQL visualizations are
an entrypoint for deeper insights into COVID-19,
both regarding the biomedical facets of this still new
disease, as well as into the societal details of the
pandemic.

Another partner for FAIRness is user-friendly
programmatic data access. Wikidata database dumps
are available for download and local processing
(https: iki rg/wiki/Wiki _
ownload) in RDF, JSON and XML formats. Beyond
dumps, the Wikibase API makes data retrievable via
HTTP requests, which facilitates integration into
analysis and reuse workflows. API wrappers are also
available for popular programming languages like R
(hitps:/fcran r-projcet org web/packages/ WikidataR/)
and  Python  (https:/pypi.org/project/Wikidata/),
arguably exposing the content even further.
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Even though Wikidata is rich in COVID-19
knowledge, there is always room for future
improvement. As a collaborative endeavour,
Wikidata and the WikiProject COVID-19 are likely
to become further enriched over time. By the
collective efforts of contributors, we hope that the
database will grow in quality and coverage,
supporting other types of information - such as the
outcomes of the ongoing COVID-19-related research
efforts - and contributing to higher pandemic
preparedness globally.

As Wikidata is community-oriented and broadly
themed, virtually any researcher can take advantage
of its knowledge, and contribute to it. SPARQL
queries can complement and enrich research
publications, providing both an overview of
domain-specific knowledge for original research, as
well as serving as the base for systematic reviews or
scientometric studies. Of note, SPARQL queries can
be inserted into living publications, which can keep
up to date with the advancements both in human
knowledge and its coverage on Wikidata.
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Supplementary Data

Supplementary tables

Table S1. List of the tasks fulfilled by the SPARQL queries for the visualization of the COVID-19 information in
Wikidata

Task | Description

Genomic data and clinical knowledge

71 Symptoms of COVID-19 (SPEED, SARS-CoV-2-Queries)

Z2 Potential treatments of COVID-19 (SPEED)

73 Linnean Taxonomy of SARS-CoV-2 (SPEED)

74 All SARSr viruses (SARS-CoV-2-Queries)

75 Coronaviruses that infect humans (SARS-CoV-2-Queries)

76 All betacoronaviruses (SARS-CoV-2-Queries, WPCOVID)

77 All coronaviruses (SARS-CoV-2-Queries)

78 Comparing viruses with SARS-CoV-2 (SARS-CoV-2-Queries)

79 NCBI Taxonomy IDs of coronaviruses (SARS-CoV-2-Queries)

710 SARS-CoV-2 genomes (SARS-CoV-2-Queries)

711 SARS-CoV-2 genes (SARS-CoV-2-Queries)

712 SARS-CoV-2 proteins (SARS-CoV-2-Queries)

713 SARS-CoV-2 protein complexes (SARS-CoV-2-Queries)

714 SARSr genes (SARS-CoV-2-Queries)

715 SARSr proteins (SARS-CoV-2-Queries)

716 Human coronavirus’ genes (SARS-CoV-2-Queries)

717 Human coronavirus’ proteins (SARS-CoV-2-Queries)

718 Coronavirus’ proteins interacting with human proteins (SARS-CoV-2-Queries)

719 Biological process for the pathogenesis of coronaviruses (SARS-CoV-2-Queries)

720 Antibodies for the coronaviruses (SARS-CoV-2-Queries)

721 Vaccines for the coronaviruses (SARS-CoV-2-Queries)

722 Drugs for the coronaviruses (SARS-CoV-2-Queries)

723 COVID-19, COVID-19 pandemic and SARS-CoV-2 in the context of the Wikidata knowledge graph (Scholia)
Epidemiology

7224 Daily evolution of the global number of COVID-19 cases (SARS-CoV-2-Queries, WPCOVID, COVID-19 Summary)
725 Daily evolution of the number of COVID-19 Cases by Country (SPEED)

726 Daily evolution of the number of COVID-19 Deaths by Country (SPEED)

727 Daily evolution of the COVID-19 Mortality Rate by Country (SPEED)

728 Daily evolution of the number of COVID-19 Clinical Tests by Country (SPEED)

729 Daily evolution of the COVID-19 Positive Test Rate by Country (SPEED)

730 Daily evolution of the number of COVID-19 Recoveries by Country (SPEED)

731 Daily evolution of the COVID-19 Recovery Rate by Country (SPEED)

732 Daily evolution of the number of COVID-19 Cases in a given country (SPEED, SARS-CoV-2-Queries)

733 Daily evolution of the number of COVID-19 Deaths in a given country (SPEED, SARS-CoV-2-Queries)

734 Daily evolution of the number of COVID-19 Clinical Tests in a given country (SPEED)

735 Daily evolution of the number of COVID-19 Recoveries in a given country (SPEED)

736 Daily evolution of the COVID-19 Mortality Rate in a given country (SPEED)

737 Daily evolution of the COVID-19 Positive Clinical Test Rate in a given country (SPEED)

738 Daily evolution of the COVID-19 Recovery Rate in a given country (SPEED)

739 Daily evolution of the number of COVID-19 Cases by administrative subdivision of a given country (SPEED)
740 Daily evolution of the number of COVID-19 Deaths by administrative subdivision of a given country (SPEED)
741 Daily evolution of the COVID-19 Mortality Rate by administrative subdivision of a given country (SPEED)




742 Daily evolution of the number of COVID-19 New Cases (SPEED)

743 Daily evolution of the number of COVID-19 New Deaths (SPEED)

744 Daily evolution of the number of COVID-19 New Clinical Tests (SPEED)

7245 Daily evolution of the number of COVID-19 New Recoveries (SPEED)

746 Daily evolution of the number of COVID-19 Active Cases (SPEED)

247 Daily evolution of the number of COVID-19 Clinical Tests by Laboratory in a given country (SPEED)

748 Number of COVID-19 Cases by administrative subdivision of a given country (SPEED)

749 Number of COVID-19 Deaths by administrative subdivision of a given country (SPEED)

750 COVID-19 Mortality Rate by administrative subdivision of a given country (SPEED)

751 Number of COVID-19 Cases per Capita by administrative subdivision of a given country (SPEED)

752 Number of COVID-19 Deaths per Capita by administrative subdivision of a given country (SPEED)

753 Number of COVID-19 Cases per Area by administrative subdivision of a given country (SPEED)

754 Number of COVID-19 Deaths per Area by administrative subdivision of a given country (SPEED)

755 Current Epidemiological Status in a given country (SPEED)

756 Number of COVID-19 Clinical Tests by Laboratory in a given country (SPEED)

757 Map of Affected Countries (SPEED, WPCOVID)

758 Number of COVID-19 Cases by Country (SPEED, WPCOVID)

759 Number of COVID-19 Cases per 100000 inhabitants by Country (SPEED)

7260 Number of COVID-19 Deaths by Country (SPEED)

761 Number of COVID-19 Deaths per 100000 inhabitants by Country (SPEED)

262 COVID-19 Mortality rates by Country (SPEED)

763 Number of COVID-19 Clinical Tests by Country (SPEED)

7264 Number of COVID-19 Clinical Tests per 100000 inhabitants by Country (SPEED)

765 Number of COVID-19 Recoveries by Country (SPEED)

7266 Number of COVID-19 Recoveries per 100000 inhabitants by Country (SPEED)

767 Famous COVID-19 Victims (SPEED, WPCOVID, COVID-19 Summary)

268 Age distribution of Famous COVID-19 Victims (COVID-19 Summary)

769 Field of work of Famous COVID-19 Victims (COVID-19 Summary)

770 Place of birth of Famous COVID-19 Victims (COVID-19 Summary)

771 Number of COVID-19 Cases per area by Country (SPEED, COVID-19 Summary)

772 Number of COVID-19 Deaths per area by Country (SPEED)

773 Number of COVID-19 Clinical Tests per area by Country (SPEED)

774 Number of COVID-19 Recoveries per area by Country (SPEED)

775 Number of COVID-19 Cases in function of the number of clinical tests in a given country (SPEED)

776 Number of COVID-19 Deaths in function of the number of cases in a given country (SPEED)

777 COVID-19 Mortality Rate in function of the number of cases in a given country (SPEED)

778 Number of COVID-19 cases in an administrative subdivision of a given country in function of population (SPEED)
779 Number of COVID-19 cases in an administrative subdivision of a given country in function of area (SPEED)
780 Number of COVID-19 cases in an administrative subdivision of a given country in function of population Density Rate (SPEED)
781 Number of COVID-19 deaths in an administrative subdivision of a given country in function of population (SPEED)
782 Number of COVID-19 deaths in an administrative subdivision of a given country in function of area (SPEED)
783 Number of COVID-19 deaths in an administrative subdivision of a given country in function of population Density Rate (SPEED)
784 COVID-19 Mortality Rate in an administrative subdivision of a given country in function of population (SPEED)
785 COVID-19 Mortality Rate in an administrative subdivision of a given country in function of area (SPEED)

786 COVID-19 Mortality Rate in an administrative subdivision of a given country in function of population Density Rate (SPEED)
787 Number of COVID-19 new cases in a given country in function of number of old cases (SPEED)

788 Global number of COVID-19 Cases in function of the global number of clinical tests (SPEED)

789 Global number of COVID-19 Deaths in function of the global number of cases (SPEED)

790 COVID-19 Global Mortality Rate in function of the global number of cases (SPEED)

791 Country-level number of COVID-19 Cases in function of Country Population (SPEED)

792 Country-level number of COVID-19 Cases in function of Country Area (SPEED)

793 Country-level number of COVID-19 Cases in function of Country Population Density Rate (SPEED)

794 Country-level number of COVID-19 Deaths in function of Country Population (SPEED)

795 Country-level number of COVID-19 Deaths in function of Country Area (SPEED)

796 Country-level number of COVID-19 Deaths in function of Country Density Rate (SPEED)

797 Country-level COVID-19 Mortality Rate in function of Country Population (SPEED)

798 Country-level COVID-19 Mortality Rate in function of Country Area (SPEED)




799 Country-level COVID-19 Mortality Rate in function of Country Population Density Rate (SPEED)

7100 Duration between first case and first death based on number of cases and number of deaths in a given country
(SARS-CoV-2-Queries)

7101 Lockdowns due to the COVID-19 pandemic (WPCOVID)

Research outputs and computer applications

7102 Scholarly publications about COVID-19 pandemic and SARS-CoV-2 (SPEED, SARS-CoV-2-Queries, WPCOVID, Scholia)

7103 Tools and Resources about COVID-19 pandemic by type (SPEED)

7104 Tools and Resources about COVID-19 pandemic (SPEED)

2105 Tools and Resources about COVID-19 pandemic by publisher (SPEED)

7106 Tools and Resources about COVID-19 pandemic by license (SPEED)

7107 Tools and Resources about COVID-19 pandemic by field of work (SPEED)

7108 Clinical trials about COVID-19 pandemic (SARS-CoV-2-Queries)

7109 Scholarly publications about the virus transmission of coronaviruses (SARS-CoV-2-Queries)

7110 Scholarly publications about the SARS-CoV-2 genes (SARS-CoV-2-Queries)

7111 Scholarly publications about the SARS-CoV-2 proteins (SARS-CoV-2-Queries)

7112 Scholarly publications about coronaviruses (SARS-CoV-2-Queries)

7113 Scholarly publications about human coronaviruses (SARS-CoV-2-Queries)

7114 Contact tracing protocols related to the COVID-19 pandemic (WPCOVID)

7115 Scholarly publications about COVID-19 pandemic and SARS-CoV-2 by year (Scholia)

7116 Research scientists mostly publishing scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

7117 Collaboration network of the research scientists working on COVID-19 pandemic and SARS-CoV-2 (Scholia)

7118 Topics of the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

7119 Co-occurring topic graph of the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

7120 Map of cities and countries evocated by the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

7121 Research scientists mostly cited by the scholarly publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

72122 Venues and series mostly publishing research works about the COVID-19 pandemic and SARS-CoV-2 (Scholia)

7123 Most cited research publications about COVID-19 pandemic and SARS-CoV-2 (Scholia)

7124 Map of institutions publishing research works about COVID-19 pandemic and SARS-CoV-2 (Scholia)

7125 Citation network of research countries working on COVID-19 pandemic and SARS-CoV-2 (Scholia)

7126 Awards received by authors who published on COVID-19 pandemic and SARS-CoV-2 (Scholia)

7127 Scholarly publications about COVID-19 and SARS-CoV-2 with missing main subject [P921] values (SARS-CoV-2-Queries, WPCOVID)

Other

7128 Images from Wikimedia Commons about COVID-19 pandemic and SARS-CoV-2 (SPEED)

7129 COVID-19 Factbook (SPEED)

7130 Bankrupt businesses due to the COVID-19 pandemic (WPCOVID)

7131 Properties used to model COVID-19 knowledge in Wikidata (WPCOVID)

Table S2. List of sample queries on COVID-19. The information contained therein is similar to visualizations in
many stand-alone COVID-19 dashboards, covering an overview of COVID-19, international situation,
international daily epidemiological evolution, Tunisian daily epidemiological evolution, Tunisian
governorate-level situation, Tunisian correlations, and worldwide correlations. Each of the sheets has a Title
column with a brief summary for each query and a URL column with a link to the live record on Wikidata.

Table available as Query/COVID-19.xlsx in
http://doi.org/10.5281/zen0d0.4022591.

Table S3. Raw data and correlation statistics for datasets summarised in tables 3 and 4, including Pearson’s,
Spearman’s, and Cohen’s coefficients for the raw data and Spearman’s coefficients and principal component
analysis of the log-10 transformed data.

Table available as docs/Fig5Corr/T3+4.xlsx in
http://doi.org/10.5281/zenodo.4022591.
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Table S4. Spearman's tho on raw data (pairwise) of untransformed variables from tables 3 and 4 against max
development index for countries speaking each language as an official language, and number of native speakers.
Final column indicates Cohen's q value (calculated as the difference between the Fisher-transformed Spearman's
rho values i-e-a q= zl(r(development,Wikidata med Iabels))_ zl(r(number of speakers, Wikidata med Iabels)))a Comparing these two for the
stronger correlate for variables from tables 3 and 4. Positive values indicate max development index as the
stronger correlate, while negative values would indicate number of native speakers as the stronger correlate.
Differences of >.5 are considered “large” and unusual for the social sciences, .3 “medium” and .1 “small”.

Spearman’s rho Spearman’s rho Cohen’s q
Max development Number speakers development - speakers
Medical Wikipedia articles 71 .48 .36
Medical Wikidata labels .76 .38 .59
Wikipedia and Wikidata Users .62 21 .51
COVID19 pandemic Wikipedia pageviews .53 .53 .00
COVID Wikipedia pages 71 .52 31
COVID Wikidata content .69 .53 .26
COVID Wikipedia edits .63 .55 12

Supplementary figures

This section of the supplementary data includes additional array of visualizations that were not able to fit in the

main text but that exemplify the diversity of additional valuable information that can be extracted out of the
Wikidata knowledge base.

Fig. S1. Snapshot of the extended graph of the three main COVID items and the statements for which they are the subject. Linked items
demonstrate the variety of topics for which the three main COVID items (indicated in red) are the subject and present a small subset of the

classes indicated in Fig. 2. (Available at: https:/w.wiki/cPa, live data: https://w.wiki/xYE, Access Date: August 19, 2020)
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Fig. S2. Epidemiological data for Tunisia as of August 16, 2020. The SPEED website was set up as a COVID-19 data dashboard for Tunisia
(Available at: https:/w.wiki/cQC). A) Daily mortality rate from COVID-19 in Tunisia (live data: https://w.wiki/N2p). B) Tunisian
governorate-level cases (live data: https://w.wiki/N9Y). C) Daily Evolution of Clinical tests by laboratory in Tunisia (live data:
https://w.wiki/NEb).
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A

dateOfDeath name citizenship profession
16 August 2020  Chetan Chauhan India cricketer

14 August 2020  Moisés Mamani Colquehuanca  Peru politician

13 August 2020  Dario Vivas Venezuela palitician

13 August 2020  Gulnazar Keldi Tajikistan journalist

11 August 2020 Trini Lopez United States of America film actor

11 August 2020 Rahat Inderi India Iyricist

11 August 2020 Sixto Brillantes Philippines lawyer

9 August 2020 Kamala United States of America professional wrestler
9 August 2020 Tony Moussa Syria actor

8 August 2020 Alfredo Lim Philippines police officer
8 August 2020 Buruju Kashamu Nigeria palitician
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Figure S3. People listed in Wikidata deceased due to COVID-19 as of August 16, 2020 (Available at: https:/w.wiki/cOK). A) As tabular
output, ranked by date of death (live data: https://w.wiki/Mgv). B) Portrait images available under a CC BY-compatible license, ranked by how
well-described the depicted individuals are in Wikidata (number of identifiers + statements + sitelinks) (live data: https:/w.wiki/bzJ). C) as
bubble diagram of professions (live data: https://w.wiki/bTz).
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Figure S4. Partial citation network within Wikidata as of August 16, 2020 (Available at: https://w.wiki/cQV). The citation network around
COVID-19 is currently rather incomplete but part of the larger, ongoing WikiCite project to represent all citation data within Wikidata as a
fully open citation network. A) publications cited from C3 papers (live data: https://w.wiki/b$h) B) authors most frequently cited by C3 papers

(live data: https://w.wiki/b$i).

count venue venueLabel publisherLabel

2036 Q wd Q58465838  medRxiv Cold Spring Harbor Laboratary
1155 Q wd Q546003 The BMJ BMJ

823 Qwd Q15716684 Journal of Medical Viralogy Wiley-Blackwell

532 Q wd:Q19835482  bioRxiv Cold Spring Harbor Laboratory
507 Qwd:Q5133764 | Clinical Infectious Diseases Oxford University Press

469 Q wd:Q939416 The Lancet Elsevier

428 Qwd:Q6051382  International Journal of Environmental Research and Public Health MDPI

420 Q wd:Q6295344  Journal of Infection Elsevier

389 Quwd:Q1470970  Journal of the American Medical Association American Medical Association
356 Qwd Q15262334  Intenational Joumnal of Infectious Diseases Elsevier

347 Qwd Q15766374 Dermatologic Therapy Wiley-Blackwell

329 Q wd Q582728 The New England Joumal of Medicine Massachusetts Medical Society
3 Q wd Q6029185  Infection Control and Hospital Epidemiology University of Chicage Press
274 Q wd Q15724248 The Lancet Infectious Diseases Elsevier

Figure S5. Most common publication venues for C3-themed papers (published and preprint) as of August 16, 2020. Even with Wikidata’s
currently incomplete coverage of articles hosted on preprint servers, they are clearly a significant location for COVID-related publications

(Available at: https://w.wiki/cQX, live data: https://w.wiki/bd$).
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Start date Trial Intervention Sponsor
2020-05-12  Acalabrutinib Stedy With Best Supportive Care Versus Best Supportive Care in Subjects AstraZeneca
Hospitalized With COVID-18.
2020-05-10  COVID-19 Prneumonitis Low Dose Lung Radiotherapy (COLOR-19)
2020-05-05 Levamisale and Isoprinosine in the Treatment of COVIDTS: A Proposed Therapeutic Trial azithromycin
2020-05-05  Levamizaole and lsoprincsing in the Treatment of COVIDTD: A Propesed Therapeutic Trial levamisole
2020-05-05 Levamisole and Isoprinosine in the Treatment of COVID1S: A Proposed Therapeutic Trial hydrosychloroguine
2020-05-05 Levamisole and Isoprinosing in the Treatment of COVIDIS: A Propased Therapeutic Trial inosing pranabex
2020-04-24  Acalabrutinib Study With Best Supportive Care Versus Best Supportive Care In Subjects AstraZeneca
Hospitalized With COVID-18. CALAYI (Calguence Against the Virus)
2020-04-16  Austrian CoronaVirus Adaptive Clinical Trial (COVID=19) candesartan Meadical
University of
Vienna
2020-04-16  Austrian CoronaVirus Adaptive Clinical Trial (COVID-19) hydroxychloroguine  Medical
University of
Wienna
2020-04-16  Austrian CoronaVirus Adaptive Clinical Trial (COVID-19) chiloroquine Medical
University of
Vienna

Fig. S6. Information regarding clinical trials on interventions to treat COVID-19 as of August 16, 2020 (Available at https:/w.wiki/cOb, live
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COVID-19 European Dashboard

Q wd:Q91219501

COVID-19 dashboard
<https://gap.ecdc.europa.ewpublic/extensions/COVID-19/COVID-19.html>
European Centre for Disease Prevention and Control

All Rights Reserved

COVID Racial Data Tracker
Q, wd: Q96655300
COVID-19 dashboard

COVID Atlas
Q, wd:Q9B777164
COVID-19 dataset

COVID Atlas
Q, wd:Q0B777164
COVID-19 search engine

Apturi Covid
Q, wd:Q97058482
COVID-19 abo

Fig. S7. Computer applications and their types as of August 16, 2020 (Available at: https://w.wiki/cQg, live data: https:/w.wiki/NVp)
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count  awand - awardLabel ~ reciplents

4 Qe Q15631401 Fallow of the Rayal Sacisty Bryan Geenfell Malk Peiris, Edward C_ Holmes, Gagandesp Kang
4 Q,wd Q24081923 Fellow of the Academy of Medical Sciences Simon Wessely, Maria Zambon, Neil M. Ferguson, Clive Ballard
3 Quwd Q7241433 Presidential Early Carper Awvard for Scientists and Engineers Russ Altmasn, John Brownstein, Namandé N. Bumpus

3 Qi Q10762048 Officer of the Order of the British Empire Bryan Grenfell. W, John Edmunsds, Neil M. Fergusan

3 O Q26204035 Fellow of the Royal College of Physicians Simen Wassely. Francine Mouml, Philp | Murray

3 O QSGTETETS  Fellow of the Amedican Instiung for Medical and Biological Enginsering Russ Altman, Cato T Laurencin, Eiizabeth Kruginski

3 O wd 063208574  Fallow of the Aliican Azsdemy of Scieness Alirwddin Funda, Abba Gumel Francine Nisumi

2 Qwd Q5442484 AAAS Fellow Ira Longini, Betz Halloran

z QLwd Q23657744 Kt Lewin Madal Alexander Haslam, Jolanda Jetten

2 QLwd Q53771458  Fallow of the Academy of the Soclal Sdences in Australla Helen Cheistensen, Jolanda Jatten

2 OLwd Q5GTT161S  Fallow of the Australian Academy of Health and Medical Sciences Helen Christensen, Katherine Kedzierska

2 O o GE1T44587  Fellow of the American Slatistical Associaion Ira Longini Betz Halloran

2 Qwd 072859645

Assodate Fellow of the Alican Academy of Scences

- T w -

Fig. S8. Information on authors of articles on COVID-related topics as of August 16, 2020 (Available at: https://w.wiki/cQh). A) Awards most
frequently received by authors of C3 papers (live data: https://w.wiki/ban), B) Map of organizations associated with works about C3 with
institutions that have published a single paper on the topic in green, those that have published 1-10 in orange, and those having published >10

in blue (live data: https://w.wiki/cG4).


https://w.wiki/cQh
https://w.wiki/ban
https://w.wiki/cG4

A

outbreak label URL
aQ 2020 COVID-19 pandemic in the

- Iy
whCBOT13865 | mtmis of S8 Pauin «hittpa:/iwww. seade. gov. bricoronawvirniss
a COVID-19 pandenmis in Seatland =Hhilpa-iveww.goy. soolicoranawirus-covid- 190
wit-087T43358
Q 2020 COVID-19 pandemic in Ohia =hitps-licarenavinus ohic.gow'>
wi-QETT438T3
a 2020 COVID-19 pandemic in Alberta  <hitps-lwww.albens. calcoronavins-info-for-albertans sspes
wi-DETI01408
a 2020 COVID-19 pandemic in Gujarat  <https-ligujcovid19.gularat. govin/>
wi:OBB0ST247
a 2020 COVID-19 pandemic in

<H Jiveww.gon.mb. i =
we:0BBSTI921  Manitoba He: I, gov.mb calcovid 191

Q 2030 COVID-19 pandemic in ;
W:Q8T245450  Lebanon “Hipdhne moph. gk
&, ety f‘:ﬁm B ien <hitps:/icarcna.minissryinto. gov. =
Q 2020 COVID-19 pandemic in

! for
wiCIET245450  Labanon <htips:/iwww.thed1.com/coronavins!

@ ?mmn'm pandemic in < it e non VNS & CLBd o Comy=
B
itam labael hashtag
QL wd:ORTTO5804 2020 COVID-19 pandemic in Kenya COVIDIIKE
Q wd:QBTT 18451 2020 COVID-19 pandemic in Nigeria CoreneVinsNigera
Q, wd:QEREZ2ER1 2020 COVID-19 pandemic in the Eurapean Unian CononavinusEU
Q w:QBAEZ2681 2020 COVID-1% pandemic in the European Linien COVIDISEU
Q wd-CB 1068810 COVID- 19 pandemic COVID19FDAM
O, wil:QBSE9TEIS COVID- 19 pandamic in Brazil coid 19brasil
Q, wid:0BT250732 2020 COVID-19 pandemic in Croatia OstanDoma
Q wd:OBET4EIET 2020 COVID=19 pandemic in Colombia Covid 19Colombia
Q wa:QBIBTINGT COVID-19 pandemic in Vietnam Coronaninisyiamam
Q wd-OBIETIIET 2020 COVID-19 pandemic in Singapare Corcnavinussingapone
O, wed:QEIBT22T COVID-1% pandamic in mainiand China CorenaVinsChina
Q, w:QEIBT2271 COVID- 19 pandemit in mainland China carenaviruswuhan
Q wd:QBEIBT2EH COVID- 18 pandamic in Japan CorenaVinsJapan
O wel-CEIST2308 2018-20 COVID-19 oulbreak in Soulth Korea CorenafiruaSouthKona
Q, wel:ORIBTISE 2020 COVID-1% pandemic in Australia coronavirusaus

Fig. S9. Online resource locations for information on COVID-19 regional outbreaks as of August 16, 2020 (Available at: https://w.wiki/cQo).
A) Official websites (live data: https://w.wiki/bdt). B) Main hashtags (live data: https://w.wiki/bds)
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Fig. S10. COVID-related images based on structured data as of August 16, 2020 (Available at: https:/w.wiki/cQt). Images in wikimedia
commons used to be organised solely by a hierarchical category structure. Since 2019, structured data can be associated with images via
Wikidata statements. A) Images from Wikimedia Commons about COVID-19 pandemic and SARS-CoV-2 with a CC-BY-compatible license
(live data: https://w.wiki/Zsn). B) Images of face masks used during COVID-19 pandemic with a CC-BY-compatible license (live data:

https:/w.wiki/bzG).
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Author responses to the comments

Article title: Representing COVID-19 information in collaborative knowledge

graphs: the case of Wikidata
Tracking Number: 2572-3786

Authors: Turki et al.

Many thanks for the referee comments which have helped us improve the presentation and

guality of the manuscript. We have responded to these point-by-point. Please find below our

detailed response to the comments made by the reviewers. Adjusted parts are highlighted in

yellow.

Editor comments

Comments

Responses

In light of the reviews | share the sentiment of
one of the reviewers that the paper is better
suited for a dataset description (i.e., a subgraph
of Wikidata) rather than as a research paper.

We believe we are offering a research
contribution, by showing on the basis of a specific
dataset how collaborative editing and
decentralized knowledge production can be
particularly successful in addressing new, rapid
phenomena. We also point out shortcomings of
the model. This cannot be explained in the few
pages that a dataset description allows for. For
that reason, we believe that our paper fits the
research criterion, even though we are happy
that you find our contribution valuable as a
dataset paper, too.

Contribution: Better define the novel
contributions of the paper.

DONE

We’ve reworked the abstract and introduction to
better clarify and summarise what is new in the
work presented.

We have also highlighted how we are able to give
a unique ‘insider perspective’ on the topic from
being contributors to the development of the
COVID-19 facets of Wikidata:

“In this research paper, we report on the efforts
of the Wikidata community (including our own) to
meet the COVID-19 data challenges outlined in
the previous section by using Wikidata as a
platform for collaboratively collecting, curating




and visualizing COVID-19-related knowledge at
scales commensurate with the pandemic. While
the relative merits of Wikidata with respect to
other knowledge graphs have been discussed
previously, we focus on leveraging the potential
of Wikidata as an existing platform with an
existing community in a timely fashion for an
emerging transdisciplinary application like the
COVID-19 response.”

“As active editors of Wikidata, the authors have
contributed a significant part of that data
modelling, usage framework and crowdsourcing
of the COVID-19 information in the knowledge
graph since the beginning of the pandemic. We
consequently have a unique perspective to share
our experience and overview how Wikidata as a
collaborative multidisciplinary large-scale
knowledge graph can host COVID-19 data,
integrate it with non-COVID-19 information and
feed computer applications in an open and
transparent way.”

Coverage: Detail the exact coverage of the COVID
data on Wikidata, e.g., are there data points
missing such as economic data, what to do with
conflicting/inconsistent information etc.?

The coverage of the COVID-19-related
information is given with details in Section 3,
“Visualizing facets of COVID-19 via SPARQL”. The
coverage includes not only epidemiological
information but also biological and clinical
aspects, research aspects and societal aspects for
the pandemic including economic ones. The
missing points for these aspects that are not
efficiently covered in Wikidata are explained with
examples in the same section.
Concerning the management of conflicting and
inconsistent COVID-19 information, this is a good
point. Indeed, this is the topic of a second
research paper just submitted for review to SWJ
(available at
https://doi.org/10.5281/zenodo.4008358,
Tracking number: 2677-3891). We thought it
necessary to keep these two papers separate to
avoid the length getting overwhelming. However,
we added a paragraph at the end of the Data
Model and Discussion sections to explain this:
“Later, the developed semantic database for
the pandemic is checked by multiple layers of
validation. Methods include RDF triples defining



https://doi.org/10.5281/zenodo.4008358

conditions for the usage of Wikidata properties,
RDF validation schemas built in Shape Expressions
(ShEx) to verify the structural accuracy of the
statement of an item included in a given Wikidata
class, and logical constraints implemented in
SPARQL to verify the consistency of relational and
non-relational claims in Wikidata as well as
several tools based on edit history of Wikidata
such as ORES to identify and eliminate database
vandalism. Although Web Ontology Language
(OWL) can define knowledge graphs with a richer
semantic characterization of data models by
providing a layer of Description Logics such as in
DBpedia, the infrastructure developed for the
validation of RDF data in Wikidata helps assure a
high level of consistency of the Wikidata
knowledge graph.”

“Greater consistency of structure and accuracy is
partly due to the involvement of more
contributors in Wikidata than in other open
knowledge graphs. But it also stems from
importing data from other rapidly-updated and
curated databases (mainly from the linked open
data cloud) and from verification by overlapping
methods (e.g. ShEx schemas, SPARQL-based
logical constraints and bot edits). The data
validation infrastructure of Wikidata seems to be
in accordance with the latest updates in
knowledge graph evaluation and refinement
techniques and explains in part the reasons
behind the robustness of the data model of
COVID-19 information in this open knowledge
graph.”

Statistical Rigor: Include statistical analysis to
verify correlation analysis.

A very good point. For the observed correlations
between content, editorship and readership in
medical and COVID-19 content, we’ve added in
all-vs-all statistical comparisons to rigorously back
up the observations noted from tables 2-4.

We have rephrased also the sentences for that
claim to make it clear that the observations are
descriptive in the phrase “Query results largely
match previously published trends for Wikipedia
and Wikidata (Table 2), though we note that
Arabic (ar) and Chinese (zh), appear in the top 10
languages in the Wikidata COVID-19 subset, while




being absent from the top 10s for other sets
described in Table 4.”

We agree that more in-depth tests, if planned a
priori, could allow stronger causative claims. That
is why, we have added correlation analysis of the
statistical data about language representation:
“These correlations can be interrogated by
querying Wikidata to find out the current status
of the editing of this knowledge graph and of
Wikipedia in 307 languages (Table S3; top-ranking
items for each variable summarised in Tables 3
and 4). Query results largely match previously
published trends for Wikipedia and Wikidata
(Table 2), though we note that Arabic (ar) and
Chinese (zh), appear in the top 10 languages in
the Wikidata COVID-19 subset, while being
absent from the top 10s for other sets described
in Table 4. Coverage differed across languages
and variables, and most of the distributions
showed marked positive skew. Nonparametric
analysis of correlations (Spearman’s rho) found
large magnitude associations (rho .65 to .97,
median = .84, Supplementary Table S4),
statistically significant even following stringent
Bonferroni correction. To account for skew and
data spanning multiple orders of magnitude,
log10-transformed data was used for subsequent
analyses. Pearson’s correlation coefficients
between all variables was high (Figure 5). A
principal component analysis for the 90
languages with complete data on all 7 indicators
found that a single component explained 81% of
the variance, with loadings ranging from .80 to
.95. The smallest PCA loading and Spearman’s
correlation was for the number of viewers, which
though still a strong association, was less
correlated than the other variables by a
substantial margin.”

“This is confirmed by the high correlation
(Pearson r = 0.93) of the language distribution of
COVID-related Wikidata labels with the number
of COVID Wikipedia pages in language editions
and the moderate correlation (Pearson r > 0.65)
between the number of Wikidata COVID-related
labels in a given language and the quantity and
edit statistics of medical content in Wikidata and




Wikipedia (Fig. 5). Such relationships are
strengthened by the high correlation (Pearson r >
0.9) between the number of medical Wikidata
labels in a given language and the number of
medical Wikipedia articles in language editions as
well as the number of native speakers jointly
editing Wikipedia and Wikidata.

To investigate the possible causes of these
highly correlated datasets, we compared them to
two external metrics for each language: the
number of native speakers of each language and
the maximum human development index for
countries where that language is an official
language. This data was available for fewer
languages (N = 57 each, 19 pairs) and the sparse
overlap precluded including both simultaneously
in analyses. The number of native speakers
showed similar positive skew to earlier data, so
was also logl0-transformed. Even though these
analyses are necessarily exploratory, maximum
development correlated more strongly than did
the number of speakers (Figure 5B; Table S4).
Cohen’s g values (an effect size for differences
between correlation coefficients) of a size
considered unusually large for the social sciences
(> 0.5) were observed when comparing
correlation of development index versus number
of speakers with the number of medical Wikidata
labels and with the number of users. Further
medium g values (differences > 0.3) were
observed for correlation to the number of
medical Wikipedia articles and to the number of
COVID Wikipedia pages. Correlation differences
were negligible with regard to development
versus number of speakers as associated with the
number of edits or pageviews.”.

Usage: How can users access the information
beyond the proposed SPARQL queries.

Good recommendation. We have now mentioned
the web interface introduction:

“One of Wikidata’s key strengths is that each item
can be understood by both machines and
humans. It represents data in the form of items
and statements, which are navigable in a web
interface and shared as semantic triples.
However, where a computer can easily hold the
entire knowledge base in its memory at once, the




same is obviously not true for a human.

Since we still rely on human interpretation to
extract meaning out of complex data, it is
necessary to pass that data from machine to
human in an intuitive manner. The main way of
doing this is by visualising some subset of the
data, since the human eye acts as the input
interface with the greatest bandwidth.”

We also expanded the final section on the
SPARQL query service:

“An important aspect of Wikidata’s FAIRness is
the Wikidata SPARQL query service
(https://query.wikidata.org). More than an
endpoint, the query service provides a visual
interface to create queries, and makes it easier
for beginners to customize queries. Additionally,
community-contributed data visualization tools
like Scholia provide human-friendly interfaces to
surf the data. As shown here, SPARQL
visualizations are an entrypoint for deeper
insights into COVID-19, both regarding the
biomedical facets of this still new disease, as well
as into the societal details of the pandemic.”

Further, we added a note on data availability,
making it clear that data on Wikidata can be
downloaded via database dumps, the Wikibase
APl and API wrappers:

“Another partner for FAIRness is user-friendly
programmatic data access. Wikidata database
dumps are available for download and local
processing
(https://www.wikidata.org/wiki/Wikidata:Databa
se_download) in RDF, JSON and XML formats.
Beyond dumps, the Wikibase APl makes data
retrievable via HTTP requests, which facilitates
integration into analysis and reuse workflows. API
wrappers are also available for popular

programming languages like R
(https://cran.r-project.org/web/packages/Wikida
taR/) and Python

(https://pypi.org/project/Wikidata/), arguably
exposing the content even further.”
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Reviewer 1

Comments

Responses

Overall, the paper is written clearly, but it could
be improved regarding the organisation to make
its logical flow more manifest. The authors
explain how Wikidata works briefly and illustrate
the COVID related data in Wikidata. However,
according to the paper's goal, the fitness of
Wikidata for handling COVID related data, the
following discussions would be insightful, i.
COVID data specific issues, ii. different available
methods and technologies for handling these
issues and iii. the advantages of Wikidata's
techniques for addressing the raised issues.

We have streamlined the organization of the
sections (as outlined in the new section 1.2
“Organization of the manuscript”) and the logical
flow within and between them.

The purpose of this paper is to highlight the value
of Wikidata as a readily usable platform that can
be quickly and flexibly customized to address
emerging needs like visual representations of
knowledge graphs pertaining to the COVID-19
pandemic.

With regards to the suggested discussions, we
have added a brief outline of COVID data specific
issues to the introduction (cf. Section 1.1 “Data
integration challenges”) and refer to it when
discussing related matters in various parts of the
manuscript:

“Although collaborative editing contributed to
the development of large-scale information about
all aspects of the disease, there are currently still
significant gaps and biases in the dataset that can
lead to imprecise results if not interpreted with
caution. For example, the COVID-19 outbreaks on
cruise’ and naval® ships are better covered in
Wikipedia than in Wikidata (or most other online
resources). Similarly, scholarly citations are not
yet evenly covered, since systematic curation will
require more scalable workflows. Although many
of these gaps are rapidly being addressed and
closed over time, errors of omission and bias are
inevitable to some extent. Such deficiencies can
only be detected and solved by applying
algorithms that assess data completeness of
items included in a given class within open
knowledge graphs. Solutions involve
cross-checking knowledge bases or subsets of the
same knowledgebase, systematically exposing
the content of Wikidata to many eyes through its
reuse in Wikipedia and SPARQL-based tools such

" https://en.wikipedia.org/wiki/COVID-19_pandemic_on_cruise_ships

2 hitps://en.wikipedia.org/wiki/COVID-19_pandemic_on naval ships
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as Scholia and COVID dashboards, and using
knowledge graph learning techniques to update
items directly from textual databases like
scholarly publications and electronic health
records. Moreover, collaborative editing can
cause several inaccuracies in the declaration of
statements in open knowledge graphs
disregarding the metadata standards of the
knowledge bases. These inconsistencies can
persist particularly when the database and the
largely growing scholarly literature about
COVID-19 is managed by a limited number of
administrators and can consequently cause
matters about the trustworthiness of the reuse of
data. However, critical problems related to
structural deficiencies in defining statements or
to the inclusion of mistaken data in open
knowledge graphs seem to happen less
frequently in Wikidata. Greater consistency of
structure and accuracy is partly due to the
involvement of more contributors in Wikidata
than in other open knowledge graphs. But it also
stems from importing data from other
rapidly-updated and curated databases (mainly
from the linked open data cloud) and from
verification by overlapping methods (e.g. ShEx
schemas, SPARQL-based logical constraints and
bot edits). The data validation infrastructure of
Wikidata seems to be in accordance with the
latest updates in knowledge graph evaluation and
refinement techniques and explains in part the
reasons behind the robustness of the data model
of COVID-19 information in this open knowledge
graph.”

“However, this also exemplifies how misleading
missing data can be: Wikidata currently has highly
inconsistent coverage of companies that are not
publicly listed, which heavily biases the results.
For example, the current lack of yearly updated
socio-economic information such as
unemployment rates [P1198] and nominal GDP
[P2131] for countries in Wikidata limits the use of
the knowledge graph for the study of the effect
of the pandemic on global economies, although
this is theoretically possible. Likewise, Wikidata is
very incomplete with respect to COVID-19-related




regulations like stay-at-home orders, school
closures or policies regarding face masks.
Standardised methods to audit and validate
Wikidata’s content on various topics are still
under investigation and development.”

“Concerning drugs, proteins, genes and taxons,
Wikidata items are mainly assigned external
identifiers in the major knowledge graphs for
pharmacology (e.g. MassBank), for biodiversity
(e.g. IRMNG), for genomics (e.g. Entrez Gene) and
for proteomics (e.g. PDB) and are rarely linked to
non-medical databases or to encyclopedias, as
shown in Table 8.”

“this Wikidata coverage of the availability of
COVID-19-related publications in external
research databases does not seem to fully
represent full records of COVID-19 literature in
aligned resources. By way of comparison, we
performed a simple search for “COVID-19” in a
set of literature databases, and there were
103796 COVID-19-related records available on
PubMed, 110323 COVID-19 full texts accessible
on PubMed Central, 296450 COVID-19
publications on Dimensions, 211000 records on
Semantic Scholar, 4778 records at
ClinicalTrials.gov, 3295 records on arXiv ID, and
183 records on NIOSHTIC-2 as of February 17,
2021.”

“An important caveat is that data integration
through Wikidata poses some particular
challenges of its own, such as data licensing
(being in the public domain, Wikidata can
essentially only ingest public-domain data [27]) or
multilinguality (e.g. how to handle concepts that
are hard to translate), and for certain kinds of
data (e.g. health data from individual patients), it
is not suitable, although appropriately configured
instances of the underlying technology stack
might.”

The paper avoids the discussion of underlying
semantic technologies that are proposed and
deployed for handling various aspects of complex

The purpose of the research paper was not to
study the advantages of different semantic
technologies to represent large-scale COVID-19




real data, including geospatial and time
characteristics of data. For example, for
guantifying a fact, there are different competing
approaches, including property graph and RDF*.
The explanation of Wikidata's quantifiers is not
adequate regarding characterizing syntax and
semantic of the deployed quantifying method
and how Wikidata's way is more apt for
modelling COVID data in comparison with the
other methods.

information. The main aim of the paper is to
demonstrate the usefulness of knowledge bases
to handle and especially visualize COVID-19 data.
Here, Wikidata's model offers a "good-enough"
model to assess this statement.

We agree that there might be other semantic
technologies that are, rigorously, more adequate
to represent specific bits of knowledge in general.
However, in the context of COVID-19, RDF is a
better choice than a property graph. In fact,
property graphs are generally used in the context
of social media, where the predicates of semantic
relations do not matter as much. We further
developed the Data Model section to explain this
statement in details:

“The advantage of RDF over other competing
semantic data formats, particularly property
graph, is that it applies reference schemas and
consistency rules before assigning predicates to
statements.

Entries in RDF triple stores are predefined
entities, rather than simple text strings, and
structured into uni-directional statements [13]. In
Wikidata, this is further enhanced by the use of
qualifiers to provide additional features of the
statements. This structure makes building
semantic databases using RDF more difficult and
time-consuming than alternative systems,
especially property graph, but it allows a fully
regular representation of statements in
knowledge graphs where subjects, predicates and
objects are standardized and semantically
described. Avoidance of typos and synonyms of
string-based systems then allows far faster and
more precise information retrieval and usage.”

We have also provided several other comparisons
in favor of the Wikidata data model and the use
of the RDF Format:

“Although Web Ontology Language (OWL) can
define knowledge graphs with a richer semantic
characterization of data models by providing a
layer of Description Logics such as in DBpedia, the
infrastructure developed for the validation of RDF




data in Wikidata helps assure a high level of
consistency of the Wikidata knowledge graph.”

“This observation fits with the considerably
limited volume of knowledge graphs exclusively
enriched and verified by a dedicated expert group
- such as OpenCyc - when compared to the
volume of open and collaborative knowledge
graphs, particularly Wikidata, YAGO, DBpedia and
Freebase.”

“In comparison to other resources like DBpedia,
Wikidata is not just edited by machines and built
from data automatically extracted from textual
resources like Wikipedia. Wikidata is mainly
enriched and adjusted by a community of over
25000 active human users on a daily basis and is
released under the CCO license allowing the free
and unconditional reuse and interoperability of
its information in other systems and datasets and
consequently the growth of interest of many
people in using, enriching and adjusting it.”

“Such distantly related entities are also available
in other open knowledge graphs, particularly
DBpedia and YAGO, and contribute much to the
value of a semantic resource. In Wikidata, several
initiatives such as WikiCite for scholarly
information and Gene Wiki for genomic data have
enabled COVID-19 knowledge graphs to include
classes like genes [Q7187], proteins [Q8054] or
biological processes [Q2996394], along with the
definition of semantic relations between items
closely and distantly related to COVID-19. This,
consequently, allows the expansion of the
coverage of COVID-19 information in Wikidata
and a better characterization of COVID-19-related
items.”

“Although Web Ontology Language (OWL) can
define knowledge graphs with a richer semantic
characterization of data models by providing a
layer of Description Logics such as in DBpedia, the
infrastructure developed for the validation of RDF
data in Wikidata helps assure a high level of
consistency of the Wikidata knowledge graph.”




“This process is called reification, and it is a
common feature of many knowledge graphs such
as DBpedia, Freebase, and YAGO. Although
DBpedia and Freebase apply reification in a
similar setting as in Wikidata, YAGO chooses to
use N-Quads to represent the characteristics of a
statement, implying that the additional feature is
linked to the statement as a couple without the
use of any predicate.”

“The assignment of a single
language-independent identifier for each entity in
Wikidata helps minimize the size of the
knowledge graph and avoids issues seen in
databases such as DBpedia, where separate items
are needed for each language. Such a feature is
allowed thanks to the use of Wikibase software -
a MediaWiki variant adapted to support
structured data - to drive Wikidata instead of
other systems that represent entities using
textual expressions, particularly Virtuoso.”

The authors do not provide convincing arguments
to support how the characteristics of Wikidata
addresses the specific issues that COVID-19
related data raised.

Our main argument is that Wikidata’s versatility
(and the community-centric approach) are
particularly relevant for addressing rapid and
emerging phenomena, such as COVID-19
pandemic. As mentioned in response to your first
comment, we also added an outline of
COVID-specific data issues and comment on how
Wikidata addresses them.

We additionally focus on showcasing a snapshot
of how the COVID-19 knowledge graph of
Wikidata can be used to support computer
applications, particularly the SPARQL-based
visualization of multidisciplinary information
about COVID-19.

We have added a paragraph in the conclusions to
clarify this for systematic knowledge
representation.intent: “We have shown how the
community-driven and not centrally coordinated
approach to editing has contributed to the
success of Wikidata in tackling emerging and
rapidly changing phenomena, such as the
pandemic. We have also discussed the
disadvantages of collaborative editing for
systematic knowledge representation.”




Arguing a Knowledge Base (e.g. Wikidata) is a
reasonable solution for handling COVID-19
related data is an exciting idea. However, the
authors do not provide convincing arguments to
support how the characteristics of Wikidata
addresses the specific issues that COVID-19
related data raised.

As detailed in response to your first comment, we
have added a brief outline of COVID data specific
issues to the introduction (cf. Section 1.1 “Data
integration challenges”) and highlighted more
clearly (particularly in Section 2 “Wikidata as a
semantic resource for COVID-19”) how Wikidata
addresses these challenges.

Reviewer 2

Comments

Responses

In Introduction, the authors talk about the benefit
and drawback of the ‘community developed
ontology and typology’ (second paragraph). In
terms of the drawback, it claims that “it makes
methodical planning of the whole structure and its
granularity very difficult”. However, in the main
text | do not clearly see how these issues are
addressed in this project.

We have expanded the sentence to clarify that
we specifically mean the pros and cons of a lack
of a centralized coordination:

“This community-centric approach is both a
blessing and a curse. On the one hand, it makes
methodical planning of the whole structure and
its granularity very difficult, if not impossible [10]:
there simply is no central coordination system,
and all major design decisions have to be
approved through a consensus of all interested
contributors. On the other hand, harnessing
knowledge and skills of a broad range of human
and automated contributors provides for an
unparalleled flexibility and versatility of uses, and
allows for rapid addressing of emerging and
urgent phenomena, such as disease outbreaks.”

We have also expanded this part to explain how
these issues are addressed in this project:

With respect to the COVID-19 data challenges (cf.
Section 1.1), Wikidata addresses them in several
ways: First, it was designed for web scale data
with flexible and evolving data models that can
be updated quickly and frequently, and its
existing community has been using it to capture
COVID-19-related knowledge right from the start.
Second, Wikidata already contained a
considerable and continuously expanding volume
of curated background information - from
SARS-CoV-1 and other coronaviruses to zoonoses,
cruise ships, public health interventions, vaccine




development and relevant publications - ready to
be leveraged to explore the growing
COVID-19-related knowledge in such broader
contexts. Third, both the Wikidata platform and
the Wikidata community are highly multifaceted,
multilingual and multidisciplinary. Fourth, the
Wikidata infrastructure is digital-first, with high
uptime and low access barriers, while its
community is distributed around the globe and
includes people from many walks of life, such
that any particular disruption due to the
pandemic only affects subsets of the Wikidata
community, which also has experience with
handling humanitarian crises, e.g. through the
Zika experience or through overlap with the
Wikipedia community that has been covering
disasters for two decades.

Data Model section: The authors claim that ... an
ontological database representing all aspects of
the outbreak’. Is it really the case? For example,
does it cover economic aspects that include
information about the unemployment rate and
supply chain disruption during this outbreak? |
think it is a too ambitious statement.

Wikidata represents many facets of the COVID-19
pandemic and the cited examples can be
represented too. Indeed, a Wikidata property for
unemployment rate already exists (P1198).
However, the representation of these facts using
SPARQL queries is limited by the lack of
volunteers enriching socio-economic information
of countries in Wikidata. We adjusted the claim
to be “an ontological database representing many
aspects of the SARS-CoV-2 outbreak”. An example
of the limitation of Wikidata for assessing societal
aspects of the COVID-19 pandemic is added to
Visualizing facets of COVID-19 via SPARQL section
(Societal aspects): “It also includes more
cross-disciplinary information, such as companies
that have reported bankruptcy, with the
pandemic recorded as the main cause (Fig. 10), or
the locations of those working on COVID (Fig.
S8B). However, this also exemplifies how
misleading missing data can be: Wikidata
currently has highly inconsistent coverage of
companies that are not publicly listed, which
heavily biases the results. For example, the
current lack of yearly updated socio-economic
information such as unemployment rates [P1198]
and nominal GDP [P2131] for countries in
Wikidata limits the use of the knowledge graph
for the study of the effect of the pandemic on




global economies, although this is theoretically
possible. Likewise, Wikidata is very incomplete
with respect to COVID-19-related regulations like
stay-at-home orders, school closures or policies
regarding face masks. Standardised methods to
audit and validate Wikidata’s content on various
topics are still under investigation and
development.”

Data Model section: What exact lessons are
learned from the Zika pandemic?

DONE

We added several lines about the lessons learned
from the Zika pandemic throughout the
manuscript:

“Fourth, the Wikidata infrastructure is
digital-first, with high uptime and low access
barriers, while its community is distributed
around the globe and includes people from many
walks of life, such that any particular disruption
due to the pandemic only affects subsets of the
Wikidata community, which also has experience
with handling humanitarian crises, e.g. through
the Zika experience or through overlap with the
Wikipedia community that has been covering
disasters for two decades.”

“In the context of the COVID-19 pandemic, an
ontological database representing many aspects
of the SARS-CoV-2 outbreak has been
represented in Wikidata, building on pilot work
that was started at the onset of the Zika
pandemic and led to the formation of WikiProject
Zika Corpus. This Zika project—itself inspired by
dedicated Wikiprojects for Medicine and for
Source Metadata— laid many of the foundations
for the current COVID-19 work in managing
fast-changing information: it developed,
documented and refined sets of SPARQL queries
about an ongoing epidemic, the underlying
pathogen, the disease and diagnostic or
therapeutic options, and it piloted workflows for
integrating distributed knowledge from multiple
databases to build a consistent semantic
representation of a topic for which relevant
concepts were often not yet readily available
through formal ontologies.”




Data Model section: The authors mention ‘... could
all be represented in Wikidata if matters related to
the coverage and conflicts of information from
multiple sources are solved’. In fact, it would be
great if the authors can discuss about how does
the model solve the issue about conflicting
statements in the project? In Covid-19, it becomes
particularly essential as we see various reported
‘facts’ that are conflicting/inconsistent with each
other. In addition, what does ‘coverage’ mean
here? Spatial coverage? Temporal coverage? Or
property coverage? A little bit confusing.

The coverage of the COVID-19-related
information is given with details in “Visualizing
facets of COVID-19 via SPARQL”. The coverage
includes not only spatial information but also
temporal and social information for the pandemic
including economic ones. The missing points for
these aspects that are not efficiently covered in
Wikidata are explained with examples in the
same section. The statement in the Data Model
section has been adjusted: “... could all be
represented in Wikidata if matters related to the
multi-level coverage of COVID-19 knowledge and
conflicts of information from multiple sources are
solved”.

Concerning the management of conflicting and
inconsistent COVID-19 information, it will be the
topic of a second research paper sent for review
to SWIJ (available at
https://doi.org/10.5281/zenodo.4008358,
Tracking number: 2677-3891). It would be
overwhelming to explain this in this research
paper. However, we added a paragraph at the
Data Model and Discussion sections to explain
this: “Later, the developed semantic database for
the pandemic is checked by multiple layers of
validation. Methods include RDF triples defining
conditions for the usage of Wikidata properties,
RDF validation schemas built in Shape Expressions
(ShEx) to verify the structural accuracy of the
statement of an item included in a given Wikidata
class, and logical constraints implemented in
SPARAQL to verify the consistency of relational and
non-relational claims in Wikidata as well as
several tools based on edit history of Wikidata
such as ORES to identify and eliminate database
vandalism. Although Web Ontology Language
(OWL) can define knowledge graphs with a richer
semantic characterization of data models by
providing a layer of Description Logics such as in
DBpedia, the infrastructure developed for the
validation of RDF data in Wikidata helps assure a
high level of consistency of the Wikidata
knowledge graph.”

“Greater consistency of structure and accuracy is
partly due to the involvement of more
contributors in Wikidata than in other open
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knowledge graphs. But it also stems from
importing data from other rapidly-updated and
curated databases (mainly from the linked open
data cloud) and from verification by overlapping
methods (e.g. ShEx schemas, SPARQL-based
logical constraints and bot edits). The data
validation infrastructure of Wikidata seems to be
in accordance with the latest updates in
knowledge graph evaluation and refinement
techniques and explains in part the reasons
behind the robustness of the data model of
COVID-19 information in this open knowledge
graph.”

Language Representation section: Figure 4E is
confusing, the x-axis is the rank of languages based
on their usages? What does y-axis mean then? The
sentence: “The degree of translation of that
information is increasingly high with an important
representation of the concepts in more than 50
languages (Figure 4E)” does not help to
understand the figure.

We have reformulated the inline description of
Figure 4E to reflect its outcomes:

“The degree of translation of that information is
interestingly high with an important
representation of the concepts in more than 50
languages (Fig. 4E). In fact, more than 40% of the
predicates (Curves B and D) and more than 90%
of the objects (Curve C) of the statements related
to COVID are represented in fifty languages or
more.”

We have adjusted the title of the Figure to clarify:

“Percentage of the items covered in order from
highest to lowest coverage. faceted by categories
A-D. Data shown for top 150 languages in each
category”

We have also added titles to the x-axis and y-axis
of the Figure to improve its understandability:

x-axis: Rank of language (per each category A-D)
y-axis: Coverage of concepts

Language Representation section: More
importantly, there are multiple correlation
analyses in this section. However, no statistical
analysis is applied at all. The conclusions are all
made by arbitrarily checking the tables. For
example, the statement “Despite several

Well noticed, thank you for pointing that out. We
have rephrased the sentences for that claim to
make it clear that the observations are
descriptive in the phrase “Query results largely
match previously published trends for Wikipedia
and Wikidata (Table 2), though we note that
Arabic (ar) and Chinese (zh), appear in the top 10




differences like the higher visibility of Asian
language... the query results largely match the
literature-derived data ...” has to be justified in a
more scientific way, e.g., by statistical testing.

languages in the Wikidata COVID-19 subset, while
being absent from the top 10s for other sets
described in Table 4.”

We agree that more in-depth tests, if planned a
priori, could allow stronger causative claims. That
is why, we have added correlation analysis of the
statistical data about language representation:
“These correlations can be interrogated by
qguerying Wikidata to find out the current status
of the editing of this knowledge graph and of
Wikipedia in 307 languages (Table S3; top-ranking
items for each variable summarised in Tables 3
and 4). Query results largely match previously
published trends for Wikipedia and Wikidata
(Table 2), though we note that Arabic (ar) and
Chinese (zh), appear in the top 10 languages in
the Wikidata COVID-19 subset, while being
absent from the top 10s for other sets described
in Table 4. Coverage differed across languages
and variables, and most of the distributions
showed marked positive skew. Nonparametric
analysis of correlations (Spearman’s rho) found
large magnitude associations (rho .65 to .97,
median = .84, Supplementary Table S4),
statistically significant even following stringent
Bonferroni correction. To account for skew and
data spanning multiple orders of magnitude,
log10-transformed data was used for subsequent
analyses. Pearson’s correlation coefficients
between all variables was high (Figure 5). A
principal component analysis for the 90
languages with complete data on all 7 indicators
found that a single component explained 81% of
the variance, with loadings ranging from .80 to
.95. The smallest PCA loading and Spearman’s
correlation was for the number of viewers, which
though still a strong association, was less
correlated than the other variables by a
substantial margin.”

“This is confirmed by the high correlation
(Pearson r = 0.93) of the language distribution of
COVID-related Wikidata labels with the number
of COVID Wikipedia pages in language editions
and the moderate correlation (Pearson r > 0.65)
between the number of Wikidata COVID-related




labels in a given language and the quantity and
edit statistics of medical content in Wikidata and
Wikipedia (Fig. 5). Such relationships are
strengthened by the high correlation (Pearson r >
0.9) between the number of medical Wikidata
labels in a given language and the number of
medical Wikipedia articles in language editions as
well as the number of native speakers jointly
editing Wikipedia and Wikidata.

To investigate the possible causes of these
highly correlated datasets, we compared them to
two external metrics for each language: the
number of native speakers of each language and
the maximum human development index for
countries where that language is an official
language. This data was available for fewer
languages (N = 57 each, 19 pairs) and the sparse
overlap precluded including both simultaneously
in analyses. The number of native speakers
showed similar positive skew to earlier data, so
was also logl0-transformed. Even though these
analyses are necessarily exploratory, maximum
development correlated more strongly than did
the number of speakers (Figure 5B; Table S4).
Cohen’s g values (an effect size for differences
between correlation coefficients) of a size
considered unusually large for the social sciences
(> 0.5) were observed when comparing
correlation of development index versus number
of speakers with the number of medical Wikidata
labels and with the number of users. Further
medium g values (differences > 0.3) were
observed for correlation to the number of
medical Wikipedia articles and to the number of
COVID Wikipedia pages. Correlation differences
were negligible with regard to development
versus number of speakers as associated with the
number of edits or pageviews.”.

We have expanded our treatment of the
language representation in the following ways:
We present more descriptive information, we
have switched to nonparametric statistical
analysis to better model the data distributions,
we note that for the core set of variables, the
effect sizes are all large enough to survive even
stringent post hoc correction to control




family-wise type | error rate.

We added the number of speakers and maximum
economic development as additional variables for
supplemental analyses. These were available for
fewer languages, so here we emphasize
differences in effect size (Cohen’s g) rather than
significance testing. The results indicate that
maximum economic development is substantially
more related than the number of speakers to the
medical and Wikidata metrics, but with negligible
differences in association in number of page
views.

Database Alignment section: This section lists

multiple alignment tables for different domains.

However, how are these alignments
accomplished? Any automated algorithms are
used or totally based on human efforts? Have
these alighments been evaluated?

Excellent point. As Wikidata's graph is
collaborative, any effort of database alignment
does include some parts of manual, human
efforts.

Some of the work has been via reconciling of
databases and semi-automatic triple adding via
tools such as
https://github.com/Sulab/Wikidatalntegrator or
https://quickstatements.toolforge.org/#/. A
match based on identifiers like DOl or PubMed ID
is usually enough for a reliable key to reconcile to
Wikidata.

It would be great to evaluate these alignments. It
is hard, however, to devise an automatic way, as
there is no gold standard. The alighnments
generally follow an "Anyone can say Anything
about Anything" assumption.

We added a paragraph to the database alignment
section to try to clarify it: “The alignment of
Wikidata entities to other entries on different
databases is a collaborative process which, as
everything in Wikidata, is done via combination
of manual and automatic curation. As an example
of automation, items concerning scholarly entries
(i.e. articles and reports) were often aligned to
other databases using DOIs (Digital Object
Identifiers) as unique keys for locating the
database ID. As Wikidata is an open database, the
precision of the alignments is largely based on
trust in the community, and misalignments are
promptly corrected once identified.”.
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We also added several lines to data model section
in this particular context: “Wikidata items are
assigned their identifiers in external databases,
including semantic resources, using human
efforts and tools such as Mix’n’match. These links
make Wikidata a key node of the open data
ecosystem, not only contributing its own items
and internal links, but also bridging between
other open databases (Fig. 3). Wikidata therefore
supports alignment between disparate
knowledge bases and, consequently, semantic
data integration and federation in the context of
the linked open data cloud.”

Visualizing facets of COVID-19 via SPARQL and
Conclusion: It is great to see the authors bring up a
relative comprehensive and well organized list of
SPARQL queries, and demonstrated several
promising visualization in the paper. However, |
am wondering how accessible and easy for a
non-SPARQL expert to explore the graph (or simply
understand the query)? Do the authors have any
empirical examples/cases to show how useful the
graph has been to domain experts/general public?
In Table S2, it seems to be a list about fulfilled
tasks; but | do not find more contexts related to
this table. Maybe use one of the rows in this table
as an example to elaborate would help readers
understand the value of the proposed graph.

We do not have an analysis of popularity of
SPARQL use by the general public. However, we
would like to note that - typically for the open
source movement - most beginners find copying
ready-made examples and paragon syntax useful,
and Wikidata provides plenty of examples, which
are easily modifiable. One of the advantages of
this approach is that users do not have to have
expert understanding of SPARQL to be able to
slightly modify the code to reach satisfactory
results. We added a note on that in the
discussion: “One of the features of Wikidata is
also providing hundreds of exemplary SPARQL
gueries, which even beginner users can
immediately explore and easily modify, assisted
with features like default prefixes,
autosuggestions, autocomplete and
straightforward conversion between Wikidata
identifiers and natural language. As a result,
Wikidata users do not have to be SPARQL experts
to arrive at results that are useful to them.”

With regards to Table S2, we have clarified both
its purpose and content:

“Sample SPARQL queries for data visualizations
commonly included in Wikidata-based COVID-19
dashboards are available at Supplementary Table
S2 to show the variety of visualizations that can
be generated using the Wikidata Query Service
from both a quantitative perspective (amount of
statistical data that can be generated through the




integration of COVID-19 information with
non-COVID-19 data) and a qualitative one
(visualization types and topics).”

“List of sample queries on COVID-19. The
information contained therein is similar to
visualizations in many stand-alone COVID-19
dashboards, covering an overview of COVID-19,
international situation, international daily
epidemiological evolution, Tunisian daily
epidemiological evolution, Tunisian
governorate-level situation, Tunisian correlations,
and worldwide correlations. Each of the sheets
has a Title column with a brief summary for each
qguery and a URL column with a link to the live
record on Wikidata.”

Last but not least, the authors have to proofread
the paper substantially. There are many long
sentences, inconsistent uses of terms, typos,
duplicates, and many weird sentences. In general,
the paper is not that easy to follow.

For example, solely in the first paragraph of
Section 5.2:

a). whereas others common visualization --> other

b). from scratch from granularity --> one ‘from’ has
to be deleted

c). its change over time over time --> duplicates

d). Wikidata’s granularity and collaborating ... -->
What does ‘wikidata’s granularity’ mean here?

DONE

We have gone through the manuscript and
brushed its grammar. As for the definition of
granularity, it is the representation of the
COVID-19 information at a narrow and specific
scale such as the famous COVID-19 mortality and
morbidity cases. We have adjusted the
manuscript to make this very clear:

“Wikidata’s granularity (i.e. the representation
of COVID-19 information at the scale of individual
cases, days and incidents) and collaborative
editing have also made it highly up to date on
gueries such as the most recent death of notable
persons due to COVID-19.”

Page 2: DONE
Adjusted

a). basing --> based

b). entities named items --> entities, named items

Page 3: DONE

Adjusted




>17,000 (what is this number? Cases? Deaths?)

Page 5: DONE
Adjusted
Table S1 -->Table 1
page 13: DONE
Adjusted
table S2 --> Table S2
page 14: DONE
Adjusted
a). allowed --> allows
b). Wikidata --> Wikidata
Reviewer 3
Comments Responses

Some features the authors discussed about
Wikidata are in fact well-known. For example, the
data model, the multilingual features as well as
its alignment to other databases. Since this paper
is explicitly about the COVID-19 efforts of
Wikidata. | suggest the authors highlight the
specific features Wikidata considers for
COVID-19.

It is a fair comment - Wikidata’s systemic features
have certainly been discussed before. However,
the interactions between these features and the
user community in a global disaster response
context have not been discussed in detail before,
and given the diversity of topics covered by SWJ,
a longer introduction could make it easier for
some readers to understand the work in its
sociotechnical context. We also streamlined the
text such that it conveys more clearly why
Wikidata is so well suited for addressing rapid,
emerging phenomena such as the COVID-19
pandemic. Even though we focus on COVID-19
efforts, we believe that our conclusions reach
beyond that - yet, for the reader, it is crucial to
understand the background. For that reason, we
would like to keep the remaining descriptions of
relatively well-known Wikidata, even though we
understand that for some readers, it will be
repetitive (but for some others, it will provide a
crucial introduction to the discussed topic).




With regards to the specific Wikidata features
relevant for COVID-19 and as mentioned in
response to a similar comment by Reviewer 1, we
have added a brief outline of COVID data specific
issues to the introduction (cf. Section 1.1 “Data
integration challenges”) and highlighted more
clearly (particularly in Section 2 “Wikidata as a
semantic resource for COVID-19”) how Wikidata
addresses these challenges.

“Although collaborative editing contributed to
the development of large-scale information about
all aspects of the disease, there are currently still
significant gaps and biases in the dataset that can
lead to imprecise results if not interpreted with
caution. For example, the COVID-19 outbreaks on
cruise® and naval* ships are better covered in
Wikipedia than in Wikidata (or most other online
resources). Similarly, scholarly citations are not
yet evenly covered, since systematic curation will
require more scalable workflows. Although many
of these gaps are rapidly being addressed and
closed over time, errors of omission and bias are
inevitable to some extent. Such deficiencies can
only be detected and solved by applying
algorithms that assess data completeness of
items included in a given class within open
knowledge graphs. Solutions involve
cross-checking knowledge bases or subsets of the
same knowledgebase, systematically exposing
the content of Wikidata to many eyes through its
reuse in Wikipedia and SPARQL-based tools such
as Scholia and COVID dashboards, and using
knowledge graph learning techniques to update
items directly from textual databases like
scholarly publications and electronic health
records. Moreover, collaborative editing can
cause several inaccuracies in the declaration of
statements in open knowledge graphs
disregarding the metadata standards of the
knowledge bases. These inconsistencies can
persist particularly when the database and the
largely growing scholarly literature about
COVID-19 is managed by a limited number of
administrators and can consequently cause
matters about the trustworthiness of the reuse of

3 https://en.wikipedia.org/wiki/COVID-19_pandemic_on_cruise_ships

* https://en.wikipedia.org/wiki/COVID-19_pandemic_on naval ships
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data. However, critical problems related to
structural deficiencies in defining statements or
to the inclusion of mistaken data in open
knowledge graphs seem to happen less
frequently in Wikidata. Greater consistency of
structure and accuracy is partly due to the
involvement of more contributors in Wikidata
than in other open knowledge graphs. But it also
stems from importing data from other
rapidly-updated and curated databases (mainly
from the linked open data cloud) and from
verification by overlapping methods (e.g. ShEx
schemas, SPARQL-based logical constraints and
bot edits). The data validation infrastructure of
Wikidata seems to be in accordance with the
latest updates in knowledge graph evaluation and
refinement techniques and explains in part the
reasons behind the robustness of the data model
of COVID-19 information in this open knowledge
graph.”

“However, this also exemplifies how misleading
missing data can be: Wikidata currently has highly
inconsistent coverage of companies that are not
publicly listed, which heavily biases the results.
For example, the current lack of yearly updated
socio-economic information such as
unemployment rates [P1198] and nominal GDP
[P2131] for countries in Wikidata limits the use of
the knowledge graph for the study of the effect
of the pandemic on global economies, although
this is theoretically possible. Likewise, Wikidata is
very incomplete with respect to COVID-19-related
regulations like stay-at-home orders, school
closures or policies regarding face masks.
Standardised methods to audit and validate
Wikidata’s content on various topics are still
under investigation and development.”

“Concerning drugs, proteins, genes and taxons,
Wikidata items are mainly assigned external
identifiers in the major knowledge graphs for
pharmacology (e.g. MassBank), for biodiversity
(e.g. IRMNG), for genomics (e.g. Entrez Gene) and
for proteomics (e.g. PDB) and are rarely linked to
non-medical databases or to encyclopedias, as
shown in Table 8.”




“this Wikidata coverage of the availability of
COVID-19-related publications in external
research databases does not seem to fully
represent full records of COVID-19 literature in
aligned resources. By way of comparison, we
performed a simple search for “COVID-19” in a
set of literature databases, and there were
103796 COVID-19-related records available on
PubMed, 110323 COVID-19 full texts accessible
on PubMed Central, 296450 COVID-19
publications on Dimensions, 211000 records on
Semantic Scholar, 4778 records at
ClinicalTrials.gov, 3295 records on arXiv ID, and
183 records on NIOSHTIC-2 as of February 17,
2021.”

“An important caveat is that data integration
through Wikidata poses some particular
challenges of its own, such as data licensing
(being in the public domain, Wikidata can
essentially only ingest public-domain data [27]) or
multilinguality (e.g. how to handle concepts that
are hard to translate), and for certain kinds of
data (e.g. health data from individual patients), it
is not suitable, although appropriately configured
instances of the underlying technology stack
might.”

The contribution of this paper is not clear enough
to me in the beginning. In the end, | realize the
authors are responsible for managing COVID-19
information in Wikidata. | suggest the author list
the contribution at the beginning of this paper.

DONE

We added our contribution to the development
of Wikidata’s COVID-19:

“In this research paper, we report on the efforts
of the Wikidata community (including our own) to
meet these challenges by serving as a platform
for collaboratively collecting, curating and
visualizing COVID-19-related knowledge at scales
commensurate with the pandemic. While the
relative merits of Wikidata with respect to other
knowledge graphs have been discussed
previously, we focus on leveraging the potential
of Wikidata as an existing platform with an
existing community in a timely fashion for an
emerging transdisciplinary application like the
COVID-19 response.”

“As active editors of Wikidata, the authors have




contributed a significant part of that data
modelling, usage framework and crowdsourcing
of the COVID-19 information in the knowledge
graph since the beginning of the pandemic. We
consequently have a unique perspective to share
our experience and overview how Wikidata as a
collaborative multidisciplinary large-scale
knowledge graph can host COVID-19 data,
integrate it with non-COVID-19 information and
feed computer applications in an open and
transparent way.”

The author claims this paper is a research paper
while | think this is a dataset paper. | do think
dataset papers are also very important, especially
for the Semantic Web community. So please
rethink the paper type you want to submit here.

We believe we are offering a research
contribution, by showing on a specific dataset
how collaborative editing and decentralized
knowledge production can be particularly
successful in addressing new, rapid phenomena.
We also point out the shortcomings of the model.
For that reason, we believe that our paper fits the
research criterion, even though we are happy
that you find our contribution valuable as a
dataset paper, too.

Thank you again for helping us to improve the quality and presentation of this manuscript.




