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Abstract. Knowledge Graph Embeddings, i.e., projections of entities and relations to lower dimensional spaces, have been
proposed for two purposes: (1) providing an encoding for data mining tasks, and (2) predicting links in a knowledge graph. Both
lines of research have been pursued rather in isolation from each other so far, each with their own benchmarks and evaluation
methodologies. In this paper, we argue that both tasks are actually related, and we show that the first family of approaches can
also be used for the second task and vice versa. In two series of experiments, we provide a comparison of both families of
approaches on both tasks, which, to the best of our knowledge, has not been done so far. Furthermore, we discuss the differences
in the similarity functions evoked by the different embedding approaches.
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1. Introduction in the knowledge graph as good as possible. The evalu-
ations of this kind of approaches are always conducted

In the recent past, the topic of knowledge graph em- within the knowledge graph, using the existing knowl-

bedding — i.e., projecting entities and relations in a edge graph assertions as ground truth.

knowledge graph into a numerical vector space — has

gained a lot of traction. An often cited survey from Citations Citations (Mean)

2017 [1] lists already 25 approaches, with new mod- 2K 3.56

els being proposed almost every month, as depicted in

Fig. 1. e
Even more remarkably, two mostly disjoint strands

of research have emerged in that vivid area. The first 200

family of research works focus mostly on link predic- )

tion [2], i.e., the approaches are evaluated in a knowl- . .

edge graph refinement setting [3]. The optimization 21z 23 2014 2015 2016 2007 2018 2019 2020 2021

goal here is to distinguish correct from incorrect triples o
-8 Publications (total)
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A second strand of research focuses on the embed-
ding of entities in the knowledge graph for downstream
tasks outside the knowledge graph, which often come
from the data mining field — hence, we coin this fam-
ily of approaches embeddings from data mining. Ex-
amples include: the prediction of external variables for
entities in a knowledge graph [4], information retrieval
backed by a knowledge graph [5], or the usage of a
knowledge graph in content-based recommender sys-
tems [6]. In those cases, the optimization goal is to cre-
ate an embedding space which reflects semantic sim-
ilarity as good as possible (e.g., in a recommender
system, similar items to the ones in the user interest
should be recommended). The evaluations here are al-
ways conducted outside the knowledge graph, based
on external ground truth.

In this paper, we want to look at the commonali-
ties and differences of the two approaches. We look
at two of the most basic and well-known approaches
of both strands, i.e., TransE [7] and RDF2vec [4],
and analyze and compare their optimization goals in
a simple example. Moreover, we analyze the perfor-
mance of approaches from both families in the re-
spective other evaluation setup: we explore the usage
of link-prediction based embeddings for other down-
stream tasks based on similarity, and we propose a link
prediction method based on RDF2vec. From those ex-
periments, we derive a set of insights into the differ-
ences of the two families of methods, and a few rec-
ommendations on which kind of approach should be
used in which setting.

2. Related Work

As pointed out above, the number of works on
knowledge graph embedding is legion, and enumerat-
ing them all in this section would go beyond the scope
of this paper. However, there have already been quite a
few survey articles.

The first strand of research works — i.e., knowledge
graph embeddings for link prediction — has been cov-
ered in different surveys, such as [1], and, more re-
cently, [8], [9], and [10]. The systematic of those re-
views is similar, as they distinguish different families
of approaches: translational distance models [1] or ge-
ometric models [9] focus on link prediction as a geo-
metric task, i.e., projecting the graph in a vector space
so that a translation operation defined for relation r on
a head h yields a result close to the tail t.

The second family among the link prediction em-
beddings are semantic matching [1] or matrix factor-
ization or tensor decomposition [9] models. Here, a
knowledge graph is represented as a three-dimensional
tensor, which is decomposed into smaller matrices or
tensors. The reconstruction operation can then be used
for link prediction.

The third and youngest family among the link pre-
diction embeddings are based on deep learning and
graph neural networks. Here, neural network train-
ing approaches, such as convolutional neural networks,
capsule networks, or recurrent neural networks, are
adapted to work with knowledge graphs [9].

While most of those approaches only consider
graphs with nodes and edges, most knowledge graphs
also contain literals, e.g., strings and numeric values.
[11] shows a survey of approaches which take such lit-
eral information into account. It is also one of the few
review articles which considers embedding methods
from both research strands.

Link prediction is typically evaluated on a set of
standard datasets, and uses a within-KG protocol,
where the triples in the knowledge graph are divided
in a training, testing, and validation set. Prediction ac-
curacy is then assessed on the validation set. Datasets
commonly used for the evaluation are FB15k, which
is a subset of Freebase, and WN18, which is derived
from WordNet [7]. Since it has been remarked that
those datasets contain too many simple inferences
due to inverse relations, the more challenging variants
FB15k-237 [12] and WN18RR [13] have been pro-
posed. More recently, evaluation sets based on larger
knowledge graphs, such as YAGO3-10 [13] and DB-
pedia50k/DBpedia500k [14] have been introduced.

The second strand of research works, focusing on
the embedding for downstream tasks (which are often
from the domain of data mining), is not as extensively
reviewed, and the number of works in this area are still
smaller. One of the more comprehensive evaluations
is shown in [15], which is also one of the rare works
which includes approaches from both strands in a com-
mon evaluation. They show that at least the three meth-
ods for link prediction used — namely TransE, TransR,
and TransH — perform inferior on downstream tasks,
compared to approaches developed specifically for op-
timizing for entity similarity in the embedding space.

For the evaluation of entity embeddings optimized
for entity similarity, there are quite a few use cases at
hand. The authors in [16] list a number of tasks, in-
cluding classification and regression of entities based
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on external ground truth variables, entity clustering, as
well as identifying semantically related entities.

Works which explicitly compare approaches from
both research strands are still rare. In [17], an in-KG
scenario, i.e., the detection and correction of erroneous
links, is considered. The authors compare RDF2vec
(with an additional classification layer) to TransE and
DistMult on the link prediction task. The results are
mixed: While RDF2vec outperforms TransE and Dist-
Mult in terms of Mean Reciprocal Rank and Preci-
sion@1, it is inferior in Precision@10. Since the re-
sults are only validated on one single dataset, the evi-
dence is rather thin.

In [18], the authors analyze the vector spaces of dif-
ferent embedding models with respect to class sepa-
ration, i.e., they fit the best linear separation between
classes in different embedding spaces. According to
their findings, RDF2vec achieves a better linear sepa-
ration than the models tailored to link prediction.

Overall, while there are quite a few works using and
evaluating approaches from both research strands, di-
rect comparisons are rather rare. This paper aims at
closing that gap.

3. Knowledge Graph Embedding Methods for
Data Mining

Traditionally, most data mining methods are work-
ing on propositional data, i.e., each instance is a row in
a table, described by a set of (binary, numeric, or cat-
egorical) features. For using knowledge graphs in data
mining, one needs to either develop methods which
work on graphs instead of propositional data, or find
ways to represent instances of the knowledge graph as
feature vectors [19]. The latter is often referred to as
propositionalization [20].

RDF2vec [4] is a prominent example from the sec-
ond family. It adapts the word2vec approach [21] for
deriving word embeddings (i.e., vector representations
for words) from a corpus of sentences. RDF2vec cre-
ates such sentences by performing random walks on
an RDF graph and collecting the sequences of entities
and relations, then trains a word2vec model on those
sequences. It has been shown that this strategy out-
performs other strategies of propositionalization. The
relation between propositionalization and embedding
methods has also recently been pointed out by [22].

3.1. Data Mining is based on Similarity

Predictive data mining tasks are predicting classes
or numerical values for instances. A typical application
are recommender systems: given the set of items (e.g.,
movies, books) a user liked, predict whether s/he likes
a particular other item (i.e., make a binary prediction:
yes/no), or, given the (numerical) ratings a user gave
to items in the past, predict the rating s/he will give to
other instances. Such ratings can then be used to create
a sorted list of recommendations.

Content-based recommender systems are one family
of recommender systems. They rely on item similarity,
i.e., if a user liked item A in the past, the system will
recommend items which are similar to A. To that end,
each item is represented as a set of features, and items
with similar features are considered similar.

RDF2vec has been shown to be usable for recom-
mender systems, since the underlying method tends to
create similar vectors for similar entities, i.e., position
them closer in vector space [6]. Figure 2 illustrates this
using a 2D PCA plot of RDF2vec vectors for movies
in DBpedia. It can be seen that clusters of movies, e.g.,
Disney movies, Star Trek movies, and Marvel related
movies are formed.

Similar to recommender systems, many techniques
for predictive data mining rely on similarity in one
or the other way. This is more obvious for, e.g., k-
nearest neighbors, where the predicted label for an in-
stance is the majority or average of labels of its clos-
est neighbors (i.e., most similar instances), or Naive
Bayes, where an instance is predicted to belong to a
class if its feature values are most similar to the typical
distribution of features for this class (i.e., it is similar to
an average member of this class). A similar argument
can be made for neural networks, where one can as-
sume a similar output when changing the value of one
input neuron (i.e., one feature value) by a small delta.
Other classes of approaches (such as Support Vector
Machines) use the concept of class separability, which
is similar to exploiting similarity: datasets with well
separable classes have similar instances (belonging to
the same class) close to each other, while dissimilar
instances (belonging to different classes) are further
away from each other [23].

3.2. Creating Similar Embeddings for Similar
Instances

To understand how (and why) RDF2vec creates em-
beddings that have the property of placing nearby vec-
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Fig. 2. RDF2vec embeddings for movies in DBpedia, from [6].
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Fig. 3. Example graph used for illustration

tors, we use the running example depicted in Fig. 3,
showing a number of European cities, countries, and
heads of those governments.

As discussed above, the first step of RDF2vec is
to create random walks on the graph. To that end,
RDF2vec starts a fixed number of random walks of a
fixed maximum length from each entity. Since the ex-
ample above is very small, we will, for the sake of
illustration, enumerate all walks of length 4 that can
be created for the graph. Those walks are depicted in
Fig. 5. It is notable that, since the graph has nodes
without outgoing edges, some of the walks are actually
shorter than 4.

In the next step, the walks are used to train a predic-
tive model. Since RDF2vec uses word2vec, it can be
trained with the two flavors of word2vec, i.e., CBOW
(context back of words) and SG (skip gram). The first
predicts a word, given its surrounding words, the sec-
ond predicts the surroundings, given a word. For the
sake of our argument, we will only consider the sec-
ond variant, depicted in Fig. 6. Simply speaking, given
training examples where the input is the target word (as
a one-hot-encoded vector) and the output is the con-
text words (again, one hot encoded vectors), a neural
network is trained, where the hidden layer is typically
of smaller dimensionality than the input. That hidden
layer is later used to produce the actual embedding
vectors.

To create the training examples, a window with a
given size is slid over the input sentences. Here, we
use a window of size 2, which means that the two
words preceding and the two words succeeding a con-
text word are taken into consideration. Fig. 7 shows the
training examples generated for three instances.

A model that learns to predict the context given the
target word would now learn to predict the majority
of the context words for the target word at hand at
the output layer called output in Fig. 6, as depicted in
the lower part of Fig. 7. Here, we can see that Paris
and Berlin share two out of four predictions, so do
Mannheim and Berlin. Angela Merkel and Berlin share
one out of four predictions.

Considering again Fig. 6, given that the activation
function which computes the output from the projec-
tion values is continuous, it implies that similar acti-
vations on the output layer requires similar values on
the projection layer. Hence, for a well fit model, the
distance on the projection layer of Paris, Berlin, and
Mannheim should be comparatively lower than the dis-
tance of the other entities, since they activate similar
outputs.'

Fig. 8 depicts a two-dimensional RDF2vec embed-
ding learned for the example graph.> We can observe
that there are clusters of persons, countries, and cities.
The grouping of similar objects also goes further — we

Note that there are still weights learned for the individual con-
nections between the projection and the output layer, which empha-
size some connections more strongly than others. Hence, we cannot
simplify our argumentation in a way like “with two common con-
text words activated, the entities must be projected twice as close as
those with one common context word activated”.

2Created with PyRDF2vec [24], using two dimensions, a walk
length of 8, and standard configuration otherwise
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Berlin locatedIn Germany

Germany headOfGovernment Angela_Merkel
Mannheim locatedIn Germany

Belgium capital Brussels

Germany partOf EU

Belgium partOf EU

Belgium headOfGovernment Sophie_Wilmes
EU governmentSeat Brussels

USA capital WashingtonDC

WashingtonDC locatedIn USA

France capital Paris

France headOfGovernment Emmanuel_Macron
Paris locatedIn France

Strasbourg locatedIn France

Germany capital Berlin

Brussels locatedIn Belgium

France partOf EU

USA headOfGovernment Donald_Trump

EU governmentSeat Strasbourg

Fig. 4. Triples of the example Knowledge Graph

Belgium partOf EU governmentSeat Brussels
Belgium capital Brussels locatedIn Belgium
Belgium partOf EU governmentSeat Strasbourg
Belgium headOfGovernment Sophie_Wilmes
Berlin locatedIn Germany capital Berlin

Berlin locatedIn Germany partOf EU

Brussels locatedIn Belgium partOf EU
Brussels locatedIn Belgium capital Brussels
EU governmentSeat Strasbourg locatedIn France
EU governmentSeat Brussels locatedIn Belgium
France headOfGovernment Emmanuel_Macron
France capital Paris locatedIn France

France partOf EU governmentSeat Brussels
France partOf EU governmentSeat Strasbourg
Germany partOf EU governmentSeat Brussels
Germany partOf EU governmentSeat Strasbourg
Germany capital Berlin locatedIn Germany
Germany headOfGovernment Angela_Merkel
Mannheim locatedIn Germany capital Berlin

Mannheim locatedIn Germany partOf EU

Paris locatedIn France partOf EU
Paris locatedIn France capital Paris
Strasbourg locatedIn France capital Paris

Strasbourg locatedIn France partOf EU

USA headOfGovernment Donald_Trump

USA capital Washington_DC locatedIn USA
Washington_DC locatedIn USA capital Washington_DC

Berlin locatedIn Germany headOfGovernment Angela_Merkel

Brussels locatedIn Belgium headOfGovernment Sophie_Wilmes

Mannheim locatedIn Germany headOfGovernment Angela_Merkel

Paris locatedIn France headOfGovernment Emmanuel_Macron

Strasbourg locatedIn France headOfGovernment Emmanuel_Macron

Washington_DC locatedIn USA headOfGovernment Donald_Trump

Fig. 5. Walks extracted from the example graph

can, e.g., observe that European cities in the dataset
are embedded closer to each other than to Washington
D.C. This is in line with previous observations show-
ing that RDF2vec is particularly well suited in creating
clusters also for finer-grained classes [25]. A predic-
tive model could now exploit those similarities, e.g.,
for type prediction, as proposed in [26] and [25].

3.3. Usage for Link Prediction

From Fig. 8, we can assume that link prediction
should, in principle, be possible. For example, the pre-
dictions for heads of governments all point in a simi-
lar direction. This is in line with what is known about
word2vec, which allows for computing analogies, like
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INPUT PROJECTION OUTPUT

w (t-2)

w (t-1)
w (t)
w (t+1)

w (t+2)
Fig. 6. The Skip Gram variant of word2vec [4]
the well-known example
v(King) —v(Man) +v(Woman) =~ v(Queen) (1)
RDF2vec does not learn relation embeddings, only
entity embeddings.?> Hence, we cannot directly predict
relations, but we can use those analogies. If we want
to make a tail prediction like

<hr?>, )

we can identify another pair < /', r, ¢’ > and exploit the
above analogy, i.e.,

! —HW+h=~t 3)

To come to a stable prediction, we would use the aver-
age, i.e.,

- Z<h’,r,t’> ' —h+h
|< W, rt >

“)

With the same idea, we can also average the relation
vectors r for each relation that holds between all its
head and tail pairs, i.e.,

r s Z<h’,r,t’> tl - hl (5)
|<hW,rt > "’

and thereby reformulate the above equation to
t=h+r, (6)

which is what we expect from an embedding model
for link prediction. Those approximate relation vectors

3Technically, we can also make RDF2vec learn embeddings for
the relations, but they would not behave the way we need them.

for the example at hand are depicted in Fig. 9. We can
see that in some (not all) cases, the directions of the
vectors are approximately correct: the partOf vector
is roughly the difference between EU and Germany,
France, and Belgium, and the headOfGovernment vec-
tor is approximately the vector between the countries
and the politicians cluster. On the other hand, the cap-
ital vector seems to be less accurate.

It can also be observed that the vectors for locate-
dIn and capitalOf point in reverse directions, which
makes sense because they form connections between
two clusters (countries and cities) in opposite direc-
tions.

4. Knowledge Graph Embedding Methods for
Link Prediction

A larger body of work has been devoted on knowl-
edge graph embedding methods for link prediction.
Here, the goal is to learn a model which embeds enti-
ties and relations in the same vector space.

4.1. Link Prediction is based on Vector Operations

As the main objective is link prediction, most mod-
els, more or less, try to find a vector space embedding
of entities and relations so that

t~hdr @)

holds for as many triples < h, r,t > as possible. & can
stand for different operations in the vector space; in
basic approaches, simple vector addition (+) is used.
In our considerations below, we will also use vector
addition.

In most approaches, negative examples are created
by corrupting an existing triple, i.e., replace the head
or tail with another entity from the graph (some ap-
proaches also foresee corrupting the relation). Then,
a model is learned which tries to tell apart corrupted
from non-corrupted triples. The formulation in the
original TransE paper [7] defines the loss function L as
follows:

L= ¥

(hrt)€S (W r1)ES’

®)

where y is some margin, and d is a distance function,
i.e., the L1 or L2 norm. § is the set of statements that

S ytdht ) —dl + ),
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Target Word w_o w_1 W1 W2
Paris France capital locatedIn France
Paris - - locatedIn France
Paris - - locatedIn France
Paris - - locatedIn France
Paris France capital - -

Paris France capital - -

Berlin - - locatedIn Germany
Berlin Germany capital - -

Berlin - - locatedIn Germany
Berlin - - locatedIn Germany
Berlin Germany capital locatedIn Germany
Berlin Germany capital - -
Mannheim - - locatedIn Germany
Mannheim - - locatedIn Germany
Mannheim - - locatedIn Germany
Angela Merkel Germany headOfGovernment | — -

Angela Merkel Germany headOfGovernment | — -

Angela Merkel Germany | headOfGovernment | — -
Donald Trump USA headOfGovernment | — -
Donald Trump USA headOfGovernment | — -
Belgium - - partOf EU
Belgium - - capital Brussels
Belgium Brussels locatedIn - -
Belgium - - partOf EU
Belgium - - headOfGovernment Sophie Wilmes
Belgium Brussels locatedIn headOfGovernment | Sophie Wilmes
Belgium Brussels locatedIn partOf EU
Belgium Brussels locatedIn capital Brussels
Belgium Brussels locatedIn - -

Paris France capital locatedIn France
Berlin Germany capital locatedIn Germany
Mannheim - - locatedIn Germany
Angela Merkel Germany | headOfGovernment | — -
Donald Trump USA headOfGovernment | — -
Belgium Brussels locatedIn partOf EU

Fig. 7. Training examples for instances Paris, Berlin, Mannheim, Angela Merkel, Donald Trump, and Belgium (upper part) and majority predic-

tions (lower part).

Emmanuel Macron

ponald Trump

00

&ophie Wilmes

@ngela Merkel

-03

06

$russels

Piy

Stannheify O

E8snourg

Selgium

&

2

ashingkonDC

drange

00 02 04 06 08

Fig. 8. The example graph embedded with RDF2vec

are in the knowledge graph, and S’ are the corrupted

statements derived from them. In words, the formula

states for a triple < h,r,t >, h + r should be closer

to 7 than to ¢ for some corrupted tail, similarly for a
corrupted head. However, a difference of vy is accepted.

Ponald Trump

éngela Merkel

Emmanuel Macran

Sobhie Wilmes

jocatedin
Frussels

¥h g
yrannEfemEn
$toourg

eshingtonDC

Belgium §range

~0.50 -0.25 000

Fig. 9. Average relation vectors for the example

Fig. 10 shows the example graph from above, as em-

bedded by TransE.* Looking at the relation vectors, it

4Created with PyKEEN [27], using 128 epochs, a learning rate

of 0.1, the softplus loss function, and default parameters otherwise,
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Fig. 10. Example graph embedded by TransE

can be observed that they seem approximately accurate
in some cases, e.g.,

Germany-+headO fGovernment ~ Angela_Merkel,

but not everywhere.’

Like in the RDF2vec example above, we can ob-
serve that the two vectors for locatedIn and capital
point in opposite directions. Although less obviously
than in the RDF2vec example, we can also see that en-
tities in similar classes form (weak) clusters: cities are
mostly in the right half of the space, people in the left,
countries in the upper part.

4.2. Usage for Data Mining

As discussed above, positioning similar entities
close in a vector space is an essential requirement for
using entity embeddings in data mining tasks. To un-
derstand why an approach tailored towards link pre-
diction can also, to a certain extent, cluster similar in-
stances together, we first rephrase the approximate link
prediction equation (8) as

t="h+r+nmm, €))

where 7, can be considered an error term for the
triple < h, r,t >. Moreover, we define

NMmax = MaxX pre (10)
<h,rit>€S

Next, we consider two triples < Ay, r,t >and < ho, 1,1 >,
which share a relation to an object — e.g., in our exam-
ple, France and Belgium, which both share the relation
partOf to EU.® In that case,

t=hy + 7140 (11)
and
t=hy +r~+ Ny (12)

hold. From that, we get’
h1 —he = Nnyrt — Myt
= |h1 — ha| = [Mhyre — My et

= |77h2,f,t + (777h1,f,t)|

< |77h2,r,t| + | — Nhyart
= |77h2,r,t| + |77h1,r,t|

In other words, 7,,,, also imposes an upper bound of
two entities sharing a relation to an object. As a con-
sequence, the lower the error in relation prediction, the
closer are entities which share a common statement.
This also carries over to entities sharing the same
two-hop connection. Consider two further triples
< hig,7q,h1 > and < hag, 1y, ha >. In our example, this
could be two cities located in the two countries, e.g.,
Strasbourg and Brussels. In that case, we would have

hi = hig + 1o + My ey (14)
ha = haa + ra + NMhyyry s (15)
Substituting this in (11) and (12) yields
t="Mhia~+ra+ Mngreny 1+ Mnyre (16)
t=hoy + T4 + Nhoyrahs + 7+ Nhog s a7

as advised by the authors of PyKEEN: https://github.com/pykeen/
pykeen/issues/97

5This does not mean that TransE does not work. The training data
for the very small graph is rather scarce, and two dimensions might
not be sufficient to find a good solution here.

6 Although, at first glance in Fig. 10, this relation does not
seem to hold for Belgium, we can see that EU is still closer to
Belgium + partOf than most other instances, which is in line with
TransE’s optimization goal.

7Using the triangle inequality for the first inequation.
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Consequently, using similar transformations as above,
we get

Nia — h2a = Nhoprahe = Thierahs + Mhaurt = Mhart
= |h1u_h2a| <4'nmax (18)

Again, 17,,4 constrains the proximity of the two entities
hi1, and hg,, but only half as strictly as for the case of
hq and hs.

4.3. Comparing the Two Notions of Similarity

In the examples above, we can see that embeddings
for link prediction have a tendency to project similar
instances close to each other in the vector space. Here,
the notion of similarity is that two entities are simi-
lar if they share a relation to another entity, i.e., e;
and e, are considered similar if there exist two state-
ments < e1,r,t > and < ey, r,t > or < h,r,e; > and
< h,rey >0 or, less strongly, if there exists a chain of
such statements. More formally, we can write the no-
tion of similarity between two entities in link predic-
tion approaches as

e1 ~ eg + It,1r:r(er, ) Ar(ea,t) (19)
ey~ ey Jh,rir(her) ANr(hes) (20)

In other words: two entities are similar if they share a
common connection to a common third entity.

RDF2vec, on the other hand, covers a wider range
of such similarities. Looking at Fig. 7, we can observe
that two entities sharing a common relation to two dif-
ferent objects are also considered similar (Berlin and
Mannheim both share the fact that they are located in
Germany, hence, their predictions for w; and w, o are
similar).

However, there in RDF2vec, similarity can also
come in other notions. For example, Angela Merkel
and Donald Trump are also considered similar, be-
cause they both share the relation headOfGovernment,
albeit with different subjects (i.e., their prediction for
w_1 is similar). In contrast, such similarities do not
lead to close projections for link prediction embed-
dings. In fact, in Fig. 10, it can be observed that Don-
ald Trump and Angela Merkel are not very close. In
other words, the following two notions of similarity
also hold for RDF2vec:

€1 ~ eg <—E|t1,t2,r:r(el,tl)/\r(eg,t2) (21)

8The argument in section 4.2 would also work for shared relations
to common heads.

el X ey — 3 hl,hg,r : r(hl,el) A r(hg,e‘g) (22)

On a similar argument, RDF2vec also positions en-
tities closer which share any relation to another entity.
Although this is not visible in the two-dimensional em-
bedding depicted in Fig. 8, RDF2vec would also cre-
ate vectors with some similarity for Angela Merkel and
Berlin, since they both have a (albeit different) relation
to Germany (i.e., their prediction for w_s is similar).
Hence, the following notions of similarity can also be
observed in RDF2vec:

el X eyt r,r :rl(el,t)/\rg(eg,t) (23)
e1 ~eg <+ Ah,ri,ra i ri(her) Ara(h,ex) (24)

The example with Angela Merkel and Berlin already
hints at a slightly different notion of the interpretation
of proximity in the vector space evoked by RDF2vec:
not only similar, but also related entities are positioned
close in the vector space. This means that to a certain
extent, RDF2vec mixes the concepts of similarity and
relatedness in its distance function. We will see exam-
ples of this in later considerations, and discuss how
they interfere with downstream applications.

5. Experiments

To compare the two sets of approaches, we use stan-
dard setups for evaluating knowledge graph embed-
ding methods for data mining as well as for link pre-
diction.

5.1. Experiments on Data Mining Tasks

In our experiments, we follow the setup proposed
in [28] and [16]. Those works propose the use of data
mining tasks with an external ground truth, e.g., pre-
dicting certain indicators or classes for entities. Those
entities are then linked to a knowledge graph. Different
feature extraction methods — which includes the gen-
eration of embedding vectors — can then be compared
using a fixed set of learning methods.

The setup of [16] comprises six tasks using 20
datasets in total:

— Five classification tasks, evaluated by accuracy.

— Five regression tasks, evaluated by root mean
squared error.

— Four clustering tasks (with ground truth clusters),
evaluated by accuracy.
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— A document similarity task (where the similarity
is assessed by computing the similarity between
entities identified in the documents), evaluated by
the harmonic mean of Pearson and Spearman cor-
relation coefficients. The dataset is based on the
LP50 dataset [29].

— An entity relatedness task (where semantic simi-
larity is used as a proxy for semantic relatedness),
evaluated by Kendall’s Tau. The dataset is based
on the KORE dataset [30].

— Four semantic analogy tasks (e.g., Athens is to
Greece as Oslo is to X), which are based on the
original datasets on which word2vec was evalu-
ated [21].

We follow the evaluation protocol suggested in [16].
This protocol foresees the usage of different algo-
rithms on each task for each embedding (e.g., Naive
Bayes, Decision Tree, k-NN, and SVM for classifi-
cation), and also performs parameter tuning in some
cases. In the end, we report the best results per task
and embedding method. Those results are depicted in
Table 1.

For generating the different embedding vectors, we
use the DGL-KE framework [31], and we use the
RDF2vec vectors provided by the KGvec2go API [32].
We compare RDF2vec [4], TransE (with L1 and L2
norm) [7], TransR [33], RotatE [34], DistMult [35],
RESCAL [36], and ComplEx [37]. All embeddings are
trained on DBpedia 2016-10.° To create the embed-
ding vectors with DGL-KE we use the parameter con-
figurations recommended by the framework, a dimen-
sion of 200, and a step maximum of 1,000,000.

From the table, we can observe a few expected and
a few unexpected results. First, since RDF2vec is tai-
lored towards classic data mining tasks like classifi-
cation and regression, it is not much surprising that
those tasks are solved better by using RDF2vec vec-
tors. Still, some of the link prediction methods (in par-
ticular TransE and RESCAL) perform reasonably well
on those tasks.

Referring back to the different notions of similar-
ity that these families of approaches imply (cf. sec-
tion 4.3), this behavior can be explained by the ten-
dency of RDF2vec to positioning entities closer in the
vector space which are more similar to each other (e.g.,
two cities that are similar). Since it is likely that some
of those dimensions are also correlated with the target

9The code for the experiments as well as the resulting embeddings
can be found at https://github.com/nheist/KBE-for-Data-Mining

variable at hand (in other words: they encode some di-
mension of similarity that can be used to predict the
target variable), classifiers and regressors can pick up
on those dimensions and exploit them in their predic-
tion model.

What is also remarkable is the performance on the
entity relatedness task. While RDF2vec embeddings
reflect entity relatedness to a certain extent, this is not
given for any of the link prediction approaches. Ac-
cording to the notions of similarity discussed above,
this is reflected in the RDF2vec mechanism: RDF2vec
has an incentive to position two entities closer in the
vector space if they share relations to a common entity,
as shown in equations 21-24. One example is the re-
latedness of Apple Inc. and Steve Jobs — here, we can
observe the two statements

product(Applelnc., IPhone)
knownfor(SteveJobs, IPhone)

in DBpedia, among others. Those lead to similar vec-
tors in RDF2vec according to equation 23.

The same property of also assigning closer embed-
ding vectors to related entities explains the compara-
tively bad results of RDF2vec on the first two cluster-
ing tasks. Here the task is to separate cities and coun-
tries in two clusters, but since a city is also related to
the country it is located in, RDF2vec may position city
and country rather closely together. Hence, that city
has a certain probability of ending up in the same clus-
ter as the country. The latter two clustering tasks are
different: the third one contains five clusters (cities, al-
bums, movies, universities, and companies), which are
less likely to be strongly related (except universities
and companies to cities) and therefore are more likely
to be projected in different areas in the vector space.
Here, the difference of RDF2vec to the best perform-
ing approaches (i.e., TransE-L1 and TransE-L2) is not
that severe.

The problem of relatedness being mixed with simi-
larity does not occur so strongly for homogeneous sets
of entities, as in the classification and regression tasks,
where all entities are of the same kind (cities, com-
panies, etc.) — here, two companies which are related
(e.g., because one is a holding of the other) can also
be considered similar to a certain degree (in that case,
they are both operating in the same branch). This also
explains why the forth clustering task (where the task
is to assign sports teams to clusters by the type of
sports) works well for RDF2vec — here, the entities are
again homogeneous.
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At the same time, the test case of clustering teams
can also be used to explain why link prediction ap-
proaches work well for that kind of tasks: here, it is
likely that two teams in the same sports share a relation
to a common entity, i.e., they fulfill equations 19 and
20. Examples include participation in the same tourna-
ments or common former players.

The semantic analogies task also reveals some in-
teresting findings. First, it should be noted that the
relations which form the respective analogies (capi-
tal, state, and currency) is contained in the knowledge
graph used for the computation. That being said, we
can see that most of the link prediction results (except
for RotatE and RESCAL) perform reasonably well
here. Particularly, the first cases (capitals and coun-
tries) can be solved particularly well in those cases, as
this is a 1:1 relation, which is the case in which link
prediction is a fairly simple task.

On the other hand, the currency case is solved par-
ticularly bad by most of the link prediction results.
This relation is an n:m relation (there are countries
with more than one official, inofficial, or historic cur-
rency, and many currencies, like the Euro, are used
across many countries. Moreover, looking into DBpe-
dia, this relation contains a lot of mixed usage and is
not maintained with very high quality. For example,
DBpedia lists 33 entities whose currency is US Dol-
lars'® — the list contains historic entities (e.g., West
Berlin), errors (e.g., Netherlands), and entities which
are not countries (e.g., OPEC), but the United States
are not among those. For such kind of relations which
contain a certain amount of noise and heterogeneous
information, many link prediction approaches are ob-
viously not well suited.

RDF2vec, in contrast, can deal reasonably well with
that case. Here, two effects interplay when solving
such tasks: (i) as shown above, relations are encoded
by the proximity in RDF2vec to a certain extent, i.e.,
the properties in equations (3) and (4) allow to perform
analogy reasoning in the RDF2vec space in general.
Moreover, (ii) we have already seen the tendency of
RDF2vec to position related entities in relative prox-
imity. Thus, for RDF2vec, it can be assumed that the
following holds:

UK = PoundSterling 25)
USA ~ US Dollar (26)

10http://dbpedia.org/page/United_States_dollar

Since we can rephrase the first equation as
PoundS terling — UK ~ 0 27

we can conclude that analogy reasoning in RDF2vec
would yield

PoundS terling — UK + US A ~ US Dollar (28)

Hence, in RDF2vec, two effects — the preservation of
relation vectors as well as the proximity of related en-
tities — are helpful for analogy reasoning, and the two
effects also work for rather noisy cases. However, for
cases which are 1:1 relations in the knowledge graph
with rather clean training data available, link predic-
tion approaches are better suited for analogy reason-
ing.

5.2. Experiments on Link Prediction Tasks

In a second series of experiments, we analyze if we
can use embedding methods developed for similarity
computation, like RDF2vec, also for link prediction.
We use the two established tasks WN18 and FB15k for
a comparative study.

While link prediction methods are developed for
the task at hand, RDF2vec is not. Although RDF2vec
computes vectors for relations, they do not necessarily
follow the same notion as relation vectors for link pre-
diction, as discussed above. Hence, we investigate two
approaches:

1. We average the difference for each pair of a head
and a tail for each relation r, and use that as aver-
age as a proxy for a relation vector for prediction,
as shown in equation (4). The predictions are the
entities whose embedding vectors are the clos-
est to the approximate prediction. This method is
denoted as avg.

2. For predicting the tail of a relation, we train a
neural network to predict an embedding vector
of the tail based embedding vectors, as shown in
Fig. 11. The predictions for a triple < h, r, 7 > are
the entities whose embedding vectors are clos-
est to the predicted vector for . and r. Two sepa-
rate networks are trained for predicting heads and
tails. This method is denoted as ANN.

We trained the RDF2vec embeddings with 2,000
walks, a depth of 4, a dimension of 200, a window of
5, and 25 epochs in SG mode. For the second predic-
tion approach, the two neural networks use two hidden
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Task Metric Dataset RDF2vec TransE-L1 TransE-L2 TransR RotatE DistMult RESCAL ComplEx
Classification ACC AAUP 0.676 0.628 0.651  0.607 0.617 0.597 0.623 0.602
Cities 0.810 0.676 0752 0.757  0.581 0.666 0.740 0.637
Forbes 0.610 0.550 0.601 0561  0.526 0.601 0.563 0.578
Albums 0.774 0.637 0.746 0728  0.550 0.666 0.678 0.693
Movies 0.739 0.603 0728 0715  0.567 0.668 0.693 0.655
Clustering  ACC Cities and 0.758 0.982 0.994 0962 0510 0.957 0.991 0.955
Countries (2K)
Cities and Countries 0.696 0.953 0979 0952  0.691 0.909 0.990 0.591
Cities, Albums, Movies,
AAUP. Forbes 0.926 0.946 0944 0908  0.860 0.878 0.936 0.914
Teams 0.917 0.887 0977 0.844  0.853 0.883 0.881 0.881
Regression ~ RMSE AAUP 68.745 81.503 69.728 88751 80.177 78337  72.880  73.665
Cities 15.601 19.694 14455 13.558 26.846 19785  15.137  19.809
Forbes 36.459 37.589 38398 39.803 38343  38.037 35489  37.877
Albums 11.930 14.128 12.589 12789 14.890 13452  13.537  13.009
Movies 19.648 23.286 20635 20699 23.878  22.161 21362  22.229
Semantic ACC (All) capitals and countries 0.685 0.709 0675 0938 0377 0.782 0211 0.814
Analogies
Capitals and countries 0.648 0.840 0.792 0.937  0.640 0.802 0.312 0.864
Cities and State 0.342 0.335 0209 0392  0.294 0.379 0.089 0.309
Currency (and Countries) 0.339 0.005 0285  0.143  0.000 0.001 0.000 0.000
Document 4y onicMean P50 0.348 0.343 0397 0434 0326 0.360 0.344 0.341
Similarity
Entity
KendallTau KORE 0.504 0.002 20.081  0.139  -0.039 0.147 0.087 0.115
Relatedness
Table 1
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Fig. 11. Training a neural network for link prediction with RDF2vec

layers of size 200, and we use 15 epochs, a batch size
of 1,000, and mean squared error as loss.

The results of the link prediction experiments are
shown in Table 2.!! We can observe that the RDF2vec
based approaches perform at the lower end of the spec-
trum. The avg approach outperforms DistMult and
RESCAL on WN18, and both approaches are about en
par with RESCAL on FB15k.

While the results are not overwhelming, they show
that similarity of entities, as RDF2vec models it, is at
least a useful signal for implementing a link prediction
approach.

5.3. Discussion

As already discussed above, the notion of similarity
which is conveyed by RDF2vec mixes similarity and
relatedness. This can be observed, e.g., when querying
for the 10 closest concepts to Angela Merkel in DBpe-
dia in the different spaces, as shown in Table 3. The
approach shows a few interesting effects:

— While most of the approaches (except for RotatE)
provide a clean list of people, RDF2vec brings up
a larger variety of results, containing also Ger-
many and Berlin (and also a few results which are
not instances, but relations; however, those could
be filtered out easily in downstream applications
if necessary). This demonstrates the property of
RDF2vec of mixing similarity and relatedness.

— The approaches at hand have different foci in
determining similarity. For example, TransE-L2
outputs a list of German and Austrian chancellors,

"'The code for the experiments can be found at https:/github.
com/janothan/kbc_rdf2vec

TransE-L1 outputs mostly leaders from different
parties and countries, TransR focuses on German
politicians in various parties and functions, etc. In
all of those cases, the persons share some prop-
erty with the query entity Angela Merkel (profes-
sion, role, nationality, etc.), but similarity is usu-
ally affected only by one of those properties. In
other words: one notion of similarity dominates
the others.

— In contrast, the persons in the output list of
RDF2vec are related to the query entity in dif-
ferent respects. In particular, they played differ-
ent roles during Angela Merkel’s chancellorship
(Gauck was the German president, Lammert was
the chairman of the parliament, and VoBkuhle
was the chairman of the federal court). Here,
there is no dominant property, instead, similarity
(or rather: relatedness) is encoded along various
properties.

With that observation in mind, we can come up with
an initial set of recommendations for choosing embed-
ding approaches:

— RDF2vec works well when dealing with sets of
homogeneous entities. Here, the problem of con-
fusing related entities (like Merkel and Berlin)
is negligible, because all entities are of the same
kind anyways. In those cases, RDF2vec captures
the finer distinctions between the entities better
than embeddings for link prediction, and it en-
codes a larger variety of semantic relations.

— For problems where heterogeneous sets of enti-
ties are involved, embeddings for link prediction
often do a better job in telling different entities
apart.

Link prediction is a problem of the latter kind: in em-
bedding spaces where different types are properly sep-
arated, link prediction mistakes are much rarer. Given
an embedding space where entities of the same type
are always closer than entities of a different type, a link
prediction approach will always rank all “compatible”
entities higher than all incompatible ones. Consider the
following example in FB15k:

instrument(GilS cottHeron, ?)

Here, music instruments are expected in the object
position. However, the RDF2vec based approach pre-
dicts, among plausible candidates such as electric gui-
tar and acoustic guitar, also guitarist and Jimmy Page
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Dataset  Metric RDF2vec(avg) RDF2vec(ANN) TransE TransR  RotatE  DistMult RESCAL  ComplEx
WN18 Mean Rank Raw 147 353 263 232 - - 1180

Mean Rank Filtered 135 342 251 219 309 - 1163

HITS@10 Raw 64.39 49.68 75.4 78.3 - - 37.2

HTIS@10 Filtered 71.33 55.43 89.2 91.7 95.9 57.7 52.8
FB15K  Mean Rank Raw 399 349 243 226 - - 828

Mean Rank Filtered 347 303 125 78 40 - 683

HITS@10 Raw 35.31 34.25 349 43.8 - - 28.4

HTIS@10 Filtered 40.54 41.81 47.1 65.5 88.4 94.2 44.1

Table 2

Results of the link prediction tasks on WN18 and FB15K. Results for TransE and RESCAL from [7], results for RotatE from [34], results for

DistMult from [35], results for TransR from [33].

RDF2vec TransE-L1 TransE-L2 TransR

Joachim Gauck Gerhard Schroder Gerhard Schroder Sigmar Gabriel

Norbert Lammert James Buchanan Helmut Kohl Frank-Walter Steinmeier
Stanislaw Tillich Neil Kinnock Konrad Adenauer Philipp Rosler

Andreas Vofkuhle Nicolas Sarkozy Helmut Schmidt Gerhard Schroder
Berlin Joachim Gauck Werner Faymann Joachim Gauck

German language
Germany
federalState

Jacques Chirac
Jiirgen Trittin
Sigmar Gabriel

Alfred Gusenbauer
Kurt Georg Kiesinger
Philipp Scheidemann

Christian Wulff
Guido Westerwelle
Helmut Kohl

Social Democratic Party Guido Westerwelle Ludwig Erhard Jiirgen Trittin
deputy Christian Wulff Wilhelm Marx Jens Bohrnsen
RotatE DistMult RESCAL ComplEx

Pontine raphe nucleus Gerhard Schroder Gerhard Schroder Gerhard Schroder
Jonathan W. Bailey Milan Truban Kurt Georg Kiesinger Didna Mészéros
Zokwang Trading Maud Cuney Hare Helmut Kohl Francis M. Bator
Steven Hill Tristan Matthiae Annemarie Huber-Hotz | William B. Bridges
Chad Kreuter Gerda Hasselfeldt Wang Zhaoguo Mette Vestergaard
Fred Hibbard Faustino Sainz Mufioz | Franz Vranitzky Ivan Rosenqvist

Mallory Ervin

Paulinho Kobayashi

Fullmetal Alchemist and the Broken Angel
Archbishop Dorotheus of Athens

Joachim Gauck
Carsten Linnemann
Norbert Bliim

Neil Hood

Bogdan Klich
Irsen Kiigiik
Helmut Schmidt
Mao Zedong

Edward Clouston
Antonio Capuzzi
Steven J. McAuliffe

Jenkin Coles

Table 3

Closest concepts to Angela Merkel in the different embedding approaches used.

(who is a well-known guitarist). While electric guitar,
guitarist, and Jimmy Page are semantically related, not
all of them are sensible predictions here, and the fact
that RDF2vec reflects that semantic relatedness is a
drawback in link prediction.

The same argument underlies an observation made
by Zouaq and Martel [18]: the authors found that
RDF2vec is particularly well suited for distinguish-
ing fine-grained entity classes (as opposed to coarse-
grained entity classification). For fine-grained clas-

sification (e.g., distinguishing guitar players from
singers), all entities to be classified are already of the
same coarse class (e.g., musician), and RDF2vec is
very well suited for capturing the finer differences.
Howeyver, for coarse classifications, misclassifications
by mistaking relatedness for similarity become more
salient.

From the observations made in the link prediction

task, we can come up with another recommendation:
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— For relations which come with rather clean data
quality, link prediction approaches work well.
However, for more noisy data, RDF2vec has a
higher tendency of creating useful embedding
vectors.

For the moment, this is a hypothesis, which should be
hardened, e.g., by performing controlled experiments
on artificially noised link prediction tasks.

6. Conclusion and Outlook

In this paper, we have compared two use cases and
families of knowledge graph embeddings which have,
up to today, not undergone any thorough direct com-
parison: approaches developed for data mining, such
as RDF2vec, and approaches developed for link pre-
diction, such as TransE and its descendants.

We have argued that the two approaches actually do
something similar, albeit being designed with different
goals in mind. To support this argument, we have run
two sets of experiments which examined how well the
different approaches work if applied in the respective
other setup. We show that, to a certain extent, embed-
ding approaches designed for link prediction can be
applied in data mining as vice versa, however, there are
differences in the outcome.

From the experiments, we have also seen that
proximity in the embedding spaces works differently
for the two approaches: in RDF2vec, proximity en-
codes both similarity and relatedness, while TransE
and its descendants rather encode similarity alone.
On the other hand, for entities that are of the same
type, RDF2vec covers finer-grained similarities bet-
ter. Moreover, RDF2vec seems to work more stably in
cases where the knowledge graphs are rather noisy and
weakly adherent to their schema.

These findings give rise both for a recommendation
and some future work. First, in use cases where relat-
edness plays a role next to similarity, or in use cases
where all entities are of the same type, RDF2vec may
yield better results. On the other hand, for cases with
mixed entity types where it is important to separate the
types, link prediction embeddings might yield better
results.

Moreover, the open question remains whether it is
possible to develop embedding methods that combine
the best of both worlds — e.g., that provide both the
coarse type separation of TransE and its descendants
and the fine type separation of RDF2vec, or that sup-

port competitive link prediction while also represent-
ing relatedness. We expect to see some interesting de-
velopments along these lines in the future.
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