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Abstract. The field of topic evolution helps the understanding of the current research topics and their histories by automatical-

ly modeling and detecting the set of shared research fields in the academic papers as topics. This paper provides a generalized 

analysis of the topic evolution method for predicting the emergence of new topics, where the topics are defined as the relation-

ships of its neighborhoods in the past, allowing the result to be extrapolated to the future topics. Twenty fields-of-study key-

words were selected from the Microsoft Academic Graph dataset, each representing a specific topic within a hierarchical re-

search field. The binary classification for newly introduced topics from the years 2000 to 2019 consistently resulted in accura-

cy and F1 over 0.91 for all twenty datasets, which is retained with one-third of the 15 features used in the experiment. Incre-

mental learning resulted in a slight performance improvement, indicating there is an underlying pattern to the neighbors of new 

topics. The result showed the network-based new topic prediction can be applied to various research domains with different 

research patterns.  
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1. Introduction 

Scientific knowledge evolves through the contri-

bution of researchers around the globe; discoveries 

are made to expand the existing research topics or to 

contribute towards the creation of new topics. The 

gradual expansion or transition of research topics 

based on the foundation of past knowledge guaran-

tees the validity and soundness of the research. Iden-

tifying and predicting the emergence of new topics 

are therefore dependent on understanding the related 

topics representing the set of shared themes, or re-

search fields. They can appear in various forms, in-

cluding the philosophical category of the research, 

theoretical development of research models, applica-

tions of the technology, and specific algorithms. 

Identifying such topics in the academic papers is 

therefore a crucial part of research activity. Re-

searchers understand the topics by first reviewing a 

multitude of articles, internalizing the evolution oc-

curring within the researchers’ fields of interest, 

which in turn allows them to ascertain the desirable 

paths the current and future research can take. A bet-

ter understanding of such knowledge allows more 

targeted research aimed at highly demanded topics, 

which is needed in both academic and industrial 

fields. 

Traditional topic evolution methods mimic the 

process by utilizing text-based topic models to under-

stand the topic in each document collection and track 

topical changes over time. Topic modeling methods 

extract statistical constructs based on word co-

occurrences in the given document collection, where 

changes in topics can only be measured by the differ-

ences between the content of two topics; connections 

and correlations between different topics are not in-

corporated into the traditional topic modeling meth-

ods [21]. Topic evolution methods are therefore 

mostly limited to identifying content transition within 

a given topic, not how it is correlated to other topics. 

Unforeseen topics in the future cannot be modeled 

without having access to the set of future documents 



yet to be written. As a result, topic evolution based 

on traditional topic modeling methods is not suited to 

predict new topics. 

A previously proposed network-based approach 

identified emergence on topic networks where the 

definition of topics based on its neighbors’ previous 

relationships intuitively allows extrapolations to fu-

ture new topic predictions [18]. The definition al-

lowed the topics in a certain timeslot to be classified 

based only on the structural data available in previ-

ous timeslots, showcasing a novel functionality of 

predicting topic evolutions solely with the topic co-

occurrences using journal-specific publications as the 

dataset. This paper expands on this research by test-

ing the generalizability of the method, offering a bet-

ter understanding of the network-based topic predic-

tion method.  

The goal of the proposed method is to capture the 

emergence of new topics, which can be explained by 

their correlation to the existing topics. This can be 

formalized as classifying subgraphs in the given topic 

network as to-be-neighbors of new topics in the fu-

ture based on their graphical properties. The topic 

networks are first extracted from an open biblio-

graphical dataset, with each network representing 

publications in a specific research journal with a fo-

cused set of research interests. The topic network is 

divided yearly to generate an evolving network, 

where each topic in timeslot y is either new, appear-

ing for the first time in y for the given topic network, 

or old. A binary machine learning algorithm is 

trained using the neighbors of each node in the previ-

ous years, classifying the neighbor subgraphs in the 

past having new or old topics as their future neigh-

bors. Twenty topic networks were generated from 

publications related to twenty highly used fields-of-

studies from the Microsoft Academic Graph1 dataset. 

The impact of different features and the number of 

features impactful to the classification performances 

are analyzed. The topic co-occurrence patterns repre-

senting new topics in the scientific bibliographic rec-

ords are incrementally learned over time within a 

single dataset to capture domain-specific knowledge 

and their evolutions. The same process is then tried 

over different datasets to capture underlying common 

patterns throughout the different knowledge domains. 

The experiment results showed that the proposed 

method retains its high classification accuracy with 

all 20 datasets with less than one-third of the 15 fea-

tures while showing relatively small, but statistically 

 
1 https://www.microsoft.com/en-us/research/project/microsoft-

academic-graph/ 

significant, performance improvement using the in-

cremental learning. 

Section 2 reviews the related work on topic evolu-

tion, previous attempts on the prediction of new top-

ics, as well as background research for the proposed 

method. Section 3 and 4 detail the proposed method 

and experimentation, and the experiment results are 

shown in Section 5.  

2. Related work 

2.1. Identifying the evolution of topics 

Automatically identifying topical changes within 

the document set requires methods to extract ma-

chine-readable topics from the collection. Topic 

modeling provides a statistical approach to discover 

topics within a given corpus, where topics are mod-

eled as the latent semantic structures in the form of 

word-popularity sets based on the statistical distribu-

tion and word co-occurrences.  

Latent Dirichlet Allocation (LDA) [5] finds latent 

topics within a document collection and is one of the 

most widely used topic modeling methods on which 

many other methods are based [13,22]. Word-topic 

links are iteratively assigned with word co-

occurrences between documents; topics, defined as 

word distributions over a corpus dictionary, are then 

assigned to each document [33]. Topic evolution 

aims to identify the evolution of such topics in a se-

quentially ordered document collection. Document 

collection is first divided either uniformly or irregu-

larly [12] into sequentially-ordered sub-collections 

on which topic models independent of the neighbor-

ing sub-collections are generated. Temporal topic 

models are then connected over time with similarity 

measures, and changes in the topics are sequentially 

analyzed to identify the evolution of topics.  

Dynamic topic models [4] are one of the early im-

plementations of topic evolution, focusing on captur-

ing the changes within a set of chained topics with 

fixed timeslots where the Kalman filter and wavelet 

regression are used to approximate natural parame-

ters of the topics found at different time slices. Evo-

lutionary theme pattern mining has tried to capture 

not only the changes within each topic but also the 

sequential connections over multiple topics [24]. The 

Kullback-Leibler divergence is used as a distance 

metric between topics, and the topics on different 

timeslots are designated as having an evolutionary 

transition when their distance stays below dataset-



specific thresholds. The collection of such evolution-

ary transitions results in detecting merge and split 

events over time as multiple connections are allowed 

between different topics. A similar approach is made 

by utilizing cross-citations between topic pairs’ 

member documents as well [16]. 

Topic evolution in conjunction with bibliograph-

ical dataset analysis has been tried by numerous re-

searchers to better identify the topic evolution events. 

The citation contexts are used in an iterative topic 

evolution learning framework to increase the perfor-

mance of topic evolution with better topic models 

[14], where the document collection is expanded by 

the documents cited by its members. The inheritance 

topic model [9] is utilized to classify papers into au-

tonomous parts with originalities and parts inherited 

from cited documents. Differentiating two parts al-

lowed the method to overcome the topic dilution with 

cited papers, generating more new topics compared 

to LDA-based approaches.  

A more recent approach to topic evolution utilizes 

communities of keywords in a dynamic co-

occurrence network [2]. The medical subject head-

ings dataset from PubMed2 was used to build a fil-

tered co-occurrence network of major subjects within 

the medicine domain divided into five-year snapshots. 

Word clusters were found and linked to generate the 

evolution of topics over time. Topic evolution based 

on two-tier topic models is tried for a better merge 

and split detection, where topic correlations in the 

same timeslot are used to identify topic evolution [7]. 

Timeslot-specific local topics are extracted from 

yearly divided sub-collections of documents, while 

time-spanning global topics are retrieved using the 

whole corpus. Global topics stay static, having con-

nected to dynamic local topics at each timeslot with 

cosine similarities above a given threshold. Changes 

in the number of local topics connected to global 

topics are then used to define the topic evolution 

events; decreased and increased numbers of local 

topics connected to a global topic respectively repre-

sent merging and splitting of the topic.  

2.2. Identifying and predicting new topics 

Topic Detection and Tracking (TDT) [10] aims to 

capture the appearances of new topics in continuous-

ly generated text data in real-time; a topic is defined 

as “a seminal event or activity along with all directly 

related events and activities” [10]. First story detec-

tion (FSD) is one of the parts of TDT research tasks. 
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The goal of FSD is to search and organize new topics 

from multilingual news articles, or identifying the 

first article introducing the new story [1]. Topic-

conditioned FSD with a supervised learning algo-

rithm first classified news articles into a set of pre-

defined topic categories before identifying novelty 

within each topic [39]. FSD is also used in conjunc-

tion with document clustering to identify the earliest 

report of a certain event in news articles [35].  

Identification of emerging topic trends has led to 

the division of research front and intellectual base, 

where the latter is an established foundation of do-

main knowledge on which the former is built. The 

underlying assumption is that the citation and co-

citation between articles transfer the existing 

knowledge from the intellectual base to the research 

front. The CiteSpace II [8] further utilized a keyword 

co-occurrence relationship by employing a bipartite 

graph of keywords and articles. Research front terms 

are identified by the sharp frequency growth, and 

then used to identify research front articles, which in 

turn are absorbed into the intellectual base in the next 

time slice. Burst term detection, in conjunction with 

keyword co-word analysis, allows multi-dimensional 

exploration of the research front in question [23].  

While these approaches allow the detection of 

merging and splitting of time-spanning topics and 

their transitional ratio at the temporal level, the use of 

the text-based topic models inherently limits the pre-

dictive capabilities; the evolutionary events such as 

emergence, merge, or split can only be retrospective-

ly analyzed once the topic is captured from the doc-

ument set. Using author groups from a bibliographic 

dataset for determining topics connected over time by 

authors showed that when topics defined by the au-

thors are used instead of NLP-based topic models, 

topic evolution on the temporal network is possible; 

the topic evolution events are defined by the network 

structures and therefore a predictive analysis is pos-

sible [21]. 

On top of the emergence events detected by the 

appearance of topic models dissimilar to the ones in 

the previous timeslots, there are a number of research 

studies dedicated to identifying new topics with a 

varying definition of the topic. One such field is new 

topic identification, where the topic is defined as the 

entities the user is interested in during the search en-

gine querying session; the query patterns and the 

intervals between queries are used to identify topics 

[26]. Neural network (NN) is introduced to reduce 

the errors in new topic estimations based on typos by 

utilizing the character n-gram method to bypass 

spelling errors in the queries [11]. There are also sev-



eral researches focusing on utilizing the queries’ sta-

tistical characteristics, such as search patterns, fre-

quency of queries, and the relative position in the 

querying sessions [27].  

Technology forecasting [28] is another field of re-

search aiming to predict the characteristics of tech-

nology in the future; the technology, or topic, is de-

fined as a representative keyword instead of a statis-

tical model. Various techniques from simple extrapo-

lation to organization management [3] and fuzzy 

NLP [25] are used to identify and predict changes in 

technology indicators [6]. Multiple applications of 

the predictive topic evolution have been proposed, 

including a semi-manual technology trend analysis 

which was done to identify the roots of new technol-

ogies with their projected impact on the research 

field [29]. 

A previously proposed technology trend analysis 

approach with multiple data sources shows that while 

different data sources exhibit different forecast 

speeds, predicting the growth and shrinking in tech-

nology trends is possible extrapolating on a previous-

ly known technology growth curve [30]. A network-

based approach was proposed to overcome the rigidi-

ty of trend-based forecasting where the prediction is 

dependent on the type and shape of the technology 

growth curve used. Node prediction based on prefer-

ential attachment link prediction is proposed to clas-

sify whether the nodes in citation networks have a 

connection to a new node in the future [19], labeling 

the new nodes by utilizing the metadata of their 

neighboring nodes [20]. This showed that predicting 

nodes in bibliographic networks is possible based on 

the structural properties of the network. More com-

plex contexts of the new nodes in knowledge net-

works were extracted by identifying the neighbors of 

the new node in the past timeslot to formulate the 

context of the new node solely based on the metadata 

of its to-be-neighbors [17]. 

Network-based topic emergence identification is a 

network-based approach to a new topic prediction by 

utilizing a topic network. The emergence of new top-

ics was identified by capturing the relationships be-

tween their neighborhoods in the previous years, and 

predictions based on the existing clustering algo-

rithms were made to validate the possibility of proac-

tive topic emergence predictions with the proposed 

method. This paper aims to show the generalizability 

of the proposed method using various datasets with 

different focus and interests, capturing the shared 

knowledge between knowledge domains with an in-

cremental learning method to improve the perfor-

mance. 

3. Network-based new topic identification and 

prediction 

3.1. Generating topic networks 

NLP-based topic modeling can be used on the 

document collection dataset to retrospectively identi-

fy topics already present in the research field but has 

limited capability to prospectively predict the ap-

pearance of previously unused topics in the future 

without the documents to extract topics from. The 

proposed method utilizes a topic network instead, 

where emerging topics in a bibliographic dataset 

equate to new nodes in the topic network. Textual 

metadata is not considered for analysis, and only 

graphical structures are used. 

The topic network Ty = (V, Ry) represents co-

occurrence frequencies Ry between topics V within 

the knowledge domain at given year y. Topic set V 

consists of the topic node u and the year the topic is 

first used in the dataset fy, and Ry is the weighted 

edge set between nodes u and v, with wy as co-

occurrence frequencies in y.  

Ty = (V, Ry), and V = (u, fy) Ry = (u, v, wy) (1) 

3.2. Classifying subgraphs by the common neighbors 

The proposed method is run on the topic network 

Ty in Eq. (1), where topics in year y are classified as 

new or old based on the structural features of their 

neighbors. Neighborhoods neighbors(v, y) of each 

topic v in year y are extracted to build a set of neigh-

borhoods Ny from Ty. Each neighborhood is then cat-

egorized into two groups by the age of v calculated 

by fy(v) – y categorizing whether the topic v first ap-

peared in the given year y, in which case fy(v) = y. 

The state of v, C(v) is calculated as the ceiling of 

topic age normalized by the oldest topic, where the 

new topics are denoted by C(v) = 0. Any preexisting 

topics have non-zero ages, and the normalized ceiling 

function result in C(v) = 1. 

Ny = {neighbors(v, y) | v ∈ Vy}, and 

C(v) = ⌈(fy(v) – y) / (max(fy(V)) – y)⌉ (2) 

More prominent topics are likely to co-occur with 

more topics, and therefore the top 100 topics with the 

largest number of nodes in Ny are selected for each 

label C(v) = 0 and 1, resulting in a total topic count 

of 200 for each classification task. In case the num-

ber of instances for one label is below 100, then the 



number of v for the other label is reduced further to 

have the same number of instances for both labels.  

Evolution of existing topics such as merge and 

split is not targeted, and hence there is no need to 

train the classifier for the gradual evolution events 

within existing topics. Temporal features are there-

fore not analyzed; only static features are used in the 

experiment. Table 1 shows the list of 15 structural 

features of the neighbor subgraphs used to train the 

binary classifiers. These features characterize the 

subgraph quality in several aspects and are grouped 

by the component they are used to measure, includ-

ing six properties related to the whole subgraphs, 

four average values of member node properties, two 

properties related to the number of edges, and three 

properties weighted by the topic co-occurrence fre-

quencies.  

3.3. Classifying new topics with incremental learning 

The emergence of new topics is the only event be-

ing searched; therefore the binary classification on 

year y is trained by neighbor subgraphs in previous 

years. Sets of open neighborhoods Trainy,t and Testy 

are generated using t previous topic networks. The 

same set of neighbors n = neighbors(v) is used to 

identify open neighborhood subgraphs of v in multi-

ple previous timeslots, denoted by Tk(n) where y-t ≤ k 

≤ y. 

Table 1 Structural features used in the experiment. 

Features used Description 

Subgraph 

Node Count Number of nodes 

Cohesion Number of internal/external edges 

Density Number of observed/possible edges 

Transitivity Number of observed/possible triangles 

Normalized Triangles Number of triangles/nodes 

Mean Shortest Path Mean of all node pairs’ shortest paths 

Nodes 

Mean PageRank Mean PageRank for subgraph nodes  

Mean Degree Cen-
trality 

Mean degree centrality for subgraph 
nodes 

Mean Betweenness 

Centrality 

Mean betweenness centrality for 

subgraph nodes 

Mean Node Age Mean age for subgraph nodes 

Edges 

Edge Count Number of edges in the subgraph 

Mean Degree Mean degree in the subgraph 

Weighted 

Mean Degree 

Weighted 

Mean degree with edge weights 

Mean Edge Weighted Mean edge weights 

Mean Clustering 
Coefficient 

Mean weighted clustering coefficient 

sub(v, y, k) = {(n, {ni, nj}) | n ∈ neighbors(v, y), 

{ni, nj} ∈ Ek }, 

Trainy,t = {sub(v, y, y-t) ∪ … ∪ sub(v, y, y-1) | v 

∈ Vy}, and 

Testy = {sub(v, y, y) | n ∈ Ny} (3) 

Neighbor subgraphs in Eq. (3) represent interac-

tions within direct predecessors of new topics and 

neighbors of preexisting old topics, which are shown 

to have distinguishable structural features in the pre-

vious research [18]. The classification accuracies, 

precision, recall, F1, and area under the ROC curve 

(AUC) based on subsets of 15 features are compared 

to show the effect of the number of features as well 

as the features with the most importance. 

The proposed method trains a machine learning 

algorithm to classify new topics by past interactions 

within their neighborhoods for a given knowledge 

domain. The generalizability of the proposed method 

is analyzed by implementing an incremental learning 

approach. The trained model is retained for each of 

the incremental learning instead of being re-

initialized. Within-domain learning is done over in-

crementing y within each of the knowledge domain 

to incrementally adapt to the continuous topical in-

teractions over time. Between-domain learning is 

done between each of the domain pairs at the same y 

resulting in a total of k×(k-1) pairs for k number of 

domains used in the experiment, aiming to test the 

possibilities of incremental learning between differ-

ent knowledge domains. Changes in its performance, 

when two domains share the same parent domain, are 

observed as well. Increases in the performance would 

suggest that the topic networks at different times and 

under different domains share underlying models. 

The proposed method would then be generalizable to 

any parts of the knowledge stored in the bibliograph-

ic records. 

4. Experiments 

4.1. Dataset preprocessing 

Multiple topic networks were generated from bib-

liographic records extracted from the Microsoft Aca-

demic Graph (MAG) [34], which is a heterogeneous 

bibliographic dataset [32]. The MAG is selected as 

the source dataset for two reasons. Firstly, it was 

deemed competitive with major bibliographic search 

engines such as Google Scholar or Scopus, even with 

relatively recent creation [15]. Secondly, the MAG 



has a built-in ontology called fields-of-study (FoS) 

representing each paper with different hierarchical 

concepts [31]. A six-level hierarchy of concept is 

generated each month using knowledge base type 

prediction with Wikipedia articles, employing graph 

link analysis and convolutional neural network meth-

ods. The hierarchical concepts are then tagged to the 

papers using a large-scale multi-level text classifica-

tion method on pre-trained word embedding vectors. 

The tagging is done weekly to keep up-to-date con-

cept assignments. Identifying dataset-wide topics in a 

large-scale dataset is by itself a huge task; therefore 

the tagged FoS are defined as the topics for the doc-

ument in this paper. While the author-assigned key-

words in research publications also represent their 

topics, the MAG database does not have keywords as 

one of its relational database tables and therefore is 

not used in the experiment. 

The MAG dataset snapshot in February 2020 is 

downloaded for preprocessing through the Microsoft 

Azure Databricks, containing 197,642,464 publica-

tions, 709,934 FoS, 48,829 journals, more than 1.5 

billion citation links, and 1.3 billion paper-FoS links. 

Analyzing the whole graph would be too complex to 

compute, and therefore data subsets are extracted as 

the bibliographic records related to selected FoS, 

each representing subsets of topics focused on differ-

ent research fields.  

 

Table 2 Twenty FoS in the February 2020 MAG dataset. 

Rank DisplayName MainType Lv 

9863 usability business.industry 2 

9299 software develop-
ment 

business.industry 3 

8335 polysaccharide chemistry.chemical_classification 2 

8494 hydrogen peroxide chemistry.chemical_compound 2 

8442 ozone chemistry.chemical_compound 2 

8868 palladium chemistry.chemical_element 3 

8480 cadmium chemistry.chemical_element 3 

9749 diamond engineering.material 2 

9216 drainage basin geography.geographical_ 
feature_category 

2 

9961 calcination law.invention 3 

8177 fertility media_common.quotation_subject 3 

9058 unemployment media_common.quotation_subject 2 

9964 physical examina-

tion 

medicine.diagnostic_test 3 

8153 malaria medicine.disease 3 

8349 thrombosis medicine.disease 3 

7579 air pollution medicine.disease_cause 2 

9171 activated carbon medicine.drug 3 

12641 saline medicine.medical_treatment 3 

9418 stent medicine.medical_treatment 3 

12338 gaussian symbols.namesake 2 

The FoS are selected by the following criteria. The 

size and activity of the datasets are modulated by 

selecting FoS with 100,000 < related publication 

count < 120,000 and 1,000,000 < combined citation 

count < 1,500,000. FoS without the main type data 

are removed to ensure that each dataset’s parent do-

main is known, selecting two FoS from each main 

type with the highest ranking.  

Table 2 shows the resulting 20 FoS with ranks 

measured by the possible importance along with the 

display name of the FoS, their main type within the 

FoS hierarchy, and the level of the FoS in the hierar-

chy tree. 20 FoS-specific datasets are extracted into 

the SQL databases using a high-performance compu-

ting service by Alabama Supercomputer Authority3. 

All data rows in the PaperFieldsOfStury table con-

taining the matching FieldOfStudyId are retrieved, 

then rows matching the filtered papers in Paper-

FieldsOfStudy and FieldsOfStudy tables are retrieved 

for FoS used in the journal and how they are assigned 

to individual publications. With a series of SQL que-

ries, FirstUsedYear column is added to FieldsOf-

Study tables to represent the first year fy the given 

FoS is used with the FoS, and FOSneighborCount 

{Node1, Node2, Year, Frequency} table is created to 

represent undirected links within each dataset with 

node pair u, v, year y, and frequency w, where FoS 

are the nodes and the links represent the two FoS 

assigned co-occurring in the same publications. Fre-

quency shows the co-occurrences between two FoS, 

which is divided for each year to distinguish different 

FoS links and weights at different years. 

4.2. Generating topic networks 

After the dataset preprocessing is done, the topic 

network Ty in Eq. (1) for each FoS is generated for 

y=[2000,…,2020]. The year y is ranged to retrieve 

the detection of newly used topics in the 21st century. 

For each FoS, SQL queries are run on the FOSneigh-

borCount table to extract topic co-occurrence with 

FOSneighborCount.Year = y where the Year column 

in the FOSneighborCount table represents the year 

the topics co-occurred. The resulting edge data Ry is 

used to build a topic network using the equation in 

Eq. (1). 

4.3. Classifying subgraphs by the common neighbors 

Data downsampling is done on each dataset with 

C(v) as the class variable. This is done to reduce the 
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total amount of data while balancing the number of 

labels for the classification. Isolated nodes are ig-

nored as there are no neighbors to analyze. Data 

standardization is also done to remove range differ-

ences between 15 features, where the values of each 

feature are first subtracted by the average value and 

then divided by its standard deviation. 

z = (x – μ) / σ (4) 

Training size is set to t=9 as the increase in the 

classification performance diminishes with large t 

values. Initial experiments showed the Logistic Re-

gression (LR) was one of the best performing algo-

rithms without showing anomalous classification 

patterns over combinations of classification variables. 

The L-BFGS algorithm [36] is used as an optimiza-

tion function for the ML model, with a maximum 

training iteration of 100.  

4.4. Classifying new topics with incremental learning 

Feature selection is done for all feature count f = 

1,…,15. For each f, combinations of features with 

length f are compared by different score functions 

shown in Table 3, utilizing f-values and mutual in-

formation of the classification results. To analyze the 

importance of the features, one classification model 

is trained using the selected features while another is 

trained using the excluded features. 2-dimensional 

principal component analysis (PCA) is also done to 

test the linear separability of the features. 

Table 3 Descriptions of four score functions used in classification. 

Score Function Description 

f_classif ANOVA F-value between labels 

f_regression F-value for univariate regression 

mutual_info_classif Estimated mutual information be-

tween labels 

mutual_info_regression Estimated mutual information for  

continuous target 

 

 

Incremental learning is implemented in two differ-

ent ways, named after the function names they are 

based on. The warm approach retains the coefficients 

of the trained model which are used as the initial co-

efficient in subsequent training, while the partial 

approach incrementally trains the model with addi-

tional data. Sklearn Python library’s warm_start at-

tribute and partial_fit function are used respectively. 

Both approaches have limitations; the warm ap-

proach risks overwriting the initial training result 

when there are major shifts in the new training data, 

while the partial approach would suffer performance 

losses in such case as it would try to search for the 

solution covering both datasets. These are compared 

against the non-incremental cold approach, where the 

training model is re-initialized before every training. 

To analyze the possible differences between dif-

ferent classification algorithms, a linear support vec-

tor machine (SVM) algorithm is used in addition to 

the logistic regression used in the previous section. 

Different epoch values are tested to show the effect 

of the epoch sizes. The partial_fit function only 

trains the model one generation at a time while the 

model with warm_start attribute is trained over mul-

tiple epochs; hence it is repeated epoch number of 

times to mimic the incremental learning with multi-

ple epochs. The number of data rows affects the in-

cremental learning performances; hence a different 

number of topics is also tested. 

epochs = [10, 50, 100], and 

num_topics = [10, 50, 100, 200]a (5) 

 a200 for between-domain. 

Within-domain learning is done over y from 2000 

to 2019 for each FoS dataset testing the incremental 

adaptation to the continuous topical interactions over 

time. Between-domain learning is done between each 

of the FoS pairs at the same y, instead. This results in 

a total of 380 pairs for FoS used in the experiment; 

only topic=200 is used for between-domain learning 

with y=[2000,2005,2010,2015]. 

5. Results 

5.1. Classifying new topics using FoS datasets 

The classification results were measured excluding 

y=2020 as the performance is significantly lower for 

all FoS datasets in the last year with Acc = 0.4068, 

AUC = 0.8028, and F1 = 0.5589. This is because the 

MAG dataset used in the experiment has only partial 

records of the 2020 publications up to February. This 

is supported by the retained high recall value for 

y=2020. The model failed to distinguish between 

new and old topics based on their incomplete neigh-

borhoods, classifying all candidates as a single label 

resulting in the high recall but low precision values. 

Excluding the last year, the average of the 20 FoS on 

the remaining 20 timeslots result in Acc = 0.9287, 

and AUC = 0.9815, and F1 = 0.9287 as shown in 

Table 4 with the data standardization. 



Table 4 Summary of new topic classification results, using stand-

ardized data and original data during the training. 

Data used Standardized Original 

Acc 0.9287 0.9240 

AUC 0.9815 0.9792 

F1 0.9287 0.9243 

Precision 0.9522 0.9452 

Recall 0.9114 0.9098 

 

 

The classification performance for the FoS dataset 

showed slightly higher performance compared to the 

result based on the journals in the previous research 

which had an average accuracy of 0.9053 and aver-

age AUC score of 0.9809 [18]. Table 4 shows that 

the same holds even when the original data without 

standardization are used during the training. This 

shows that the proposed method is capable of gener-

ating highly accurate results with bibliographic da-

tasets built with different criteria and the perfor-

mance improves when datasets with more focused 

research interest are used. 

The overall performance metrics do not show sig-

nificant changes in the trend over the years. Accuracy, 

AUC, and F1 in Figure 1 all share the same pattern 

over the years, with AUC having a higher average. 

The sudden drop in y=2010 can be attributed to the 

sudden increase in the false positives, having 0.0405 

compared to 0.0088 in the previous year. This is re-

flected in the precision values showing the sharpest 

change.  

The precision and recall intersect around y=2016 

with the changes in the average values of false posi-

tive (FP) and false negative results (FN) lower the 

precision while increasing recall. There are clear dif-

ferences in the average FP and FN values before and 

after y=2016 as shown in Table 5. True positives 

(TP) increase along with the increase in FP, indicat-

ing that the trained model classifies more topics as 

new in recent years. This average result over 20 di-

verse FoS topics suggests a possible shift in the over-

all topic co-occurrence patterns in a specific year, 

where the neighborhoods of existing topics become 

more structurally similar to those of new topics over 

time. 

Table 5 Changes in the average TP, FP, FN, precision, and recall 

of the classification results before and after y=2016 . 

 Year TP FP FN Precision Recall 

< 2016 0.4514 0.0222 0.0486 0.9588 0.9028 

2016 0.4740 0.0395 0.0260 0.9371 0.9480 

> 2016 0.4725 0.0487 0.0275 0.9221 0.9450 

0.88

0.9

0.92

0.94

0.96

0.98

1

Acc ROCscore F1score Precision Recall
 

Fig. 1. Binary classification accuracy of logistic regression with 

y=[2000, 2019] over 20 FoS datasets. 

Experimenting on a different number of features 

showed that four feature selection functions are sta-

tistically similar. ANOVA test was run on the Acc, 

AUC, precision, recall, and F1 of the classification 

results for classifications done with f=1,…,14 using 

four functions. All 70 ANOVA tests resulted in 

p=value > 0.9, indicating the differences between the 

four functions are statistically nonexistent. The result 

from the mutual_info_classif function is used for 

further analysis. 

Figure 2 shows that the number of features used 

during the training improves the classification per-

formance by a small margin while providing F1 over 

0.91 using only one feature. The most significant 

features are Mean PageRank and Node Count, which 

were selected for 49% and 50.5% of the 400 classifi-

cation runs in the experiment. These two features 

were selected for runs with f >1, as well. 
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Fig. 2. Changes in the F1 of the classification results using mutu-

al_info_classif as the scoring function with f=[1,…,15] in the x-
axis, with the results of classifications using the excluded features 

shown in the second y-axis. 
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Fig. 3. Visualizations of 2-dimensional PCA results for ten of 20 FoS topics with y=2010 and f=15. x-axis and y-axis respectively show the 

first and second features with color-coded labels (green = true, red = false). 

The classification results also showed that the re-

sult is not dependent on the features. F1 remained at 

0.9289 with using only one feature during the train-

ing, and the F1 only reaches below 0.9 when 9 out of 

15 most significant features were excluded during the 

training. This indicates that the majority of the topic 

subgraph features are closely correlated to the emer-

gence of a new topic among them, and significant 

dimension reduction can be done without perfor-

mance loss.  

The PCA results also indicate the possibility of 

dimension reduction; with 2-dimensional PCA on all 

15 features, the first component was able to explain 

49.25% of the result while 27.19% were explained by 

the second component. PCA results of all 20 FoS 

topics showed more horizontal separations with the 

first component as the x-axis, with ten randomly se-

lected topics from various fields shown in Figure 3. 

Clusters of binary labels can be seen in all ten scat-

terplots. 23.56% of the result remains unexplained by 

either component, which is likely due to the inclusion 

of the features with weaker classification strengths. 

This is shown by the PCA results in Table 6 with 

feature selections, where lower f result in more vari-

ance explanations.  

Table 6 Ratio of variance explained by 2-dimensional PCA with 

different f selected using mutual_info_classif. 

f 5 10 15 

Explained by 1st component 0.8696 0.6613 0.4925 

Explained by 2nd component 0.0742 0.2104 0.2719 

Variance Unexplained 0.0562 0.1283 0.2356 

5.2. Classifying new topics with incremental learning 
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Fig. 4. F1 of classification results for within-domain incremental 

learning over the years. 

Figure 4 shows that one of the within-domain in-

cremental learning resulted in consistently better re-

sults compared to the baseline cold approach with the 

LR algorithm, where the model is re-initialized each 

year. The partial approach resulted in an average of 

0.0101 higher F1, showing that there is a temporal 

consistency over the topic networks for new topic 

identification. The performance gain increases rapid-

ly during the first 2 years of incremental learning 

from 0.0078 in y=2001 to 0.0127 in y=2002, and an 

average of 0.0117 differences was observed until 

2015 before being reduced to 0.0072 on average af-

terward. The performance increase validates the in-

cremental learning over time within a single dataset, 

while the degree of improvement can vary over time. 
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Fig. 5. Changes in the F1 between partial and cold for different 

combinations of epochs and num_topics with the averaged F1 for 

partial as the bar graph in the second axis. 

The warm approach showed very similar results to 

the cold approach, on the other hand. No apparent 

performance increase can be attributed to the evolv-

ing nature of the topic networks; the connections 

between predefined topic subsets change every year. 

The initial training results were overwritten when the 

ML model is re-trained with such datasets with major 

shifts, losing any previous training in the process. 

Using SVM instead of LR resulted in the same out-

come, with partial with 0.0114 higher F1 and warm 

showing similar values to the baseline, showing sta-

tistically insignificant differences for other metrics as 

well as shown in Table 7. The warm approach is sta-

tistically identical to the non-incremental learning 

and hence was removed from further analysis. 

Analysis of the different combinations of epochs 

and num_topics in Eq. (5) showed the incremental 

learning can be done with sample sizes smaller than 

200. num_topics as low as 10 resulted in similar per-

formance improvements with 5 true and 5 false data 

rows with both classification algorithms as shown by 

Figure 5, indicating the method can be used even 

with knowledge domains with sparse topic correla-

tions. The differences were more pronounced with 

smaller epochs, showing higher improvement with 

lower epoch. This can be attributed to the fact that 

inadequately trained models have more performance 

enhancement available to them. More epochs resulted  

Table 7 P-values between within-domain incremental learning 

approach and the baseline. 

 
LR 

 
SVM 

 

Pairs cold/ 
partial 

cold/ 
warm 

cold/ 
partial 

cold/ 
warm 

F1 1.76E-09 6.92E-01 2.37E-11 7.37E-01 

Acc 2.76E-08 6.84E-01 5.98E-09 7.11E-01 

Precision 1.80E-05 7.43E-01 7.46E-10 7.44E-01 

Recall 3.02E-02 7.09E-01 9.56E-03 6.50E-01 

in higher absolute performance scores including ac-

curacies and F1, indicating it is still beneficial to 

train with a larger number of epochs. 

Different FoS datasets resulted in different incre-

mental learning performances. Figure 6 and Figure 7 

show the relative F1 improvement of partial ap-

proach using epochs=100 and num_rows=200, each 

reaching p = 0.000 for statistical significance. F1 and 

improvements are reversely correlated, showing 

moderate to weak correlation with coefficient corr = 

-0.5848 for LR and corr = -0.2758 for SVM. This is 

in sync with the higher performance gains with lower 

epochs; more improvements are made when possible. 

While SVM resulted in a higher average improve-

ment of 0.0072 over LR’s 0.0055, two of the key-

words cadmium and air_polution showed negative 

results. LR showed a more consistent performance 

improvement for all FoS datasets, making it a more 

generalizable one compared to more dataset sensitive 

SVM. Consistent improvement for 20 datasets span-

ning across 14 domains ranging from business, chem-

istry, law to medicine indicates the sequential incre-

mental learning can be done on any field of research 

to improve new topic identifications. 
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Fig. 6. F1 improvements over the cold baseline for individual FoS 

datasets trained using LR, with F1 in the second axis. 
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Fig. 7. F1 Improvements over the cold baseline for individual FoS 

datasets trained using SVM, with F1 in the second axis. 



The between-domain showed that incremental 

learning can be done over different topics as well. 

The F1 differences in Table 8 show the performance 

gain from between-domain learning is smaller than 

that of within-domain learning, with one negative 

value for 48 of the experiment iterations. The per-

formance improvement is also not as statistically 

significant because of the larger variance in F1 be-

tween 380 domain pairs. The t-test between the do-

main pairs F1 showed an average p-value of 0.6623 

for all experiment iterations with baseline cold ap-

proach (epochs=[10,10,500] with alg=[SVM, LR]), 

indicating that there is no inherent difference be-

tween the domain pairs. The partial approach 

showed significant differences between the domain 

pairs with a lower number of epochs, reaching an 

average p-value of 2.1481e10-5 using SVM and 

6.1439e10-9 using LR each with epochs=10.  

The statistical significance diminished with larger 

epochs, with p = 0.0076 for SVM and 0.0523 for LR 

with epochs=50 to p > 0.1 for both with epochs=100. 

Such changes in the p-values indicate that the incre-

mental learning over different knowledge domains is 

harder than the incremental learning done within a 

single domain; the common knowledge between-

domain can be acquired with less training compared 

to the more detailed underlying knowledge within-

domain. This is supported by the observation that 

there are no significant differences between the in-

cremental learning done over the domain pairs shar-

ing the same MainType and the ones which do not. 

The common knowledge captured by the partial ap-

proach is the basic knowledge common to different 

domains. 

Table 8 Differences in F1 of between-domain incremental learning 

approach and the baseline. 

Alg epochs Year 

2000 2005 2010 2015 

Within the same MainType 

SVM  10 0.0018 0.0033 0.0022 0.0006 

50 0.0023 0.0026 0.0012 0.0018 

100 0.0054 0.0037 0.0035 0.0039 

LR 10 0.0047 0.0041 0.0016 0.0028 

50 0.0037 0.0030 0.0028 0.0020 

100 0.0058 0.0052 0.0046 0.0025 

Between different MainTypes 

SVM  10 0.0055 0.0003 0.0017 0.0028 

50 0.0029 0.0013 0.0000 0.0027 

100 0.0059 0.0027 0.0029 0.0057 

LR 10 0.0029 0.0105 0.0011 -

0.0006 

50 0.0040 0.0029 0.0038 0.0012 

100 0.0020 0.0045 0.0035 0.0031 

 

6. Conclusion 

Topic models derived from processing unstruc-

tured documents can capture the number of topics 

shared throughout a given document collection and 

can be used to detect and track changes in such topics 

over time. The text-based approaches however have 

an innate limitation of requiring the textual data for 

modeling topics, inhibiting the effective prediction of 

topic evolutions where such data are nonexistent. The 

network-based topic emergence identification is an 

alternative approach utilizing the network structure to 

model topics, validating the assumption that the new 

topics can be distinguished by the structural proper-

ties of their neighborhoods in the past with classifica-

tion accuracy up to 0.9.  

Binary classification on 20 FoS showed that the 

proposed method can be applied to bibliographic 

datasets representing a specific subset of the 

knowledge domains. The proposed method per-

formed better on topic-specific publications com-

pared to the publications with varying topics of inter-

ests. Series of feature selections showed that the pro-

posed method retained F1 over 0.9 with only 6 fea-

tures; the majority of the 15 topic subgraph features 

were found to be closely correlated to the emergence 

of a new topic within them. Analysis of the temporal 

changes in the classification results showed an under-

lying topic co-occurrence pattern across diverse re-

search domains; the neighborhoods of existing topics 

become more structurally similar to those of new 

topics in more recent years.  

Incremental learning is shown to positively affect 

the results of the proposed method. Consistent per-

formance improvements were observed for incremen-

tal learning within each of the 20 FoS over time, 

showing the method can adapt to various knowledge 

domains, such as business, chemistry, law, and medi-

cine. Iterations of the experiment also revealed that 

the proposed method can be used even with 

knowledge domains with sparse topic correlations, 

retaining similar performance and performance im-

provements with 10 data instances. The knowledge 

between different datasets was also found to be trans-

ferable with incremental learning between different 

datasets, albeit with a smaller degree. The common 

knowledge spanning across different research do-

mains was captured in the early stages of the training, 

resulting in significant performance improvements 

only with a smaller number of epochs run during the 

training. 



Future work will include the validation of the 

method’s generalizability with incremental learning 

results. The shifts in the structural patterns over time 

can be captured to add explainability to the results, 

and underlying common structural properties of new 

topics’ neighborhoods will be identified to be incor-

porated into the prospective new topic prediction, 

along with the feature selection results. A set of ap-

proaches will be made to generate likely neighbor-

hood candidates for the new topic in the future, in-

cluding community detections and deep neural net-

work optimizations conscious of the properties corre-

lated to the new topic prediction.  

References 

[1] J. Allan, J.G. Carbonell, G. Doddington, J. Yamron, and Y. 
Yang, Topic Detection and Tracking Pilot Study Final Report, 

(1998). doi:10.1184/R1/6626252.v1. 

[2] C. Balili, A. Segev, and U. Lee, Tracking and predicting the 
evolution of research topics in scientific literature, in: 2017 

IEEE International Conference on Big Data (Big Data), 2017: 

pp. 1694–1697. doi:10.1109/BigData.2017.8258108. 
[3] C. Battistella, The organisation of Corporate Foresight: A 

multiple case study in the telecommunication industry, Tech-
nological Forecasting and Social Change. 87 (2014) 60–79. 

doi:10.1016/j.techfore.2013.10.022. 

[4] D.M. Blei, and J.D. Lafferty, Dynamic Topic Models, in: 
Proceedings of the 23rd International Conference on Machine 

Learning, ACM, New York, NY, USA, 2006: pp. 113–120. 

doi:10.1145/1143844.1143859. 
[5] D.M. Blei, A.Y. Ng, and M.I. Jordan, Latent Dirichlet Alloca-

tion, J. Mach. Learn. Res. 3 (2003) 993–1022. 

[6] A. Bongers, and J.L. Torres, Measuring technological trends: 
A comparison between U.S. and U.S.S.R./Russian jet fighter 

aircraft, Technological Forecasting and Social Change. 87 

(2014) 125–134. doi:10.1016/j.techfore.2013.12.007. 
[7] B. Chen, S. Tsutsui, Y. Ding, and F. Ma, Understanding the 

topic evolution in a scientific domain: An exploratory study 

for the field of information retrieval, Journal of Informetrics. 
11 (2017) 1175–1189. doi:10.1016/j.joi.2017.10.003. 

[8] C. Chen, CiteSpace II: Detecting and visualizing emerging 

trends and transient patterns in scientific literature, Journal of 
the American Society for Information Science and Technology. 

57 (2006) 359–377. doi:10.1002/asi.20317. 

[9] L. Dietz, S. Bickel, and T. Scheffer, Unsupervised Prediction 
of Citation Influences, in: Proceedings of the 24th Internation-

al Conference on Machine Learning, ACM, New York, NY, 

USA, 2007: pp. 233–240. doi:10.1145/1273496.1273526. 
[10] J.G. Fiscus, and G.R. Doddington, Topic Detection and Track-

ing Evaluation Overview, in: Topic Detection and Tracking, 

Springer, Boston, MA, 2002: pp. 17–31. doi:10.1007/978-1-
4615-0933-2_2. 

[11] B.C. Gencosman, H.C. Ozmutlu, and S. Ozmutlu, Character 

n-gram application for automatic new topic identification, In-
formation Processing & Management. 50 (2014) 821–856. 

doi:10.1016/j.ipm.2014.06.005. 

[12] A. Gohr, A. Hinneburg, R. Schult, and M. Spiliopoulou, Topic 
Evolution in a Stream of Documents, in: Proceedings of the 

2009 SIAM International Conference on Data Mining, Society 

for Industrial and Applied Mathematics, 2009: pp. 859–870. 

doi:10.1137/1.9781611972795.74. 
[13] Z. Guo, Z.M. Zhang, S. Zhu, Y. Chi, and Y. Gong, A Two-

Level Topic Model towards Knowledge Discovery from Cita-

tion Networks, IEEE Transactions on Knowledge and Data 
Engineering. 26 (2014) 780–794. doi:10.1109/TKDE.2013.56. 

[14] Q. He, B. Chen, J. Pei, B. Qiu, P. Mitra, and L. Giles, Detect-

ing Topic Evolution in Scientific Literature: How Can Cita-
tions Help?, in: Proceedings of the 18th ACM Conference on 

Information and Knowledge Management, ACM, New York, 

NY, USA, 2009: pp. 957–966. doi:10.1145/1645953.1646076. 
[15] S.E. Hug, M. Ochsner, and M.P. Brändle, Citation Analysis 

with Microsoft Academic, Scientometrics. 111 (2017) 371–

378. doi:10.1007/s11192-017-2247-8. 
[16] Y. Jo, J.E. Hopcroft, and C. Lagoze, The Web of Topics: 

Discovering the Topology of Topic Evolution in a Corpus, in: 

Proceedings of the 20th International Conference on World 
Wide Web, ACM, New York, NY, USA, 2011: pp. 257–266. 

doi:10.1145/1963405.1963444. 

[17] S. Jung, T.M. Lai, and A. Segev, Analyzing Future Nodes in a 
Knowledge Network, in: 2016 IEEE International Congress 

on Big Data (BigData Congress), 2016: pp. 357–360. 

doi:10.1109/BigDataCongress.2016.57. 
[18] S. Jung, R. Datta, and A. Segev, Identification and Prediction 

of Emerging Topics through Their Relationships to Existing 
Topics, in: 2020 IEEE International Conference on Big Data 

(Big Data), 2020. 

[19] S. Jung, and A. Segev, Analyzing future communities in 
growing citation networks, in: Proceedings of ACM Interna-

tional Conference on Information and Knowledge Manage-

ment (CIKM 2013) International Workshop on Mining Un-

structured Big Data Using Natural Language Processing, 

ACM, New York, NY, USA, 2013: pp. 15–22. 

doi:10.1145/2513549.2513553. 
[20] S. Jung, and A. Segev, Analyzing future communities in 

growing citation networks, Knowledge-Based Systems. 69 

(2014) 34–44. doi:10.1016/j.knosys.2014.04.036. 
[21] S. Jung, and W.C. Yoon, An alternative topic model based on 

Common Interest Authors for topic evolution analysis, Jour-

nal of Informetrics. 14 (2020) 101040. 
doi:10.1016/j.joi.2020.101040. 

[22] L. Kay, N. Newman, J. Youtie, A.L. Porter, and I. Rafols, 

Patent overlay mapping: Visualizing technological distance, J 
Assn Inf Sci Tec. 65 (2014) 2432–2443. doi:10.1002/asi.23146. 

[23] M. Li, and Y. Chu, Explore the research front of a specific 

research theme based on a novel technique of enhanced co-
word analysis, Journal of Information Science. 43 (2017) 

725–741. doi:10.1177/0165551516661914. 

[24] Q. Mei, and C. Zhai, Discovering Evolutionary Theme Pat-

terns from Text: An Exploration of Temporal Text Mining, in: 

Proceedings of the Eleventh ACM SIGKDD International 

Conference on Knowledge Discovery in Data Mining, ACM, 
New York, NY, USA, 2005: pp. 198–207. 

doi:10.1145/1081870.1081895. 

[25] N.C. Newman, A.L. Porter, D. Newman, C.C. Trumbach, and 
S.D. Bolan, Comparing methods to extract technical content 

for technological intelligence, Journal of Engineering and 

Technology Management. 32 (2014) 97–109. 
doi:10.1016/j.jengtecman.2013.09.001. 

[26] H.C. Ozmutlu, and F. Çavdur, Application of automatic topic 

identification on Excite Web search engine data logs, Infor-
mation Processing & Management. 41 (2005) 1243–1262. 

doi:10.1016/j.ipm.2004.04.018. 

[27] S. Ozmutlu, Automatic new topic identification using multiple 
linear regression, Information Processing & Management. 42 

(2006) 934–950. doi:10.1016/j.ipm.2005.10.002. 



[28] A.L. Porter, and M.J. Detampel, Technology opportunities 

analysis, Technological Forecasting and Social Change. 49 
(1995) 237–255. doi:10.1016/0040-1625(95)00022-3. 

[29] A. Segev, C. Jung, and S. Jung, Analysis of Technology 

Trends Based on Big Data, in: 2013 IEEE International Con-
gress on Big Data (BigData Congress), 2013: pp. 419–420. 

doi:10.1109/BigData.Congress.2013.65. 

[30] A. Segev, S. Jung, and S. Choi, Analysis of Technology 
Trends Based on Diverse Data Sources, IEEE Transactions on 

Services Computing. 2015 Vol.8 (2015) 903–915. 

doi:10.1109/TSC.2014.2338855. 
[31] Z. Shen, H. Ma, and K. Wang, A Web-scale system for scien-

tific knowledge exploration, ArXiv:1805.12216 [Cs]. (2018). 

http://arxiv.org/abs/1805.12216 (accessed June 24, 2020). 
[32] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. (Paul) Hsu, 

and K. Wang, An Overview of Microsoft Academic Service 

(MAS) and Applications, in: Proceedings of the 24th Interna-
tional Conference on World Wide Web, Association for Com-

puting Machinery, Florence, Italy, 2015: pp. 243–246. 

doi:10.1145/2740908.2742839. 
[33] M. Steyvers, and T. Griffiths, Probabilistic topic models, in: 

Handbook of Latent Semantic Analysis, Lawrence Erlbaum 

Associates Publishers, Mahwah, NJ, US, 2007: pp. 427–448. 
[34] K. Wang, Z. Shen, C. Huang, C.-H. Wu, D. Eide, Y. Dong, J. 

Qian, A. Kanakia, A. Chen, and R. Rogahn, A Review of Mi-
crosoft Academic Services for Science of Science Studies, 

Front. Big Data. 2 (2019). doi:10.3389/fdata.2019.00045. 

[35] J. Zhang, Z. Ghahramani, and Y. Yang, A probabilistic model 
for online document clustering with application to novelty de-

tection, in: Proceedings of the 17th International Conference 

on Neural Information Processing Systems, MIT Press, Van-

couver, British Columbia, Canada, 2004: pp. 1617–1624. 

[36] C. Zhu, R.H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-

BFGS-B: Fortran subroutines for large-scale bound-
constrained optimization, ACM Trans. Math. Softw. 23 (1997) 

550–560. doi:10.1145/279232.279236. 


