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Abstract. RDF dataset profiling is the task of extracting a formal representation of a dataset’s features. Such features may cover
various aspects of the RDF dataset ranging from information on licensing and provenance to statistical descriptors of the data
distribution and its semantics. In this work, we focus on the characteristics sets profile features that capture both structural and
semantic information of an RDF dataset, making them a valuable resource for different downstream applications. While previous
research demonstrated the benefits of characteristic sets in centralized and federated query processing, access to these fine-grained
statistics is taken for granted. However, especially in federated query processing, computing this profile feature is challenging as
it can be difficult and/or costly to access and process the entire data from all federation members. We address this shortcoming
by introducing the concept of a profile feature estimation and propose a sampling-based approach to generate estimations for the
characteristic sets profile feature. In addition, we showcase the applicability of these feature estimations in federated querying by
proposing a query planning approach that is specifically designed to leverage these feature estimations. In our first experimental
study, we intrinsically evaluate our approach on the representativeness of the feature estimation. The results show that even
small samples of just 0.5% of the original graph’s entities allow for estimating both structural and statistical properties of the
characteristic sets profile features. Our second experimental study extrinsically evaluates the estimations by investigating their
applicability in our query planner using the well-known FedBench benchmark. The results of the experiments show that the
estimated profile features allow for obtaining efficient query plans.

Keywords: RDF dataset profiling, Sampling, Query Processing, Federations

1. Introduction

In recent years, the amount of information published
as Linked Open Data has steadily increased as new
RDF datasets are published and existing datasets are
growing1. Simultaneously, SemanticWeb technologies
are more and more used in companies to integrate data
from heterogeneous sources using Knowledge Graphs
and Semantic Data Lakes [1–3]. In order to support ap-
plications that leverage these large corpora of semantic
data, we require means to extract high-level informa-

*Corresponding author. E-mail: heling@kit.edu.
1https://lod-cloud.net/

tion on the content, the quality, and the structure of the
data provided by these sources. To this end, a variety
of approaches have been proposed to summarize se-
mantic graphs [4], assess their quality [5] and extract
various features in dataset profiles [6]. Similar to the
field of databases, where “Data profiling refers to the
activity of creating small but informative summaries of
a database” [7], RDF dataset profiling aims to formally
represent a set of features of an RDF dataset to aid
downstream tasks [8]. RDF dataset profiles typically
consist of several profile features that capture informa-
tion that ranges from licensing, provenance to statisti-
cal characteristics of the dataset [6]. The cost to acquire
statistical features depend on their granularity as well
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as the size of and the means to access the RDF dataset.
Dataset profiling techniques typically assume local ac-
cess to the entire datasets such that the features can be
computed more efficiently. Upon creation, RDF dataset
profiles support applications such as entity linking, en-
tity retrieval, distributed search and (federated) query
processing [6]. In particular, centralized and federated
query engines rely on fine-grained dataset profiles to
obtain efficient query plans [9–16]. For instance, char-
acteristic sets are often used to estimate join cardinali-
ties in query plan optimization [14–17].
In this work, we focus on theCharacteristic Sets Pro-

file Feature (CSPF) [18], which is a statistical feature of
RDF datasets that includes the characteristic sets, their
occurrence distribution, and the multiplicity of their
predicates. We focus on this particular profile features
as an informative statistical characterization of RDF
datasets due to the following reasons. First, CSPFs im-
plicitly captures structural features of the data, such as
the mean out-degree, distinct number of subjects, and
the set of predicates including their counts. Second,
characteristic sets implicitly reflect the schema of an
RDF dataset as they capture semantic information on
its entities. Finally, CSPFs are well suited to be lever-
aged by (decentralized) query planning approaches for
cardinality estimations and other downstream tasks as
they provide insights into the predicate co-occurrence.
While the CSPFs provide rich information that is ben-
eficial for various applications, obtaining the profile
feature can be a challenging task. For instance, the
federated query planning approach Odyssey [16] ex-
ploits information on the characteristic sets and how
they are linked across datasets to estimate intermediate
results when optimizing query plans. Yet, especially in
federated query processing, it can be difficult and/or
costly to access the entire RDF datasets of all mem-
bers in the federation and, subsequently, compute these
fine-grained statistics. First, data dumps are not always
available in federated querying as data publisher may
choose different LinkedData Fragments (LDFs) to pub-
lish their data [19]. For example, the datasets may only
be partially accessed via SPARQL endpoints or Triple
Pattern Fragment servers. Moreover, in the case of pub-
lic resources, the statistics need to be obtained while
respecting the fair use policies of the publisher [20].
Second, the computational complexity to get the char-
acteristic sets for an RDF dataset with = triples is in
O(= · ;>6(=) + =) [21] as it requires sorting and then
iterating all triples. This computational effort is an ad-
ditional restriction, especially for very large and evolv-

ing datasets, such as DBpedia2 or Wikidata3 with more
than a billion triples that are updated frequently.

Addressing these limitations, we propose an ap-
proach that estimates accurate statistical profile features
based on characteristic sets and that relies only on a
small sample of the original dataset. Our sample-based
approach alleviates the necessity of having access to
the entire dataset and also reduces the cost of com-
puting the profile feature. Given an RDF dataset, our
approach employs an entity-enteric sampling method
and computes the characteristic sets of the entities to
build the CSPF of the sample. Then, we apply a pro-
jection function to extrapolate the statistics observed
in the sample to estimate the original dataset’s CSPF.
As the statistics of the characteristic sets are sensitive
to the structure of the datasets and the sample, this ex-
trapolation step can be challenging. Take for example
the following characteristic sets (1, (2 and (3 from
the LinkedMDB datasets and the number of associated
subjects (2>D=C)4:

Characteristic Set 2>D=C

(1 {owl:sameAs, dbp:hasPhotoCollection} 9838

(2
{owl:sameAs, dbp:hasPhotoCollection,
lmdb:relatedBook} 5

(3
{owl:sameAs, dbp:hasPhotoCollection,
foaf:page} 697

We observe that the characteristic set (1 differs only
by a single predicate from both (2 and (3. However,
the count values differ significantly as (1 occurs almost
2000 times more often than (2 but only about 14 times
more often than (3. The example shows the challenge
of estimating the count statistic accurately, as the semi-
structured nature of RDF datasets can lead to situations
where small differences between characteristic sets re-
sult in large changes in their occurrence. Therefore,
we investigate which sampling and extrapolation ap-
proaches are less prone to potential estimation errors.
In addition, we want to understand to which extent the
estimated CSPF can be leveraged in federated query
processing. We, therefore, propose a federated query
planning approach that is specifically designed to make
use of estimated CSPF to obtain query plans. To this
end, we investigate the following research questions.

2https://www.dbpedia.org/
3https://www.wikidata.org/
4In the remainder of this work, we assume prefixes as given in

https://prefix.cc

https://www.dbpedia.org/
https://www.wikidata.org/
https://prefix.cc
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RQ 1 Which steps are sufficient for accurately esti-
mating RDF dataset profile features? First, we want to
investigate howwe can estimate profile featureswithout
requiring access to the entire dataset. In particular, we
study which sampling methods are suitable to obtain a
representative sample for the specific characteristic sets
profile feature. Based on samples, we investigate how
the information captured in the sample can be extrap-
olated to the original dataset. The goal of this research
question is, therefore, to understand the impact of dif-
ferent sampling methods, sample sizes, and extrapola-
tion techniques on the profile feature estimation.

RQ 2 How can we assess the effectiveness of esti-
mated profile features? Given the original profile fea-
ture and an estimation, we need means to assess the
accuracy of the estimation. As we focus on the charac-
teristic sets profile features that capture various charac-
teristics of the dataset, we investigate how the represen-
tativeness of an estimation with respect to those char-
acteristics can be measured. Moreover, with this ques-
tion, we also want to understand which characteristics
are more difficult to estimate and how the structure of
the original dataset impacts the estimations.

RQ 3 How can we leverage estimated profile features
to support downstream applications such as federated
query processing? This question aims to investigate
how estimated profile features still support applications
that rely on these features. Aswe focus on the character-
istic sets profile feature, we consider applications that
leverage this information and where the computation
of the complete statistics may not be feasible. There-
fore, we investigate how a federated query planning
approach can leverage the estimated profile features.
Specifically, we study how source selection, query de-
composition, and join ordering is affected by different
estimations. Finally, we want to understand to which
extent the effectiveness of the estimation (c.f. RQ 2) is
reflected in the performance of the query plans.

Contributions This paper builds on a previous work
of ours [18], which focuses on a sampling-based
approach for estimating characteristic sets for RDF
dataset profiles.We extend this work regarding twoma-
jor aspects. First, we expand our experimental evalu-
ation about CSPF estimations by studying additional
datasets and providing a more fine-grained analysis of
the results. Second, we address a central aspect of the
profile feature estimations, which is their application
in downstream tasks. Particularly, we propose a novel
federated query planning approach based on the profile

feature estimations. Finally, we evaluate this approach
in an experimental study. In summary, the novel con-
tributions of this work are as follows.

C 1 An extensive experimental study of our Character-
istic Sets Profile Feature estimation approach on
eight new datasets,

C 2 a fine-grained analysis of the results to understand
the effectiveness of our CSPF estimation approach
and its components,

C 3 a new estimations-based query planner to show-
case the application of the estimations in federated
query processing,

C 4 an experimental study of our query planner on the
well-known FedBench benchmark, and

C 5 a detailed evaluation of the results to understand
the benefits and limitations of the query planner.

Structure of this paper The remainder of this work is
organized as follows. In Section 2, we introduce RDF
dataset profiling and present our problem definition
for estimating profile features. We define characteris-
tic sets profile features and present our sampling-based
approach to estimate them in Section 3. In Section 4,
we present an application of the estimated profile fea-
tures in federated query planning. We evaluate our pro-
file feature estimation and estimation-based query ap-
proaches in Section 5. Related work on statistical pro-
filing, graph sampling, and federated query processing
is discussed in Section 6. Finally, we conclude our work
with remarks on future work in Section 7.

2. RDF Dataset Profiling

The Resource Description Framework (RDF) is a
graph-based data model. The atomic elements in RDF
are triples, which are statements represented as 3-tuple
of RDF terms: C = (B, ?, >) ∈ (� ∪ �) × � × (� ∪ �∪ !)
with B the subject, ? the predicate, and > the object
of the triple. Each term of an RDF triple comes from
one of the pairwise disjoint sets of Internationalized
Resource Identifiers (IRIs) �, blank nodes �, or literals
!. A set of triples allows for constructing a directed la-
beled graph, where the triples’ subjects and objects are
nodes connected by the predicates as directed labeled
edges. A set of RDF triples is called an RDF graph �
and we denote the universe of RDF graphs by �. The
set of subjects in an RDF graph is often referred to as
its entities. According to the RDF 1.1 specification of
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theW3C5, a collection of RDF graphs is called an RDF
dataset where all but one graph are named graphs asso-
ciated with a graph name (IRI or blank node), and the
unnamed default graph. For the sake of simplicity, in
the remainder of this work, we consider, RDF datasets
with just the default graph and use the terms RDF graph
and RDF dataset interchangeably.

2.1. Profile Features

RDF datasets are summarized in RDF dataset pro-
files that consist of profile features describing the char-
acteristics and entities of the dataset. In the area of tra-
ditional relational database theory, a statistical profile
is defined as a “complex object composed of quanti-
tative descriptors” that “summarizes the instances of a
database” [22]. These quantitative descriptors can cover
different characteristics of the instances, for example:

– central tendency (e.g., mean),
– dispersion, (e.g., coefficient of variation),
– size (e.g., number of instances), and
– frequency distribution (e.g., uniformity).

The specific characteristics covered in such profiles
depend on the downstream application, for example, the
statistical features required by a query optimizer that
uses the profile to devise efficient query plans. Similar
to relational databases, statistic profiles are also com-
monly used for a variety of applications in the realm
of RDF datasets. These applications range from cen-
tralized RDF data management solutions [23] and RDF
graph compression [24] to query optimization for both
centralized and federated query processing [16, 21, 25].
For instance, a common application of such statistical
profiles in query optimization is the estimation of join
cardinalities for subqueries.
The terminology for such statistical profiles varies

according to their application [4–6]. In this work, we
follow the terminology introduced by Ellefi et al. [6]:
An RDF dataset profile is a formal representation of a
set of dataset profile features. Moreover, we focus on
statistical profile features and define them as follows.

Definition 2.1 (Profile Feature [18]). Given an RDF
graph �, a profile feature � (�) is defined as a charac-
teristic describing a statistical feature � of graph �.

As previously mentioned, computing these profile
features can be challenging because accessing and pro-
cessing the entire datasets is difficult and/or costly.

5https://www.w3.org/TR/rdf11-datasets/

Therefore, we investigate profile feature estimation
without requiring access to the complete RDF graph.

2.2. Profile Feature Estimation

Addressing the limitation of requiring access to the
entire RDF dataset for computing statistical profile fea-
tures, we propose the concept of Profile Feature Es-
timation. Profile feature estimations aim to estimate a
statistical profile features of RDF datasets using a sub-
set of the data only. The goal is to generate a profile fea-
ture estimation that is as similar as possible to the orig-
inal profile feature while requiring access to a subset of
the dataset only. In particular, we propose an approach
that relies on a sample from the original RDF graph
in combination with a projection function to extrapo-
late the true profile feature. Consequently, we define a
profile feature estimation as follows.

Definition 2.2 (Profile Feature Estimation [18]). Given
an RDF graph �, a projection function q, a subgraph
� ⊂ �, and the profile feature � (·), a profile feature
estimation �̂ (·) for � is defined as

�̂ (�) := q(� (�))

In an ideal situation, the estimated profile feature is
identical to the true original profile feature (computed
over the complete RDF graph). However, the profile
feature to be estimated and the properties of both the
subgraph� and the projection function qmay affect the
differences between the true and the estimated feature.
For example, given a larger subgraph, the estimation
might be more accurate than for a smaller subgraph,
as the larger subgraph potentially covers more charac-
teristics of the original graph. The problem is finding
an estimation for the profile feature which maximizes
the similarity to the profile feature of the original RDF
graph. To this aim, we introduce the concept of a sim-
ilarity function X that maps two profile features to a
similarity value. The profile feature estimation prob-
lem is given as finding a profile feature estimation that
maximizes the similarity to the original profile feature.

Definition 2.3 (Profile Feature Estimation Problem
[18]). Given an RDF graph � and a profile feature
� (·), the problem of profile feature estimation is de-
fined as follows. Determine a profile feature estimation
�̂ (·), such that �̂ (�) = q(� (�)) and

max X(� (�), �̂ (�))

https://www.w3.org/TR/rdf11-datasets/
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with |� | � |� | and X a function assessing the similar-
ity of two profile features.

In order to maximize the similarity, the sampling al-
gorithm for obtaining � and the projection function q
need to be chosen appropriately. The particular method
tomeasure the similarity X depends on the actual profile
feature to be estimated with potentially several similar-
ity functions for the same profile feature. Take for ex-
ample a profile feature � (�) that counts all literal val-
ues in an RDF dataset and �̂ (�) estimating the count
based on a sample of �. The similarity to determine
how well the count is estimated could be calculated
as the absolute difference or the relative difference be-
tween the true count and the estimated count. In other
words, the similarity function measures the represen-
tativeness of the profile feature estimation �̂ with re-
spect to �. In network theory, the representativeness of
a sample is commonly assessed by how well it captures
the structural properties of the original graph [26–28].
As we focus on a more comprehensive profile feature
based on the characteristic sets – which capture struc-
tural and semantic features of the graph’s entities– con-
sidering only structural features of the sample and the
graph may not be sufficient to assess how representa-
tive a sample is and, thus, a feature estimation for an
RDF graph is. Note that in the remainder of this work,
we only focus on this specific profile feature and inves-
tigate how the estimated profile feature can be lever-
aged in federated query processing. Nonetheless, the
presented approach can be adapted and applied to other
statistical profile features potentially supporting other
applications as well.

3. Characteristic Sets Profile Feature Estimation

Wenowpresent our sampling-based approach to esti-
mate profile features based on the characteristics sets of
RDF graphs. In this section, we first introduce the con-
cept of characteristics sets and define the correspond-
ing Characteristic Sets Profile Feature. Thereafter, we
present our approach that combines RDF graph sam-
pling with projection functions to estimate the Charac-
teristic Sets Profile Feature. Finally, we propose struc-
tural and statistical similarity measures to assess the
representativeness of these estimations.

3.1. Characteristic Sets Profile Feature

The concept of characteristic sets for RDF graphs
was introduced by Neumann et al. [14]. In their work,

the authors used characteristics sets for query planning
as they capture the co-occurrences of predicates in RDF
graphs. The idea of characteristic sets is describing se-
mantically similar entities by grouping them according
to the set of predicates the entities share. Furthermore,
the number of entities in each group are counted as well
as the average usage of their predicates. As a result, the
characteristic sets capture both statistical information
on the data distribution as well as semantic information
on the entities in an RDF graph.

Definition 3.1 (Characteristic Sets [14]). The charac-
teristic set of an entity B in an RDF graph � is given
by: (� (B) := {? | ∃> : (B, ?, >) ∈ �}. Furthermore,
for a given RDF graph �, the set of characteristic sets
is given by �� (�) := {(� (B) | ∃?, > : (B, ?, >) ∈ �}

In an RDF graph, the statistical information deter-
mined for the characteristic sets typically includes the
number of occurrences (count) of a given characteristic
set as well as the multiplicities of the predicates within
each characteristic set. These statistics are used in both
centralized triple stores and federated query engines
because they allow to determine exact join cardinalities
for specific Distinct queries and to compute cardinal-
ity estimations for non-distinct queries [14, 16, 21, 25].
Similar to Neumann et al. [14], we define the num-
ber of occurrences 2>D=C (() of a characteristic set
( = {?1, ?2, . . . } in an RDF graph � as

|{B | ∃?, > : (B, ?, >) ∈ � ∧ (� (B) = (}| (1)

In addition, in this work, we focus on the occur-
rences of predicates in characteristic sets by consid-
ering their mean multiplicity. The mean multiplicity
<D;C8?;828CH(?8 , () for ?8 in ( is given by

|{(B, ?8 , >) | (B, ?8 , >) ∈ � ∧ (� (B) = (}|
2>D=C (() (2)

In other words, for a given characteristic set, the
multiplicity measures how often each predicate occurs
on average. Combining the count andmeanmultiplicity
statistics of a characteristic set, we can compute the
number of triples that are covered by it. The relative
coverage 2>E4A064((, �) of a characteristic set ( ∈
�� (�) in an RDF graph � is computed as

∑
?∈( <D;C8?;828CH(?, () · 2>D=C (()

|� | (3)
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Fig. 1. Overview of the approach: A sample � is taken from the original graph �. The profile feature � (� ) is created and projected to obtain
the profile feature estimation q (� (� )) = �̂ (�) .. (based on [18])

For example, consider the characteristic set (1 =

{lmdb:hasPhotoCollection, owl:sameAs} from our intro-
ductory example taken from LinkedMDB with

– 2>D=C ((1) = 9859,
– <D;C8 ?;828C H (lmdb:hasPhotoCollection, (1) = 1,
– <D;C8 ?;828C H (owl:sameAs, (1) = 2,
– 2>E4A064 ((1, !8=:43"��) = 0.5%.

The statistics indicate that 9859 entities in the
LinkedMDB graph belong to (1 and each of those en-
tities has exactly one lmdb:hasPhotoCollection and on
average two owl:sameAs predicates. Moreover, the cov-
erage indicates that 0.5% of the triples in LinkedMDB
belong to entities with (1 as their characteristic set.

Finally, we introduce the notion of exclusive charac-
teristic sets. An exclusive characteristic set occurs only
once in an RDF graph and is defined as the following.

Definition 3.2 (Exclusive Characteristic Sets [18]).
Given the characteristic sets �� (�) of graph �. The
set of exclusive characteristic sets �1 is defined as

�
1 := {( ∈ �� (�) | 2>D=C (() = 1}

For example, in the LinkedMDB graph there exists
only one entity with the predicates lmdb:relatedBook

and lmdb:language. Therefore, the characteristics set
(4 = {lmdb:relatedBook, lmdb:language} is an exclusive
characteristic set.
Based on these definitions, the statistical aspects of

characteristics sets can be combined to formally define
the characteristic sets profile feature (CSPF) as follows.

Definition 3.3 (Characteristic Sets Profile Feature
(CSPF) [18]). Given a RDF graph�, the characteristic
sets profile feature � (�) is a 3-tuple (�, 2, <) with:

– � = �� (�), the set of characteristic sets in �,
– 2 : �→ N, a function for the 2>D=C as defined in
Equation 1, and

– < : � × � → R+, a function for the <D;C8?;828CH
as defined in Equation 2.

We now present the individual steps of our approach
for estimating the CSPF of a given RDF graph.

Overview of the approach We propose a sampling-
based approach that is shown in Figure 1. Given a graph
�, the approach generates a sample � ⊂ � using an
RDF graph sampling method. We present the sampling
methods in Section 3.2. Thereafter, the approach com-
putes the CSPF � (�) for the sample � (Section 3.3).
Finally, a projection function q is applied to extrapolate
the feature observed in � to an estimation q(� (�)) for
� (�) of the original graph. We propose different pro-
jection functions tailored to the CSPF in Section 3.4.
Moreover, to assess the representativeness of the fea-
ture estimations, we propose a selection of structural
and statistical similarity measures in Section 3.5.

3.2. Graph Sampling

The first step of our approach is obtaining a repre-
sentative sample of the original RDF graph that pro-
vides a suitable foundation for estimating the profile
feature. Before collecting data from a population in a
sample, an appropriate sampling method needs to be
chosen. Accordingly, we focus on sampling methods
suitable for estimating the CSPF. Since characteristic
sets capture the attributes of the entities in an RDF
graph, we focus on entity-centered sampling methods
in the following. Each entity (i.e., subject) is associated
with exactly one characteristic set, thus, we define the
population to be sampled from as the set of entities
in the given graph: � := {B | (B, ?, >) ∈ �}. The in-
put of the sampling method is an RDF graph � and a
sample size =′ and its output is a subgraph � induced
by =′ entities of �. Let � ′ ⊂ � be the set of sampled
entities with |� ′ | = =′, then the sample � is given as
� := {(B, ?, >) | (B, ?, >) ∈ � ∧ B ∈ � ′}. We present
three entity-centered sampling methods differing in the
probabilities of an entity being sampled. Thus, they al-
low for exploring different parts of the search space of
possible characteristic sets during sampling.
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Unweighted Sampling The unweighted sampling
method selects =′ entities with equal probability from
the population � . Thus, the probability %A (4) of 4 ∈ �
being a part of the sample is independent of any other
property of the entity with

%A (4) = 1
|� | .

Weighted Sampling The weighted sampling method
is a biased sampling method, where the probability of
an entity to be part of the sample is proportional to its
out-degree. As a result, the more central an entity is
in the graph with respect to its out-degree centrality
[29], the more likely it is part of the sample. In this
way, entities that appear in many triples of the graph
in the subject position, have a higher probability of be-
ing selected. The out-degree of each entity 4 given by
346+ (4) := |{(4, ?, >) | (4, ?, >) ∈ �}|. The probabil-
ity %A (4) of 4 ∈ � being sampled is given as

%A (4) = 346+ (4)
|� | .

Hybrid Sampling The hybrid sampling method com-
bines the previous two sampling methods. From the
original graph, V · =′ entities are selected using the
unweighted method and (1 − V) · =′ entities using the
weighted method. Accordingly, the probability %A (4)
of entity 4 being selected is given as

%A (4) = V · 1|� | + (1 − V) ·
346+ (4)
|� | , V ∈ [0, 1] .

The V parameter allows for favoring either the
weighted or the unweighted method.

3.3. Profile Feature Creation

After obtaining a subgraph � using a sampling
method, the characteristic sets profile feature � (�) is
computed. Similar to [21], we compute � (�) by first
sorting the triples in � by subjects and then iterating
all triples. While iterating the triples, we determine the
characteristic set for each subject in � and compute the
count and multiplicity values for them.

3.4. Profile Feature Projection

Given the profile feature � (�), the goal of a pro-
jection function is to extrapolate the statistical prop-
erties observed in sample � to the target population,
which is the original graph�. Given the profile feature
� (�) = (�, 2, <), the projection profile feature is ap-
plied to � (�) to obtain an estimation of the original
profile feature �̂ (�) = q(� (�)). In the case of the
characteristic sets profile feature (CSPF), the projec-
tion function aims to extrapolate the counts 2 of the
observed characteristic sets to estimate the counts in
the original graph. The multiplicity statistic< does not
need to be extrapolated by the projection function, as it
is a relative measure that captures themean occurrence
of a predicate in a characteristic set.

We now present two classes of projection functions
for the count values of the characteristic sets in the sam-
ple. The first class, which we denote basic projection
functions, only relies on information contained within
the sample and the size of the original graph. The sec-
ond class, which we denote as statistics-enhanced pro-
jection functions also relies on high-level information
on the original dataset in addition to the information
contained in the sample.

Basic Projection Function The basic projection func-
tion extrapolates the count values for the given char-
acteristic sets profile feature � (�) based on the rela-
tive size of the sample. The relative sample size AC is
given as the ratio of the number of triples in the origi-
nal graphs and in the sample AC := |� |

|� | . We define the
projection function q1 as

q1 (� (�)) := (�, AC · 2, <)

The assumption of the basic projection function is
that the characteristic sets observed in a sample occur
proportionally more often in the original graph. How-
ever, as exemplified in the introduction, the distribu-
tions of the counts may be potentially skewed which
is not considered by this projection function. More-
over, this function neglects the fact that some charac-
teristics sets might not have been sampled and merely
distributes the proportional counts across the charac-
teristic sets in the sample. As a result, it is likely that
the counts for the characteristic sets is overestimated,
especially if just a small portion of characteristics sets
from the original graph are captured. To address this
shortcoming, we introduce two statistic-enhanced pro-
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jection functions that leverage high-level information
to reduce the probability of overestimating the counts.

Statistics-enhancedProjectionFunctions The second
class of projection functions incorporates additional
high-level information about the original graph. In par-
ticular, we consider the number of triples per predicate
in the original graph as this high-level statistic. The
rationale for this particular statistic is that it potentially
yields a good trade-off between the effort to obtain the
statistic and the benefit it provides for the projection
function. The number of triples for predicate ?′ is given
by C (?′) := |{(B, ?′, >) | (B, ?′, >) ∈ �}|.
The first statistic-enhanced projection function, q2

applies a true upper bound for the counts of the char-
acteristics sets in the following way.

q2 (� (�)) := (�, ¤2, <), with

¤2((� ) := min(AC · 2((� ), min
?′∈(�

C (?′))

The idea of this projection function is that the pred-
icate occurrence statistics of the original graph allows
for limiting the estimated counts for characteristic sets
containing that predicate. If a predicate ?′ is part of a
characteristic set (� , then (� may occur at most C (?′)
times and consequently 2((� ) 6 C (?′). This reduces
the likelihood of overestimating countswithout increas-
ing the likelihood of underestimating them. The effec-
tiveness of this upper bound, however, strongly depends
on the predicates that occur in a given characteristic set.
For instance, in the case that a characteristic set contains
common predicates, such as rdf:type or rdfs:label, the
upper bound determined by q2 might be rather high,
even though the predicates potentially occur in a num-
ber of other characteristic sets as well. Therefore, we
propose a second statistics-enhanced projection func-
tion q3 which distributes the upper bound for a predi-
cate ?′ by considering the sum of counts of the charac-
teristic sets in which the predicate ?′ occurs. To achieve
this, we first sum up the counts of all characteristic sets
which ?′ occurs in as

(
?′

�
:=

∑
(′
�
∈�∧?′∈(′

�

2((′� )

The projection function q3 then adjusts the upper
bound by multiplying C (?′) with the ratio of the count
2((� ) of the given characteristic set (� and the sum of
counts for all characteristic sets ?′ occurs in (?

′

�
.

q3 (� (�)) := (�, ¥2, <), with

¥2((� ) := min
(
AC · 2((� ), min

?′∈(�

(
C (?′) · 2((� )

(
?′

�

))
In contrast to q2, this approach applies a stricter up-

per bound by considering all characteristic sets a pred-
icate occurs in and reducing the upper bound accord-
ingly. However, a drawback is that the projection func-
tion q3 increases the likelihood of underestimating the
count of characteristic sets by assuming an equal dis-
tribution of the predicates.

Concluding this section on the projection functions,
we want to note that further functions may be applied
to potentially improve the estimation of the profile fea-
ture. For example, the characteristic sets sizes or addi-
tional statistics about the predicate distribution in the
sample could be considered. However, we chose not to
include them since they are likely to just produce accu-
rate estimation under certain conditions and, therefore,
do not generalize well for other datasets. Moreover, fur-
ther improvements in the estimations do not necessar-
ily imply the same improvements in the downstream
applications that use the feature estimations.

3.5. Similarity Measures for Characteristic Set
Profile Features

Finally, we define similarity measures that quan-
tify the similarity between the estimated profile fea-
ture and the feature of the original graph. A higher
similarity value indicates a more representative fea-
ture estimation. According to our problem definition
(Def. 2.3) in Section 2.2, the goal is obtaining an esti-
mator �̂ (�) = q(� (�)) for the characteristic � which
maximizes the similarity X between the estimated and
the original profile feature. As previously mentioned,
methods to quantify the similarity depend on the partic-
ular profile feature. We now propose measures that are
tailored to the characteristic sets profile feature (CSPF).
Due to the diverse nature of the graph’s characteristics
captured in the CSPF, we propose multiple measures
to determine the similarity X(� (�), �̂ (�)) between
the original CSPF � (�) = (�, 2, <) and an estimated
CSPF �̂ (�) = (�̂, 2̂, <̂). The proposed similarity mea-
sures capture both structural as well as statistical as-
pects of the CSPF. All measures take values in [0, 1]
with larger values indicating a higher similarity. An
overview of all similarity measures is given in Table 1.
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Table 1
Overview of the similarity measures: The structural similarity measure capture the degree to which structural features of the original graph are
represented. The statistical similarity measures focus on the 2>D=C and <D;C8 ?;828C H statistics of the characteristic sets.

Structural Similarity Measures Statistical Similarity Measures

Out-degree Predicate coverage Absolute set coverage Relative set coverage Count similarity Multiplicity similarity
X>3 (4) X?2 (5) X02 (6) XA2 (7) X2>D=C

(�
(8) X

<D;C8?;828CH

(�
(9)

Structural Similarity Measures The first category of
similarity measures focuses on the structural informa-
tion captured in the characteristic sets. We propose four
measures that consider the mean out-degree, the predi-
cates covered, and the absolute and relative number of
covered characteristics sets. The out-degree similarity
measure X>3 determines how well the mean out-degree
of the original graph is captured in the estimated profile
feature. The mean out-degree 346+ can be computed
for a CSPF � (�) in the following way.

346+ (� (�)) := |� |∑
(� ∈� 2((� )

Note that 346+ (�̂ (�)) is computed analogously for
the estimated features using �, �̂, and 2̂ instead. The
out-degree similarity measure is computed as

X>3 (� (�) , �̂ (�)) := 1 − |346+ (� (�)) − 346+ (�̂ (�)) |
max(346+ (�̂ (�)) , 346+ (� (�)))

(4)

The second structural measure focuses on the pred-
icates captured in the characteristic sets of the CSPF.
The predicate coverage similarity X?2 is calculated as
the ratio of the number of predicates covered in the
estimation and the number of predicates in the original
profile feature.

X?2 (� (�) , �̂ (�)) := | {? | ? ∈ (� ∧ (� ∈ �̂} || {? | ? ∈ (� ∧ (� ∈ �} |
(5)

A higher ratio indicates that a larger portion of the
terminology used to describe the entities in the graph
is captured in the estimated CSPF.
The final two structural measures address character-

istic sets themselves and determine how many of them
are covered in the CSPF �̂ (�). First, the absolute set
coverage similarity X02 is computed as the ratio of the

number of characteristic sets in the estimation to those
in the original statistic profile:

X02 (� (�), �̂ (�)) := |�̂||�| (6)

However, this measure does not reflect the impor-
tance of the characteristic sets captured in estimated
CSPF with respect to their 2>E4A064. A characteristic
set (� can be considered to be more important if it rep-
resents a larger portion of a given graph �. Therefore,
the relative set coverage similarity XA2 of �̂ (�) is cal-
culated as the number of triples induced in the original
graph with all characteristic sets in �̂ of the estimation.

XA2 (� (�) , �̂ (�)) :=
∑
(�∈�̂ 2>E4A064 ((� , �)

|� | (7)

Note that the characteristic sets of the estimation �̂

are taken as the basis for computing the measure, while
their coverage (c.f. Equation (3)) is computed based on
the original graph, i.e.

∑
?∈(� <(?, (� ) · 2((� ). In this

way, XA2 reflects the importance of the characteristic
sets captured in the sample. For example, consider an
RDF graph � with two characteristic sets (1 and (2,
where (1 covers 90% and (2 10% of all triples in �.
Assume that we obtain two estimations with �̂1 = {(1}
and �̂2 = {(2}. Both �̂1 and �̂2 have the same absolute
set coverage X02 = 0.5 because they both contain one
characteristic set. If we take the relative set coverage
into consideration, we can determine that �̂1 should be
considered more representative for the original graph
� as its characteristic set (1 covers 90% of its triples.

Statistical Similarity Measures The second category
of similarity measures focuses on the statistical aspects
covered in the feature estimations, namely the counts of
the characteristic sets and themultiplicity of predicates.
Depending on the distribution of the characteristics sets
in the original graph, an accurate estimation of both
counts and multiplicity values can be challenging. As
a consequence, for some characteristic sets, the estima-
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tions can be accurate, while for others large estimation
errors can occur. We propose statistical similarity mea-
sures that capture the estimation accuracy on the level
of individual characteristics sets. To better understand
the estimation error distribution across all character-
istic sets in a sample, different aggregation functions,
such as mean or median, may be applied afterward.
We propose a similarity measure for the count values

that is the inverse of the count estimation q-errors. The
q-error [17] is the maximum of the ratios between true
and estimated count and vice versa. Given a profile
feature � (�) and an estimation �̂ (�) , the count value
q-errors are computed for all (� ∈ �̂ as

q-error2 ((� ) := max
(
2((� )
2̂((� )

,
2̂((� )
2((� )

)
.

Higher q-errors indicate a higher discrepancy be-
tween the true value and the estimation, and a q-error
of 1 indicates that the estimation is correct. We take
the inverse of the q-error to map it to the similarity
measure range [0, 1]

X2>D=C
(�

(� (�) , �̂ (�)) := 1
q-error2 ((� )

. (8)

Note that the q-error only measures the magnitude
of the estimation error but does not indicate whether
values are over- or underestimated. As a result, when
aggregating the similarity measures across all charac-
teristic sets of a given feature estimation �̂, this prop-
erty avoids overestimated counts to cancel out under-
estimated counts and vice versa.
The proposed similarity measure for the predicate

multiplicities is also based on the q-error and is defined
on the level of characteristic sets. Given a profile feature
� (�), an estimation �̂ (�) and a characteristic set (�
in �̂ (�), this q-error is computed as the mean of the
multiplicity q-errors of all predicates in (�

q-error< ((� ) :=
1
|(� |

∑
?∈(�

max
(
<̂(?, (� )
<(?, (� )

,
<(?, (� )
<̂(?, (� )

)
.

Analogously, to the count values, the similarity mea-
sure for the multiplicities is the inverse of the q-error

X
<D;C8?;828CH

(�
(� (�) , �̂ (�)) := 1

q-error< ((� )
. (9)

In summary, the characteristic sets in a CSPF cap-
tures various characteristics of RDF graphs, rang-
ing from out-degree distribution to predicate co-
occurrence. As a result, a combination of similarity
measures needs to be taken into account to assess the
representativeness of an estimation of a CSPF. To this
end, we have proposed four structural and two statis-
tical similarity measures. The importance of the indi-
vidual measures depends on the application. In the fol-
lowing section, we present one potential application of
the CSPF estimations in federated query planning.

4. Federated Query Planning using Characteristic
Sets Profile Feature Estimations

We investigate the applicability and effectiveness of
the characteristic set profile feature (CSPF) estimations
in a downstream application. In particular, we focus on
federated SPARQL query planning motivated by pre-
vious works, which studied how characteristic sets can
be exploited in query plan optimization in both cen-
tralized and decentralized scenarios. In decentralized
query processing, it has been shown how characteristic
sets can be leveraged to obtain efficient federated query
execution plans that outperform existing state-of-the-
art federated query plan optimizers in terms of query
execution time and data transfer [16]. However, the
computation of the complete characteristics sets profile
feature can be challenging in such decentralized sce-
narios as it requires obtaining the entire datasets of all
members in the federation and, subsequently, comput-
ing the profile feature. Consequently, we study how fed-
erated query planning approaches can benefit from the
proposed characteristic sets profile feature estimations
that are based on samples from the original graphs.

We propose a novel heuristic for federated query
planning to obtain efficient federated query plans based
on estimated CSPFs. We cannot directly apply an ex-
isting approach, such as Odyssey [16], due to the fol-
lowing reason. First, Odyssey relies on having access
to the entire datasets to obtain the complete charac-
teristic sets and the query planner assumes complete
information. Second, the Odyssey approach addition-
ally leverages both the characteristic pair (CP) and the
federated characteristic pair (FCP) statistics to capture
how characteristic sets are linkedwithin and entities are
linked across the datasets of the members in the feder-
ation [16]. In this work, we focus only on characteristic
sets and assume estimated statistics. Therefore, we pro-
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pose a novel query planner based on these restrictions.
Still, our query planner is based on existing approaches
for characteristic sets-based cardinality estimation and
query planning [14, 16, 17].
We begin by introducing the necessary concepts and

notation from SPARQL, which is the recommended
query language for RDF graphs. Following the notation
of Schmidt et al. [30], where+ is the set of variables that
is disjoint with �, �, and !, we can define a SPARQL
expression as follows.

Definition 4.1 (SPARQLExpression [30]). ASPARQL
expression is an expression that is build recursively as
follows.

(1) A triple pattern C ? ∈ (�∪+)× (�∪+)× (�∪+∪!)
is an expression,

(2) If %1, %2 are expressions and ' is a filter condition,
then %1 Filter ', %1 Union %2, %1 Opt %2, and
%1 And %2 are expressions.

We denote an expression of the form %1 And %2
a conjunctive expression. In our query planning ap-
proach, we focus on Basic Graph Patterns which we
define as follows.

Definition 4.2 (Basic Graph Pattern (BGP)). Let %1
and %2 be SPARQL expression. A basic graph pattern
% is defined recursively as an expression of the form
%1 And %2, where %1 and %2 are either a triple pattern
or a conjunctive expression.

Finally, we denote the set of predicates in a BGP % as
?A43B(%). For simplicity, we extend the notation and
also consider aBGP % = (C ?1 And . . . And C ? 9 ) as the
set of triple patterns it consists of % = {C ?1, . . . , C ? 9 }.

4.1. CSPF Estimation-based Federated Query
Planner

We propose a heuristic-based query planner to deter-
mine efficient query plans based on CSPF estimations.
We adapt the notation from [31] and define a federa-
tion of SPARQL endpoints (sources) as F = (�%, 3),
where �% = {4?1, . . . , 4?: } ⊂ � is a set of IRIs that
identify the SPARQL endpoints, and 3 : � → � a func-
tion mapping each endpoint 4?8 to its (default) RDF
graph. Given a basic graph pattern % and a federation
F, the federated query planner performs source selec-
tion, query decomposition, and join ordering to obtain
a query plan. We now detail how the planner leverages
the estimated CSPF in all three steps for basic graph
patterns (BGPs).

Source Selection and Query Decomposition The
source selection and query decomposition step deter-
mine which subexpressions of a given BGP % should
be evaluated at which members of the federation F.
The output of this process is a query decomposition �
that is a set of tuples � = {((�1, '1), . . . , ((�; , ';)},
where each tuple consists of a subexpression (�8 ⊆ %
and a set of relevant sources '8 ⊆ �%. The challenge
of query decomposition based on estimated statistics
is fact that the planner does not know what is not cap-
tured in the estimations. Our query planner follows a
conservative strategy to distinguish between relevant
and non-relevant sources. It assumes all sources to be
relevant, in case none of them is relevant according to
the estimated (potentially incomplete) statistics.

The source selection and query decomposition pro-
cess are shown inAlgorithm1. The goal of the approach
is to merge multiple triple patterns into larger subex-
pressions to reduce the number of subexpressions to be
evaluated over the sources. For each subject-based star-
shaped basic graph pattern [32] ((% of the given BGP
% (Line 2), the decomposer leverages the characteristic
sets to determine whether any subset ((%′ ⊆ ((% of
@ triple patterns can be evaluated jointly at any source
(Line 6). This is the case, if for a source 4? ∈ �%
with �̂ (3 (4?)) = (�̂� , 2̂, <̂), there exists at least one
characteristic set (̂ ∈ �̂ such that all predicates of ((%′
are contained within (̂: ?A43B(((%′) ⊆ (̂ (Line 10).
In this case, the subquery ((%′ is added to the de-
composition with the corresponding relevant sources
'′ and the process continues with the remaining triple
patterns of the original star-shaped BGP: ((% \ ((%′
(Line 15). If ((%′ only consists of a single triple pattern
and no relevant source could be determined (Line 17),
i.e. ' = ∅, all sources need to be considered as relevant
' = �%. This is the case, if either the predicate ? in
the triple pattern does not occur in a characteristic set
of any source or if ? is a variable, i.e. ? ∈ + . How-
ever, for the cardinality estimation in the next step, we
need to be able to distinguish this case from the case
where all sources are known to be relevant according
to the estimated CSPF. For example, all sources could
be known to be relevant for common terminology, such
as rdf:type. Therefore, if the estimated statistics do not
allow for determining which sources are relevant, we
set the relevant sources in the decomposition to be the
empty set (Line 18). Note that because potentially not
all predicates are covered in the sample from which the
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Algorithm 1: Query Decomposer
Input: BGP %, Federation

F = (�% = {4?1, . . . , 4?: }, 3)
1 � = ∅
// Iterate all star-shaped subqueries in %

2 for ((% ∈ getSubjectStars(%) do
3 @ = |((% |
4 C>3> = ((%

5 while |C>3> | > 0 do
6 for ((%′ ∈ subsets(((%, @) do
7 '′ = ∅
8 for 4? ∈ �% do
9 (�̂, 2̂, <̂) = �̂ (3 (4?))

10 if ∃(̂ ∈ �̂ : ?A43B (((%′) ⊆ (̂ then
11 '′ = '′ ∪ {4?}
12 end
13 if |'′ | > 0 then
14 � = � ∪ {(((%′, '′) }
15 C>3> = C>3> \ ((%′
16 @ = |C>3> |
17 if |'′ | = 0 ∧ @ = 1 then
18 � = � ∪ {(((%′, ∅) }
19 end
20 @ = @ − 1
21 end
22 end
23 return �

estimated CSPF is derived, we cannot assume that none
of the sources is relevant.6

Cardinality Estimation and Join Ordering Given a
query decomposition, the query planner estimates the
cardinalities of all subexpressions in the decomposi-
tion. Given these estimations, the planner determines
an efficient join order for the subexpressions. To this
end, the subexpressions are ordered by increasing car-
dinality to minimize the number of intermediate results
to be transferred during query execution.
For a given subexpression (�8 in a decomposition

�, the cardinality estimation distinguishes two cases:

(1) '8 ≠ ∅: There exists a set of relevant sources
according to the estimated statistics, or

(2) '8 = ∅: All sources need to be considered relevant
according to the estimated statistics.

For the first case, we apply the StarJoinCardinal-
ity algorithm proposed by Neumann and Moeroette
[14] to estimate the cardinality for each source 4? ac-

6Alternatively, the planner could use ASK queries to determine
which source is relevant. However, as we want to investigate the
effectiveness of the estimated statistics, the proposed planner only
relies on the estimated CSPF.

cording to the estimated CSPF �̂ (3 (4?)). As suggested
in [14], we also use the absolute predicate multiplicity
to compute the conditional selectivity in the case of a
bound object as

B4; (?> = G |?? = ?) = 1
2>D=C ((� ) · <D;C8?;82CH(?, (� )

We then sum up the estimations to aggregate the
cardinalities across all sources:

20A3 ((�8 , '8) =
∑
4∈'8

StarJoinCardinality(�̂ (3 (4?)) , (�8)

In the second case ('8 = ∅), the subexpression con-
sists of a single triple pattern according to the decom-
position algorithm and all sources need to be consid-
ered relevant for that triple pattern. In this case, we
leverage the information from the estimated CSPF to
estimate the expected number of solutions produced by
the triple pattern. We distinguish the following types of
triple patterns to estimate their cardinalities:

Type I: (B, ?, ?>)
If both subject and predicate are bound in
the triple pattern, we estimate the cardi-
nality as the mean multiplicity values for
all predicates and characteristic sets in all
sources of the federation F.

Type II: (B, ??, ?>)
If just the subject is bound, we estimate the
cardinality as the mean of the mean out-
degrees 346+ of all sources:

1
|�% |

∑
4?∈�%

346+ (�̂ (3 (4?)))

Type III: (?B, ?, ?>)
If just the predicate is bound, we assume
that the predicate occurs less frequently
than the least frequent predicate in all es-
timated CSPF. The rationale for this is, if
predicate ? would occur more frequently, it
would be very likely to be sampled. Thus,
it can be assumed to be less frequent than
any predicate that was sampled.
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Table 2
Characterization of the FedBench RDF graphs studied in the experiments.

General Properties Characteristic Sets

RDF Graph # Triples # Subj. # Pred. # Obj. 346+ 346+
BC3

|S | |S|
# Subjects

|S1 |
|S| �*�

Cr
os
sD

om
ai
n

DBpedia 42 855 253 9 495 865 1063 13 636 604 4.51 6.44 160 062 1.69 % 66.31 % 95.23 %
GeoNames 107 950 085 7 479 714 26 35 799 392 14.43 2.81 673 0.01 % 19.76 % 99.07 %
Jamendo 1 049 647 335 925 26 440 686 3.12 4.31 42 0.01 % 11.9 % 92.38 %
LinkedMDB 6 147 996 694 400 222 2 052 952 8.85 5.31 8459 1.22 % 62.64 % 97.65 %
NY Times 335 197 21 666 36 191 537 15.47 28.73 47 0.22 % 19.15 % 91.14 %
SW Dog Food 103 465 9948 118 35 520 10.40 10.24 569 5.72 % 37.96 % 88.43 %

Li
fe

Sc
ie
nc
e ChEBI 4 772 706 50 477 28 772 138 94.55 1853.09 978 1.94 % 39.57 % 96.71 %

Drugbank 517 023 19 693 119 276 142 26.26 30.33 3419 17.36 % 79.7 % 81.3 %
KEGG 1 090 830 34 260 21 939 258 31.84 165.88 67 0.2 % 11.94 % 92.83 %

Type IV: (?s, ?p, ?o)
The estimated cardinality, is the sum of the
sizes of the graphs in the federation:

∑
4?∈�%

|3 (4?) |

For all remaining types of triple patterns, we esti-
mate the cardinality to be 1. After estimating the cardi-
nalities of all subexpressions in the decomposition, the
query planner iteratively builds a left-deep join plan by
increasing cardinality of the subexpressions.

5. Evaluation

We empirically evaluate our contributions in two ex-
perimental studies. The first study focuses on analyzing
the different components of our proposed approach to
estimate the Characteristic Sets Profile Feature (CSFP)
presented in Section 3. The second study aims to eval-
uate our CSPF estimations-based federated query plan-
ner which we presented in Section 4. We use the well-
known federated querying benchmark FedBench [33]
to investigate the effectiveness of our query planner
and therefore, investigate the RDF graphs from Fed-
Bench in the first part of the evaluation as well. All
raw experimental results are provided online under the
DOI 10.5281/zenodo.4507242. The source code is pro-
vided on GitHub: (i) the sampling implementation7,
and (ii) the query planner8.

7https://github.com/Lars-H/hdt_sampler
8https://github.com/Lars-H/federated_crop

5.1. Characteristic Sets Profile Feature Estimation
Evaluation

We first empirically evaluate the different compo-
nents of our approach to estimate the Characteristic
Sets Profile Feature (CSPF). In the evaluation, we focus
on the following core questions:

Q1 How do different sampling sizes influence the sim-
ilarity measures?

Q2 What is the impact of different sampling methods
on the similarity measures?

Q3 What are the effects of leveraging additional statis-
tics in the projection functions?

Q4 How do different characteristics of the RDF graph
influence the estimation?

We first present the setup of our experiments and
analyze the results in Sections 5.1.1 and 5.1.2. Based
on our findings, we answer the core questions in the
final discussion in Section 5.1.3.

RDF Graphs We select the six cross-domain and
three Life Science RDF graphs from the FedBench
benchmark [33] for our evaluation. An overview of the
graphs’ properties is given in Table 2. The graphs dif-
fer in their general properties: the number of triples,
the number of distinct subjects, predicates, and objects
as well as the out-degree distribution. Moreover, the
graphs differ with respect to their characteristic sets.
The number of characteristic sets ranges from 42 to
more than 160 000. Theoretically, the number of poten-
tial characteristic sets in a graph is bound by the power
set of its predicates. In practice, however, the number of
distinct subjects in the graph is a stricter upper bound.
Therefore, we provide the ratio of characteristic sets

https://doi.org/10.5281/zenodo.4507242
https://github.com/Lars-H/hdt_sampler
https://github.com/Lars-H/federated_crop
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(a) DBpedia
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(b) GeoNames
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(c) Jamendo
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(d) LinkedMDB
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(f) SW Dog Food
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(g) ChEBI
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(h) Drugbank
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(i) KEGG
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(j) All datasets

Fig. 2. The cumulative relative coverage curve shows the ratio of triples covered with respect to the characteristic sets ordered by decreasing
relative coverage.

and distinct subjects (|S|/# Subjects [%]) as a measure
of the characteristic sets’ diversity (higher values indi-
cating a higher diversity). Additionally, the graphs dif-
fer in the proportion of exclusive characteristics sets.
These exclusive characteristic sets, which only occur
once in the graph, introduce further challenges when
estimating the CSPF. If an exclusive characteristic set
is sampled, the projection function likely overestimates
its counts. In principle, it is unlikely to sample exclusive
characteristic sets as they only occur once. However, in
graphs with a large portion of those sets, the likelihood
of sampling and overestimating those exclusive sets in-
creases. Depending on the application of the estima-
tions, it is potentially less important to correctly project
the exclusive characteristic sets due to their lower cov-
erage in comparison to other characteristic sets.
Figure 2 shows the cumulative coverage curve of

the characteristic sets for all graphs. The curve plots
the cumulative coverage of the characteristics sets in a
graph sorted by decreasing coverage (c.f. Equation (3)).

5 (G) =
∑

(� ∈�G�

2>E4A064((� , �), with

�
G
� := {(� ∈ �� (�) | A0=: ((� ) 6 G},

where A0=: ((� ) computes the relative rank of the
characteristic sets by decreasing coverage. The curve
allows for visualizing the distribution of characteristic
sets in a graph. A diagonal line indicates all charac-

teristic sets covering the same number of triples. The
stronger the curve is bent towards the upper left corner
the more unevenly is the coverage of the characteristic
sets, i.e., a few characteristic sets covering a large por-
tion of the graph and many covering a small fraction
of the graph. For instance, comparing GeoNames in
Fig. 2b andNYTimes in Fig. 2e, we observe that in both
graphs the characteristic set with the highest coverage
covers ≈ 30% of all triples in the graph. However, the
distribution of characteristic sets differs as in GeoN-
ames 20% of the characteristics sets cover ≈ 90% of
all triples, while in NY Times they only cover ≈ 80%.
We use the area under the cumulative coverage �*�
to quantify this property (cf. Table 4).

Sampling Methods We study the presented un-
weighted, weighted, and hybrid sampling methods. We
chose V = 0.5 for the hybrid sampling method equally
balancing the weighted and unweighted method. We
investigate four different sample sizes defined relative
to the total number of entities |� | in the graph. We
chose =′ = {0.1‰ · |� |, 0.5‰ · |� |, 1‰ · |� |, 5‰ · |� |}
(Note: 10‰ = 1%). We generate 30 samples per RDF
graph, sampling method, and sample size resulting in
a total of 30 · 9 · 3 · 4 = 3240 samples. For the sake
of comparability, we reuse the samples and CSPF es-
timations created in this evaluation as the basis for the
evaluation of our federated query planner.
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Table 3
Mean similarity values X>3 , X?2 , X02 , XA2 (higher is better) and mean sampled triples ratio |� |/ |� | in permille (‰) by sample size and
sampling method. Best values per RDF graph and similarity measure are indicate in bold.

0.1 ‰ 0.5 ‰ 1.0 ‰ 5.0 ‰

unweighted hybrid weighted unweighted hybrid weighted unweighted hybrid weighted unweighted hybrid weighted

Sa
m
pl
e
siz

e
|�
|/
|�
|[

‰
] DBpedia 0.10 0.20 0.30 0.50 1.01 1.52 1.00 2.01 3.04 5.00 10.05 15.09

GeoNames 0.10 0.10 0.10 0.50 0.51 0.52 1.00 1.02 1.04 5.00 5.09 5.19
Jamendo 0.10 0.18 0.27 0.50 0.95 1.38 0.99 1.90 2.91 4.97 9.56 14.09
LinkedMDB 0.10 0.12 0.13 0.50 0.59 0.69 0.99 1.19 1.37 4.99 5.89 6.78
NY Times 0.10 0.17 0.53 0.38 1.45 2.28 0.99 2.33 3.93 5.24 13.15 22.18
SW Dog Food 0.08 0.09 0.24 0.36 0.63 0.67 0.92 1.26 1.60 4.76 6.72 8.93
ChEBI 0.03 13.59 31.58 0.30 74.45 141.75 1.15 136.84 214.70 4.23 351.39 488.45
Drugbank 0.03 0.06 0.13 0.47 0.68 1.00 0.92 1.55 2.31 4.93 8.24 11.69
KEGG 0.06 1.18 1.97 0.61 6.58 15.28 0.94 15.28 27.97 5.39 61.19 106.77

O
ut
-d
eg
re
e
X
>
3

DBpedia 0.96 0.50 0.33 0.98 0.50 0.33 0.99 0.50 0.33 0.99 0.50 0.33
GeoNames 0.99 0.98 0.96 1.00 0.98 0.96 1.00 0.98 0.97 1.00 0.98 0.96
Jamendo 0.86 0.61 0.38 0.93 0.54 0.36 0.95 0.53 0.35 0.98 0.52 0.36
LinkedMDB 0.94 0.87 0.74 0.98 0.85 0.73 0.98 0.84 0.73 0.99 0.85 0.74
NY Times 0.64 0.56 0.39 0.72 0.43 0.24 0.74 0.48 0.28 0.86 0.39 0.23
SW Dog Food 0.55 0.57 0.54 0.69 0.68 0.65 0.81 0.73 0.62 0.91 0.75 0.56
ChEBI 0.23 0.04 0.01 0.35 0.01 0.00 0.35 0.01 0.00 0.51 0.01 0.01
Drugbank 0.38 0.41 0.50 0.81 0.70 0.48 0.79 0.66 0.43 0.90 0.61 0.43
KEGG 0.44 0.24 0.13 0.56 0.10 0.04 0.57 0.08 0.04 0.79 0.08 0.05

Pr
ed
ic
at
e
co
ve
ra
ge
X
?
2

DBpedia 0.20 0.30 0.35 0.37 0.50 0.55 0.46 0.58 0.63 0.65 0.76 0.80
GeoNames 0.96 0.97 0.98 0.97 0.99 0.99 0.97 0.99 1.00 0.99 1.00 1.00
Jamendo 0.58 0.73 0.75 0.87 0.95 0.96 0.95 0.97 0.99 1.00 1.00 1.00
LinkedMDB 0.32 0.34 0.34 0.46 0.47 0.46 0.53 0.54 0.53 0.73 0.73 0.71
NY Times 0.44 0.49 0.55 0.73 0.91 0.95 0.87 0.96 0.98 0.98 1.00 1.00
SW Dog Food 0.05 0.06 0.09 0.15 0.19 0.20 0.27 0.27 0.29 0.48 0.47 0.49
ChEBI 0.61 0.68 0.70 0.78 0.87 0.90 0.85 0.94 0.95 0.98 1.00 1.00
Drugbank 0.12 0.18 0.31 0.64 0.75 0.85 0.76 0.89 0.93 0.95 0.96 0.97
KEGG 0.68 0.77 0.80 0.94 0.98 0.96 0.98 1.00 0.98 1.00 1.00 1.00

A
bs
ol
ut
e
se
tc
ov
er
ag
e
X
0
2

DBpedia 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.05 0.07
GeoNames 0.07 0.07 0.08 0.13 0.14 0.15 0.17 0.18 0.19 0.28 0.30 0.31
Jamendo 0.18 0.20 0.21 0.27 0.32 0.34 0.32 0.37 0.39 0.46 0.52 0.53
LinkedMDB 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.05
NY Times 0.04 0.04 0.04 0.10 0.12 0.13 0.15 0.17 0.20 0.28 0.32 0.35
SW Dog Food 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.06 0.06 0.07
ChEBI 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.03 0.03 0.07 0.09 0.10
Drugbank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02
KEGG 0.04 0.04 0.04 0.11 0.13 0.12 0.17 0.19 0.18 0.34 0.35 0.35

Re
la
tiv

e
se
tc
ov
er
ag
e
X
A
2

DBpedia 0.53 0.58 0.61 0.62 0.68 0.70 0.66 0.72 0.74 0.75 0.80 0.83
GeoNames 0.96 0.96 0.97 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00
Jamendo 0.82 0.89 0.91 0.94 0.97 0.98 0.97 0.99 0.99 0.99 1.00 1.00
LinkedMDB 0.74 0.73 0.73 0.84 0.84 0.84 0.85 0.86 0.86 0.89 0.90 0.90
NY Times 0.27 0.29 0.25 0.52 0.62 0.66 0.64 0.76 0.80 0.87 0.95 0.96
SW Dog Food 0.01 0.01 0.01 0.05 0.05 0.05 0.11 0.10 0.10 0.34 0.37 0.38
ChEBI 0.06 0.10 0.15 0.18 0.38 0.48 0.27 0.55 0.62 0.51 0.82 0.88
Drugbank 0.07 0.05 0.01 0.14 0.15 0.15 0.17 0.19 0.19 0.26 0.28 0.31
KEGG 0.20 0.27 0.36 0.50 0.72 0.77 0.59 0.84 0.84 0.89 0.95 0.96
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(b) Weighted sampling method.

Fig. 3. Sampled characteristic sets for Drugbank for one sample with a =′ = 0.5‰. The figures show the sampled characteristic sets in blue with
respect to the number of their predicates ( |(� |) and their count (2>D=C ((� )) on a log-scale. Indicated in gray are all sets of the original dataset.

5.1.1. Structural Similarity Measures
Table 3 shows the structural similarity measures out-

degree X>3 , predicate coverage X?2 , absolute set cov-
erage X02 , and relative set coverage XA2 for the differ-
ent sampling methods and sample sizes. As descrip-
tive statistics of the samples, we additionally computed
the ratios of sampled triples and triples in the origi-
nal graph |� |/|� | [‰]. Comparing the different sam-
ple sizes (Q1), the results show an improvement in the
similarity measures with an increasing sample size in
the majority of cases. More importantly, we observed
that the magnitude of the improvements depends on
the properties of the original graphs. For example, the
overall smallest improvements are achieved for GeoN-
ames, where the similarity w.r.t X>3 , X?2 , and XA2 only
slightly improveswith larger sample sizes.However, for
GeoNames the similarity measures are on average al-
ready on a high level in comparison to the other graphs,
showing the best overall results for X>3 and XA2 . Com-
bining the results with the distribution of characteris-
tic sets in the original graph, we find that GeoNames
shows the highest �*�, the smallest characteristic set
diversity, and a low exclusive set ratio. In contrast, the
lowest relative set coverage XA2 values are observed for
Drugbank, which also has the smallest �*� and largest
characteristic sets diversity.
Interestingly, there are also few cases where a higher

sample size yields worse similarity results. For in-
stance, the out-degree similarity X>3 decreases for
KEGG and does not improve for ChEBI with the
weighted sampling method. Again, the properties of
the original graphs help explain those results (Q4). In
particular, the dispersion of the out-degree distribution
provides further insights. We can measure the disper-
sion with the coefficient of variation:

2E346+ =
346+

BC3

346+

The two graphs KEGG and ChEBI have a high dis-
persion of the out-degree distribution with 2E346+ > 19
for ChEBI and 2E346+ > 5 for KEGG. As a result,
the weighted sampling method, which favors high out-
degree nodes, is biased more strongly due to this graph
property. Regarding the predicate coverage similarity
X?2 , we also observe that an increasing sample size im-
proves the similarities in all cases. For five graphs, all
predicates are covered by at least one sampling method
with the largest sample size. The remaining four graphs
(Drugbank,DBpedia, LinkedMDB, andSWDogFood)
have the highest number of distinct predicates (Q4)
which reduces the probability of sampling them all.

Considering the absolute (X02) and relative set cov-
erage (XA2), similar results can be observed for the ma-
jority of graphs: Even if only a few characteristic sets
are sampled (low X02), the number of triples covered
by those sets in the original graph covered is very high
(high XA2). Take, for example, the unweighted sampling
with 5.0‰ sample size for DBpedia. On average, the
samples contain only 7% (X02 = 0.07) of all character-
istics sets which cover 83% (XA2 = 0.83) of the triples
in the original graph. The cumulative coverage curve of
the original graph (Q4) helps to explain these results.
For instance, lets compare the curve for SW Dog Food
(Fig. 2f) and LinkedMBD (Fig. 2d). The SWDog Food
curve indicates amore uneven distribution of character-
istic sets and, as a result, even though more character-
istics sets are sampled for SW Dog Food (X02 = 0.07)
than for LinkedMDB (X02 = 0.05), they cover a smaller
portion of the original graph: SWDog Food XA2 = 0.38
vs. LinkedMDB XA2 = 0.90.
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Comparing the different sampling methods (Q2), we
observe that the unweighted sampling method outper-
forms the other methods for the out-degree similarity
X>3 . This is due to the fact, that subjects are sampled
with equal probability irrespective of their out-degree
which leads to more representative samples. We illus-
trate this observation in Figure 3 by comparing the
characteristic sets that are obtained by the weighted and
unweighted samplingmethods (in color) in comparison
to the characteristic sets of the original graph (in gray).
The characteristic sets sampled by theweightedmethod
(Fig. 3b) tend to have a larger set size as indicated by
the rectangle, while the unweighted sampling (Fig. 3a)
captures more average-sized characteristic sets.
Except for LinkedMDB, the unweighted sampling

method exhibits the lowest predicate coverage similar-
ity (X?2) in comparison to the other two approaches.
The highest difference between the unweighted and
weighted sampling method in X?2 is measured for DB-
pedia, which is the graph with the largest number of
distinct predicates. For the remaining graphs, the dif-
ference is smaller than 2 percentage points. Combin-
ing this observation with Figure 3, we conclude that
the unweighted sampling method fails to obtain those
predicates used in characteristic sets with high degrees
9. Comparing the sampling methods (Q2), similar re-
sults for absolute X02 and relative set coverage XA2 are
observed as the unweighted method is outperformed by
the other methods. Similar to the predicate coverage,
the XA2 values are only slightly lower. When taking
the number of triples in the samples into consideration
(|� |/|� |), we find that the weighted sampling method
yields the largest subgraphs. Therefore, if we consider
the structural similarity results with respect to the num-
ber of triples, we find that even though the unweighted
sampling method does not yield the best overall results,
it still captures the properties of the original graph at
least as accurately requiring a smaller subgraph. We
observe that the sample sizes also reflect the structural
properties of the original graph (Q4). For instance, the
out-degree and its dispersion (2E346+ ) are reflected in
the differences in the sample size between the weighted
and unweighted method. For example, the samples of
the weighted sampling method for the ChEBI graph
with 346+ = 94.55 are more than 100 times large than
those of the unweighted method. Finally, the results
of the structural similarity measures indicate that the

9The degree of a characteristic set is given by the average degree
of the entities belonging to it. The degree is therefore a combination
of its size (number of predicates) and the predicates’<D;C8 ?;828C H.

hybrid sampling method obtains samples that balance
the properties of the weighted and unweighted samples.
Nonetheless, it outperforms neither of the other two
methods.

5.1.2. Statistical Similarity Measures
We now focus on the statistical similarity measures

that assess the accuracy of the count and multiplic-
ity estimations. In this evaluation, we concentrate on
the q-errors due to their more natural interpretation,
rather than the proposed similaritymeasures X2>D=C and
X<D;C8 ?;828C H which are the inverse of the q-error. We
start by discussing the results for the counts: q-error2 .
The results for all RDFgraphs, samplingmethods, sam-
ple sizes, and projection functions are visualized in Fig-
ure 4. To investigate the results on the level of samples,
we aggregated the q-errors for each sample. Therefore,
Figure 4 shows the mean q-errors of the 30 samples per
group which is computed as

1
|�̂|

∑
(̂� ∈�̂

q-error2 ((̂� )

Similar to the structural similarity measures, the re-
sults indicate an improvement in the estimations with
larger sample sizes (Q1) in the majority of cases. Re-
garding the projection functions, this observation holds
for the basic projection function q1 for all datasets, ex-
cept Drugbank. For the projection function q2, there
are more graphs for which the increased sample size
does not yield better count estimations. Finally, espe-
cially for the projection function q3, we observe that in-
creasing sample size does not necessarily reduce the q-
errors. Regardless of the projection function, when in-
vestigating larger sample sizes, we also need to consider
the percentage of characteristic sets that are sampled as
indicated by the absolute set coverage X02 in Table 1.
For example, if we consider the SW Dog Food graph,
we observe less accurate estimation for the projection
function q1 and q2 with increasing sample size. How-
ever, when comparing the number of sampled charac-
teristics sets, we find that the largest samples capture
≈ 36 times more characteristic sets than the smallest
samples (≈ 0.18% vs. ≈ 6.5%).

Comparing the different sampling methods (Q2), we
observe a tendency of the smaller q-errors for the un-
weighted samplingmethod, especially for the basic pro-
jection function q1. At the same time, the results also
show that the unweighted sampling method is substan-
tially outperformed for DBpedia and Drugbank. This
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Fig. 4. Box plots of the count estimation q-errors (lower is better) for each dataset, projection function, sample size and sampling method.
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Fig. 5. Box plots of the q-errors (lower is better) of the predicate multiplicity estimations for each dataset, sample size and sampling method.

could be due to the large portion of exclusive charac-
teristic sets that are sampled more frequently by the
unweighted method. For graphs with fewer exclusive
characteristic sets, such as KEGG and Jamendo, the
unweighted sampling method yields better results.
Considering the characteristic set diversity of the

graphs |(� |/#(D1 942CB (Q4), we find that the pro-
jection function q3 yields better results that are com-
parable or better than the other projection functions
for graphs with a larger diversity (e.g., Drugbank, SW
Dog Food). For graphs with small diversity, such as
GeoNames or Jamendo, q3 yields the highest q-errors
w.r.t. the other projection functions. The results of the
other statistic-enhanced projection function q2, are not
as strongly affected by the characteristic set diversity
and yields the best results on average. Consequently, in
case the additional high-level statistics for the statistic-
enhanced projection functions are available, the func-
tion q2 should be chosen over q3 (Q3). While the basic
projection function q1 is slightly outperformed by q2,
it still yields comparable results in the majority of cases
without requiring additional statistics.
Summarizing the results across all datasets for the

count q-errors (cf. Fig. 4j), we observe that an increase
in sample size (Q1) reduces the q-errors while simulta-
neously generating estimations for more characteristic
sets. The unweighted sampling method (Q2) yields the
lowest q-errors in the majority of cases and q2 (Q3)
shows the best results regarding the average q-errors
(lower median) and their dispersion (fewer outliers).
Next, we focus on the estimations of the predicate

multiplicities within the characteristic sets. Analogous

to the count statistic, we concentrate on the q-errors in
the evaluation and aggregate the values per sample by
computing the mean over all its characteristic sets:

1
|�̂|

∑
(̂� ∈�̂

q-error< ((̂� )

The box plots of the samples’ mean q-errors are
shown in Figure 5 for all graphs, sample sizes, and
sampling methods. The first obvious observation is the
substantially lower q-errors in comparison to the count
statistic. This is because the range of the value to be
estimated is lower. Typically, the same predicate is only
used a few times for the same subject, with some ex-
ceptions that occur multiple times, such as rdf:type or
rdfs:label. This is also reflected in the absolute differ-
ences, where the multiplicity q-errors are less affected
by the sampling method and sample size. This indi-
cates a uniform predicate usage within the character-
istic sets with few outliers. In line with the results for
the count statistic, in the majority of cases, an increas-
ing sample size (Q1) improves the results. The results
for the different sampling methods show better results
for the unweighted sampling method for the majority
(seven) of the graphs. The weighted sampling method
shows slightly better results for DBpedia and Drug-
bank. Comparable to the results for the count statistics,
the hybrid sampling method finds a balance between
the other two sampling methods. Furthermore, the re-
sults indicate that multiplicities are more challenging
to estimate for graphs with a high out-degree dispersion
(Q4), such as ChEBI and KEGG. The best overall es-
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timations are observed for GeoNames, which also has
the lowest out-degree dispersion (2E346+ = 0.19).

Concluding, as the summarized results in Fig. 5j
show, the multiplicity statistic are estimated more ac-
curately than count statistic with improving estimations
for larger sample sizes (Q1), marginal differences com-
paring the sampling methods (Q2), and less diverse
results for the different graph (Q4).

5.1.3. Final Discussion
After providing a detailed presentation of our experi-

mental results, we conclude the evaluation by providing
answers to our core questions.

Q1: The results indicate that larger sample sizes have
two major positive effects on the estimations. First,
they improve both structural and statistical similarities
measures of the estimations. Secondly, they allow for
capturing and estimating the statistics for more char-
acteristic sets and, therefore, potentially provide better
support to applications that rely on these estimations.

Q2: Regarding the different sampling methods, we ob-
serve differences in the estimated profile features. On
the one hand, the weighted sampling method tends to
obtain larger samples for the same number of sampled
subjects and, hence, yields slightly better structural
similarity values. On the other hand, the unweighted
sampling method obtains smaller samples and still ob-
tains competitive structural similarity measures. Irre-
spective of the projection function, the unweighted
sampling method outperforms the weighted sampling
method w.r.t. the statistical similarity measures.

Q3: The analysis of the results showed that the first
statistic-enhance projections function provides the best
estimations. However, it only sightly outperforms the
basic projection functionwith the differences diminish-
ing with increasing sample size. The second statistics-
enhanced projection function is outperformed by the
others. Especially for graphs with a small diversity in
characteristic sets, it yields higher estimation errors.

Q4: The investigation of the results showed that the
structure of the RDF graph affects the similarity values.
Especially the counts of the characteristic sets are mis-
estimated for datasets with a large portion of exclusive
characteristic sets and a larger diversity of characteris-
tic sets. In such scenarios, larger sample sizes can help
to improve the estimations.

Concluding all findings, a variety of factors, rang-
ing from the sampling method to the structure of the
RDF graphs, impact the quality of the characteristic

sets profile feature estimation. Therefore, in our second
evaluation, we investigate how the CSPF estimation
can be leveraged in a specific application and how the
estimations impact the performance of the application.

5.2. Federated Query Planner Evaluation

After investigating the effectiveness of our approach
to estimate profile features according to the similarity
measures, we now focus on a particular application of
the estimated features. We, therefore, study the perfor-
mance of the proposed federated query planning ap-
proach that relies on CSPF estimations. In particular,
we want to study the following core questions.

Q5 How do the CSPF estimations obtained from the
unweighted and weighted sampling methods im-
pact the effectiveness of federated query planning?

Q6 How do the CSPF estimations from different sam-
ple sizes impact the effectiveness of the plans?

Q7 What is the effect of the different projection func-
tions on the query plan effectiveness?

Q8 How well do the structural similarity measures re-
flect the performance of the query plans?

We begin by introducing our experimental setup. We
then provide a detailed evaluation and discussion of our
experimental results in Section 5.2.1, which we con-
clude by answering our core questions in Section 5.2.2.

Benchmark and Sampled Statistics We study the ef-
fectiveness of the proposed query planning approach
using the FedBench benchmark [33]. The benchmark
consist of the 9 interlinked RDF graphs that are listed
in Table 2, and which were also investigated in the
previous evaluation. We selected 25 queries from the
Cross Domain (CD1-CD7), Life Science (LS1-LS7),
and Linked Data (LD1-LD11) queries. We used a sub-
set of the estimated CSPF generated from the samples
of the previous evaluation. In particular, we only con-
sidered the weighted and unweighted sampling meth-
ods, leading to a total of 2160 estimated CSPF. As a
baseline, we additionally computed the complete CSPF
for all RDF graphs. In accordance with previous ap-
proaches [14, 16], we reduce the number of character-
istics sets in the profile feature to a maximum of 10 000
characteristic sets per RDF graph.

Implementation We implemented the proposed fed-
erated query planning approach based on CROP [34]
and nLDE [35]. We extended the query engine with
an access operator for SPARQL endpoints and imple-
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Table 4
Overview for the FedBench Queries. Mean and median execution times, mean number of requests, mean percentage of answers produces, and
mean percentage of queries reaching the timeout. Best values per table are indicated in bold.

unweighted baseline

0.1 ‰ 0.5 ‰ 1.0 ‰ 5.0 ‰ 1000 ‰

q1 q2 q3 q1 q2 q3 q1 q2 q3 q1 q2 q3 -

Mean execution time [s] 7.09 6.69 6.77 4.75 4.69 4.65 3.33 3.34 3.33 1.53 1.54 1.54 8.43
Median execution time [s] 0.66 0.63 0.64 0.42 0.44 0.44 0.42 0.43 0.46 0.62 0.61 0.63 1.01
Mean number of requests 241.95 229.97 229.76 159.46 159.06 155.02 113.94 113.95 111.2 45.69 45.69 45.7 173.92
Answers [%] 72.13 72.09 72.13 90.13 90.13 90.09 96.53 96.53 96.53 100.0 100.0 100.0 100.0
Timeouts [%] 3.6 3.6 3.6 1.47 1.47 1.47 0.93 0.93 0.93 0.0 0.0 0.0 4.0

weighted baseline

0.1 ‰ 0.5 ‰ 1.0 ‰ 5.0 ‰ 1000 ‰

q1 q2 q3 q1 q2 q3 q1 q2 q3 q1 q2 q3 -

Mean execution time [s] 9.24 7.61 8.46 2.84 1.89 1.98 4.45 4.13 4.49 6.08 6.11 6.45 8.43
Median execution time [s] 0.56 0.55 0.56 0.43 0.45 0.56 0.57 0.58 0.68 0.76 0.77 0.77 1.01
Mean number of requests 170.94 171.75 174.21 64.08 64.14 64.16 178.27 178.18 192.06 256.97 257.02 257.32 173.92
Answers [%] 81.33 81.73 81.69 97.2 98.0 98.0 96.8 97.07 96.8 96.0 96.0 96.0 100.0
Timeouts [%] 5.73 4.36 5.07 1.07 0.27 0.27 2.8 2.53 2.8 4.13 4.13 4.13 4.0

mented our source selection, query decomposition, and
left-linear query plan optimizer to create query execu-
tion plans. The RDF graphs in the federation are de-
ployed with a single SPARQL endpoint per graph us-
ing Virtuoso v7.2.10. We deployed all endpoints on a
single machine (Debian Jessie 64 bit; CPU: 2x Intel(R)
Xeon(R) CPU E5-2670 2.60GHz (16 physical cores);
256GB RAM) and execute the query engine on the
same machine as well to avoid network latency.
We study the performance on each of the 30 samples

for the 2 samplingmethods (weighted and unweighted),
4 sample sizes (=′ = {0.1‰ · |� |, 0.5‰ · |� |, 1‰ ·
|� |, 5‰ · |� |}), and 3 projection function (q1, q2, q3).
This results in a total of 30 ·2 ·4 ·3 = 720 configurations
for the estimated CSPF. An additional configuration is
given by the complete statistics. Moreover, we repeated
the execution of each query (25) in each configuration
3 times, resulting in a total of 3 · 25 · 721 = 54 075
query execution measurements. We set a timeout of
120 seconds per query for the engine.

Evaluation Metrics We study the following metrics:

1. Execution Time: Elapsed time spent by the engine
to complete the evaluation of a query in seconds.
This includes time spent on query planning.

10https://virtuoso.openlinksw.com/

2. Number of requests: Number of requests per-
formed by the engine to the SPARQL endpoints
during the query execution.

3. Answer completeness: Percentage of total answers
produced. We computed the complete answers by
executing the queries over the union of all graphs.

4. Number of subexpressions: Number of subexpres-
sions in the query decomposition to assess how
well the predicate co-occurrence of the graphs is
captured in the estimated CSPF.

5.2.1. Experimental Results
An overview of the experimental results is provided

in Table 4. The table shows themean andmedian execu-
tion times, the mean number of requests, the mean per-
centage of answers produced, and the mean percentage
of query executions reaching the timeout. We start with
the results for the unweighted sampling method (Q5).
Regarding the mean execution time, we observe the
best performance for the unweighted sampling method
with the largest sample size 5.0‰ and the projection
function q1. This configuration overall outperforms the
other sampling methods and also the baseline with
complete statistics. The execution times for the other
projection functions q2 and q3 are only slightly higher
in this case (Q7). Also, these configurations yield the
lowest number of requests while producing 100% of
all answers with none of the executions reaching the
timeout. Moreover, a continuous improvement in all

https://virtuoso.openlinksw.com/
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Fig. 6. Mean performances for all FedBench queries for the weighted sampling method and averaged across all projection functions.

evaluation metrics with increasing sample size (Q6)
is visible for the unweighted sampling method. Both
the mean execution times and the mean number of re-
quests are about 5 times lower for the largest sample
size. At the same time, the answer completeness in-
creases by almost 30 percentage points, and the number
of queries that reach a timeout are reduced from 3.6%
to 0%. These results indicate that larger sample sizes in
combination with the unweighted sampling method al-
lows for obtaining more efficient query plans since the
planner can identify relevant sources more accurately,
larger subexpression, and a more efficient join order.
In contrast, the performance results differ for the

weighted sampling method (Q5). The weighted sam-
pling method with the second smallest sample size
(0.5‰) yields the best performance. When comparing
the results for the projection functions (Q7), we find
similar results as for the unweighted sampling method,
with only slight differences for the different projection
functions. The results for the sample size (0.5‰) show
the lowest average execution times and number of re-
quests. Moreover, the query execution plans obtained
for this sample size yields the highest answer com-
pleteness with ≈ 98% and the fewest queries that reach
the timeout (0.27%). With an increasing sample size
> 0.5‰, the mean execution times increase. However,

when combining the observations of the mean with the
median execution times, we find that the increase in the
median execution times is substantially smaller. This
indicates, that for a large number of queries the execu-
tion time only slightly increases, while for a few queries
the execution time is significantly higher.

Hence, we focus on the results for the weighted sam-
pling method in more detail to investigate the following
observations: (i) a larger sample size in the weighted
sampling does not entail better query execution perfor-
mance, and (ii) the query planner with complete statis-
tics is outperformed by the majority of configurations
with estimated statistics. Themean execution times and
mean number of requests (both log scale) per query
and sample size for the weighted sampling method (all
projection functions) are shown in Figure 6. The trend
of an increase in execution time with larger samples
sizes is observable especially for the queries CD4 and
LS3. For the majority of the remaining queries, we see
a similar or even better performance with larger sam-
ple sizes according to execution times and number of
requests. The observation that few outliers (especially
CD4 and LS3) skew the overall average performance
results is also true for the performance of the planner
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?film dct:title “Tarzan” .
?film lmdb:actor ?actor .

?y owl:sameAs ?x . 
?y nyt:topicPage ?news .

?actor owl:sameAs ?x .

229 (11)

16972 (21236)

(a) Query plan for sample size 0.5‰

?film dct:title “Tarzan” .
?film lmdb:actor ?actor .

?y owl:sameAs ?x . 
?y nyt:topicPage ?news .

?actor owl:sameAs ?x .

2289 (11)

1916 (21236)

(b) Query plan for sample size 5.0‰

Fig. 7. CD4: Join Ordering obtained by the query planner based on the estimated CSPF from one of the weighted samples. Indicate below is the
estimated cardinality (blue) and the actual cardinality(in brackets).

with the complete statistics11. Taking a closer look at
the results for LS3, we find that for the sample size
0.5‰, the engine times out 3 times. Intriguingly, for the
largest sample size (5.0‰) and also for the complete
statistics, it reaches the timeout for all 90 executions.
Similarly, for query CD4, larger sample sizes also lead
to several executions reaching the timeout. The reason
for these results lies in the cardinality estimation ap-
proach. We observe that CD4 and LS3 have a selective
triple pattern in which the object is bound. The Star-
JoinCardinality algorithm tends to overestimate the
cardinalities for stars with such triple patterns and the
tendency of overestimating is higher with more char-
acteristics sets that are taken into consideration12. As
a result, this overestimation in the query CD4 and LS3
leads to a sub-optimal join ordering. For example, Fig-
ure 7 shows the join ordering for CD4 obtained with
one weighted sample with size 0.5‰ and 5.0‰. The
estimated cardinalities (in blue) and true cardinalities
(in parenthesis) in this example reveal that due to the
overestimation of the subexpression with the bound ob-
ject (“Tarzan”), the planner chooses a sub-optimal join
order in the case of the larger sample.
Finally, we want to examine whether the proposed

structural similarity measures (c.f. Section 3.5) reflect
the performance of the query plans obtained by our
planning approach (Q8). To this end, we compare the
impact of the out-degree similarity (X>3), predicate
coverage (X?2), absolute set coverage (X02), and rel-
ative set coverage (XA2) on the query decompositions

11Note that the query planner is designed to handle estimated
statistics. Therefore, a query planner that fully leverages the com-
plete statistics, e.g., with the (federated) characteristic pairs, would
potentially obtain a more efficient query plan.

12This is due to the fact that the number of relevant characteristic
sets for a triple pattern (?G ? >) increases while the conditional
selectivity B4; (?> = G |?? = ?) only slightly decreases.

of our query planner. Specifically, we focus on their
impact on the number of subexpressions in the decom-
position and the percentage of answers produced by
the query plans. For each of the 720 configurations,
we compute the mean similarity measure values for
all RDF graphs in the federation and the mean answer
completeness and number of subqueries for all queries
in the benchmark. Figure 8 shows the relation between
these measures. As a quantitative measure to assess
whether the values are correlated, we compute the Pear-
son correlation coefficient (%��). We start with the
number of subexpressions in the query decompositions
as a way to assess howwell the predicate co-occurrence
is captured in the profile estimations. Fewer subexpres-
sions indicate that the query planner can merge more
triple patterns into larger subexpressions to be evalu-
ated jointly according to the characteristic sets in the
CSPF (Line 10 in Algorithm 1). This allows for re-
ducing the number of requests as well as the number
of intermediate results that need to be transferred. In-
specting the number of subexpressions (Fig. 8a), there
is no correlation between the out-degree similarity and
the number of subexpression with %�� = −0.01. For
the other measures, however, there is a negative corre-
lation with %�� = −0.854 for X?2 , %�� = −0.746
for X02 , and %�� = −0.814 for XA2 . The correlation
indicates higher similarity values yield decomposition
with fewer subexpression. Hence, these measures re-
flect how well the predicate co-occurrence is captured
in the profile feature estimations, allowing the query
planner to obtain efficient query plans.

Similar to this observation, the results in Fig. 8b
show that, there is no correlation between the answer
completeness and the out-degree similarity X>3 with
%�� = 0.039. For the other similarity measures, we
observe a positive correlation of the similarity measure
and the answer completeness, which is also reflected in
the correlation coefficients with %�� = 0.856 for X?2 ,
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Fig. 8. Relation between the answer completeness and the number of subexpression of the query plans and the structural similarity measures for
the estimated CSPF. Sample size are indicated in color.

%�� = 0.643 for X02 , and %�� = 0.743 for XA2 . The
results indicate that estimated characteristic sets profile
features with higher predicate and (absolute and rela-
tive) characteristic sets coverage help the query planner
to obtain query plans that produce more answers.

5.2.2. Final Discussion
Concluding the evaluation of the experimental re-

sults for our query planning approach, we summarize
the findings by providing answers to our core question.

Q5: The results show that the CSPF estimations ob-
tained from the unweighted sampling method allow for
determining the most efficient query plans. The differ-
ence in performance between the sampling methods is
not due to the representativeness of the samples but
rather due to sub-optimal join orderings caused by mis-
estimated cardinalities for the weighted samples. This
sub-optimal join led to time outs, which negatively af-
fect the aggregated execution time and answer com-
pleteness of the weighted sampling. The lowest execu-
tion times and number of requests are observed for the
unweighted sampling method with the largest sample
size. For this configuration, all answers are produced
and none of the query executions reach the timeout.

Q6: Regarding the results for different sample sizes,
CSPF estimations obtained from larger samples using
the unweighted sampling method improve the query
execution performance. In contrast, the second small-
est sample size yields the best results for the weighted
sampling methods. In the latter case, the aggregated
results are skewed due to few queries for which the ap-
proach overestimates the cardinality of subexpressions
with a bound object. Adapting the cardinality estima-
tion approach to better cope with sampled statistics
could alleviate these shortcomings.

Q7: The count estimations of the projection functions
are used to estimate the cardinalities of the subexpres-
sions in the decompositions. The results show that there
is only a small difference in query execution perfor-
mance for the different projection functions (ceteris
paribus). We observed that, even if the projection func-
tions achieve different accuracy, this barely affects the
join ordering. This is because the relative differences
between count estimations of the functions are consis-
tent with the relative differences among the true counts.

Q8:Considering the structural similarity measures, the
results suggest that the similarity measures predicate
coverage and (absolute and relative) set coverage cor-
relate with the number of subexpressions in the decom-
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position and answer completeness of the query plans.
The correlation indicates thatmore efficient query plans
can be obtained for CSPF estimation that representative
according to these measures. This also underpins the
effectiveness of the measures.

Summarizing the evaluation, we demonstrated the
successful application of characteristics sets profile fea-
ture estimations to federated query planning. Overall,
the unweighted sampling method with the largest sam-
ple size showed the best average performance. The ex-
periments show that the proposed query planner pro-
vides a foundation to further develop query planning
approaches that leverage estimated profile features ob-
tained from RDF graph samples. For instance, future
research could investigate source selection techniques
as proposed in [12], but relying on samples to get the
authority of subjects and objects in the graphs.

Limitations Finally, we want to discuss the limita-
tions of the proposed query planner and experiments.
The first limitation is the heuristic nature of the planner.
As a result, there are no theoretical guarantees for the
answer completeness of the query decomposition. For
example, in case the planner finds at least one relevant
source for a triple pattern in the estimated statistics, it
assumes there are no additional relevant sources, which
are not captured in the statistics. In other words, the
query planner does not know what it does not know
about. This limitation could potentially be overcome by
obtaining additional information from the RDF graph,
such as its distinct predicates, in the case that the expres-
sivity of the query interface supports this. Secondly, our
evaluation focuses on an implementation that combines
query planning and execution based on CROP. There-
fore, our insights are currently limited to this setup
and future work should investigate our planner with
other query execution engines (e.g. using SPARQL 1.1
queries). This would also allow for a direct comparison
to Odyssey. Finally, additional federated benchmarks
could be investigated to gain further insights.
Regardless, our experimental results still provide

valuable insights into the potential of using sample-
based statistics and summaries to support federated
querying approaches without requiring access to the
entire datasets of the federation members.

6. Related Work

We now discuss related work on statistical profiling
(Section 6.1), graph sampling (Section 6.2) and feder-
ated query processing (Section 6.3).

6.1. Statistical Profiling

In the realm of statistical feature profiling for RDF
graphs, a variety features and tools to assess them have
been proposed. Zloch et al. [36] investigate statistical
features of RDF graphs with the focus on the topo-
logical graph structure including degree-based, edge-
based, centrality, and descriptive statistical measures.
Consequently, these measures are not specific to RDF
graphs and, in contrast to our work, do not capture the
semantics on the instance or schema level of the data.
Complementary, Fernández et al. [24] focus on RDF-
specific measures. They propose various schema- and
instance-level metrics to characterize RDF datasets that
incorporate the particularities of RDF graphs. Themet-
rics and the resulting statistics are tailored to the devel-
opment of better RDF data storage solutions including
data structures, indexes, and compression techniques
by considering RDF data characteristics.

LODStats [37] is a statement-stream-based approach
for gathering comprehensive statistics of RDF datasets.
They present 32 instance- and schema-level statistical
criteria covering both RDF-specific metrics as well as
topological graph metrics. The authors aim to improve
reuse, linking, revising, or querying Linked Open Data
sources but do not discuss specific applications.

ProLOD++ [38] is a tool to support various profiling,
mining, and cleansing functionalities for RDF datasets.
It is an extension of ProLOD [39] that computes pro-
files at domain, schema, and data (i.e., instance) level
of datasets. ProLOD++ supports browser-based visual-
izations of these characteristics with the goal to better
support data consumers in understanding, consuming,
and integrating Linked Open Data sources.

Finally, ExpLOD [40] is a tool for generating sum-
maries of RDF datasets combining text labels and
bisimulation contractions. These summaries include
schema-level statistical information such as the class,
predicate, and interlinking usage in the dataset. Similar
to ProLOD++ [38], the goal of the created summaries
is to facilitate the understanding the RDF usage, such
as vocabulary usage and links between datasets.

In this work, we propose a novel schema-level sta-
tistical profile feature based on characteristic sets that
captures both the topological structure of the graph as
well as its semantics. This statistical feature has not
yet been addressed in related work. We demonstrate an
application of estimations of this feature in federated
query planning.
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6.2. Graph Sampling

Next, we focus on sampling approaches for graphs.
We start by introducing related work on sampling large
graphs and networks. Thereafter, we analyze RDF-
specific sampling approaches and their applications.

Graph Sampling. A variety of approaches for sam-
pling large non-RDF graphs have been proposed.
Leskovec et al. [27] provide an overview of approaches
suitable for obtaining representative samples from large
graphs for scale-down sampling for static graphs and
back-in-time sampling for evolving graphs. They con-
sider the distributions of different structural properties
of the graphs, denoted static graph patterns, as the crite-
ria for evaluating the representativeness of the samples
for scale-down sampling. These static graph patterns
include, among others, the in-degree, out-degree, and
cluster coefficient distributions. As a similarity mea-
sure to assess the representativeness of samples, they
use the Kolmogorov-Smirnov D-statistic of the graph
patterns’ distribution. They present three major cate-
gories of sampling approaches: (i) random node selec-
tion, (ii) random edge selection, and (iii) graph explo-
ration. The results of their evaluation reveal that there
is no single best solution and the authors conclude that
an appropriate sampling algorithm and sample size de-
pends on the specific application.
Ahmed et al. [26] present a detailed framework for

the problem of graph sampling that focuses on large
scale graphs. They identify two models of computation
that are relevant when sampling from large graphs. The
static model of computation allows for randomly ac-
cessing any location in the graph. The streaming model
of computation merely allows for accessing edges in
a sequential stream of edges. In their evaluation, the
authors show that the proposed methods preserve key
graph statistics of the graph (e.g., degree distributions,
cluster coefficient distribution).Moreover, they demon-
strate low space- and runtime-complexity that is in the
order of edges in the sample for these methods.
Our sampling methods are a special case scale-down

sampling of random node selection approaches accord-
ing to [27], that only sample specific nodes, the entities
of an RDF graph. However, in contrast to traditional
graph sampling, we aim to generate representative sam-
ples for our specific statistical graph feature. Hence, the
representativeness of a sample is given by the accuracy
of the profile feature estimation.

RDFGraph Sampling. Sampling approaches forRDF
graphs have been proposed and applied to different
problems as well. In the following, we will analyze ex-
ample applications and show how sampling approaches
are chosen according to those applications.

Debattista et al. [41] propose approximating spe-
cific quality metrics for large, evolving datasets based
on samples. They argue that the exact computation of
some quality metrics is too time-consuming and that an
approximation is usually sufficient. In particular, they
apply a sampling-based approach for the quality met-
rics (i) dereferenceability of URIs, and (ii) links to ex-
ternal data providers. They use the reservoir sampling
approach [42] which randomly selects = items from a
set of # elements with the equal probability 1/# . In
their evaluation, the authors studied how well the ratios
measured by quality metrics can be estimated based on
the samples. Therefore, the similarity of estimated and
true ratio reflects their notion of representativeness. In
contrast to our work, the authors apply sampling to re-
duce the computational effort for quality metrics, and
therefore, the sampling methods do not need to capture
the semantics or structural features of the dataset.

In their work, Rietveld et al. [43] aim to obtain sam-
ples that entail as many of the original answers to
typical SPARQL queries. They use query logs from
SPARQL endpoints to determine such typical queries.
The sampling pipeline proposed by the authors con-
sists of four steps and aims to obtain the parts of the
graph that are relevant for answering the queries. First,
they rewrite the original RDF graph as a directed un-
labeled graph. On the resulting graph, they then com-
pute the structural graph metrics PageRank, in-degree,
and out-degree for all nodes. Thereafter, they use the
structural graph metrics to rank the triples in the graph
and generate the sample by selecting the top-k percent
of all triples. The authors aim to obtain samples with
a “more manageable size” [43] that produce answers
to common SPARQL queries and hence, the samples’
representativeness is measured by the recall for those
queries. As a result, the resulting samples may be bi-
ased towards more prominent entities in the graphs and
less suitable to capture long-tail entities [44]. Different
from our work, the goal is obtaining relevant samples
which allow answering common queries. Therefore,
these samples are not representative in our sense with
regards to the semantic and statistical features.

Soulet et al. [20] focus on analytical queries, which
are typically too expensive to be executed directly over
public SPARQL endpoints. They propose separating
the computation of such expensive queries by executing
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them over random samples of the RDF graph. Due to
the properties of the queries, the values for the aggre-
gations converge as they are executed over increasingly
larger portions of the graph. As a result, the authors do
not rely on the necessity of each sample to be represen-
tative according to the aggregates, but rely on the con-
vergence of the aggregates towards the true value with
an increasing number of samples. Similar to Soulet et
al. [20], our work is motivated by the restrictions that
occur especially in decentralized scenarios with large,
evolving datasets where it is not feasible to have local
access to every dataset. Different from [20], we aim to
sample the data in such a fashion that a single sample
can be used to estimate the statistical profile feature and
do not rely on the convergence properties induced by
increasing sample sizes.

6.3. Profiling-based Federated Query Processing

We demonstrate how the profile features estimations
can be applied to federated query processing. There-
fore, in this section, we analyze other types of pre-
computed statistics leveraged by federated query en-
gines to determine efficient plans.
ANAPSID [9] is an adaptive federated query engine

that leverages a Catalog with high-level statistics on
the members in the federation. This catalog contains a
list of the predicates present in each data member in
the federation and is used by the engine to perform the
source selection and query decomposition.
More fine-grained statistics are leveraged by the fol-

lowing approaches. SPLENDID [10] uses indexes built
from VoID descriptions for query planning. These in-
dexes additionally hold information on the occurrences
of predicates within the classes of the sources. In com-
bination with ASK queries, the indexes are used to de-
compose the query into subqueries to be evaluated
at the sources in the federation. HiBISCuS [12] is a
source selection approach that employs data summaries
to prune the relevant sources. The data summaries are
comprised of the capabilities of a data source which
consists of the subject and object authorities for all
predicates in a data source. These summaries allow
for deciding which source will contribute to the final
query answers according to the authorities of the sub-
jects and objects they contain. CostFed [13] is a cost
model-based planner using an index with statistic pro-
files on the sources, so-called Data Summaries. They
extend the data summaries from HiBISCus with addi-
tional information on both the distribution of objects
and subjects per predicates. In addition to source selec-

tion and query decomposition, the additional statistics
are used in their cost model to estimate the cost of al-
ternative query plans. Similar to CostFed, SemaGrow
[11] leverages a metadata to estimate the cost of alter-
native query plans. The statistics include the number of
distinct subjects, predicates, and objects as well as the
total number of triples that match a given triple pattern.
These statistics are used to estimate the join cardinali-
ties in their cost model. Finally, Odyssey [16] relies on
the characteristic sets of the federation members. Addi-
tionally, the characteristics pairs and federated charac-
teristic pairs are used to capture links between entities
within and across the federation members.

Our approach also uses statistics to perform source
selection, query decomposition, and join ordering to
obtain efficient query plans. Specifically, our approach
leverages characteristics sets similar to Odyssey [16].
In contrast to the aforementioned approaches, however,
our approach does not require the complete statistics
but is specifically designed to handle estimated statis-
tics fromRDF graph samples. As a result, our approach
aims to leverage the estimated statistics as much as pos-
sible and is also able to cope with potentially misesti-
mated or missing statistics.

7. Conclusion

In this work, we presented an approach to estimate
RDF dataset profile features and an application of
those estimations in federated SPARQL query plan-
ning. Specifically, we focused on the characteristic
set profile features as it captures not only structural
but also semantic properties of RDF graphs. We pro-
posed a sampling-based approach that utilizes a projec-
tion function to estimate characteristic set profile fea-
ture statistics (RQ 1). Furthermore, we introduced four
structural and two statistical similarity measures that
allow for assessing the representativeness of the gener-
ated feature estimations. In our experimental study, we
investigated the effectiveness of the proposed estima-
tion approach using these similarity measures (RQ 2).
The evaluation showed that our approach obtains rep-
resentative feature estimations according to the struc-
tural similarity measure. In contrast, the lower statis-
tical similarity values showed that the count distribu-
tions of characteristics sets in the RDF graphs are more
challenging to estimate. These results highlight that the
samples capture structural aspects while it is difficult
to capture the distribution of the characteristic sets.
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The second main contribution of this work focused
on an application of the proposed feature estimations
to better understand the practical implications of their
representativeness (RQ 3). We proposed a federated
query planning approach that leverages the estimated
characteristic set profile features to perform source se-
lection, query decomposition, and join ordering. The
query planner is based on insights from existing charac-
teristic set-based query planning strategies. However,
it is adapted such that it can handle limited and poten-
tially inaccurate information in the profile feature es-
timations. The results of our experiments on the Fed-
Bench benchmark illustrated the feasibility of using
estimated profile features. Overall, we found the best
query plans are obtained for the feature estimations
using the unweighted sampling method with improve-
ments for larger sample sizes. Moreover, the results re-
vealed that the capability of obtaining more efficient
query plans with respect to the number of subexpres-
sions and answer completeness is also reflected in the
structural similarity measures (RQ 2).
Future work will focus on two directions. The first

direction is extending our profile feature estimation ap-
proach with further sampling approaches that make use
of additional information, such as query logs, to better
capture the relevant parts of the RDF graphs. Besides,
our approach can be extended to estimate other profile
features. The second area of research is the application
of the feature estimations to other problems. It would
be worth investigating how other applications can ben-
efit from the estimated profile features. Furthermore,
we aim to improve the query planning approach by
(i) leveraging further information that can be obtained
from the samples, and (ii) implementing a hybrid plan-
ning strategy that not only relies on the estimated statis-
tics. Finally, an evaluation of our query planner in ad-
ditional federations will support a better understanding
of the advantages and limitations of our approach.
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