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Abstract. The popularity of the Semantic Web (SW) encourages organizations to organize and publish semantic data using the
RDF model. This growth poses new requirements to Business Intelligence technologies to enable On-Line Analytical Processing
(OLAP)-like analysis over semantic data. The incorporation of semantic data into a Data Warehouse (DW) is not supported by
the traditional Extract-Transform-Load (ETL) tools because they do not consider semantic issues in the integration process. In
this paper, we propose a layer-based integration process and a set of high-level RDF-based ETL constructs required to define,
map, extract, process, transform, integrate, update, and load (multidimensional) semantic data. Different to other ETL tools, we
automate the ETL data flows by creating metadata at the schema level. Therefore, it relieves ETL developers from the burden
of manual mapping at the ETL operation level. We create a prototype, named Semantic ETL Construct (SETLCONSTRUCT), based
on the innovative ETL constructs proposed here. To evaluate SETLCONSTRUCT, we create a multidimensional semantic DW by
integrating a Danish Business dataset and an EU Subsidy dataset using it and compare it with the previous programmable
framework SETLPROG in terms of productivity, development time, and performance. The evaluation shows that 1) SETLCONSTRUCT

uses 92% fewer Number of Typed Characters (NOTC) than SETLPROG, and SETLAUTO (the extension of SETLCONSTRUCT for
generating ETL execution flows automatically) further reduces the Number of Used Concepts (NOUC) by another 25%; 2)
using SETLCONSTRUCT, the development time is almost cut in half compared to SETLPROG, and is cut by another 27% using
SETLAUTO; and 3) SETLCONSTRUCT is scalable and has similar performance compared to SETLPROG. We also evaluate our approach
qualitatively by interviewing two ETL experts.
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1. Introduction

Semantic Web (SW) technologies enable adding a
semantic layer over the data; thus, the data can be pro-
cessed and effectively retrieved by both humans and
machines. The Linked Data (LD) principles are the
set of standard rules to publish and connect data us-
ing semantic links [1]. With the growing popularity
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of the SW and LD, more and more organizations na-

tively manage data using SW standards, such as Re-

source Description Framework (RDF), RDF-Schema

(RDFs), the Web Ontology Language (OWL), etc. [2].

Moreover, one can easily convert data given in an-

other format (database, XML, JSON, etc.) into RDF

format using an RDF wrapper. As a result, a lot of

semantic datasets are now available in different data
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portals, such as DataHub1, Linked Open Data Cloud 2

(LOD), etc. Most SW data provided by international
and governmental organizations include facts and fig-
ures, which give rise to new requirements for Business
Intelligence tools to enable analyses in the style of On-
line Analytical Processing (OLAP) over those seman-
tic data [3].

OLAP is a well-recognized technology to support
decision making by analyzing data integrated from
multiple sources. The integrated data are stored in a
Data Warehouse (DW), typically structured follow-
ing the Multidimensional (MD) Model that represents
data in terms of facts and dimensions to enable OLAP
queries. The integration process for extracting data
from different sources, translating them according to
the underlying semantics of the DW, and loading them
into the DW is known as Extract-Transform-Load
(ETL). One way to enable OLAP over semantic data is
by extracting those data and translating them according
to the DW’s format using a traditional ETL process.
[4] outlines such a type of semi-automatic method to
integrate semantic data into a traditional Relational
Database Management System (RDBMS)-centric MD
DW. However, the process does not maintain all the se-
mantics of data as they are conveying in the semantic
sources; hence, the integrated data no more follow the
SW data principles defined in [5]. The semantics of the
data in a semantic data source is defined by 1) using In-
ternationalized Resource Identifiers (IRIs) to uniquely
identify resources globally, 2) providing common ter-
minologies, 3) semantically linking with published in-
formation, and 4) providing further knowledge (e.g.,
logical axioms) to allow reasoning [6].

Therefore, considering semantic issues in the inte-
gration process should be emphasized. Moreover, ini-
tiatives such as Open Government Data3 encourage or-
ganizations to publish their data using standards and
non-proprietary formats [7]. The integration of seman-
tic data into a DW raises the challenges of schema
derivation, semantic heterogeneity, semantic annota-
tion, linking as well as the schema, and data man-
agement system over traditional DW technologies and
ETL tools. The main drawback of a state-of-the-art
RDBMS-based DW is that it is strictly schema de-
pendent and less flexible to evolving business require-
ments. To cover new business requirements, every step
of the development cycle needs to be updated to cope

1https://datahub.io/
2https://lod-cloud.net/
3https://opengovdata.org/

with the new requirements. This update process is
time-consuming as well as costly and is sometimes not
adjustable with the current setup of the DW; hence, it
introduces the need for a novel approach. The limita-
tions of traditional ETL tools to process semantic data
sources are: (1) they do not fully support semantic-
aware data, (2) they are entirely schema dependent
(i.e., cannot handle data expressed without pre-defined
schema), (3) they do not focus on meaningful semantic
relationships to integrate data from disparate sources,
and (4) they neither support to capture the semantics
of data nor support to derive new information by active
inference and reasoning on the data.

Semantic Web technologies address the problems
described above, as they allow adding semantics at
both data and schema level in the integration process
and publish data in RDF using the LD principles. On
the SW, the RDF model is used to manage and ex-
change data, and RDFS and OWL are used in combina-
tion with the RDF data model to define constraints that
data must meet. Moreover, Data Cube (QB) [8] and
Data cube for OLAP (QB4OLAP) [9] vocabularies can
be used to define data with MD semantics. [10] refers
to an MD DW that is semantically annotated both at
the schema and data level as a Semantic DW (SDW).
An SDW is based on the assumption that the schema
can evolve and be extended without affecting the exist-
ing structure. Hence, it overcomes the problems trig-
gered by the evolution of an RDBMS-based data ware-
housing system. On top of that, as for the physical stor-
age of the facts and pre-aggregated values, a physi-
cally materialized SDW, the setting we focus on, store
both of these as triples in the triplestore. Thus, a phys-
ical SDW is a new type of OLAP (storage) compared
to classical Relational OLAP (ROLAP), Multidimen-
sional OLAP (MOLAP), and their combination Hybrid
OLAP (HOLAP) [11]. In general, physical SDW of-
fers more expressivity at the cost of performance [12].
In [10], we proposed SETL (throughout this present
paper, we call it SETLPROG), a programmable semantic
ETL framework that semantically integrates both se-
mantic and non-semantic data sources. In SETLPROG,
an ETL developer has to create hand-code specific
modules to deal with semantic data. Thus, there is a
lack of a well-defined set of basic ETL constructs that
allows developers having a higher level of abstraction
and more control in creating their ETL process. In this
paper, we propose a strong foundation for an RDF-
based semantic integration process and a set of high-
level ETL constructs that allows defining, mapping,
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processing, and integrating semantic data. The unique
contributions of this paper are:

1. We structure the integration process into two lay-
ers: Definition Layer and Execution Layer. Dif-
ferent to SETLPROG or other ETL tools, here, we
propose a new paradigm: the ETL flow transfor-
mations are characterized once and for all at the
Definition Layer instead of independently within
each ETL operation (in the Execution Layer).
This is done by generating a mapping file that
gives an overall view of the integration process.
This mapping file is our primary metadata source,
and it will be fed (by either the ETL developer
or the automatic ETL execution flow generation
process) to the ETL operations, orchestrated in
the ETL flow (Execution Layer), to parametrize
themselves automatically. Thus, we are unifying
the creation of the required metadata to automate
the ETL process in the Definition layer. We pro-
pose an OWL-based Source-To-target Mapping
(S2TMAP) vocabulary to express the source-to-
target mappings.

2. We provide a set of high-level ETL constructs
for each layer. The Definition Layer includes
constructs for target schema4 definition, source
schema derivation, and source-to-target mappings
generation. The Execution Layer includes a set
of high-level ETL operations for semantic data
extraction, cleansing, joining, MD data creation,
linking, inferencing, and for dimensional data up-
date.

3. We propose an approach to automate the ETL ex-
ecution flows based on metadata generated in the
Definition Layer.

4. We create a prototype SETLCONSTRUCT, based on
the innovative ETL constructs proposed here.
SETLCONSTRUCT allows creating ETL flows by
dragging, dropping, and connecting the ETL op-
erations. In addition, it allows creating ETL data
flows automatically (we call it SETLAUTO).

5. We perform a comprehensive experimental eval-
uation by producing an MD SDW that inte-
grates an EU farm Subsidy dataset and a Dan-
ish Business dataset. The evaluation shows that
SETLCONSTRUCT improves considerably over SET-
LPROG in terms of productivity, development time,
and performance. In summary: 1) SETLCONSTRUCT

4Here, we use the terms “target" and “MD SDW" interchange-
ably.

uses 92% fewer Number of Typed Characters
(NOTC) than SETLPROG, and SETLAUTO further
reduces the Number of Used Concepts (NOUC)
by another 25%; 2) using SETLCONSTRUCT, the de-
velopment time is almost cut in half compared
to SETLPROG, and is cut by another 27% using
SETLAUTO; 3) SETLCONSTRUCT is scalable and has
similar performance compared to SETLPROG. Ad-
ditionally, we interviewed two ETL experts to
evaluate our approach qualitatively.

The remainder of the paper is organized as follows.
We discuss the terminologies and the notations used
throughout the paper in Section 2. Section 3 explains
the structure of the datasets we use as a use case. Sec-
tion 4 gives the overview of an integration process.
The descriptions of the Definition Layer and Execu-
tion Layer constructs are given in Sections 5 and 6,
respectively. Section 7 presents the automatic ETL ex-
ecution flow generation process. In Section 8, we cre-
ate an MD SDW for the use case using SETLCONSTRUCT

and compare the process with SETLPROG using differ-
ent metrics. The previous research related to our study
is discussed in Section 9. Finally, we conclude and give
pointers to future work in Section 10.

2. Preliminary Definitions

In this section, we provide the definitions of the no-
tions and terminologies used throughout the paper.

2.1. RDF Graph

An RDF graph is represented as a set of state-
ments, called RDF triples. The three parts of a triple
are subject, predicate, and object, respectively, and a
triple represents a relationship between its subject and
object described by its predicate. Each triple, in the

RDF graph, is represented as sub ject
predicate−−−−−→ ob ject,

where subject and object of the triple are the nodes of
the graph, and the label of the directed arrow corre-
sponds to the predicate of the triple. Given I, B, and
L are the sets of IRIs, blank nodes, and literals, and
(I ∩ B ∩ L) = ∅, an RDF triple is (s, p, o), where
s ∈ (I ∪ B), p ∈ I , and o ∈ (I ∪ B ∪ L). An
RDF graph G is a set of RDF triples, where G ⊆
(I ∪ B)× I × (I ∪ B ∪ L) [13].
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2.2. Semantic Data Source

We define a semantic data source as a Knowl-
edge Base (KB) where data are semantically defined.
A KB is composed of two components, TBox and
ABox. The TBox introduces terminology, the vocab-
ulary of a domain, and the ABox is the assertions
of the TBox. The TBox is formally defined as a 3-
tuple: T Box = (C, P, AO), where C, P, and AO are
the sets of concepts, properties, and terminological
axioms, respectively [14]. Generally, a concept pro-
vides a general framework for a group of instances
that have similar properties. A property either relates
the instances of concepts or associates the instances of
a concept to literals. Terminological axioms are used
to describe the domain’s concepts, properties, and the
relationships and constraints among them. In this pa-
per, we consider a KB as an RDF graph; therefore,
the components of the KB are described by a set of
RDF triples. Some standard languages such as RDFS
and OWL provide standard terms to define the for-
mal semantics of a TBox. In RDFS, the core concepts
rdfs:Class and rdf:Property are used to de-
fine the concepts and properties of a TBox; one can
distinguish between instances and concepts by using
the rdf:type property, express concept and prop-
erty taxonomies by using rdfs:subClassOf and
rdfs:subPropertyOf, and specify the domain
and range of properties by using the rdfs:domain
and rdfs:range properties. Similarly, OWL uses
owl:Class to define concepts and either owl:Dat-
aTypeProperty or owl:ObjectProperty for
properties. In addition to rdfs:subClassOf, it
uses owl:equivalentClass and owl:disjoi-
ntWith constructs for class axioms to give addi-
tional characteristics of concepts. Property axioms de-
fine additional characteristics of properties. In addi-
tion to supporting RDFS constructs for property ax-
ioms, OWL provides owl:equivalentProperty
and owl:inverseOf to relate different proper-
ties, provides owl:FunctionalProperty and
owl:InverseFunctionalProperty for impos-
ing global cardinality constraints, and supports owl:-
SymmetricProperty and owl:Transitivit-
yProperty for characterizing the relationship type
of properties. As a KB can be defined by either lan-
guage or both, we generalize the definition of C
and P in a TBox T as C(T ) = {c| type(c) ∈
P({rdfs:Class,owl:Class})} and P(T ) = {p|
type(p) ∈ P({rdf:Property,owl:ObjectPro-
perty,owl:DatatypeProperty})}, respectively,

where type(x) returns the set of concepts of x, i.e., (x
rdf:type ?type(x))— it returns the set of the ob-
jects of the triples whose subjects and predicates are x
and rdf:type, respectively— and P(s) is the power
set of s.

2.3. Semantic Data Warehouse

A semantic data warehouse (SDW) is a DW with the
semantic annotations. We also considered it as a KB.
Since the DW is represented with Multidimensional
(MD) model for enabling On-Line Analytical Process-
ing (OLAP) queries, the KB for an SDW needs to be
defined with MD semantics. In the MD model, data are
viewed in an n-dimensional space, usually known as
a data cube, composed of facts (the cells of the cube)
and dimensions (the axes of the cube). Therefore, it al-
lows users to analyze data along several dimensions of
interest. For example, a user can analyze sales of prod-
ucts according to time and store (dimensions). Facts
are the interesting things or processes to be analyzed
(e.g., sales of products) and the attributes of the fact
are called measures (e.g., quantity, amount of sales),
usually represented as numeric values. A dimension is
organized into hierarchies, composed of several levels,
which permit users to explore and aggregate measures
at various levels of detail. For example, the location hi-
erarchy (municipality → region → state → country)
of the store dimension allows to aggregate the sales at
various levels of detail.

We use the QB4OLAP vocabulary to describe the
multidimensional semantics over a KB [9]. QB4OLAP
is used to annotate a TBox with MD components and
is based on the QB vocabulary which is the W3C
standard to publish MD data on the Web [15]. QB
is mostly used for analyzing statistical data and does
not adequately support OLAP MD constructs. There-
fore, in this paper, we choose QB4OLAP. Figure 1 de-
picts the ontology of QB4OLAP [7]. The terms pre-
fixed with “qb:” are from the original QB vocabulary,
and QB4OLAP terms are prefixed with “qb4o:” and
displayed with gray background. Capitalized terms
represent OWL concepts, and non-capitalized terms
represent OWL properties. Capitalized terms in ital-
ics represent concepts with no instances. The blue-
colored square in the figure represents our extension of
QB4OLAP ontology.

In QB4OLAP, the concept qb:DataSet is used to
define a dataset of observations. The structure of the
dataset is defined using the concept qb:DataStruc-
tureDefinition. The structure can be a cube (if
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qb:DataStructureDefinition

qb:DataSet

qb:Observation

qb:SliceKey

qb:Slice

qb:ComponentProperty

qb:ComponentSpecification

qb:componentRequired : boolean
qb:componentAttachment : 

rdfs:Class
qb :order : xsd:int

skos:Concept

qb4o:AggregatinFunction

qb4o:LevelMember

qb:MeasureProperty

qb:AttributeProperty

qb:DimensionProperty

qb4o:LevelAttribute

qb4o:LevelProperty qb4o:HierarchyStep

qb4o:Hierarchy

qb4o:RollupProperty

qb4o:Cardinality

qb4o:Avg

qb4o:Count

qb4o:MIn

qb4o:Max

qb4o:Sum

qb4o:UpdateType

qb4o:OneToOne

qb4o:OneToMany

qb4o:ManyToOne

qb4o:ManyToMany

qb4o:inLevel qb4o:hasAttribute

qb4o:Type1

qb4o:Type2

qb4o:Type3

qb4o:isCuboidOf

qb:sliceKeyqb:structure

qb:sliceStructure

qb:slice

qb:observation

qb:subSlice

qb:component
Property

qb:component

qb4o:cardinality

qb4o:level

qb4o:aggregationFunction

qb:measure

qb:attribute

qb:dimension

qb:concept

skos:broader

qb:CodedProperty

qb4o:parentLevel

qb4o:childLevel

qb4o:Hierarchy

qb4o:rollup

owl:TransitiveProperty

qb4o:memberOf

qb4o:inDimension

qb4o:hasHierarchy

qb:HierarchicalCodeList

sdmx:Collection

skos:ConceptScheme

<<union>>

qb:codeList

qb4o:hasLevel

qb4o:pcCardinality

qb4o:updateType

qb:componentProperty

LEGEND

Concept

Instance

Object Property

SubClass Of
Instance of

qb:dataSet

Fig. 1. QB4OLAP vocabulary.

it is defined in terms of dimensions and measures)
or a cuboid (if it is defined in terms of lower lev-
els of the dimensions and measures). The property
qb4o:isCuboidOf is used to relate a cuboid to its
corresponding cube. To define dimensions, levels and
hierarchies, the concepts qb4o:DimensionProp-
erty, qb4o:LevelProperty, and qb4o:Hier-
archy are used. A dimension can have one or
more hierarchies. The relationship between a di-
mension and its hierarchies are connected via the
qb4o:hasHierarchy property or its inverse prop-
erty qb4o:inHierarchy. Conceptually, a level
may belong to different hierarchies; therefore, it may
have one or more parent levels. Each parent and child
pair has a cardinality constraint (e.g., 1-1, n-1, 1-n,
and n-n.) [7]. To allow this kind of complex nature,
hierarchies in QB4OLAP are defined as a composi-
tion of pairs of levels, which are represented using
the concept qb4o:HierarchyStep. Each hierar-
chy step (pair) is connected to its component lev-
els using the properties qb4o:parentLevel and
qb4o:childLevel. A roll-up relationship between
two levels are defined by creating a property which is
an instance of the concept qb4o:RollupProperty;

each hierarchy step is linked to a roll-up relationship
with the property qb4o:rollup and the cardinality
constraint of that relationship is connected to the hier-
archy step using the qb4o:pcCardinality prop-
erty. A hierarchy step is attached to the hierarchies it
belongs to using the property qb4o:inHierarchy
[9]. The concept qb4o:LevelAttributes is used
to define attributes of levels. We extend this QB4OLAP
ontology (the blue-colored box in the figure) to enable
different types of dimension updates (Type 1, Type 2,
and Type 3) to accommodate dimension update in an
SDW, which are defined by Ralph Kimball in [16]. To
define the update-type of a level attribute in the TBox
level, we introduce the qb4o:UpdateType class
whose instances are qb4o:Type1, qb4o:Type2,
and qb4o:Type3. A level attribute is connected to
its update-type by the property qb4o:updateType.
The level attributes are linked to its corresponding lev-
els using the property qb4o:hasAttribute. We
extend the definition of C and P of a TBox, T for an
SDW as

C(T ) = {c| type(c) ∈ P({rdfs:Class,owl:

Class,qb:DataStructureDefinition,
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qb:DataSet,qb:DimensionProperty,

qb4o:LevelProperty,qb4o:Hierarchy,

qb4o:HierarchyStep})} (1)

P(T ) = {p| type(p) ∈ P({rdf:Property,

owl:ObjectProperty,owl:Datatype

Property,qb4o:LevelAttribute,

qb:MeassureProperty,qb4o:Rollup-

Property})} (2)

3. A Use Case

We create a semantic Data Warehouse (SDW) by in-
tegrating two data sources, namely, a Danish Agricul-
ture and Business knowledge base and an EU Farm
Subsidy dataset. Both data sources are described be-
low.

Description of Danish Agriculture and Business knowl-
edge base The Danish Agriculture and Business
knowledge base integrates a Danish Agricultural dataset
and a Danish Business dataset. The knowledge base
can be queried through the SPARQL endpoint http:
//extbi.lab.aau.dk:8080/sparql/. In our use case, we
only use the business related information from this
knowledge base and call it the Danish Business dataset
(DBD). The relevant portion of the ontology of the
knowledge base is illustrated in Figure 2. Generally,
in an ontology, a concept provides a general descrip-
tion of the properties and behavior for the similar type
of resources; an object property relates among the in-
stances of concepts; a data type property is used to
associate the instances of a concept to literals.

We start the description from the concept bus:Ow-
ner. This concept contains information about the
owners of companies, the type of the ownership, and
the start date of the company ownership. A company is
connected to its owner through the bus:hasOwner
property. The bus:Company concept is related to
bus:BusinessFormat and bus:Production-
Unit through the bus:hasProductionUnit and
bus:hasFormat properties. Companies and their
production units have one or more main and secondary
activities. Each company and each production unit has
a postal address and an official address. Each address is
positioned at an address feature, which is in turn con-
tained within a particular municipality.

Description of the EU subsidy dataset Every year,
the European Union provides subsidies to the farms of
its member countries. We collect EU Farm subsidies
for Denmark from https://data.farmsubsidy.org/Old/.
The dataset contains two MS Access database tables:
Recipient and Payment. The Recipient table contains
the information of recipients who receive the subsi-
dies, and the Payment table contains the amount of
subsidy given to the recipients. We create a semantic
version of the dataset using SETLPROG framework [17].
We call it the Subsidy dataset. At first, we manually de-
fine an ontology, to describe the schema of the dataset,
and the mappings between the ontology and database
tables. Then, we populate the ontology with the in-
stances of the source database files. Figure 3 shows the
ontology of the Subsidy dataset.

Example 1. Listing 1 shows the example instances of
bus:Company from the Danish Business dataset and
sub:Recipient and sub:Subsidy from the EU
Subsidy dataset.

Listing 1: Example instances of the DBD and the Sub-
sidy dataset.

1 ### Business Dataset
2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
3 PREFIX bus: <http://extbi.lab.aau.dk/ontology/business/>
4 PREFIX company: <http://extbi.lab.aau.dk/ontology/
5 business/Company#>
6 PREFIX activity: <http://extbi.lab.aau.dk/ontology/
7 business/Activity#>
8 PREFIX businessType: <http://extbi.lab.aau.dk/ontology/
9 business/BusinessType#>

10 PREFIX owner: <http://extbi.lab.aau.dk/ontology/
11 business/Owner#>
12 ## Examples of bus:Company instances
13 company:10058996 rdf:type bus:Company;
14 bus:companyId 10058996;
15 bus:name "Regerupgard v/Kim Jonni Larsen";
16 bus:mainActivity activity:11100;
17 bus:secondaryActivity activity:682040;
18 bus:hasFormat businessType:Enkeltmandsvirksomhed:
19 bus:hasOwner owner:4000175029_10058996;
20 bus:ownerName "Kim Jonni Larsen";
21 bus:officialaddress "Valsomaglevej 117, Ringsted".
22 company:10165164 rdf:type bus:Company;
23 bus:companyId 10165164;
24 bus:name "Idomlund 1 Vindmollelaug I/S";
25 bus:mainActivity activity:351100;
26 bus:hasFormat businessType:Interessentskab;
27 bus:hasOwner owner:4000170495_10165164;
28 bus:ownerName "Anders Kristian Kristensen";
29 bus:officialaddress "Donskaervej 31,Vemb".
30 ---------------------------------------------------------
31 ---------------------------------------------------------
32 ### Subsidy Dataset
33 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
34 PREFIX sub: <http://extbi.lab.aau.dk/ontology/subsidy/>
35 PREFIX recipient: <http://extbi.lab.aau.dk/ontology/
36 subsidy/Recipient#>
37 PREFIX subsidy: <http://extbi.lab.aau.dk/ontology/
38 subsidy/Subsidy#>
39 ## Example of sub:Recipient instances.
40 recipient:291894 rdf:type sub:Recipient;
41 sub:name "Kristian Kristensen";
42 sub:address "Donskaervej 31,Vemb";
43 sub:municipality "Holstebro";
44 sub:recipientID 291894;
45 sub:zipcode 7570.
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LEGEND

Concept

Object Property

SubClass Of

bus:Owner

bus:Company

bus:Activity

bus:ProductionUnit

bus:Address bus:BusinesxFormat

foaf
:Organization

bus:AddressFeature

GeoNames
:Feature

bus:Municipality

Fig. 2. The ontology of the Danish Business dataset. Due to the large number of datatype properties, they are not included.

xsd:doublexsd:date

sub:Subsidy

xsd:string

sub:payDate sub:amountEuro

xsd:integer

sub:Recipient

sub:zipcode

sub:paidTo

sub:recipientId

LEGEND
Concept

Object Property
DataType Property

sub:municipality

sub:source

sub:address

sub:name

Fig. 3. The ontology of the Subsidy dataset. Due to the large number
of datatype properties, all are not included.

46 ## Example of sub:Subsidy instances.
47 subsidy:10615413 rdf:type sub:Subsidy;
48 sub:paidTo recipient:291894;
49 sub:amountEuro "8928.31";
50 sub:payDate "2010-05-25".

Description of the Semantic Data Warehouse Our
goal is to develop an MD Semantic Data Ware-
house (SDW) by integrating the Subsidy and the DBD
datasets. The sub:Recipient concept in the Sub-

sidy dataset contains the information of recipient id,
name, address, etc. From bus:Company in the DBD,
we can extract information of an owner of a company
who received the EU farm subsidies. Therefore, we
can integrate both DBD and Subsidy datasets. The on-
tology of the MD SDW to store EU subsidy informa-
tion corresponding to the Danish companies is shown
in Figure 4, where the concept sdw:Subsidy repre-
sents the facts of the SDW. The SDW has two dimen-
sions, namely sdw:Benificiary and sdw:Time.
The dimensions are shown by a box with dotted-line in
Figure 4. Here, each level of the dimensions are repre-
sented by a concept, and the connections among levels
are represented through object properties.

4. Overview of the Integration Process

In this paper, we assume that all given data sources
are semantically defined and the goal is to develop
an SDW. The first step of building an SDW is to de-
sign its TBox. There are two approaches to design the
TBox of an SDW, namely source-driven and demand-
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Fig. 4. The ontology of the MD SDW. Due to the large number, data properties of the dimensions are not shown.

driven [11]. In the former, the SDW’s TBox is obtained
by analyzing the sources. Here, ontology alignment
techniques [18] can be used to semi-automatically de-
fine the SDW. Then, designers can identify the multi-
dimensional constructs from the integrated TBox and
annotate them with the QB4OLAP vocabulary. In the
latter, SDW designers first identify and analyze the
needs of business users as well as decision makers,
and based on those requirements, they define the tar-
get TBox with multidimensional semantics using the
QB4OLAP vocabulary. How to design a Target TBox
is orthogonal to our approach. Here, we merely pro-
vide an interface to facilitate creating it regardless of
whatever approach was used to design it.

After creating the TBox of the SDW, the next step
is to create the ETL process. ETL is the backbone pro-
cess by which data are entered into the SDW and the
main focus of this paper. The ETL process is composed
of three phases: extraction, transformation, and load.
A phase is a sub-process of the ETL which provides a

meaningful output that can be fed to the next phase as
an input. Each phase includes a set of operations. The
extraction operations extract data from the data sources
and make it available for further processing as inter-
mediate results. The transformation operations are ap-
plied on intermediate results, while the load operations
load the transformed data into the DW. The interme-
diate results can be either materialized in a data stag-
ing area or kept in memory. A data staging area (tem-
porary) persists data for cleansing, transforming, and
future use. It may also prevent the loss of extracted or
transformed data in case of the failure of the loading
process.

As we want to separate the metadata needed to cre-
ate ETL flows from their execution, we introduce a
two-layered integration process, see Figure 5. In the
Definition Layer, a single source of metadata truth is
defined. This includes: the target SDW, semantic rep-
resentation of the source schemas, and a source to tar-
get mapping file. Relevantly, the metadata created rep-
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Fig. 5. The overall semantic data integration process. Here, the round-corner rectangle, data stores, dotted boxes, ellipses, and arrows indicate
the tasks, semantic data sources and SDW, the phases of the ETL process, ETL operations and flow directions.

resents the ETL flow at the schema level. In the Execu-
tion Layer, ETL data flows based on high-level opera-
tions are created. This layer executes the ETL flows for
instances (i.e., at the data level). Importantly, each ETL
operation is fed the metadata created to parameterize
themselves automatically. Additionally, the Execution
Layer automatically checks the correctness of the cre-
ated flow, by checking the compatibility of the output
and input of consecutive operators. Overall the data in-
tegration process requires the following four steps in
the detailed order.

1. Defining the target TBox with MD semantics us-
ing QB and QB4OLAP constructs. In addition,
the TBox can be enriched with RDFS/OWL con-
cepts and properties. However, we do not validate
the correctness of the added semantics beyond the
MD model. This step is done at the Definition
Layer.

2. Extracting source TBoxes from the given sources.
This step is done at the Definition Layer.

3. Creating mappings among source and target
constructs to characterize ETL flows. The cre-
ated mappings are expressed using the proposed
S2TMAP vocabulary. This step is also done at the
Definition Layer.

4. Populating the ABox of the SDW implementing
ETL flows. This step is done at the Execution
Layer.

Figure 5 illustrates the whole integration process and
how the constructs of each layer communicate with
each other. Here, we introduce two types of constructs:
tasks and operations. On the one hand, a task requires
developer interactions with the interface of the sys-
tem to produce an output. Intuitively, one may consider
the tasks output as the required metadata to automate
operations. On the other hand, from the given meta-
data, an operation produces an output. The Definition
Layer consists of two tasks (TargetTBoxDefinition and
SourceToTargetMapping) and one operation (TBoxEx-
traction). These two tasks respectively address the first
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Table 1
Summary of the ETL operations.

Operation
Category

Operation
Name

Compatible
Successors

Objectives

Extraction GraphExtractor

GraphExtractor,
TBoxExtraction,
TransformationOnLiteral,
JoinTransformation,
LevelMemberGenerator,
ObservationGenerator,
DataChangeDetector,
UpdateLevel,
Loader

It retrieves an RDF graph in
terms of RDF triples from
semantic data sources.

Transformation

TBoxExtraction
It derives a TBox from a
given ABox.

TransformationOnLiteral

TransformationOnLiteral,
JoinTransformation,
LevelMemberGenerator,
ObservationGenerator,
Loader

It transforms the source data
according to the expressions
described in the source-to-target
mapping.

JoinTransformation

TransformationOnLiteral,
JoinTransformation,
LevelMemberGenerator,
ObservationGenerator,
Loader

It joins two data sources and
transforms the data according to
the expressions described in the
source-to-target mapping.

LevelMemberGenerator
(QB4OLAP construct)

Loader
It populates levels of the target
with the input data.

ObservationGenerator
(QB4OLAP construct)

Loader
It populates facts of the target
with the input data.

DataChangeDetector
LevelMemberGenerator,
UpdateLevel

It returns the differences between
the new source dataset and the old
one.

UpdateLevel Loader
It reflects the changes occurred in
the source data to the target level.

MaterializeInference Loader
It enriches the SDW by material-
izing the inferred triples.

ExternalLinking Loader
It links internal resources with
external KBs.

Load Loader It loads the data into the SDW.

and third steps of the integration process mentioned

above, while the TBoxExtraction operation addresses

the second step. This is the only operation shared by

both layers (see the input of SourceToTargetMapping
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in Figure 5). Therefore, the Definition Layer creates
three types of metadata: target TBox (created by Tar-
getTBoxDefinition), source TBoxes (created by TBox-
Extraction), and source-to-target mappings (created by
SourceToTargetMapping). The Execution Layer covers
the fourth step of the integration process and includes a
set of operations to create data flows from the sources
to the target. Figure 5 shows constructs (i.e., the Me-
diatory Constructs) used by the ETL task/operations
to communicate between them. These mediatory con-
structs store the required metadata created to automate
the process. In the figure, Extop, Transop, and Loadop

are the set of extraction, transformation, and load op-
erations used to create the flows at the instance level.
The ETL data flows created in the Execution Layer are
automatically validated by checking the compatibility
of the operations. Precisely, if an operation O1’s output
is accepted by O2, then we say O2 is compatible with
O1 and express it as O1 → O2.

Since traditional ETL tools (e.g., PDI) do not have
ETL operations supporting the creation of an SDW, we
propose a set of ETL operations for each phase of the
ETL to process semantic data sources. The operations
are categorized based on their functionality. Table 1
summarizes each operation with its corresponding cat-
egory name, compatible successors, and its objectives.
Next, we present the details of each construct of the
layers presented in Figure 5.

5. The Definition Layer

This layer contains two tasks (TargetTBoxDefinition
and Source2TargetMapping) and one operation TBox-
Extraction. The semantics of the tasks are described
below.

TargetTBoxDefinition The objective of this task is to
define a target TBox with MD semantics. There are
two main components of the MD structure: dimensions
and cubes. To formally define the schema of these
components, we use the notation from [8] with some
modifications.

Definition 1. A dimension schema can formally be
defined as a 5-tuple (Dname,L,→,H,FR) where

- Dname is the name of the dimension;
- L is a set of level tuples (Lname, LA) such that

Lname is the name of a level and LA is the set of
attributes describing the level Lname. There is a
unique bottom level (the finest granularity level)

Lb, and unique top level (the coarsest one) de-
noted LAll, such that (LAll, ∅) ∈ L;

- → is a strict partial order on L. The poset (L,→)
can be represented as a directed graph where each
node represents an aggregation level L ∈ L, and
every pair of levels (Li, L j) in the poset are rep-
resented by a directed edge, also called the roll-
up (i.e., aggregation) relationship, from the finer
granularity level Li to the coarser granularity level
L j, which means that Li rolls up to L j or L j drills
down to Li. Each distinct path between the Lb and
LAll is called a hierarchy;

- H is a set of hierarchy tuples (Hname,HL) where
Hname is the name of a hierarchy and HL ⊆ L is
the set of levels composing the hierarchy. The di-
rected subgraph formed by this set of levels must
be connected; and

- RUPL j
Li

is the property used to relate instances
based on the roll-up relationship between Li and
L j within an hierarchy. FR denotes the set of all
RUPs.

Example 2. Figure 4 shows that our use case MD
SDW has two dimensions: sdw:Time and sdw:Be-
neficiary. The dimension schema of sdw:Time
is formally defined as follows:

1. Dname = sdw:Time;
2. L = {(sdw:Day, 〈sdw:dayId,sdw:
dayName〉), (sdw:Month, 〈sdw:monthId,
sdw:monthName〉), (sdw:Year,
〈sdw:yearId,sdw:yearName〉)};

3. (→) = {(sdw:Day,sdw:Month),
(sdw:Month,sdw:Year),
(sdw:Year,sdw:All)},

4. H = {sdw:TimeHierarchy, {sdw:Day,
sdw:Month,sdw:Year,sdw:All}}; and

5. FR = {
RUPsdw:Month

sdw:Day = sdw:payMonth,
RUPsdw:Year

sdw:Month = sdw:payYear,
RUPsdw:All

sdw:Year = sdw:payAll}.

Definition 2. A cube schema is a 4-tuple (Cname,Dlb ,M,
FA), where

- Cname is the name of the cube;
- Dlb is a finite set of bottom levels of dimensions,

with |Dlb | = n, corresponding to n bottom lev-
els of n dimension schemas different from each
other;

- M is a finite set of attributes called measures, and
each measure m ∈ M has an associated domain
Dom(m); and
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- FA is a mathematical relation that relates each
measure to one or more aggregate function in
A = {S UM,MAX, AVG,MIN,COUNT....},
i.e., FA ⊆M×A.

Example 3. The cube schema of our use case, shown
in Figure 4, is formally defined as follows:

1. Cname = sdw:Subsidy;
2. DL = {sdw:Day,sdw:Recipient};
3. M = {sdw:amounteuro}; and
4. FA = {(sdw:amounteuro, S UM),

(sdw:amounteuro, AVG)}).

In Section 2.3, we discussed how the QB4OLAP vo-
cabulary is used to define different constructs of an
SDW. Listing 2 represents the sdw:Time dimension
and sdw:Subsidy cube in QB4OLAP.

Listing 2: QB4OLAP representation of sdw:Time di-
mension and sdw:Subsidy cube.

1 PREFIX sdw: <http://extbi.lab.aau.dk/ontology/sdw/>
2 PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
3 PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#
4 PREFIX qb: <http://purl.org/linked-data/cube#>
5 PREFIX qb4o: <http://purl.org/qb4olap/cubes#>
6
7 ## Time Dimension
8 sdw:Time rdf:type qb:DimensionProperty;
9 rdfs:label "Time Dimension";

10 qb4o:hasHierarcy sdw:TimeHierarchy.
11
12 # Dimension Hierarchies
13 sdw:TimeHierarchy rdf:type qb4o:Hierarchy;
14 rdfs:label "Time Hierarchy";
15 qb4o:inDimension sdw:Time;
16 qb4o:hasLevel sdw:Day, sdw:Month, sdw:Year.
17
18 # Hierarchy levels
19 sdw:Day rdf:type qb4o:LevelProperty;
20 rdfs:label "Day Level";
21 qb4o:hasAttribute sdw:dayId, sdw:dayName.
22 sdw:Month rdf:type qb4o:LevelProperty;
23 rdfs:label "Month Level";
24 qb4o:hasAttribute sdw:monthId, sdw:monthName.
25 sdw:Year rdf:type qb4o:LevelProperty;
26 rdfs:label "Year Level";
27 qb4o:hasAttribute sdw:yearId, sdw:yearName.
28 sdw:All rdf:type qb4o:LevelProperty;
29 rdfs:label "ALL".
30
31 # Level attributes
32 sdw:dayId rdf:type qb4o:LevelAttribute;
33 rdfs:label "day ID";
34 qb4o:updateType qb4o:Type2;
35 rdfs:range xsd:String.
36 sdw:monthId rdf:type qb4o:LevelAttribute;
37 rdfs:label "Month ID";
38 qb4o:updateType qb4o:Type2;
39 rdfs:range xsd:String.
40 sdw:yearId rdf:type qb4o:LevelAttribute;
41 rdfs:label "year ID";
42 qb4o:updateType qb4o:Type2;
43 rdfs:range xsd:String.
44 sdw:dayName rdf:type qb4o:LevelAttribute;
45 rdfs:label "day Name";
46 qb4o:updateType qb4o:Type1;
47 rdfs:range xsd:String.
48 sdw:monthName rdf:type qb4o:LevelAttribute;
49 rdfs:label "Month Name";
50 qb4o:updateType qb4o:Type1;
51 rdfs:range xsd:String.
52 sdw:yearName rdf:type qb4o:LevelAttribute;
53 rdfs:label "year Name";
54 qb4o:updateType qb4o:Type1;
55 rdfs:range xsd:String.
56
57 #roll-up relations
58 sdw:payMonth rdf:type qb4o:RollupProperty.
59 sdw:payYear rdf:type qb4o:RollupProperty.
60 sdw:payAll rdf:type qb4o:RollupProperty.
61
62 # Hierarchy Steps
63 _:ht1 rdf:type qb4o:HierarchyStep;
64 qb4o:inHierarchy sdw:TimeHierarchy;

65 qb4o:childLevel sdw:Day;
66 qb4o:parentLevel sdw:Month;
67 qb4o:pcCardinality qb4o:OneToMany;
68 qb4o:rollup sdw:payMonth.
69 _:ht2 rdf:type qb4o:HierarchyStep;
70 qb4o:inHierarchy sdw:TimeHierarchy;
71 qb4o:childLevel sdw:Month;
72 qb4o:parentLevel sdw:Year;
73 qb4o:pcCardinality qb4o:OneToMany;
74 qb4o:rollup sdw:payYear.
75 _:ht2 rdf:type qb4o:HierarchyStep;
76 qb4o:inHierarchy sdw:TimeHierarchy;
77 qb4o:childLevel sdw:Year;
78 qb4o:parentLevel sdw:All;
79 qb4o:pcCardinality qb4o:OneToMany;
80 qb4o:rollup sdw:payAll.
81
82 ## Subsidy Cube
83 sdw:amounteuro rdf:type qb:MeasureProperty;
84 rdfs:label "subsidy amount"; rdfs:range xsd:Double.
85 sdw:SubsidyStructure rdf:type qb:DataStructureDefinition;
86 qb:component[qb4o:level sdw:Recipient];
87 qb:component[qb4o:level sdw:Day];
88 qb:component[qb:measure sdw:amounteuro;
89 qb4o:aggregateFunction qb4o:sum, qb4o:avg].
90 # Subsidy Dataset
91 sdw:SubsidyMD rdf:type qb:Dataset;
92 rdfs:label "Subsidy dataset";
93 qb:structure sdw:SubsidyStructure;

TBoxExtraction After defining a target TBox, the
next step is to extract source TBoxes. Typically, in a
semantic source, the TBox and ABox of the source are
provided. Therefore, no external extraction task/opera-
tion is required. However, sometimes, the source con-
tains only the ABox, no TBox. In that scenario, an ex-
traction process is required to derive a TBox from the
ABox. Since the schema level mappings are necessary
to create the ETL process, and the ETL process will
extract data from the ABox, we only consider the in-
tentional knowledge available in the ABox in the TBox
extraction process. We formally define the process as
follows.

Definition 3. The TBox extraction operation from a
given ABox, ABox is defined as fABox2T Box(ABox) →
T Box. The derived TBox is defined in terms of the fol-
lowing TBox constructs: a set of concepts C, a set of
concept taxonomies H, a set of properties P, and the
sets of property domains D and ranges R. The follow-
ing steps describe the process to derive each TBox el-
ement for TBox.

1. C: By checking the unique objects of the triples
in ABox where rdf:type is used as a predicate,
C is identified.

2. H: The taxonomies among concepts are identi-
fied by checking the instances they share among
themselves. Let C1 and C2 be two concepts.
One of the following taxonomic relationships
holds between them: 1) if C1 contains all in-
stances of C2, then we say C2 is a subclass of
C1 (C2 rdfs:subClassOf C1); 2) if they do
not share any instances, they are disjoint (C1

owl:disjointWith C2); and 3) if C1 and C2
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are both a subclass of each other, then they are
equivalent (C1 owl:equivalentClass C2).

3. P,D,R: By checking the unique predicates of the
triples, P is derived. A property p ∈ P can relate
resources with either resources or literals. If the
objects of the triples where p is used as predicates
are IRIs, then p is an object property; the domain
of p is the set of the types of the subjects of those
triples, and the range of p is the types of the ob-
jects of those triples. If the objects of the triples
where p is used as predicates are literals, then p is
a datatype property; the domain of p is the set of
types the subjects of those triples, and the range
is the set of data types of the literals.

Note that proving the formal correctness of the ap-
proach is beyond the scope of this paper and left for
future work.

SourceToTargetMapping Once the target and source
TBoxes are defined, the next task is to characterize the
ETL flows at the Definition Layer by creating source-
to-target mappings. Because of the heterogeneous na-
ture of source data, mappings among sources and the
target should be done at the TBox level. In princi-
ple, mappings are constructed between sources and the
target; however, since mappings can get very compli-
cated, we allow to create a sequence of SourceToTar-
getMapping definitions whose subsequent input is gen-
erated by the preceding operation. The communication
between these operations is by means of a materialized
intermediate mapping definition and it is meant to fa-
cilitate the creation of very complex flows (i.e., map-
pings) between source and target.

A source-to-target mapping is constructed between
a source and a target TBox, and it consists of a set of
concept-mappings. A concept-mapping defines i) a re-
lationship (equivalence, subsumption, supersumption,
or join) between a source and the corresponding tar-
get concept, ii) which source instances are mapped (ei-
ther all or a subset defined by a filter condition), iii)
the rule to create the IRIs for target concept instances,
iv) the source and target ABox locations, v) the com-
mon properties between two concepts if their relation-
ship is join, vi) the sequence of ETL operations re-
quired to process the concept-mapping, and vii) a set
of property-mappings for the properties having the tar-
get concept as a domain. A property-mapping defines
how a target property is mapped from either a source
property or an expression over properties. Definition 4
formally defines a source-to-target mapping.

Definition 4. Let TS and TT be a source TBox and
a target TBox. We formally define a source-to-target
mapping as a set of concept-mappings, wherein each
concept-mapping is defined with a 10-tuple formaliz-
ing the elements discussed above (i-vii):

SourceToTargetMapping (TS ,TT ) = {(cs, relation,
ct, loccs , locct ,mapIns, pmap, tiniri, pcom, op)}.

The semantics of each concept-mapping tuple is
given below.

- cs ∈ C(TS ) and ct ∈ C(TT ) are a source and a
target concept respectively, where C(T ) defined
in Equation 1.

- relation ∈ {≡,v,w, ./, ./ , ./} represents the re-
lationship between the source and target con-
cept. The relationship can be either equivalence
(cs ≡ ct), supersumption (cs w ct), subsumption
(cs v ct), or join. A join relationship can be ei-
ther a natural join (cs ./ ct), a right-outer join
(cs ./ ct), or a left-outer join (cs ./ ct). A join re-
lationship exists between two sources when there
is a need to populate a target element (a level, a
(QB) dataset, or a concept) from multiple sources.
Since a concept-mapping represents a binary re-
lationship, to join n sources, an ETL process re-
quires n − 1 join concept-mappings. A concept-
mapping with a join relationship requires two
sources (i.e., the concept-mapping source and tar-
get concepts) as input and updates the target con-
cept according to the join result. Thus, for multi-
way joins, the output of a concept-mapping is a
source concept of the next concept-mapping.

- loccs and locct are the locations of source and tar-
get concept ABoxes.

- mapIns ∈ ({All} ∪ FilterCondition) indicates
which instances of the source concept to use to
populate the target concept; it can either be all
source instances or a subset of source instances
defined by a filter condition.

- pmap = {(pcs , pct)} is a set of property-mappings
across the properties of cs and ct. pcs can be a
property from property(cs) or an expression over
the elements of exp(property(cs)∪ property(ct))
and pct is a property from property(ct). Here,
property(c) returns the union of the set of proper-
ties which are connected with concept c either us-
ing the rdfs:domain or qb4olap:inLevel
properties, or the set of roll-up properties related
to c. An expression allows to apply arithmetic op-
erations and/or some high-level functions for ma-
nipulating strings, data types, numbers, dates de-
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Fig. 6. Graphical overview of key terms and their relationships to the S2TMAP vocabulary.

fined as standard SPARQL functions in [19] over
the properties.

- tiniri indicates how the unique IRIs of target in-
stances are generated. The IRIs can be either the
same as the source instances, or created using
a property of cs, or using an expression from
exp(property(cs)), or in an incremental way.

- pcom = {(scomi, tcomi)|scomi ∈ property(esi),

tcomi ∈ property(eti)} is a set of common prop-
erty pairs. In each pair, the first element is a
source property and the second one is a target
property. pcom is required when the relationship
between the source and target concept is a join.

- op is an ETL operation or a sequence of ETL op-
erations (mentioned in Table 1) required to im-
plement the mapping element in the ABox level.
When op is a sequence of ETL operations, the
location of the input ABox location for the first
operation in the sequence is loccs ; the subsequent
operations in the sequence take the output of their
preceding operation as the input ABox. This gen-
eration of intermediate results is automatically
handled by the automatic ETL generation process
described in Section 7.

In principle, an SDW is populated from multiple
sources, and a source-to-target ETL flow requires more
than one intermediate concept-mapping definitions.
Therefore, a complete ETL process requires a set of
source-to-target mappings. We say a mapping file is a
set of source-to-target mappings. Definition 5 formally
defines a mapping file.

Definition 5. Mapping f ile =⋃
i∈S S ourceToTargetMapping(Ti,T j), where S is

the set of all sources and intermediate results schemas,
and j the set of all intermediate results and the target
schemas.

To implement the source-to-target mappings for-
mally defined above, we propose an OWL-based map-
ping vocabulary: Source-to-Target Mapping (S2TMAP).
Figure 6 depicts the mapping vocabulary. A mapping
between a source and a target TBox is represented
as an instance of the concept map:MapDataset.
The source and target TBoxes are defined by in-
stantiating map:TBox, and these TBoxes are con-
nected to the mapping dataset using the properties
map:sourceTBox and map:targetTBox, re-
spectively. A concept-mapping (an instance of map:-
ConceptMapping) is used to map between a source
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and a target concepts (instances of map:Concept).
A concept-mapping is connected to a mapping dataset
using the map:mapDataset property. The source
and target ABox locations of the concept-mapping
are defined through the map:sourceLocation and
map:targetLocation properties. The relation-
ship between the concepts can be either map:subsu-
mption, map:supersumption, map:Join, ma-
p:LeftJoin, map:RightJoin, or map:Equi-
valence, and it is connected to the concept-mapping
via the map:relation property. The sequence of
ETL operations, required to implement the concept-
mapping at the ABox level, is defined through an
RDF sequence. To express joins, the source and tar-
get concept in a concept-mapping represent the con-
cepts to be joined, and the join result is stored in the
target concept as an intermediate result. In a concept-
mapping, we, via map:commonProperty, iden-
tify the join attributes with a blank node (instance
of map:CommonProperty) that has, in turn, two
properties identifying the source and target join at-
tributes; i.e., map:commonSourceProperty and
map:commonTargetProperty. Since a join can
be defined on multiple attributes, we may have multi-
ple blank node definitions. The type of target instance
IRIs is stated using the property map:TargetInst-
anceIRIType. If the type is either map:Property
or map:Expression, then the property or expres-
sion, to be used to generate the IRIs, is given by
map:targetInstanceIRIvalue.

To map at the property stage, a property-mapping
(an instance of map:PropertyMapping) is used.
The association between a property-mapping and a
concept-mapping is defined by map:conceptMap-
ping. The target property of the property-mapping is
stated using map:targetProperty, and that tar-
get property can be mapped with either a source prop-
erty or an expression. The source type of target prop-
erty is determined through map:sourceType4Ta-
rgetProperty property, and the value is defined by
map:source4TargetPropertyValue.

Example 4. Listing 3 represents a snippet of the map-
ping file of our use case MD SDW and the source
datasets. In the Execution Layer, we show how the dif-
ferent segments of this mapping file will be used by
each ETL operation.

Listing 3: An S2TMAP representation of the mapping
file of our use case.

1 PREFIX onto: <http://extbi.lab.aau.dk/ontology/>

2 PREFIX bus: <http://extbi.lab.aau.dk/ontology/business/>
3 PREFIX sub: <http://extbi.lab.aau.dk/ontology/subsidy/>
4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
5 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
6 PREFIX map: <http://extbi.lab.aau.dk/ontology/s2tmap/>
7 PREFIX sdw: <http://extbi.lab.aau.dk/sdw>
8 PREFIX : <http://extbi.lab.aau.dk/ontology/s2map/example#>
9 ## MapDataset

10 :mapDataset1 rdf:type map:Dataset;
11 rdfs:label "Map-dataset for business and subsidy ontology";
12 map:sourceTBox "/map/businessTBox.ttl";
13 map:targetTBox "/map/subsidyTBox.ttl".
14 :mapDataset2 rdf:type map:Dataset;
15 rdfs:label "Map-dataset for subsidy and subsidyMD ontology";
16 map:sourceTBox "/map/subsidyTBox.ttl";
17 map:targetTBox "/map/subsidyMDTBox.ttl".
18 ##ConceptMapping: Joining Recipient and Company
19 :Recipient_Company rdf:type map:ConceptMapping;
20 rdfs:label "join-transformation between
21 bus:Company and sub:Recipient";
22 map:mapDataset :mapDataset1;
23 map:sourceConcept bus:Company;
24 map:targetConcept sub:Recipient;
25 map:sourceLocation "/map/dbd.nt";
26 map:targetLocation "/map/subsidy.nt";
27 map:relation map:RightJoin;
28 map:mappedInstance "All";
29 map:targetInstanceIRIUniqueValueType map:SameAsSourceIRI;
30 map:operation _:opSeq;
31 map:commonProperty _:cp1, _:cp2.
32 _:opSeq rdf:type rdf:Seq;
33 rdf:_1 map:joinTransformation.
34 _:cp1 map:sourceCommonProperty bus:ownerName;
35 map:targetCommonProperty sub:name.
36 _:cp2 map:sourceCommonProperty bus:officialAddress;
37 map:targetCommonProperty sub:address.
38
39 #concept-mapping: Populating the sdw:Recipient level
40 :Recipient_RecipientMD rdf:type map:ConceptMapping;
41 rdfs:label "Level member generation";
42 map:mapDataset :mapDataset2;
43 map:sourceConcept sub:Recipient;
44 map:targetConcept sdw:Recipient;
45 map:sourceLocation "/map/subsidy.nt";
46 map:targetLocation "/map/sdw";
47 map:relation map:Equivalence;
48 map:mappedInstance "All";
49 map:targetInstanceIRIValueType map:Property;
50 map:targetInstanceIRIValue sub:recipientID;
51 map:operation _:opSeq1.
52 _:opSeq1 rdf:type rdf:Seq;
53 rdf:_1 map:LevelMemberGenerator;
54 rdf:_2 map:Loader.
55 #concept-mapping: Populating the cube dataset
56 :Subsidy_SubsidyMD rdf:type map:ConceptMapping;
57 rdfs:label "Observation generation";
58 map:mapDataset :mapDataset2;
59 map:sourceConcept sub:Subsidy;
60 map:targetConcept sdw:SubsidyMD;
61 map:sourceLocation "/map/subsidy.nt";
62 map:targetLocation "/map/sdw";
63 map:relation owl:equivalentClass;
64 map:mappedInstance "All";
65 map:targetInstanceIRIUniqueValueType map:Incremental;
66 map:operation _:opSeq2.
67 _:opSeq2 rdf:type rdf:Seq;
68 rdf:_1 map:GraphExtractor;
69 rdf:_2 map:TransformationOnLiteral;
70 rdf:_3 map:ObservationGenerator;
71 rdf:_4 map:Loader.
72 ## property-mapping under :Recipient_Company
73 :companyID_companyID rdf:type map:PropertyMapping;
74 rdfs:label "property-mapping for companyID";
75 map:conceptMapping :Recipient_Company;
76 map:targetProperty sub:companyId;
77 map:sourceType4TargetProperty map:Property;
78 map:source4TargetPropertyValue bus:companyId.
79 :businessType_businessType rdf:type map:PropertyMapping;
80 rdfs:label "property-mapping for business type";
81 map:conceptMapping :Recipient_Company;
82 map:targetProperty sub:businessType;
83 map:sourceType4TargetProperty map:Property;
84 map:source4TargetPropertyValue bus:hasFormat.
85 :address_city rdf:type map:PropertyMapping;
86 rdfs:label "property-mapping for city";
87 map:conceptMapping :Recipient_Company;
88 map:targetProperty sub:cityId;
89 map:sourceType4TargetProperty map:Expression;
90 map:source4TargetPropertyValue STRAFTER(sub:address,",").
91 :name_name rdf:type map:PropertyMapping;
92 rdfs:label "property-mapping for name";
93 map:conceptMapping :Recipient_Company;
94 map:targetProperty sub:name;
95 map:sourceType4TargetProperty map:Property;
96 map:source4TargetPropertyValue sub:name.
97 # property-mappings under :Recipient_RecipientMD
98 :companyId_company rdf:type map:PropertyMapping;
99 rdfs:label "property-mapping for companyId";

100 map:conceptMapping :Recipient_RecipientMD;
101 map:targetProperty sdw:hasCompany;
102 map:sourceType4TargetProperty map:Property;
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103 map:source4TargetPropertyValue sub:companyId;
104 :cityId_city rdf:type map:PropertyMapping;
105 rdfs:label "property-mapping for cityId";
106 map:conceptMapping :Recipient_RecipientMD;
107 map:targetProperty sdw:inCity;
108 map:sourceType4TargetProperty map:Property;
109 map:source4TargetPropertyValue sub:city;
110 :name_name rdf:type map:PropertyMapping;
111 rdfs:label "property-mapping for name";
112 map:conceptMapping :Recipient_RecipientMD;
113 map:targetProperty sdw:name;
114 map:sourceType4TargetProperty map:Property;
115 map:source4TargetPropertyValue sub:name
116 # property-mappings under :Subsidy_SubsidyMD
117 :Recipient_recipientId rdf:type map:PropertyMapping;
118 rdfs:label "property-mapping for recipient in sdw:Subsidy";
119 map:conceptMapping :Subsidy_SubsidyMD;
120 map:targetProperty sdw:Recipient;
121 map:sourceType4TargetProperty map:Property;
122 map:source4TargetPropertyValue sub:paidTo.
123 :hasPayDate_Day rdf:type map:PropertyMapping;
124 rdfs:label "property-mapping for Day of sdw:SubsidyMD";
125 map:conceptMapping :Subsidy_SubsidyMD;
126 map:targetProperty sdw:Day;
127 map:sourceType4TargetProperty map:Expression;
128 map:source4TargetPropertyValue
129 "CONCAT(STR(DAY(sub:payDate)),"/",
130 STR(MONTH(sub:payDate)),"/",STR(YEAR(sub:payDate)))".
131 :amountEuro_amountEuro rdf:type map:PropertyMapping;
132 rdfs:label "property-mapping for amountEuro measure";
133 map:conceptMapping :Subsidy_SubsidyMD;
134 map:targetProperty sdw:amountEuro;
135 map:sourceType4TargetProperty map:Property;
136 map:source4TargetPropertyValue sub:amountEuro.

A mapping file is a Directed Acyclic Graph (DAG).
Figure 7 shows the DAG representation of Listing 3.
In this figure, the sources, intermediate results and the
SDW are denoted as nodes of the DAG and edges
of the DAG represent the operations. The dotted-
lines shows the parts of the ETL covered by concept-
mappings, represented by a rectangle.

6. The Execution Layer

In the Execution Layer, ETL data flows are con-
structed to populate an MD SDW. Table 1 summarizes
the set of ETL operations. In the following, we present
an overview of each operation category-wise. Here,
we give the intuitions of the ETL operations in terms
of definitions and examples. To reduce the complexity
and length of the paper, we place the formal semantics
of the ETL operations in Appendix A. In this section,
we only present the signature of each operation. That
is, the main inputs required to execute the operation.
As an ETL data flow is a sequence of operations and an
operation in the sequence communicates with its pre-
ceding and subsequent operations by means of materi-
alized intermediate results, all the operations presented
here have side effects5 instead of returning output.

5An operation has a side effect if it modifies some state variable
value(s) outside its local environment (https://en.wikipedia.org/wiki/
Side_effect_(computer_science))

Developers can use either of the two following op-
tions: (i) The recommended option is that given a
TBox construct aConstruct (a concept, a level, or a
QB dataset) and a mapping file aMappings generated
in the Definition Layer, the automatic ETL execution
flow generation process will automatically extract the
parameter values from aMappings (see Section 7 for
a detailed explanation of the automatic ETL execution
flow generation process). (ii) They can manually set
input parameters at the operation level. In this section,
we follow the following order to present each opera-
tion: 1) we first give a high-level definition of the oper-
ation; 2) then, we define how the automatic ETL exe-
cution flow generation process parameterizes the oper-
ation from the mapping file, and 3) finally, we present
an example showing how developers can manually pa-
rameterize the operation. When introducing the opera-
tions and referring to their automatic parametrization,
we will refer to aMappings and aConstruct as defined
here. Note that each operation is bound to exactly one
concept-mapping at a time in the mapping file (dis-
cussed in Section 7).

6.1. Extraction Operations

Extraction is process of data retrieval from the
sources. Here, we introduce two extraction operations
for semantic sources: (i) GraphExtractor - to form/ex-
tract an RDF graph from a semantic source and (ii)
TBoxExtraction - to derive a TBox from a semantic
source as described in Section 5. As such, TBoxExtrac-
tion is the only operation in the Execution Layer gen-
erating metadata stored in the Mediatory Constructs
(see Figure 5).

GraphExtractor(Q, G, outputPattern, tABox) Since
the data integration process proposed in this paper uses
RDF as the canonical model, we extract/generate RDF
triples from the sources with this operation. GraphEx-
tractor is functionally equivalent to SPARQL CON-
STRUCT queries [20].

If the ETL execution flow is generated automati-
cally, the automatic ETL execution flow generation
process first identifies the concept-mapping cm from
aMappings where aConstruct appears (i.e., in aMap-

ping, cm
map:targetConcept−−−−−−−−−−→ aConstruct) and the opera-

tion to process cm is GraphExtractor (i.e., GraphEx-
tractor is an element in the operation sequence de-
fined by the map:operation property). Then, it
parametrizes GraphExtractor as follows: 1) G is the
location of the source ABox defined by the property
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Fig. 7. The conceptual presentation of Listing 3.

map:sourceLocation of cm; 2) Q and outputPat-
tern are internally built based on the map:mappedI-
nstance property, which defines whether all in-
stances (defined by "All") or a subset of the instances
(defined by a filter condition) will be extracted; and
3) tABox is the location of target ABox defined by
the property map:targetLocation. A developer
can also manually set the parameters. From the given
inputs, GraphExtractor operation performs a pattern
matching operation over the given source G (i.e., finds
a map function binding the variables in query pattern
Q to constants in G), and then, for each binding, it cre-
ates triples according to the triple templates in output-
Pattern. Finally, the operation stores the output in the
path tABox.

Example 5. Listing 1 shows the example instances of
the Danish Business Dataset (DBD). To extract all in-
stances of bus:Company from the dataset, we use
the GraphExtractor(Q, G, outputPattern, tABox) oper-
ation, where

1. Q=((?ins,rdf:type,bus:Company)
AND (?ins,?p,?v)),6

2. G="/map/dbd.ttl",
3. outputPattern= (?ins,?p,?v),

6To make it easily distinguishable, here, we use comma instead
of space to separate the components of a triple pattern and an RDF
triple.

4. tABox="/map/com.ttl"7.

Listing 4 shows the output of this operation.

Listing 4: Example of GraphExtractor.

1 company:10058996 rdf:type bus:Company;
2 bus:name "Regerupgard v/Kim Jonni Larsen";
3 bus:mainActivity activity:11100;
4 bus:secondaryActivity activity:682040;
5 bus:hasFormat businessType:Enkeltmandsvirksomhed;
6 bus:hasOwner owner:4000175029_10058996;
7 bus:ownerName "Kim Jonni Larsen";
8 bus:address "Valsomaglevej 117, Ringsted".
9 company:10165164 rdf:type bus:Company;

10 bus:name "Idomlund 1 Vindmollelaug I/S";
11 bus:mainActivity activity:351100;
12 bus:hasFormat businessType:Interessentskab;
13 bus:hasOwner owner:4000170495_10165164;
14 bus:ownerName "Anders Kristian Kristensen";
15 bus:address "Donskaervej 31,Vemb".

TBoxExtraction is already described in Section 5,
therefore, we do not repeat it here.

6.2. Transformation Operations

Transformation operations transform the extracted
data according to the semantics of the SDW. Here, we
define the following semantic-aware ETL transforma-
tion operations: TransformationOnLiteral, JoinTrans-
formation, LevelMemberGenerator, ObservationGener-

7We present the examples in Turtle format for reducing the
space and better understanding. In practice, our system prefers N-
Triples format to support scalability.

17



ator, ChangedDataCapture, UpdateLevel, External
linking, and MaterializeInference. The following de-
scribe each operation.

TransformationOnLiteral(sConstruct, tConstruct, sTB-
ox, sABox propertyMappings, tABox) As described
in the SourceToTargetMapping task, a property (in
a property-mapping) of a target construct (i.e., a
level, a QB dataset, or a concept) can be mapped
to either a source concept property or an expres-
sion over the source properties. An expression allows
arithmetic operations, datatype (string, number, and
date) conversion and processing functions, and group
functions (sum, avg, max, min, count) as defined in
SPARQL [19]. This operation generates the instances
of the target construct by resolving the source expres-
sions mapped to its properties.

If the ETL execution flow is generated automati-
cally, the automatic ETL execution flow generation
process first identifies the concept-mapping cm from
aMappings, where aConstruct appears and the opera-
tion to process cm is TransformationOnLiteral. Then,
the process parametrizes TransformationOnLiteral as
follows: 1) sConstruct and tConstruct are defined by
map:sourceConcept and map:targetConce-
pt; 2) sTBox is the target TBox of cm’s map-dataset,
defined by the property map:sourceTBox; 3) sABox
is the location of the source ABox defined by map:so-
urceLocation; 4) propertyMappings is the set of
property-mappings defined under cm; and 5) tABox is
the location of the target ABox defined by map:targ-
etLocation. A developer can also manually set
the parameters. From the given inputs, this operation
transforms (or directly returns) the sABox triple ob-
jects according to the expressions (defined through
map:source4TargetPropertyValue) in prop-
ertyMappings and stores the triples in tABox. This
operation first creates a SPARQL SELECT query
based on the expressions defined in propertyMappings,
and then, on top of the SELECT query, it forms a
SPARQL CONSTRUCT query to generate the trans-
formed ABox for tConstruct.

Example 6. Listing 5 (lines 16-19) shows the trans-
formed instances after applying the operation Trans-
formationOnLiteral(sConstruct, tConstruct, sTBox,
sABox, PropertyMappings, tABox), where

1. sConstruct = tConstruct=sub:Subsidy,
2. sTBox="/map/subsidyTBox.ttl",
3. sABox= source instances of sub:Subsidy (lines

47-50 in Listing 1),

4. propertyMappings = lines 2-14 in Listing 5,
5. tABox="/map/temp1.ttl".

Listing 5: Example of TransformationOnLiteral.

1 ## Property-mappings input
2 :hasPayDate_Day rdf:type map:PropertyMapping;
3 map:targetProperty sub:hasPayDate;
4 map:sourceType4TargetPropertyValue map:Expression;
5 map:source4TargetPropertyValue "CONCAT(STR(DAY(hasPayDate)),
6 "/", STR(MONTH(hasPayDate)),"/",STR(YEAR(hasPayDate)))".
7 :Recipient_recipientId rdf:type map:PropertyMapping;
8 map:targetProperty sub:hasRecipient;
9 map:sourceType4TargetPropertyValue map:Property;

10 map:source4TargetPropertyValue sub:hasRecipient.
11 :amountEuro_amountEuro rdf:type map:PropertyMapping;
12 map:targetProperty sub:amountEuro;
13 map:sourceType4TargetPropertyValue map:Expression;
14 map:source4TargetPropertyValue "xsd:integer(sub:amountEuro)".
15 ## sub:Subsidy instances after TransformationOnLiteral.
16 subsidy:10615413 rdf:type sub:Subsidy;
17 sub:hasRecipient recipient:291894;
18 sub:amountEuro 8928;
19 sub:hasPayData "25/25/2010".

JoinTransformation(sConstruct, tConstruct, sTBox,
tTBox, sABox, tABox, comProperty, propertyMap-
pings) A TBox construct (a concept, a level, or a
QB dataset) can be populated from multiple sources.
Therefore, an operation is necessary to join and trans-
form data coming from different sources. Two con-
structs of the same or different sources can only be
joined if they share some common properties. This op-
eration joins a source and a target constructs based on
their common properties and produce the instances of
the target construct by resolving the source expressions
mapped to target properties. To join n sources, an ETL
process requires n-1 JoinTransformation operations.

If the ETL execution flow is generated automati-
cally, the automatic ETL execution flow generation
process first identifies the concept-mapping cm from
aMappings, where aConstruct appears and the opera-
tion to process cm is JoinTransformation. Then it pa-
rameterizes JoinTransformation as follows: 1) sCon-
struct and tConstruct are defined by the map:sourc-
eConcept and map:targetConcept properties;
2) sTBox and tTBox are the source and target TBox of
cm’s map-dataset, defined by map:sourceTBox and
map:targetTBox; 3) sABox and tABox are defined
by the map:sourceLocation and map:target-
Location properties; 4) comProperty is defined by
map:commonProperty; and 5) propertyMappings
is the set of property-mappings defined under cm.

A developer can also manually set the parame-
ters. Once it is parameterized, JoinTransformation
joins two constructs based on comProperty, transforms
their data based on the expressions (specified through

18



map:source4TargetPropertyValue) defined
in propertyMappings, and updates tABox based on the
join result. It creates a SPARQL SELECT query join-
ing two constructs using either AND or OPT features,
and on top of that query, it forms a SPARQL CON-
STRUCT query to generate the transformed tABox.

Example 7. The recipients in sdw:Recipient
need to be enriched with their company information
available in the Danish Business dataset. Therefore, a
join operation is necessary between sub:Recipient
and bus:Company. The concept-mapping of this
join is described in Listing 3 at lines 19-37. They are
joined by two concept properties: recipient names and
their addresses (lines 31, 34-37). We join and trans-
form bus:Company and sub:Recipient using
JoinTransformation(sConstruct, tConstruct, sTBox,
tTBox, sABox, tABox, comProperty, propertyMap-
pings), where

1. sConstruct= bus:Company,
2. tConstruct= sub:Recipient,
3. sTBox= "/map/businessTBox.ttl",
4. tTBox= "/map/subsidyTBox.ttl",
5. sABox= source instances of bus:Company (lines

13-29 in Listing 1),
6. tABox= source instances of sub:Recipient

(lines 40-45 in Listing 1),
7. comProperty = lines 31, 34-37 in Listing 3,
8. propertyMappings = lines 73-96 in Listing 3.

Listing 6 shows the output of the joinTransformation
operation.

Listing 6: Example of JoinTransformation.

1 ## Example of sub:Recipient instances.
2 recipient:291894 rdf:type sub:Recipient;
3 sub:name "Kristian Kristensen";
4 sub:cityId "Vemb";
5 sub:companyId company:10165164;
6 sub:businessType businessType:Interessentskab.

LevelMemberGenerator(sConstruct, level, sTBox, sAB-
ox, tTBox, iriValue, iriGraph, propertyMappings, tABox)
In QB4OLAP, dimensional data are physically stored
in levels. A level member, in an SDW, is described
by a unique IRI and its semantically linked properties
(i.e., level attributes and roll-up properties). This oper-
ation generates data for a dimension schema defined in
Definition 1.

If the ETL execution flow is generated automati-
cally, the automatic process first identifies the concept-
mapping cm from aMappings, where aConstruct ap-

pears and the operation to process cm is LevelMember-
Generator. Then it parameterizes LevelMemberGener-
ator as follows: 1) sConstruct is the source construct
defined by map:sourceConcept; 2) level is the
target level8 defined by the map:targetConcept
property; 3) sTBox and tTBox are the source and tar-
get TBoxes of cm’s map dataset, defined by the prop-
erties map:sourceTBox and map:targetTBox;
4) sABox is the source ABox defined by the prop-
erty map:sourceLocation; 5) iriValue is a rule9

to create IRIs for the level members and it is defined
defined by the map:TargetInstanceIriValue
property; 6) iriGraph is the IRI graph10 within which
to look up IRIs, given by the developer in the auto-
matic ETL flow generation process; 7) propertyMap-
pings is the set of property-mappings defined under
cm; and 8) tABox is the target ABox location defined
by map:targetLocation.

A developer can also manually set the paramenters.
Once it is parameterized, LevelMemberGenerator op-
eration generates QB4OLAP-compliant triples for the
level members of level based on the semantics encoded
in tTBox and stores them in tABox.

Example 8. Listing 3 shows a concept-mapping (lines
40-54) describing how to populate sdw:Recipient
from sub:Recipient. Listing 7 shows the level
member created by the LevelMemberGenerator(level,
tTBox, sABox, iriValue, iriGraph, propertyMappings,
tABox) operation, where

1. sConstruct= sub:Recipient,
2. level= sdw:Recipient,
3. sTBox= "/map/subsidyTBox.ttl",
4. sABox= "/map/subsidy.ttl", shown in Example 7,
5. tTBox = "/map/subsidyMDTBox.ttl",
6. iriValue = sub:recipientID,
7. iriGraph = "/map/provGraph.nt",
8. propertyMappings= lines 98-115 in Listing 3,
9. tABox="/map/temp.ttl".

Listing 7: Example of LevelMemberGenerator.

1 PREFIX sdw: <http://extbi.lab.aau.dk/ontology/sdw/>

8A level is termed as a level property in QB4OLAP, therefore,
throughout this paper, we use both the term “level" and “level prop-
erty" interchangeably.

9A rule can be either a source property, an expression or incre-
mental, as described in Section 5.

10The IRI graph is an RDF graph that keeps a triple for each
resource in the SDW with their corresponding source IRI.
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2 PREFIX recipient: <http://extbi.lab.aau.dk/ontology
3 /sdw/Recipient#>
4 PREFIX company: <http://extbi.lab.aau.dk/ontology
5 /sdw/Company#>
6 PREFIX city: <http://extbi.lab.aau.dk/ontology
7 /sdw/City#>
8 ## Example of a recipient level member.
9 recipient:291894 rdf:type qb4o:LevelMember;

10 qb4o:memberOf sdw:Recipient.
11 sdw:name "Kristian Kristensen";
12 sdw:inCity city:Vemb;
13 sdw:hasCompany company:10165164.

ObservationGenerator(sConstruct, dataset, sTBox, sA-
Box, tTBox, iriValue, iriGraph, propertyMappings,
tABox) In QB4OLAP, an observation represents a
fact. A fact is uniquely identified by an IRI, which is
defined by a combination of several members from dif-
ferent levels and contains values for different measure
properties. This operation generates data for a cube
schema defined in Definition 2.

If the ETL execution flow is generated automati-
cally, the way used by the automatic ETL execution
flow generation process to extract values for the pa-
rameters of ObservationGenerator from aMappings is
analogous to LevelMemberGenerator. Developers can
also manually set the parameters. Once it is parame-
terized, the operation generates QB4OLAP-compliant
triples for observations of the QB datasetdataset based
on the semantics encoded in tTBox and stores them in
tABox.

Example 9. Listing 8 (lines 21-25) shows a QB4OL-
AP-compliant observation create by the Observation-
Generator(sConstruct, dataset, sTBox, sABox, tTBox,
iriValue, iriGraph, propertyMappings, tABox) opera-
tion, where

1. sConstruct=sub:Subsidy,
2. dataset= sdw:SubsidyMD,
3. sTBox="/map/subsidyTBox.ttl"
4. sABox= "/map/subsidy.ttl", shown in Example 6,
5. tTBox = "/map/subsidyMDTBox.ttl", shown in

Listing 2,
6. iriValue = "Incremental",
7. iriGraph = "/map/provGraph.nt",
8. propertyMappings= lines 8-19 in Listing 8,
9. tABox= "/map/temp2.ttl".

Listing 8: Example of ObservationGenerator.

1 PREFIX sdw: <http://extbi.lab.aau.dk/ontology/sdw/>
2 PREFIX subsidy: <http://extbi.lab.aau.dk/ontology
3 /sdw/Subsidy#>
4 PREFIX recipient: <http://extbi.lab.aau.dk/ontology
5 /sdw/Recipient#>
6 PREFIX day: <http://extbi.lab.aau.dk/ontology/sdw/Day#>
7 ## Property-Mappings

8 :recipientId_Recipient rdf:type map:PropertyMapping;
9 map:targetProperty sdw:Recipient;

10 map:sourceType4TargetPropertyValue map:Property;
11 map:source4TargetPropertyValue sub:hasRecipient.
12 :hasPayDate_Day rdf:type map:PropertyMapping;
13 map:targetProperty sdw:Day;
14 map:sourceType4TargetPropertyValue map:Property;
15 map:source4TargetPropertyValue sub:hasPaydate.
16 :amountEuro_amountEuro rdf:type map:PropertyMapping;
17 map:targetProperty sdw:amountEuro;
18 map:sourceType4TargetPropertyValue map:Property;
19 map:source4TargetPropertyValue sub:amountEuro.
20 ## Example of observations
21 subsidy:_01 rdf:type qb4o:Observation;
22 inDataset sdw:SubsidyMD;
23 sdw:hasRecipient recipient:291894;
24 sdw:amountEuro "8928.00";
25 sdw:hasPayData day:25/25/2010.

ChangedDataCapture(nABox, oABox, flag) In a real-
world scenario changes occur in a semantic source
both at the schema and instance level. Therefore,
an SDW needs to take action based on the changed
schema and instances. The adaption of the SDW TBox
with the changes of source schemas is an analytical
task and requires the involvement of domain experts,
therefore, it is out of the scope of this paper. Here, only
the changes at the instance level are considered.

If the ETL execution flow is generated automati-
cally, the automatic process first identifies the concept-
mapping cm from aMappings, where aConstruct ap-
pears and the operation to process cm is ChangedDat-
aCapture. Then, it takes map:sourceLocation
and map:targetLocation for nABox (new di-
mensional instances in a source) and oABox (old
dimensional instances in a source), respectively, to
parametrize this operation. flag depends on the next
operation in the operation sequence.

Developers can also manually set the parameters.
From the given inputs, ChangedDataCapture outputs
either 1) a set of new instances (in the case of SDW
evolution, i.e., flag=0) or 2) a set of updated triples —
the existing triples changed over time— (in the case of
SDW update, i.e., flag=1) and overwrites oABox. This
is done by means of the set difference operation. This
operation must then be connected to either LevelMem-
berGenerator to create the new level members or up-
dateLevel (described below) to reflect the changes in
the existing level members.

Example 10. Suppose Listing 6 is the old ABox of
sub:Recipient and the new ABox is at lines 2-10
in Listing 9. This operation outputs either 1) the new
instance set (in this case, lines 12-15 in the listing) or
2) the updated triples (in this case, line 17).

Listing 9: Example of ChangedDataCapture.
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1 ## New snapshot of sub:Recipient instances.
2 recipient:291894 rdf:type sub:Recipient;
3 sub:name "Kristian Jensen";
4 sub:cityId "Vemb";
5 sub:companyId company:10165164;
6 businessType:Interessentskab.
7 recipient:301894 rdf:type sub:Recipient;
8 sub:name "Jack";
9 sub:cityId "Aalborg";

10 sub:companyId company:100000.
11 ## New instances to be inserted
12 recipient:301894 rdf:type sub:Recipient;
13 sub:name "Jack";
14 sub:cityId "Aalborg";
15 sub:companyId company:100000.
16 ## Update triples
17 recipient:291894 sub:name "Kristian Jensen".

UpdateLevel(level, updatedTriples, sABox, tTBox, tAB-
ox, propertyMappings, iriGraph) Based on the triples
updated in the source ABox sABox for the level level
(generated by ChangedDataCapture), this operation
updates the target ABox tABox to reflect the changes
in the SDW according to the semantics encoded in the
target TBox tTBox and level property-mappings prop-
ertyMappings. Here, we address three update types
(Type1-update, Type2-update, and Type3-update), de-
fined by Ralph Kimball in [16] for a traditional DW,
in an SDW environment. The update types are already
defined in tTBox for each level attribute of level (as
discussed in Section 2.3), so they do not need to be
provided as parameters. As we consider only instance
level updates, only the objects of the source updated
triples are updated. To reflect a source updated triple
in level, the level member using the triple to describe
itself, will be updated. In short, the level member is up-
dated in the following three ways: 1) A Type1-update
simply overwrites the old object with the current ob-
ject. 2) A Type2-update creates a new version for the
level member (i.e., it keeps the previous version and
creates a new updated one). It adds the validity inter-
val for both versions. Further, if the level member is
a member of an upper level in the hierarchy of a di-
mension, the changes are propagated downward in the
hierarchy, too. 3) A Type3-update overwrites the old
object with the new one. Besides, it adds an additional
triple for each changed object to keep the old object.
The subject of the additional triple is the instance IRI,
the object of the triple is the old object, and the predi-
cate is concat(oldPredicate, "oldValue").

If the ETL execution flow is generated automati-
cally, this operation first identifies the concept-mapping
cm from aMappings, where aConstruct appears and
the operation to process cm is UpdateLevel. Then it
parameterizes LevelMemberGenerator as follows: 1)
level is defined by the map:targetConcept; 2)

sABox is old source data; 3) updatedTriples is the
source location defined by map:sourceLocation;
4) tTBox is the target TBox of cm’s map-dataset, de-
fined by the property map:targetTBox; 5) tABox
is defined by map:targetLocation; 6) proper-
tyMappings is the set of property-mappings defined
under cm; and 7) iriGraph is given by developer in the
automatic ETL flow generation process.

Example 11. Listing 10 describes how different types
of updates work by considering two members of the
sdw:Recipient level (lines 2-11). As the name of
the second member (lines 7-11) is changed to “Kristian
Jensen" from “Kristian Kristensen", as found in List-
ing 9. A Type1-update simply overwrites the existing
name (line 20). A Type2-update creates a new version
(lines 39-46). Both old and new versions contain valid-
ity interval (lines 35-37) and (lines 44-46). A Type3-
Update overwrites the old name (line 56) and adds a
new triple to keep the old name (line 57).

Listing 10: Example of different types of updates.

1 ## sdw:Recipient Level
2 recipient:762921 rdf:type qb4o:LevelMember;
3 qb4o:member sdw:Recipient;
4 sdw:name "R. Nielsen";
5 sdw:cityId city:Lokken;
6 sdw:hasCompany company:10165164.
7 recipient:291894 rdf:type qb4o:LevelMember;
8 qb4o:memberOf sdw:Recipient.
9 sdw:name "Kristian Kristensen";

10 sdw:cityId city:Vemb;
11 sdw:hasCompany company:10165164.
12 ## After type1 update
13 recipient:762921 rdf:type qb4o:LevelMember;
14 qb4o:member sdw:Recipient;
15 sdw:name "R. Nielsen";
16 sdw:cityId city:Lokken;
17 sdw:hasCompany company:10165164.
18 recipient:291894 rdf:type qb4o:LevelMember;
19 qb4o:memberOf sdw:Recipient.
20 sdw:name "Kristian Jensen";
21 sdw:cityId city:Vemb;
22 sdw:hasCompany company:10165164.
23 ##After type2 update
24 recipient:762921 rdf:type qb4o:LevelMember;
25 qb4o:member sdw:Recipient;
26 sdw:name "R. Nielsen";
27 sdw:cityId city:Lokken;
28 sdw:hasCompany company:10165164.
29
30 recipient:291894 rdf:type qb4o:LevelMember;
31 qb4o:memberOf sdw:Recipient.
32 sdw:name "Kristian Kristensen";
33 sdw:cityId city:Vemb;
34 sdw:hasCompany company:10165164.
35 sdw:fromDate ‘‘0000-00-00";
36 sdw:toDate ‘‘2017-09-25";
37 sdw:status ‘‘Expired".
38
39 recipient:291894\_2017\_09\_26 rdf:type qb4o:LevelMember;
40 qb4o:memberOf sdw:Recipient.
41 sdw:name "Kristian Jensen";
42 sdw:cityId city:Vemb;
43 sdw:hasCompany company:10165164;
44 sdw:fromDate ‘‘2017-09-26";
45 sdw:toDate ‘‘9999-12-31";
46 sdw:status ‘‘Current".
47 ## After type3 update
48 recipient:762921 rdf:type qb4o:LevelMember;
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49 qb4o:member sdw:Recipient;
50 sdw:name "R. Nielsen";
51 sdw:cityId city:Lokken;
52 sdw:hasCompany company:10165164.
53
54 recipient:291894 rdf:type qb4o:LevelMember;
55 qb4o:memberOf sdw:Recipient.
56 sdw:name "Kristian Jensen";
57 sdw:name_oldValue "Kristian Kristensen";
58 sdw:cityId city:Vemb;
59 sdw:hasCompany company:10165164.

Besides the transformation operations discussed
above, we define two additional transformation op-
erations that cannot be run by the automatic ETL
dataflows generation process.

ExternalLinking (sABox, externalSource) This oper-
ation links the resources of sABox with the resources
of an external source externalSource. externalSource
can either be a SPARQL endpoint or an API. For each
resource inRes ∈ sABox, this operation extracts top
k matching external resources either 1) submitting a
query to externalSource or 2) by sending a web ser-
vice request embedding inRes through the API (e.g.,
DBpedia lookup API). To find a potential link for each
external resource exRes, the Jaccard Similarity of the
semantic bags of inRes and exRes is computed. The se-
mantic bag of a resource consists of triples describing
the resource [21–23]. The pair of the internal and ex-
ternal resources is considered as a match if the Jaccard
Similarity exceeds a certain threshold. A triple with
the owl:sameAs property is created to materialize
the link in sABox for each pair of matched internal and
external resources.

MaterializeInference(ABox, TBox) This operation
infers new information that has not been explicitly
stated in an SDW. It analyzes the semantics encoded
into the SDW and enriches the SDW with the inferred
triples. A subset of the OWL 2 RL/RDF rules, which
encodes part of the RDF-Based Semantics of OWL
2 [24], are considered here. The reasoning rules can
be applied over the TBox TBox and ABox ABox sep-
arately, and then together. Finally, the resulting infer-
ence is asserted in the form of triples, in the same spirit
as how the SPARQL regime entailments11 deal with
inference.

6.3. Load

Loader(tripleSet, tsPath) An SDW is represented in
the form of RDF triples and the triples are stored in a

11https://www.w3.org/TR/sparql11-entailment/

triplestore (e.g., Jena TDB). Given a set of RDF triples
triplesSet and the path of a triple store tsPath, this op-
eration loads triplesSet in the triple store.

If the ETL execution flow is generated automati-
cally, this operation first identifies the concept-mapping
cm from aMappings, where aConstruct appears and
the operation to process cm is Loader. Then, it takes
values of map:sourceLocation and map:targ-
etLocation for the parameters tripleSet and tsPath.

7. Automatic ETL Execution Flow Generation

We can characterize ETL flows at the Definition
Layer by means of the source-to-target mapping file;
therefore, the ETL data flows in the Execution Layer
can be generated automatically. This way, we can guar-
antee that the created ETL data flows are sound and
relieve the developer from creating the ETL data flows
manually. Note that this is possible because the Medi-
atory Constructs (see Figure 5) contain all the required
metadata to automate the process.

Algorithm 1: CREATEETL
Input: TargetConstruct x, MappingFile G,

IRIGraph GIRI

Output: A set of ETL flows E
begin

1 nodetarget ← FIND(x,G)
2 ?cmaps ←FINDCONMAP((nodetarget,G)

/* In G :

nodetarget
map:targetConcept←−−−−−−−−−−−−−?cmaps ;

|?cmaps| > 0 */
3 E ← CREATESET()
4 if (?cmaps 6= ∅) then
5 foreach c ∈?cmaps do
6 sc ← CREATESTACK()
7 sc ←

CREATEAFLOW(c, sc,G,GIRI)
8 E.ADD(sc)

9 return E

Algorithm 1 shows the steps required to create ETL
data flows to populate a target construct (a level, a con-
cept, or a dataset). As inputs, the algorithm takes a tar-
get construct x, the mapping file G, and the IRI graph
GIRI , and it outputs a set of ETL data flows E. At first,
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Algorithm 2: CREATEAFLOW

Input: ConceptMapping c, Stack sc,
MappingFile G, IRIGraph GIRI

Output: Stack sc

begin
1 ops← FINDOPERATIONS(c,G)

/* In G : c map:operation−−−−−−−−−−→ ops */
2 sc. PUSH(PARAMETERIZE(ops, c,G,GIRI))

/* Push parameterized
operations in sc */

3 scon← FINDSOURCECONCEPT(c,G)

/* In G : c map:sourceConcept−−−−−−−−−−−−−→ scon
*/

4 ?sconmap ← FINDCONMAP(scon,G)
/* In G :

scon map:targetConcept←−−−−−−−−−−−−−?sconmap;
|?sconmap| 6 1 */

5 if (|?sconmap| = 1) then
6 CREATEAFLOW(nc ∈?sconmap, sc,G)

/* recursive call with nc
*/

7 sc.PUSH(StartOp)
/* Push the ETL start

operation to sc */
8 return sc

it uses the functions 12 to locate x in G (line 1) and
get the concept-mappings where nodetarget participates
(line 2). As a (final) target construct can be populated
from multiple sources, it can be connected to multi-
ple concept-mappings, and for each concept-mapping,
it creates an ETL data flow by calling Algorithm 2:
CREATEAFLOW (lines 5-8).

Algorithm 2 generates an ETL data flow for a
concept-mapping c and recursively does so if the cur-
rent concept-mapping source element is connected to
another concept-mapping, until it reaches a source el-
ement. Algorithm 2 recursively calls itself and uses
a stack to preserve the order of the partial ETL data
flows created for each concept-mapping. Eventually,
the stack contains the whole ETL data flow between
the source and target schema.

Algorithm 2 works as follows. The sequence of op-
erations in c is pushed to the stack after parameteriz-

12Here, functions used in the algorithms are characterized by a
pattern over G, shown at its side as comments in the corresponding
algorithm.

Algorithm 3: PARAMETERIZE

Input: Seq ops, ConceptMapping cm,
MappingFile G, IRIGraph GIRI

Output: Stack, sop

begin
1 sop ← CREATESTACK()
2 for (i = 1 to LENGTH(ops)) do
3 if (i = 1) then
4 PARAMETERIZEOP(op[i],G,

LOC(cm), GIRI)
5 sop.PUSH(op[i])

6 PARAMETERIZEOP(op[i],G,
OUTPUTPATH(op[i− 1]), GIRI)

7 sop.PUSH(op[i])

8 return sop

ing it (lines 1-2). Algorithm 3 parameterizes each op-
eration in the sequence, as described in Section 6 and
returns a stack of parameterized operations. As inputs,
it takes the operation sequence, the concept-mapping,
the mapping file, and the IRI graph. For each opera-
tion, it uses the PARAMETERIZEOP(op, G, LOC(cm),
GIRI) function to automatically parameterize op from
G (as all required parameters are available in G) and
push the parameterized operation in a stack (line 2-7).
Note that for the first operation in the sequence, the al-
gorithm uses the source ABox location of the concept-
mapping (line 4) as an input, whereas for the remain-
ing operations, it uses the output of the previous op-
eration as input ABox (line 6). Finally, Algorithm 3
returns the stack of parameterized operations.

Then, Algorithm 2 traverses to the adjacent concept-
mapping of c connected via c’s source concept (line 3-
4). After that, the algorithm recursively calls itself for
the adjacent concept-mapping (line 6). Note that here,
we set a restriction: except for the final target con-
structs, all the intermediate source and target concepts
can be connected to at most one concept-mapping.
This constraint is guaranteed when building the meta-
data in the Definition Layer. Once there are no more in-
termediate concept-mappings, the algorithm pushes a
dummy starting ETL operation (StartOp) (line 7) to the
stack and returns it. StartOp can be considered as the
root of the ETL data flows that starts the execution pro-
cess. The stacks generated for each concept-mapping
of nodetarget are added to the output set E (line 8 in Al-
gorithm 1). The following section shows this process
with an example of our use case.
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Fig. 8. The graph presentation of a part of Listing 3.

7.1. Auto ETL Example

In this section, we show how to populate sdw:Rec-
ipient level using CREATEETL (Algorithm 1).
As input, CREATEETL takes the target construct
sdw:Recipient, the mapping file Listing 3 and
the location of IRI graph “/map/provGraph.nt". Fig-
ure 8 presents a part (necessary to explain this pro-
cess) of Listing 3 as an RDF graph. As soon as
sdw:Recipient is found in the graph, the next task
is to find the concept-mappings that are connected to
sdw:Recipient through map:targetConcept
(line 2). Here, ?cmaps={:Recipient_Recipien-
tMD}. For :Recipient_RecipientMD, the al-
gorithm creates an empty stack sc and calls CRE-
ATEAFLOW (:Recipient_RecipientMD, sc, Li-
sting 3) (Algorithm 2) at lines 6-7.

CREATEAFLOW retrieves the sequence of opera-
tions (line 1) needed to process the concept-mapping,
here: ops=(LevelMemberGenerator; Loader) (see Fig-
ure 8). Then, CREATEAFLOW parameterizes ops
by calling PARAMETERIZE (Algorithm 3) and then
pushes the parameterized operations to sc (line 2).
PARAMETERIZE creates an empty stack sop (line 1)
and for each operation in ops it calls the PARAME-
TERIZE() method to parameterize the operation using
the concept-mapping information from Listing 3, the
source location of the concept-mapping, and the IRI
graph, and then it pushes the parameterized operation
in sop (lines 2-7). After the execution of the for loop in
PARAMETERIZE (line 2-7), the value of the stack sop is
(Loader("/map/temp.nt", "/map/sdw"); LevelMember-
Generator(sub:Recipient,sdw:Recipient,
"/map/subsidyTBox.ttl", "/map/subsidy.nt", "/map/-
subsidyMDTBox.ttl", sub:recipientID, "/map/-

provGraph.nt", propertyMappings13, "/map/temp.nt")),
which is returned to line 2 of CREATEAFLOW. Note
that the output path of LevelMemberGenerator(..)14

is used as the input source location of Loader(..).
CREATEAFLOW pushes the parameterized operations
to sc (line 2), hence sc= (LevelMemberGenerator(..);
Loader(..)).

Then, CREATEAFLOW finds the source concept
of :Recipient_RecipientMD (line 3), which
is sub:Recipient; retrieves the concept-mapping
:Recipient_Company of sub:Recipient from
Listing 3 (line 4); and recursively calls itself for
:Recipient_Company (lines 5-6). The operation
sequence of :Recipient_Company (line 1) is
(JoinTransformation) (see Figure 8), and the call of
PARAMETERIZE at line 2 returns the parameterized
JoinTransformation(bus:Company, Sub:Reicip-
ient, "/map/dbd.nt","/map/subsidy.nt", comProperty15,
propertyMappings16) operation, which is pushed to the
stack sc, i.e., sc= (JoinTransformation(...); LevelMem-
berGenerator(...); Loader(...)). The source concept
bus:Company is not connected to any other concept-
mapping through the map:targetConcept prop-
erty in the mapping file. Therefore, CREATEAFLOW
skips lines 5 and 6. After that, it pushes the start op-
eration (StartOp) in sc, i.e., sc= (StartOp, JoinTrans-
formation(..); LevelMemberGenerator(..); Loader(..))
and returns it to CREATEETL (Algorithm 1) at line
7. Then, CREATEETL adds it to the set of ETL data
flows E and returns it (line 9). Therefore, the ETL

13Here, lines 95-112 in Listing 3.
14(..) indicates that the operation is parameterized.
15lines 32,36-39 in Listing 3.
16lines 76-93 in Listing 3.
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data flow to populate sdw:Recipient is StartOp
⇒JoinTransformation(..)⇒LevelMemberGenerator(..)
⇒Loader(..).

8. Evaluation

We created a GUI-based prototype, named SETLCON-

STRUCT [2] based on the different high-level constructs
described in Sections 5 and 6. We use Jena 3.4.0 to
process, store, and query RDF data and Jena TDB as a
triplestore. SETLCONSTRUCT is developed in Java 8. Like
other traditional tools (e.g., PDI [25]), SETLCONSTRUCT

allows developers to create ETL flows by dragging,
dropping, and connecting the ETL operations. The sys-
tem is demonstrated in [2]. On top of SETLCONSTRUCT,
we implement the automatic ETL execution flow gen-
eration process discussed in Section 7; we call it
SETLAUTO. The source code, examples, and developer
manual for SETLCONSTRUCT and SETLAUTO are avail-
able at https://github.com/bi-setl/SETL.

To evaluate SETLCONSTRUCT and SETLAUTO, we cre-
ate an MD SDW by integrating the Danish Busi-
ness Dataset (DBD) [26] and the Subsidy dataset
( https://data.farmsubsidy.org/Old/), described in Sec-
tion 3. We choose this use case and these datasets
for evaluation as there already exists an MD SDW,
based on these datasets, that has been programatically
created using SETLPROG[10]. Our evaluation focuses
on three aspects: 1) productivity, i.e., to what extent
SETLCONSTRUCT and SETLAUTO ease the work of a de-
veloper when developing an ETL task to process se-
mantic data, 2) development time, the time to develop
an ETL process, and 3) performance, the time required
to run the process. We run the experiments on a laptop
with a 2.10 GHz Intel Core(TM) i7-4600U processor,
8 GB RAM, and Windows 10. On top of that we also
present the qualitative evaluation of our approach.

In this evaluation process, we use SETLPROG as
our competitive system. We could not directly com-
pare SETLCONSTRUCT and SETLAUTO with traditional
ETL tools (e.g., PDI, pygramETL) because they 1)
do not support semantic-aware data, 2) are not com-
patible with the SW technology, and 3) cannot sup-
prot a data warehouse that is semantically defined. On
the other hand, we could also not compare them with
existing semantic ETL tools (e.g., PoolParty) because
they do not support multidimensional semantics at the
TBox and ABox level. Therefore, they do not provide
any operations for creating RDF data following multi-
dimensional principles. Nevertheless, SETLPROG sup-

ports both semantic and non-semantic source integra-
tion, and it uses the relational model as a canonical
model. In [10], SETLPROG is compared with PDI to
some extent. We also present the summary of that com-
parison in the following sections. We direct readers
to [10] for further details.

8.1. Productivity

SETLPROG requires Python knowledge to maintain
and implement an ETL process. On the other hand,
using SETLCONSTRUCT and SETLAUTO, a developer can
create all the phases of an ETL process by interact-
ing with a GUI. Therefore, they provide a higher level
of abstraction to the developer that hides low-level de-
tails and requires no programming background. Ta-
ble 2 summarizes the effort required by the devel-
oper to create different ETL tasks using SETLPROG,
SETLCONSTRUCT, and SETLAUTO. We measure the de-
veloper effort in terms of Number of Typed Charac-
ters (NOTC) for SETLPROG and in Number of Used
Concepts (NOUC) for SETLCONSTRUCT and SETLAUTO.
Here, we define a concept as a GUI component of
SETLCONSTRUCT that opens a new window to perform
a specific action. A concept is composed of several
clicks, selections, and typed characters. For each ETL
task, Table 2 lists: 1) its sub construct, required pro-
cedures/data structures, number of the task used in
the ETL process (NUEP), and NOTC for SETLPROG;
2) the required task/operation, NOUC, and number of
clicks, selections, and NOTC (for each concept) for
SETLCONSTRUCT and SETLAUTO. Note that NOTC de-
pends on the user input. Here, we generalize it by us-
ing same user input for all systems. Therefore, the to-
tal NOTC is not the summation of the values of the
respective column.

To create a target TBox using SETLPROG, an ETL
developer needs to use the following steps: 1) defin-
ing the TBox constructs by instantiating the Con-
cept, Property, and BlankNode classes that play a meta
modeling role for the constructs and 2) calling con-
ceptPropertyBinding() and createTriples(). Both pro-
cedures take the list of all concepts, properties, and
blank nodes as parameters. The former one internally
connects the constructs to each other, and the latter
creates triples for the TBox. To create the TBox of
our SDW using SETLPROG, we used 24,509 NOTC.
On the other hand, SETLCONSTRUCT and SETLAUTO use
the TargetTBoxDefinition interface to create/edit a tar-
get TBox. To create the target TBox of our SDW
in SETLCONSTRUCT and SETLAUTO, we use 101 con-
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Table 2
Comparison among the productivity of SETLPROG, SETLCONSTRUCT, and SETLAUTO for the SDW.
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Table 3
Comparison between the ETL processes of SETLPROG and PDI for SDW (Reproduced from [10])

Tools SETL PDI (Kettle)
Task Used Tools Used Languages LOC Used Tools Used Languages LOC
TBox with
MD semantics

Built-in SETL Python 312 Protege, SETL Python 312

Ontology
Parser

Built-in SETL Python 2 User Defined Class Java 77

Semantic Data Extraction
through SPARQL endpoint

Built-in SETL Python, SPARQL 2
Manually extraction
using SPARQL endpoint

SPARQL NA

Semantic Data Extraction
from RDF Dump file

Built-in SETL Python 2 NA NA NA

Reading
CSV/Database

Built-in Petl Python 2 Drag & Drop NA
Number of

used Activities: 1

Cleansing Built-in Petl Python 36 Drag & Drop NA
Number of

used Activities: 19
IRI Generation Built-in SETL Python 2 User Defined Class Java 22
Triple Generation Built-in SETL Python 2 User Defined Class Java 60
External Linking Built-in SETL Python 2 NA NA NA
Loading as
RDF dump

Built-in SETL Python 1 Drag & Drop NA
Number of

used Activities: 1
Loading to
Triple Store

Built-in SETL Python 1 NA NA NA

Total LOC for the complete ETL process 401 471 LOC +4 NA + 21 Activities

cepts that require only 382 clicks, 342 selections, and
1905 NOTC. Therefore, for creating a target TBox,
SETLCONSTRUCT and SETLAUTO use 92% fewer NOTC
than SETLPROG.

To create source-to-target mappings, SETLPROG uses
Python dictionaries where the keys of each dictio-
nary represent source constructs and values are the
mapped target TBox constructs, and for creating the
ETL process it uses 23 dictionaries, where the biggest
dictionary used in the ETL process takes 253 NOTC.
In total, SETLPROG uses 2052 NOTC for creating
mappings for the whole ETL process. On the con-
trary, SETLCONSTRUCT and SETLAUTO use a GUI. In
total, SETLCONSTRUCT uses 87 concepts composed
of 330 clicks, 358 selections, and 30 NOTC. Since
SETLAUTO internally creates the intermediate map-
pings, there is no need to create separate mapping
datasets and concept-mappings for intermediate re-
sults. Thus, SETLAUTO uses only 65 concepts requir-
ing 253 clicks, 274 selections, and 473 NOTC. There-
fore, SETLCONSTRUCT reduces NOTC of SETLPROG

by 98%. Although SETLAUTO uses 22 less concepts
than SETLCONSTRUCT, SETLCONSTRUCT reduces NOTC
of SETLAUTO by 93%. This is because, in SETLAUTO,
we write the data extraction queries in the concept-
mappings where in SETLCONSTRUCT we set the data ex-
traction queries in the ETL operation level.

To extract data from either an RDF local file or an
SPARQL endpoint, SETLPROG uses the query() proce-
dure and the ExtractTriplesFromEndpoint() class. On
the other hand, SETLCONSTRUCT uses the GraphExtrac-
tor operation. It uses 1 concept composed of 5 clicks
and 20 NOTC for the local file and 1 concept with 5
clicks and 30 NOTC for the endpoint. SETLPROG uses
different functions/procedures from the Petl Python li-
brary (integrated with SETLPROG) based on the cleans-
ing requirements. In SETLCONSTRUCT, all data cleansing
related tasks on data sources are done using Transfor-
mationOnLiteral (single source) and JoinTransforma-
tion (for multi-source). TransformationOnLiteral re-
quires 12 clicks and 1 selection, and JoinTransforma-
tion takes 15 clicks and 1 selection.

To create a level member and observation, SETLPROG

uses createDataTripleToFile() and takes 125 NOTC.
The procedure takes all the classes, properties, and
blank nodes of a target TBox as input; therefore, the
given TBox should be parsed for being used in the
procedure. On the other hand, SETLCONSTRUCT uses
the LevelMemberGenerator and ObservationGenera-
tor operations, and each operation requires 1 concept,
which takes 6 clicks and 6 selections. SETLPROG pro-
vides procedures for either bulk or trickle loading to
a file or an endpoint. Both procedures take 113 and
153 NOTC, respectively. For loading RDF triples ei-
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ther to a file or a triple store, SETLCONSTRUCT uses the
Loader operation, which needs 2 clicks and 2 selec-
tions. Therefore, SETLCONSTRUCT reduces NOTC for all
transformation and loading tasks by 100%.

SETLAUTO requires only a target TBox and a map-
ping file to generate ETL data flows through the Cre-
ateETL interface, which takes only 1 concept com-
posed of 21 clicks and 16 selections. Therefore, other
ETL Layer tasks are automatically accomplished in-
ternally. In summary, SETLCONSTRUCT uses 92% fewer
NOTC than SETLPROG, and SETLAUTO further reduces
NOUC by another 25%.

8.1.1. Comparison between SETLPROG and PDI
PDI is a non-semantic data integration tool that con-

tains a rich set of data integration functionality to cre-
ate an ETL solution. It does not support any func-
tionality for semantic integration. In [10], we used
PDI in combination with other tools and manual tasks
to create a version of an SDW. The comparison be-
tween the ETL processes of SETLPROG and PDI to cre-
ate this SDW are shown in Table 3. Here, we out-
line the developer efforts in terms of used tools, lan-
guages, and Lines of Codes (LOC). As mentioned ear-
lier, SETLPROG provides built-in classes to annotate
MD constructs with a TBox. PDI does not support
defining a TBox. To create the SDW using PDI, we
use the TBox created by SETLPROG. SETLPROG pro-
vides built-in classes to parse a given TBox and users
can use different methods to parse the TBox based on
their requirements. In PDI, we implement a Java class
to parse the TBox created by SETLPROG which takes
an RDF file containing the definition of a TBox as in-
put and outputs the list of concepts and properties con-
tained in the TBox. PDI is a non-semantic data inte-
gration tool, thus, it does not support processing se-
mantic data. We manually extract data from SPARQL
endpoints and materialize them in a relational database
for further processing. PDI provides activities (drag &
drop functionality) to pre-process database and CSV
files. On the other hand, SETLPROG provides methods
to extract semantic data either from a SPARQL end-
point or an RDF dump file batch-wise. In SETLPROG,
users can create an IRI by simply passing arguments
to the createIRI () method. PDI does not include any
functionality to create IRIs for resources. We define a
Java class of 23 lines to enable the creation of IRIs
for resources. SETLPROG provides the createTriple()
method to generate triples from the source data based
on the MD semantics of the target TBox; users can just
call it by passing required arguments. In PDI, we de-

velop a Java class of 60 lines to create the triples for
the sources. PDI does not support to load data directly
to a triple store which can easily be done by SETLPROG.
Finally, we could not run the ETL process of PDI au-
tomatically (i.e., in a single pass) to create the version
of a SDW. We instead made it with a significant num-
ber of user interactions. In total, SETLPROG takes 401
Lines of Code (LOC) to run the ETL, where PDI takes
471 LOC + 4 Not Applicable (N/A) + 21 Activities.
Thus, SETLPROG creates the SDW with 14.9% less
LOC and minimum user interactions comparing to PDI
where users have to build their own Java classes, plug-
in, and manual tasks to enable semantic integration.

Therefore, we can conclude that SETLPROG uses
14.9% less LOC than PDI, SETLCONSTRUCT uses 92%
fewer NOTC than SETLPROG, and SETLAUTO further
reduces NOUC by another 25%. Combining these re-
sults, we see that SETLCONSTRUCT and SETLAUTO have
significantly better productivity than PDI for building
an SDW.

8.2. Development Time

We compare the time used by SETLPROG, SETLCONST-

RUCT, and SETLAUTO to build the ETL processes for
our use case SDW. As the three tools were developed
within the same project scope and we master them,
the first author conducted this test. We chose the run-
ning use case used in this paper and created a solution
in each of the three tools and measured the develop-
ment time. We used each tool twice to simulate the im-
provement we may obtain when we are knowledgeable
about a given project. The first time it takes more time
to analyze, think, and create the ETL process, and in
the latter, we reduce the interaction time spent on anal-
ysis, typing, and clicking. Table 4 shows the develop-
ment time (in minutes) for main integration tasks used
by the different systems to create the ETL processes.

Table 4
ETL development time (in minutes) required for SETLPROG,
SETLCONSTRUCT, and SETLAUTO.

Tool
Iteration
Number

Target
TBox
Definition

Mapping
Generation

ETL
Design

Total

SETLPROG 1 186 51 85 322
SETLPROG 2 146 30 65 241

SETLCONSTRUCT 1 97 46 35 178
SETLCONSTRUCT 2 58 36 30 124

SETLAUTO 1 97 40 2 139
SETLAUTO 2 58 34 2 94
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Fig. 9. The segment of the main method to populate the sdw:SubsidyMD dataset and the sdw:Recipient using SETLPROG.

Fig. 10. The ETL flows to populate the sdw:SubsidyMD dataset and the sdw:Recipient level using SETLCONSTRUCT.

SETLPROG took twice as long as SETLCONSTRUCT and
SETLAUTO to develop a target TBox. In SETLPROG, to
create a target TBox construct, for example a level
l, we need to instantiate the Concept() concept for
l and then add its different property values by call-
ing different methods of Concept(). SETLCONSTRUCT

and SETLAUTO create l by typing the input or select-
ing from the suggested items. Thus, SETLCONSTRUCT

and SETLAUTO also reduce the risk of making mistakes
in an error-prone task, such as creating an ETL. In
SETLPROG, we typed all the source and target prop-
erties to create a mapping dictionary for each source
and target concept pair. However, to create mappings,
SETLCONSTRUCT and SETLAUTO select different con-
structs from a source as well as a target TBox and only
need to type when there are expressions and/or filter
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conditions of queries. Moreover, SETLAUTO took less
time than SETLCONSTRUCT in mapping generation be-
cause we did not need to create mappings for interme-
diate results.

To create ETL data flows using SETLPROG, we
had to write scripts for cleansing, extracting, trans-
forming, and loading. SETLCONSTRUCT creates ETL
flows using drag-and-drop options. Note that the map-
pings in SETLCONSTRUCT and SETLAUTO use expres-
sions to deal with cleansing and transforming related
tasks; however, in SETLPROG we cleansed and trans-
formed the data in the ETL design phase. Hence,
SETLPROG took more time in designing ETL com-
pared to SETLCONSTRUCT. On the other hand, SETLAUTO

creates the ETL data flows automatically from a
given mapping file and the target TBox. Therefore,
SETLAUTO took only two minutes to create the flows.

In short, SETLPROG is a programmatic environment,
while SETLCONSTRUCT and SETLAUTO are drag and
drop tools. We exemplify this fact by means of Fig-
ures 9 and 10, which showcase the creation of the ETL
data flows for the sdw:SubsidyMD dataset and the
sdw:Recipient level. To make it more readable
and understandable, we add comments at the end of the
lines of Figure 9 and in each operation of Figure 10. In
summary, using SETLCONSTRUCT, the development time
is cut in almost half (41% less development time than
SETLPROG); and using SETLAUTO, it is cut by another
27%.

Table 5
ETL execution time (in minutes) required for each sub-phase of the
ETL processes created using SETLPROG and SETLCONSTRUCT.

Performance
Metrics

Systems
Extraction and
Traditional
Transformation

Semantic
Transformation

Loading
Total
Processing
Time

Processing
Time (in minutes)

SETLPROG 33 17.86 21 71.86
SETLCONSTRUCT 43.05 39.42 19 101.47

Input
Size

SETLPROG
6.2 GB (Jena TDB)
+ 6.1 GB (N-Triples)

496 MB
(CSV)

4.1 GB
(N-Triples)

SETLCONSTRUCT
6.2 GB (Jena TDB)
+6.1 GB (N-Triples)

6.270 GB
(N-Triples)

4.1 GB
(N-Triples)

Output
Size

SETLPROG 490 MB (CSV)
4.1 GB
(N-Tripels)

3.7 GB
(Jena TDB)

SETLCONSTRUCT
6.270 GB
(N-Triples)

4.1 GB
(N-Triples)

3.7 GB
(Jena TDB)

8.3. Performance

Since the ETL processes of SETLCONSTRUCT and
SETLAUTO are the same and only differ in the de-
veloper effort needed to create them, this section
only compares the performance of SETLPROG and
SETLCONSTRUCT. We do so by analyzing the time re-
quired to create the use case SDW by executing the re-
spective ETL processes. To evaluate the performance
of similar types of operations, we divide an ETL pro-
cess into three sub-phases: extraction and traditional
transformation, semantic transformation, as well as
loading and discuss the time to complete each.

Table 5 shows the processing time (in minutes), in-
put and output size of each sub-phase of the ETL pro-
cesses created by SETLPROG and SETLCONSTRUCT. The
input and output formats of each sub-phase are shown
in parentheses. The extraction and traditional trans-
formation sub-phases in both systems took more time
than the other sub-phases. This is because they include
time for 1) extracting data from large RDF files, 2)
cleansing and filtering the noisy data from the DBD
and Subsidy datasets, and 3) joining the DBD and
Subsidy datasets. SETLCONSTRUCT took more time than
SETLPROG because its TransformationOnLiteral and
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JoinTransformation operations use SPARQL queries
to process the input file whereas SETLPROG uses the
methods from the Petl Python library to cleanse the
data extracted from the sources.

SETLCONSTRUCT took more time during the semantic
transformation than SETLPROG because SETLCONSTRUCT

introduces two improvements over SETLPROG: 1) To
guarantee the uniqueness of an IRI, before creating an
IRI for a target TBox construct (e.g., a level member,
an instance, an observation, or the value of an object
or roll-up property), the operations of SETLCONSTRUCT

search the IRI provenance graph to check the avail-
ability of an existing IRI for that TBox construct. 2)
As input, the operations of SETLCONSTRUCT take RDF
(N-triples) files that are larger in size than the CSV
files (see Table 5), used by SETLPROG as input for-
mat. To ensure our claims, we run an experiment for
measuring the performance of the semantic transfor-
mation procedures of SETLPROG and the operations of
SETLCONSTRUCT by excluding the additional two fea-
tures introduced in SETLCONSTRUCT operations (i.e.,
a SETLCONSTRUCT operation does not lookup the IRI
provenance graph before creating IRIs and takes a
CSV input). Figure 11 shows the processing time taken
by SETLCONSTRUCT operations and SETLPROG proce-
dures to create level members and observations with
increasing input size. In the figure, LG and OG repre-
sent level member generator and observation generator
operations (in case of SETLCONSTRUCT) or procedures
(in case of SETLPROG).

In summary, to process an input CSV file with
500 MB in size, SETLCONSTRUCT takes 37.4% less
time than SETLPROG to create observations and 23,4%
less time than SETLPROG to create level members.
The figure also shows that the processing time differ-
ence between the corresponding SETLCONSTRUCT op-
eration and the SETLPROG procedure increases with
the size of the input. In order to guarantee scalabil-
ity when using the Jena library, a SETLCONSTRUCT op-
eration takes the (large) RDF input in the N-triple
format, divides the file into several smaller chunks,
and processes each chunk separately. Figure 12 shows
the processing time taken by LevelMemberGenera-
tor and ObservationGenerator operations with the in-
creasing number of triples. We show the scalability of
the LevelMemberGenerator and ObservationGenera-
tor because they create data with MD semantics. The
figure shows that the processing time of both opera-
tions increase linearly with the increase in the num-
ber of triples, which ensures that both operations are
scalable. SETLCONSTRUCT takes less time in loading

than SETLPROG because SETLPROG uses the Jena TDB
loader command to load the data while SETLCONSTRUCT

programmatically load the data using the Jena API’s
method.

In summary, SETLPROG and SETLCONSTRUCT have
similar performance (29% difference in total process-
ing time). SETLCONSTRUCT ensures the uniqueness of
IRI creation and uses RDF as a canonical model, which
makes it more general and powerful than SETLPROG.

Besides the differences of the performances already
explained in Table 5, SETLCONSTRUCT also includes an
operation to update the members of the SDW levels,
which is not included in SETLPROG. Since the ETL pro-
cess for our use case SDW did not include that opera-
tion, we scrutinize the performance of this specific op-
eration of SETLCONSTRUCT in the following.

Performance analysis of UpdateLevel operation Fig-
ure 13 shows the performance of the UpdateLevel op-
eration. To evaluate this operation, we consider two
levels: mdProperty:Recipient and mdPrope-
rty:City. We consider these two levels because
mdProperty:Recipient is the largest level (in
terms of size) in our use case, and mdProperty:Ci-
ty is the immediate upper level of mdProperty:R-
ecipient in the mdStructure:Address hierar-
chy of the dimension mdProperty:Beneficiary.
Therefore, we can record how the changes in cities
propagate to recipients, especially in Type2-update.
The sdw:Recipient level is the lowest granular-
ity level in the mdStructure:Address hierarchy;
therefore, changes in a recipient (i.e., a member of
sdw:Recipient) only affect that recipient. Fig-
ure 13a shows the processing time with the increas-
ing number of recipients. As a Type2-update creates a
new version for each changed level member, it takes
more time than a Type1-update and a Type3-update.
A Type3-update takes more time than a Type1-update
because it keeps the record of old property values be-
sides the current ones. Figure 13b shows how the size
of the target ABox increases with the increasing num-
ber of recipients. The target ABox size increases lin-
early with the increasing number of recipients (see Fig-
ure 13b) for Type2-update and Type-3 updates because
they keep additional information. However, the target
ABox size decreases with the increasing number of re-
cipients for Type1-updates; this is because the current
property-values are smaller than the older ones in size.

Figure 13c shows the processing time when increas-
ing the number of updated cities. Since sdw:City
is the immediate upper level of sdw:Recipient in
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Fig. 13. Performance of UpdateLevel based on processing time and target ABox size with the changing of the sdw:Recipient and sdw:City
members.

the mdStructure:address hierarchy, to reflect
a changed city in the target ABox, a Type2-update
creates new versions for itself as well as for the re-
cipients living in that city. Therefore, a Type2-update
takes more processing time in comparison to a Type1-
update and a Type-3 update. Figure 13d shows the tar-
get ABox size with the increasing number of cities.
The figure shows that the target ABox size for Type2-
updates increases slowly within the range from 120 to
160 (X-axis), and it indicates that the changed cities
within this range contain fewer recipients than the
cities in other ranges.

8.3.1. Comparison between SETLPROG and PDI in
processing sdw:Subsidy

In [10], we compare the performance of SETLPROG

with a non-semantic data integration tool, PDI. We
populate the SDW for sdw:Subsidy concept using

PDI. To run the process PDI takes 1903 s. On other
hand, SETL takes only 1644 s. Thus, SETL is 259 s
(13.5%) faster than PDI. PDI is much slower because
almost everything MD-related must be embedded as
UDFs or equivalent elements.

In overall, we conclude that SETLPROG is better in
performance compared to PDI and SETLCONSTRUCT.
However, SETLCONSTRUCT is a more correct and scal-
able framework. On top of that, SETLCONSTRUCT sup-
ports SDWs update.

8.4. Qualitative Evaluation

To evaluate our proposed high-level ETL qualita-
tively, we selected and interviewed two experts with
expertise across traditional ETL and semantic integra-
tion. We find that two experts are sufficient, because
both of them have 10+ years research experiences in
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Table 6
Summary of the expert interviews.

Category No. Questions Expert 1 Expert 2
Response Justification Response Justification

Q1
Is the two-layered paradigm followed by SETLCONSTRUCT

more convenient than the traditional approach?
5 Separation of Concerns 4

The intervention of more
technical users is required

Q2
Are the metadata artifacts from Definition Layer
sufficient to deal with real-case problems?

4
Extensibility by the
user would be useful

3
Complete for the ETL specific
to semantic data and
multidimensional analysis

Q3
Do you consider SETLCONSTRUCT’s target-driven approach to
build semantic data warehouses appropriate?

4 5Significance
of the proposed
paradigm

Q4
Do you consider \scon\is a valuable and notable
contribution compared to traditional ETL tools
and semantic-oriented ETL tools?

Yes Yes

Q5 Is the set of ETL operations proposed sound? 5 Okay 3
The ETL operations seem
to be correct

Q6 Are the proposed operations complete? 5 Sufficient 5Soundness and
completeness

Q7
Do you miss anything (else) in scon current
set of core ETL operations

UDFs would be useful Row normalizer/denormalizer

Q8 Do you consider automation of the mapping file is feasible? Semi-automation is feasible
Not easy to express more complex,
black box operations

Further
possibilities Q9

Do you think our approach fits in the context of Big Data
and Data Lakes (and how)?

Yes
Limited to support complex data
transformations in the Big Data context

ETL and are the architects of popular open-source ETL
tools (pygramETL [27] and QUARRY [28]). In this
section, we present a high-level summary of the expert
interviews. We follow the procedure described in [29,
30] to structure the questionnaire and the answers of
the experts. The two experts participated in the in-
terviews via email. Interviews included nine semi-
structured questions17 aimed at gathering expert opin-
ions on the significance of the proposed two-layered
RDF-based semantic data integration paradigm, com-
pleteness and soundness of the proposed set of ETL
operations, and further possibilities of the proposed ap-
proach. Table 6 shows the questions, their categories,
and the responses as well as justifications of both ex-
perts. A response is rated from 1 to 5 (1 - strongly
disagree, 2 - disagree, 3 - neutral, 4 – agree, and 5 -
strongly agree). Q4, Q7, Q8, and Q9 contain free-text
answers only.

On the significance of the proposed paradigm cat-
egory, both experts provide positive responses to all
questions. Their only suggestion is to allow technical
users to extend the metadata artifacts because ETL tool
palettes can typically be much more complex. We use
RDF as the canonical model in our paradigm, and it al-
lows users to extend metadata artifacts based on their
business requirements. Both experts think that our pro-
posed ETL operations are sound and complete con-
sidering that the ETL is specific to semantic data and

17https://drive.google.com/file/d/
1qgtijnXyLtOabnSR58LyoP3eqOizGZdZ/view?usp=sharing

multidimensional analysis. However, one of the sug-
gestions is to make the set of ETL operations open
and to introduce user-defined functions (UDFs) so that
users can write their own functions if there is a require-
ment for additional transformations (e.g., row normal-
izer/denormalizer, language conversion). In our future
work, we will introduce UDFs in the set of ETL oper-
ations. Both experts do not support complete automa-
tion of the mapping file considering the complex na-
ture of ETL scenarios. However, they think that semi-
automation is feasible. Expert 1 thinks that we can ap-
ply this two-layered RDF-based data integration ap-
proach in the context of Big data and Data Lakes.
However, Expert 2 thinks that there is a need to support
more complex data transformations.

In summary, both experts acknowledge the contri-
bution of our work and think that the set of ETL op-
erations is complete and sound to annotate a knowl-
edge base with multidimensional semantics. However,
to fit this approach in the context of Big Data and data
lakes, there is a need to include UDFs to support more
complex transformations.

9. Related Work

Nowadays, combining SW and BI technologies is
an emerging research topic as it opens interesting re-
search opportunities. As a DW deals with both inter-
nal and (increasingly) external data presented in het-
erogeneous formats, especially in the RDF format, se-
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mantic issues should be considered in the integration
process [31]. Furthermore, the popularity of SW data
gives rise to new requirements for BI tools to enable
OLAP-style analysis over this type of data [32]. There-
fore, the existing research related to semantic ETL is
divided into two lines: 1) on the one hand, the use of
SW technologies to physically integrate heterogeneous
sources and 2) on the other hand, enabling OLAP anal-
ysis over SW data.

One prominent example following the first research
line is [33], which presents an ontology-based ap-
proach to enable the construction of ETL flows. At
first, the schema of both the sources and the DW are
defined by a common graph-based model, named the
datastore graph. Then, the semantics of the datastore
graphs of the data sources and the DW are described
by generating an (OWL-based) application ontology,
and the mappings between the sources and the tar-
get are established through that ontology. In this way
this approach addresses heterogeneity issues among
the source and target schemata and finally demon-
strates how the use of an ontology enables a high de-
gree of automation from the source to the target at-
tributes, along with the appropriate ETL transforma-
tions. Nonetheless, computationally complex ETL op-
erations like slowly changing dimensions and the an-
notation of the application ontology with MD seman-
tics are not addressed in this work. Therefore, OLAP
queries cannot be applied on the generated DW.

Another piece of existing work [34] aligned to this
line of research proposes a methodology describing
some important steps required to make an SDW, which
enables to integrate data from semantic databases. This
approach also misses the annotation of the SDW with
MD semantics. [35] has proposed an approach to sup-
port data integration tasks in two steps: 1) construct-
ing ontologies from XML and relational sources and
2) integrating the derived ontologies by means of exist-
ing ontology alignment and merging techniques. How-
ever, ontology alignment techniques are complex and
error-prone. [36] presents a semantic ETL framework
at the conceptual level. This approach utilizes the SW
technologies to facilitate the integration process and
discusses the use of different available tools to per-
form different steps of the ETL process. [26] presents
a method to spatially integrate a Danish Agricultural
dataset and a Danish Business dataset using an ontol-
ogy. The approach uses SQL views and other man-
ual processes to cleanse the data and Virtuoso for cre-
ating and storing integrated RDF data. [37] presents
UnifiedViews, an open-source ETL framework that

supports management of RDF data. Based on the
SPARQL queries, they define four types of Data Pro-
cessing Units (DPUs): Extractor, Transformer, Loader,
and Quality Assessor. However, the DPUs do not sup-
port to generate MD RDF data.

In the second line of research, a prominent paper is
[4], which outlines a semi-automatic method for incor-
porating SW data into a traditional MD data manage-
ment system for OLAP analysis. The proposed method
allows an analyst to accomplish the following tasks:
1) designing the MD schema from the TBox of an
RDF dataset, 2) extracting the facts from the ABox of
the dataset and populating the MD fact table, and 3)
producing the dimension hierarchies from instances of
the fact table and the TBox to enable MDX queries
over the generated DW. However, the generated DW
no longer preserves the SW data principles defined
in [5]; thus, OLAP analysis directly over SW data is
yet to be addressed. To address this issue, [38] in-
troduces the notion of a lens, called the analytical
schema, over an RDF dataset. An analytical schema
is a graph of classes and properties, where each node
of the schema presents a set of facts that can be ana-
lyzed by traversing the reachable nodes. [39] presents
a self-service OLAP endpoint for an RDF dataset. This
approach first superimposes an MD schema over the
RDF dataset. Then, a semantic analysis graph is gener-
ated on top of that MD schema, where each node of the
graph represents an analysis situation corresponding to
an MD query, and an edge indicates a set of OLAP
operations.

Both [38] and [39] require either a lens or a se-
mantic analysis graph to define MD views over an
RDF dataset. Since most published SW data contains
facts and figures, W3C recommends the Data Cube
(QB) [15] vocabulary to standardize the publication of
SW data with MD semantics. Although QB is appro-
priate to publish statistical data and several publishers
(e.g., [40]) have already used the vocabulary for pub-
lishing statistical datasets, it has limitations to define
MD semantics properly. The QB4OLAP [41] vocabu-
lary enriches QB to support MD semantics by provid-
ing constructs to define 1) a cube structure in terms of
different level of dimensions, measures, and attaching
aggregate functions with measures and 2) a dimension
structure in terms of levels, level attributes, relation-
ships, the cardinality of relationships among the levels,
and hierarchies of the dimension. Therefore, MD data
can be published either by enriching data already pub-
lished using QB with dimension levels, level members,
dimension hierarchies, and the association of aggre-
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gate functions to measures without affecting the exist-
ing observations [7] or using QB4OLAP from scratch
[10, 42, 43].

In [44], the authors present an approach to enable
OLAP operations on a single data cube published
using the QB vocabulary and shown the applicabil-
ity of their OLAP-to-SPARQL mapping in answering
business questions in the financial domain. However,
their OLAP-to-SPARQL mapping may not result in
the most efficient SPARQL query and requires addi-
tional efforts and a longer time to get the results as they
consider that the cube is queried on demand and the
DW is not materialized. While some approaches have
proposed techniques to optimize execution of OLAP-
style SPARQL queries in a federated setting [45], oth-
ers have considered view materialization [46, 47]. The
authors in [7] present a semi-automatic method to en-
rich the QB dataset with QB4OLAP terms. However,
there is no guideline for an ETL process to populate a
DW annotated with QB4OLAP terms.

After analyzing the two research lines, we can draw
some conclusions. Although each approach described
above addresses one or more aspects of a semantic
ETL framework, there is no single platform that sup-
ports them all (target definition, source-to-target map-
pings generation, ETL generations, MD target pop-
ulation, and evolution). To solve this problem, we
have proposed a Python-based programmable seman-
tic ETL (SETLPROG) framework [10] that provides a
number of powerful modules, classes, and methods
for performing the tasks mentioned above. It facili-
tates developers by providing a higher abstraction level
that lowers the entry barriers. We have experimen-
tally shown that SETLPROG performs better in terms
of programmer productivity, knowledge base quality,
and performance, compared to other existing solutions.
However, to use it, developers need a programming
background. Although SETLPROG enables to create an
ETL flow and provides methods by combining several
tasks, there is a lack of a well-defined set of basic se-
mantic ETL constructs that allow users more control
in creating their ETL process. Moreover, how to up-
date an SDW to synchronize it with the changes tak-
ing place in the sources is not discussed. Further, in
a data lake/big data environment, the data may come
from heterogeneous formats, and the use of the rela-
tional model as the canonical model may generate an
overhead. Transforming JSON or XML data to rela-
tional data to finally generate RDF can be avoided by
using RDF as the canonical model instead. To this end,
several works have discussed the appropriateness of

knowledge graphs for data integration purposes and
specifically, as a canonical data model [48–50]. An ad-
ditional benefit of using RDF as a canonical model
is that it allows adding semantics without being com-
pliant to a fixed schema. The present paper presents
the improvements introduced on top of SETLPROG to
remedy its main drawbacks discussed above. As there
are available RDF Wrappers (e.g., [51, 52]) to con-
vert another format to RDF, in this paper, we focus on
only semantic data and propose an RDF-based two-
layered (Definition Layer and Execution Layer) inte-
gration process. We also propose a set of high-level
ETL constructs (tasks/operations) for each layer, with
the aim of overcoming the drawbacks identified above
for SETLPROG. We also provide an operation to update
an SDW based on the changes in source data. On top
of that, we characterize the ETL flow in the Definition
Layer by means of creating an RDF based source-to-
target mapping file, which allows to automate the ETL
execution flows.

10. Conclusion and Future Work

In this paper, we proposed a framework of a set
of high-level ETL constructs to integrate semantic
data sources. The overall integration process uses the
RDF model as canonical model and is divided into
the Definition and Execution Layer. In the Defini-
tion Layer, ETL developers create the metadata (target
and source TBoxes, and source-to-target mappings).
We propose a set of high-level ETL operations for
semantic data that can be used to create ETL data
flows in the Execution Layer. As we characterize the
transformations in the Definition Layer in terms of
source-to-target mappings at the schema level, we are
able to propose an automatic algorithm to generate
ETL data flows in the Execution Layer. We devel-
oped an end-to-end prototype SETLCONSTRUCT based on
the high-level constructs proposed in this paper. We
also extended it to enable automatic ETL execution
flows generation (and named it SETLAUTO). The exper-
iment shows that 1) SETLCONSTRUCT uses 92% fewer
NOTC than SETLPROG, and SETLAUTO further reduces
NOUC by another 25%; 2) usingSETLCONSTRUCT, the
development time is almost cut in half compared to
SETLPROG, and is cut by another 27% using SETLAUTO;
3) SETLCONSTRUCT is scalable and has similar perfor-
mance compared to SETLPROG.

SETLCONSTRUCT allows users to create source-to-
target mappings manually. However, an extension of
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this work is to create the mappings (semi-)automatically.
Although this kind of ETL mappings is different from
traditional ontology schema matching techniques, we
can explore those techniques to establish the relation-
ships among the concepts across the source and target
ontologies. Taking the output of this schema match-
ing approach as a suggestion, the expert can enrich the
mappings according to the business requirements [53].
As the correctness of an ontology schema matching
technique depends on the semantic-richness of the
given ontologies, besides the extensional knowledge
given in the ABox, we need to take other external
standard ontologies into account in the process of the
TBoxExtraction operation.

The source-to-target mappings act as a mediator to
generate data according to the semantics encoded in
the target. Therefore, we plan to extend our framework
from purely physical to also virtual data integration
where instead of materializing all source data in the
DW, ETL processes will run on demand. When con-
sidering virtual data integration, it is important to de-
velop query optimization techniques for OLAP queries
on virtual semantic DWs, similar to the ones devel-
oped for virtual integration of data cubes and XML
data [54–56]. Another interesting work will be to ap-
ply this layer-based integration process in a Big Data
and Data Lake environment. The metadata produced in
the Definition Layer can be used as basis to develop
advanced catalog features for Data Lakes. We will also
introduce user-defined functions (UDFs) and other rel-
evant ETL operations to make the approach fit in the
Big Data context, as suggested by the two interviewed
experts. Furthermore, we plan to investigate how to in-
tegrate provenance information into the process [57].
Another aspect of future work is the support of spatial
data [58, 59].
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Appendix A

A.1. Semantics of the Execution Layer Operations

In this section, we provide the detailed semantics of
the ETL operations described in Section 6. The oper-
ations depend on some auxiliary functions. Here, we
first present the semantics of the auxiliary functions
and then the semantics of the operations. We present
each function and operation in terms of input Param-
eters and semantics. To distinguish the auxiliary func-
tions from the operations, we use small capital letters
to write an auxiliary function name, while an operation
name is written in italics.

A.1.1. Auxiliary Functions

EXECUTEQUERY(Q, G, outputHeader) This func-
tion provides similar functionality as SPARQL SE-
LECT queries.

Input Parameters: Let I, B, L, and V be the sets
of IRIs, blank nodes, literals, and query variables. We
denote the set of RDF terms (I ∪ B ∪ L) as T for an
RDF graph G. V is disjoint from T . A query variable
v ∈ V is prefixed by the symbol ′?′. A query pattern Q
can be recursively defined as follows18:

1. An RDF triple pattern tp is a query pattern Q. A
tp

19 allows query variables in any position of an
RDF triple, i.e., tp ∈ (I∪B∪V)×(I∪V)×(T∪V).

2. If Q1 and Q2 are query patterns, then (Q1 AND
Q2), (Q1 OPT Q2), and (Q1 UNION Q2) are
also query patterns.

3. If Q is a query pattern and Fc is a filter condi-
tion then (Q FILT ER Fc) is a query pattern. A
filter condition is constructed using elements of
the set (T ∪V) and constants, the equality symbol
(=), inequality symbols (<,>,6, >), logical con-
nectivities (¬,∨,∧), unary predicates like bound,
isBlank, and isIRI plus other features described
in [19].

G is an RDF graph over which Q is evaluated and
outputHeader is an output header list, which is a list of
query variables and/or expressions over the variables
used in Q. Here, expressions are standard SPARQL ex-
pressions defined in [19].

18We follow the same syntax and semantics used in [60] for a
query pattern.

19To make it easily distinguishable, here we use comma to sepa-
rate the components of a triple pattern and an RDF triple.
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Semantics: For the query pattern Q, let µ be a partial
function that maps var(Q) to T , i.e., µ : var(Q) → T .
The domain of µ, denoted by dom(µ), is the set of vari-
ables occurring in Q for which µ is defined. We abuse
notation and say µ(Q) is the set of triples obtained by
replacing the variables in the triple patterns of Q ac-
cording to µ. The semantics of the query pattern are
recursively described below.

1. If the query pattern Q is a triple pattern tp, then
the evaluation of Q against G is the set of all
mappings that can map tp to a triple contained
in G, i.e., JQKG = JtpKG = {µ | dom(µ) =
var(tp) ∧ µ(tp) ∈ G}.

2. If Q is (Q1 AND Q2), then JQKG is the natural
join of JQ1KG and JQ2KG, i.e., JQKG = JQ1KG ./
JQ2KG = {µ1 ∪ µ2 | µ1 ∈ JQ1KG, µ2 ∈ JQ2KG,
µ1 and µ2 are compatible mappings, i.e., ∀?x ∈
dom(µ1) ∩ dom(µ2), µ1(?x) = µ2(?x)}.

3. If Q is (Q1 OPT Q2), then JQKG is the left outer
join of JQ1KG and JQ2KG, i.e., JQKG = JQ1KG =./
JQ2KG = (JQ1KG ./ JQ2KG) ∪ (JQ1KG \ (JQ2KG).

4. If Q is (Q1 UNION Q2), then JQKG = JQ1KG ∪
JQ2KG = {µ | µ ∈ JQ1KG or µ ∈ JQ2KG }.

5. If Q = (Q1 FILT ER Fc), then JQKG = {µ | µ ∈
JQ1KG ∧ µ |= Fc}, where a mapping µ satisfies
a filter condition Fc, denoted by µ |= Fc.

This function returns a set of tuples where each tu-
ple contains the values of the variables and/or the
values derived by solving the expressions defined in
outputHeader according to µ.

GETPROPERTIESFROMEXPRESSIONS(sTBox, exps) An
expression is a combination of one or more proper-
ties, operators, and SPARQL functions defined in [19].
This function returns a subset of properties of a source
TBox that are used in the given expressions.

Input Parameters: sTBox is a TBox and exps is a
set of expressions.

Semantics: For each exp ∈ exps, this function
computes the intersection of the set of IRIs used in exp
and the set of properties of sTBox. Then, it returns the
union of all intersection sets. Here, returnIRIs(exp) re-
turns the set of IRIs used in exp and P(t) is defined in
Equation 2. The semantic is defined as follows:

GETPROPERTIESFROMEXPRESSIONS(sT Box,

exps) =
⋃

exp∈exps

returnIRIs(exp)∩P(sT Box).

This function returns a set of properties.

VALIDATEEXPRESSIONS(exps,Q, flag) The source
expressions/properties (defined by map:source4Ta-
rgetPropertyValue) in property-mappings con-
tains properties. However, the outputHeader parame-
ter of EXECUTEQUERY() allows only query variables.
Therefore to extract data from an RDF graph using
EXECUTEQUERY(), the properties used in the expres-
sions/properties of property-mappings should be re-
placed by corresponding query variables. On the other
hand, to match the expressions/properties used in out-
putHeader of EXECUTEQUERY() with the expression-
s/properties (defined by map:source4TargetPro-
pertyValue) in property-mappings , the query vari-
ables used in expressions/properties need to be re-
placed by the corresponding properties. Given a set of
expressions, a query pattern, and a flag, this function
replaces the used term (either IRI or query variables) in
expressions with alternative ones from the query pat-
tern based on the flag and returns a list of the validated
expressions.

Input Parameters: exps is a list of expressions, Q
is a query pattern, and flag indicates whether it will
replace the IRIs (flag=1) or query variables (flag=0)
used in exps.

Semantics: If flag=1 the function replaces the exps
IRIs with the corresponding query variables used in
Q. For each IRI iri used in an expression, VALIDATE-
EXPRESSIONS replaces iri with the object of the triple
pattern whose predicate is iri in Q. Finally, it returns
the list of expressions, where each expression does not
contain any IRIs.

If flag=0 the function replaces the exps query vari-
ables with the corresponding predicate IRIs used in
Q. For each query variable ?q used in an expression,
it replaces ?q with the predicate of the triple pattern
whose object is ?q in Q. Finally, it returns the list of
expressions, where each expression does not contain
any query variables.

MAPPEDSOURCEINSTANCES(sc, sTBox, sABox, prop-
ertyMappings) This function returns a dictionary de-
scribing the instances of a source concept.

Input Parameters: sc is a source construct, sT Box
and sABox are the source TBox and ABox, property−
Mappings is a set of property-mappings.

Semantics: At first, this function retrieves instances
of sc with their corresponding properties and val-
ues. Here, we consider only those properties that are
directly mapped to target properties and/or used in
source expressions. Both the properties and expres-
sions are defined in propertyMappings by map:sour-
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ce4TargetPropertyValue. Then, it creates a
dictionary, a set of (key, value) pairs. In a pair, key rep-
resents an instance IRI and value in turn represents a
set of (pi, vi) pairs, where pi represents a property and
vi represents a value for pi. It is explained as follows:

MAPPEDSOURCEINSTANCES(sc, sT Box, sABox,

propertyMapping) = dictionary(EXECUTEQU-

ERY((?i,rdf:type20, sc)AND(?i, ?p, ?v)FILT ER

(?p ∈ GETPROPERTIESFROMEXPRESSIONS(

sT Box,mappedExpressions(sc, propertyMap

pings)))), sABox, (?i, ?p, ?v))).

Here, mappedExpressions(sc, propertyMappings)
returns the set of source properties/expressions (de-
fined by map:source4TargetPropertyValue)
used in propertyMappings. The dictionary((?i, ?p, ?v))
function first groups the input tuples by ?i and then
for each instance i ∈?i, it creates a set of (pi, vi) pairs,
where pi is a property of i and vi is the value for pi.
Finally, MAPPEDSOURCEINSTANCES(..) returns the
dictionary created.

GENERATEIRI(sIRI, value, tType, tTBox, iriGraph ) Ev-
ery resource in an SDW is uniquely identified by an
IRI defined under the namespace of the SDW. This
function creates an equivalent target IRI for a source
resource. Additionally, it keeps that information in the
IRI graph.

Input Parameters: sIRI is the source IRI, value is
the literal to be used to ensure the uniqueness of the
generated IRI, tType is the type of the generated IRI in
tT Box, tT Box is the target TBox, and iriGraph is the
IRI graph. The IRI graph is an RDF graph that keeps
a triple for each resource in the SDW with their corre-
sponding source IRI.

Semantics: Equation 3 formulates how to cre-
ate the IRI. First, the function checks whether there
is an equivalent IRI for sIRI in iriGraph using
lookup(sIRI, iriGraph). It returns the target IRI if
it finds an existing IRI in iriGraph; otherwise, it
generates a new IRI by concatenating prefix(tTBox)
and validate(value) for a target concept or property,
or creates an instance IRI by concatenating tType
and validate(value). Here, prefix(tTBox) returns the
namespace of tT Box; concat() concatenates the input
strings; validate(value) modifies value according to
the naming convention rules of IRIs described in [61];

C(T ) and P(T ) are defined in Equation 1 and 2. Upon
the creation of the IRI, this function adds an RDF triple
(tIRI owl:sameAs sIRI) to iriGraph.

generateIRI(sIRI, value, tType, tTBox, iriGraph )=

lookup(sIRI, iriGraph) i f lookup(sIRI, iriGraph)! =
NULL

concat(tType, “#”,

validate(value)) i f lookup(value, iriGraph) =
NULL ∧ tType ∈ (C(tT Box)
∪P(tT Box))

concat(pre f ix(tT Box),
“#”, validate(value)) i f lookup(sIRI, iriGraph) =

NULL ∧ tType /∈ (C(tT Box)
∪P(tT Box))

(3)

This function returns an IRI.

TUPLESTOTRIPLES(T, tc, Q, propertyMappings,
(i, exp1, .., expn)) As the canonical model of our in-

tegration process is RDF model, we need to convert
the instance descriptions given in the tuple format into
equivalent RDF triples. This function returns a set of
RDF triples from the given set of tuples.

Input Parameters: T is a set of tuples (1st normal
form tabular format), tc is a target construct, Q is a
query pattern, propertyMappings is a set of property-
mappings, and (i, exp1, .., expn) is the tuple format.

Semantics: Equation 4 shows the semantics of this
function. Each tuple of T represents an instance-to-
be of the target construct tc, and each expression
(expi) and the value of the expression (val(expi))
represent the corresponding target property and its
value of the instance. Here, val(expi) is the value
of an expression in a source tuple. As an expres-
sion can contain query variables and expressions
used in propertyMappings do not use query vari-
ables, VALIDATEEXPRESSIONS(expi, Q, 0) replaces
the query variables with equivalent properties from
Q, and return(x, propertyMappings) returns the tar-
get construct mapped to source construct x from
propertyMappings.

TUPLESTOTRIPLES(T, tc,Q, propertyMappings,

(i, exp1, .., expn)) =⋃
(val(i),val(exp1),..,val(expn))∈T

{{(val(i),rdf:type, tc

))} ∪
n⋃

p=1

{(val(i), return(VALIDATEEXPRESSIONS
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(expp,Q, 0), propertyMappings), val(expi))}}
(4)

This function returns a set of RDF triples.

A.1.2. Execution Layer Operations
This section gives the semantics of each operation

category-wise.
Extraction Operations

GraphExtractor(Q, G, outputPattern, tABox) This op-
eration is functionally equivalent to SPARQL CON-
STRUCT queries to extract data from sources.

Input Parameters: Q is a query pattern as defined
in EXECUTEQUERY(). G is an RDF graph over which
Q is evaluated. The parameter outputPattern is a set
of triple patterns from (I ∪ B ∪ var(Q)) × (I ∪
var(Q)×(T ∪var(Q)), where var(Q) ⊆ V is the set of
query variables occurring in Q. Here, I, B,T, and V are
the sets defined in EXECUTEQUERY(). The parameter
tABox is the location where the output of this operation
is stored.

Semantics: This operation generates the output in
two steps: 1) First, Q is matched against G to ob-
tain a set of bindings for the variables in Q as dis-
cussed in EXECUTEQUERY(). 2) Then, for each vari-
able binding (µ), it instantiates the triple patterns in
outputPattern to create new RDF triples. The result of
the query is a merged graph, including all the created
triples for all variable bindings, which will be stored in
tABox. Equation 5 formally defines it.

GraphExtractor(Q, G, outputPattern, tABox) =

⋃
th∈outputPattern

{µ(th) | µ ∈ JQKG ∧ µ(th) is a

well− f ormed RDF triple}. (5)

Transformation Operations

TransformationOnLiteral(sConstruct, tConstruct,
sTBox, sABox, propertyMappings, tABox) This opera-

tion creates a target ABox from a source ABox based
on the expressions defined in property-mappings.

Input Parameters: sConstruct and tConstruct are
a source and target TBox construct, sTBox and sABox
are the source TBox and ABox, propertyMappings is
a set of property-mappings, and tABox is the output
location.

Semantics: First, we retrieve the instances of sCon-
struct ins(c) from sABox using the EXECUTEQUERY()
function, which is formally described as follows:

ins(c)=EXECUTEQUERY(q(c), sABox,(?i, VALIDA-
TEEXPRESSIONS(list(cElements),q(c),1)).
Here:

– c = sConstruct.
– q(c)=(((?i, rdf:type, c) AND (?i,?p,?v)) FIL-

TER (?p ∈ cProperties)) is a query pattern.
– cProperties= GETPROPERTIESFROMEXPRES-

SIONS(sTBox, cElements) is the set of source
properties used in source expressions defined in
propertyMappings.

– cElements=EXECUTEQUERY((?pm, map:sour-
ce4TargetPropertyValue, ?sp), proper-
tyMappings, ?sp) is the set of source expressions
in propertyMappings defined by map:source4-
TargetPropertyValue.

– VALIDATEEXPRESSIONS(list(cElements),q(c),1)
replaces the source properties used in cElements
with the corresponding query variables from q(c)
as outputHeader parameter EXECUTEQUERY()
does not allows any properties. Since VALIDA-
TEEXPRESSIONS takes a list of expressions as a
parameter, list(cElement) creates a list for scEle-
ments.

Now, we transform all tuples of ins(c) into equivalent
RDF triples to get tABox, i.e.,

output = TUPLESTOTRIPLES(ins(c), tConstruct,
q(c), (?i, exp1, , .., expn)).

The output of this operation is output, a set of RDF
triples, which will be stored in tABox.

JoinTransformation(sConstruct, tConstruct, sTBox, tT-
Box, sABox, tABox, comProp, propertyMappings) This
operation joins and transforms the instances of source
and target based on property-mappings.

Input Parameters: sConstruct and tConstruct are a
source and target21 TBox construct, sT Box and tT Box
are the source and target TBoxes; sABox and tABox
are the source and target ABoxes; comProp is a set
of common properties between tConstruct and sCon-
struct and propertyMapping is the set of property-
mappings.

Semantics: At first, we create an ABox by tak-
ing the set union of instances (including their prop-
erties and values) of both sConstruct and tConstruct
and apply a query on the ABox using the EXE-
CUTEQUERY() function. The query pattern of the

21The term target here does not mean target schema but in the
sense it is defined in concept-mappings. Source and target both can
be either source concepts or intermediate concepts (from an inter-
mediate result).
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function joins the instances of two concepts based
on their common properties and finally the func-
tion returns a set of target instances ins(sc,tc) with
the values of the source expressions (defined by
map:source4TargetPropertyValue) in prop-
ertyMappings. As the query pattern includes triple pat-
terns from both sConstruct and tConstruct, the source
expression can be composed of both source and target
properties. This is described as follows:

ins(tc,sc)=EXECUTEQUERY ((q(tc) OPT q(sc)),uni-
on(extractIns(tc,tABox), extractIns(sc,sABox)), (?i, VAL-
IDATEEXPRESSIONS(scElements, (q(tc) OPT q(sc)),1)).
Here:

– tc=tConstruct and sc=sConstruct.
– q(tc)=((?itc, rdf:type, tc) AND (?itc,?ptc, ?vtc)

tpcom(?itc,“target", comProp) FILTER(?ptc ∈
tcProperties)) is a query pattern.

- tpcom(?itc, target, comProp) is a function
that joins a triple pattern ( i.e., AND (?itc,
scomi, ?scomi)) in q(tc) for each pair (scomi,
tcomi) ∈ comProp.

- tcProperties= GETPROPERTIESFROMEX-
PRESSIONS(tTBox, scElements) represents
the set of source properties used in source
expressions.

– q(sc)=((?isc, rdf:type, sc) AND (?isc, ?psc, ?vsc)
spcom(?isc,“source", comProp) FILTER(?psc ∈
scProperties)) is the query pattern.

- spcom(?isc, “source”, comProp) is a func-
tion that joins a triple pattern ( i.e., AND (?isc,
tcomi, ?scomi)) in q(sc) for each pair (scomi,
tcomi) ∈ comProp .

- scProperties= GETPROPERTIESFROMEX-
PRESSIONS(sTBox, scElements) represents
the set of source properties used in source
expressions.

– scElements=EXECUTEQUERY((?pm, map:sour-
ce4TargetPropertyValue, ?sp), proper-
tyMappings, ?sp) is the set of source expressions
in propertyMappings defined by map:source4-
TargetPropertyValue.

– extractInstance(c, abox)=EXECUTEQUERY(((?i,
rdf:type, c) AND (?i,?p,?v)), abox,(?i, ?p, ?v)) re-
trieves the instances (with their linked properties
and values) of the concept c from the given ABox
abox.

– union(s1, s2) returns the set union of two given
sets s1 and s2.

– VALIDATEEXPRESSIONS(list(scElements),q(sc,
tc),1) replaces the source properties used in scEle-
ments with the corresponding query variables

from q(tc,sc) as the outputHeader parameter of
EXECUTEQUERY() does not allow any proper-
ties. Since VALIDATEEXPRESSIONS takes a list
of expressions as a parameter, list(cElement) cre-
ates a list for scElements.

Now, we transform all tuples of ins(sc, tc) into equiv-
alent RDF triples to get the transformed tABox, i.e.,

output=TUPLESTOTRIPLES(ins(tc,sc), tConstruct,
q(tc,sc), (?i, exp1, , .., expn)).

The output of this operation is output, a set of RDF
triples, which will be stored in tABox.

LevelMemberGenerator(sConstruct, level, sTBox,
sABox, tTBox, iriValue, iriGraph, propertyMappings,
tABox) The objective of this operation is to create
QB4OLAP-compliant level members.

Input Parameters: sConstruct is the source con-
struct, level is a target level, sTBox and sABox are the
source TBox and ABox, iriValue is the rule of creat-
ing level members’ IRIs, iriGraph is the IRI graph,
proeprtyMappings is a set of property-mappings, and
tABox is the output location.

Semantics: First, we retrieve the instances of sCon-
struct with their properties and values, i.e.,

Ins = MAPPEDSOURCEINSTANCES(sConstruct,

sT Box, sABox, propertyMappings) (6)

To enrich level with the dictionary Ins, we define a
set of triples LM by taking the union of IdentityTriples
(for each (i,pv) pair in Ins) and the union of Descrip-
tionTriples (for each (pi, vi) pair in pv). Equation 7 de-
fines LM.

LM =
⋃

(i,pv)∈Ins

(IdentityTriples ∪

⋃
(pi,vi)∈pv

DescriptionTriple) (7)

Here:
-IdentityTriples =

{(lmIRI,rdf:type,qb4o:LevelMember),

(lmIRI,qb4o:memberOf, level)} (8)

-lmIRI =
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i i f iriValue = “sameAs
S ourceIRI”

GENERATEIRI(i, resolve(i, pv, iriValue),
range(level, tT Box, iriGraph), tT Box)

i f range(level, tT Box)!
= NULL

GENERATEIRI(i, resolve(i, pv, iriValue),
level, tT Box, iriGraph)

i f range(level, tT Box)
= NULL

(9)

-DescriptionTriple =

{(lmIRI, return(pi, property−
Mappings), GENERATEIRI(vi,
iriValue(vi), range((return(
vi, propertyMappings),
tT Box), tT Box, iriGraph))} i f targetType(return(vi,

propertyMappings), tT Box)
∈ {rollupProperty,Ob jectP−
roperty}

{(lmIRI, return(pi,
propertyMappings), vi)} i f targetType(pi, propertyMap−

pings, tT Box) = levelAttribute

(10)

Each instance of sConstruct is a qb4o:LevelMem
ber and a member of level; therefore, for each in-
stance of sConstruct, LM in Equation 7 includes two
identity triples, described in Equation 8. Equation 9
describes how to create an IRI for a level member.
As we described in Section 5, the rule for creating
IRIs can be different types. If iriValue is "sameAs-
SourceIRI" then the function returns the source IRI;
otherwise it resolves value of iriValue using the re-
solve(i, pv, iriValue) function—this function returns
either the value of a property/expression or next in-
cremental value—, and finally it creates a new IRI
by calling the GENERATEIRI() function. As some
datasets (e.g., [42]) use the IRI of the level to create the
IRIs of its members, whereas others (Eurostat (https:
//ec.europa.eu/eurostat/data/database), Greece (http://
linked-statistics.gr/) linked datasets) use the IRI of the
range of the level, we generalize it using Equation 9. If
a range exists for the target level, the IRI of that range
is used as a target type— the type of the resources for
which IRIs will be created— for creating IRIs for the
members of that level (second case in Equation 9); oth-
erwise, the level’s IRI is used as a target type (third
case in Equation 9). Here, range(level, tT Box) returns
the range of level from tT Box.

Equation 10 creates a triple for each (pi, vi) pair of
Ins (in Equation 6). If pi corresponds to either an ob-
ject property or a rollup property in tT Box, then a new
IRI is created for vi and the target type of the IRI is
the range of the target construct that is mapped to pi

(first case in Equation 10). Here, return(x,mappings)
function returns the target construct that is mapped
to x from the set of property-mappings mappings;
targetType(x, tT Box) returns the type of a target con-

struct x from tTBox; and iriValue(v) retrieves the value
to be used to create the IRI. If v is a literal, it simply
returns it, otherwise, it splits v by either “/" or “#" and
returns the last portion of v. If pi corresponds to a level
attribute (i.e., datatype property), then the object of the
triple generated for the level member will be the same
as v (second case in Equation 10).

The output of this operation is LM and the operation
stores the output in tABox.

ObservationGenerator(sConstruct, dataset, sTBox,
sABox, tTBox iriValue, iriGraph, propertyMappings,
tABox): This operation creates QB4OLAP-compliant
observations from the source data.

Input Parameters: sConstruct is the source con-
struct, dataset is a target QB dataset, sT Box and
sABox are the source TBox and ABox, iriValue is the
rule of creating level members’ IRIs, iriGraph is the
IRI graph, proeprtyMappings is a set of property-
mappings, and tABox is the output location.

Semantics: First, we retrieve the instances of sCon-
struct with their properties and values using Equa-
tion 6. To populate dataset with the dictionary Ins, we
define a set of triples OB which is equivalent to LM in
Equation 7.

IdentityTriples = {(oIRI, rdf:type, qb:Observ

ation), (oIRI, qb:dataset, dataset)} (11)

oIRI ={
i i f iriValue = “sameAs

S ourceIRI”
GENERATEIRI(i, resolve(i, pv,
iriValue), dataset, tT Box, iriGraph) otherwise

(12)

DescriptionTriple =
{(oIRI, return(pi,
propertyMappings), lmIRIo)} i f targetType(return(pi,

propertyMappings), tT Box)
= LevelProperty

{(oIRI, return(pi,
propertyMappings), vi)} i f targetType(return(pi,

propertyMappings), tT Box)
= MeasureProperty

(13)
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lmIRIo =

GENERATEIRI(vi, iriValue(vi),
range(return(pi, property−
Mappings), tT Box),
tT Box, iriGraph) i f range(return(pi, propertyM

appings), tT Box))! = NULL
generateIRI(vi, iriValue(vi),
return(pi, propertyMappings)
, tT Box, iriGraph) i f range(return(pi, propertyM

appings), tT Box)) = NULL

(14)

Each instance of sConstruct is a qb:Observation
and the QB dataset of that observation is dataset;
therefore, for each instance of sConstruct, OB in
Equation 7 includes two identity triples. Equation 11
redefines Equation 8 for OB. Equation 12 describes
how to create an IRI for an observation. If iriValue
is “sameAsSourceIRI" then the function returns the
source IRI; otherwise it generates an observation IRI
by calling the GENERATEIRI() function. Equation 13
redefines Equation 10 for OB. For each (pi, vi) in the
dictionary, the equation creates a triple. If pi represents
a level in the target, the predicate of the triple is the
corresponding level of pi and the object of the triple is
a level member of that level. Equation 14 shows how
to create the IRI for the object (level member) of that
triple. If pi represents a measure property in the target,
the predicate of the triple is the corresponding target
measure property of tT Box and the object of the target
triple is similar to vi.

The output of this operation is OB, which will be
stored in tABox.

ChangedDataCapture(nABox, oABox, flag) This op-
eration triggers either the SDW evolution (i.e., en-
riched with new instances) or update (i.e., reflect the
changes in the existing instances).

Input Parameters: nABox and oABox are the sets
of triples that represent the new source data and the
old source data, flag indicates the type of difference the
operation will produce. If flag= 0, the operation pro-
duces the new instances, and if flag= 1, the operation
produces the set of updated triples (i.e., the triples in
oABox updated in nABox).

Semantics: Here, nABox and oABox both are a set
of triples where first element of each triple corresponds
to a level member in the target, second element rep-
resents a property (either a level attribute or a rollup
property) and the third element represents a value
of the property for that instance. First, we retrieve
the sets of instances from nABox and oABox using
the EXECUTEQUERY() function, shown as follows:
InsnABox = EXECUTEQUERY((?i,rdf:type, ?v),

nABox, ?i)
InsoABox = EXECUTEQUERY((?i,rdf:type, ?v),
oABox, ?i)

The set difference of InsnABox and InsoABox gets the
new instances, i.e., Insnew = InsnABox − InsoABox. We
get the description (properties and their values) of new
instances using Equation 15.

InsDesnew =
⋃

i∈Insnew

EXECUTEQUERY((?s, ?p, ?v)

FILT ER(?s = i)), nABox, (?s, ?p, ?v)) (15)

To get the triples that are changed over time, we first
remove the description of new instances (derived in
Eq. 15) from newABox i.e., InsDesold = newABox −
InsDesnew; then get the set of changed triples by taking
the set difference of InsDesold and oldABox, i.e.,

ChangedTriples = InsDesold − oldABox.
If (flag=0) then the output is InsDesnew, else

ChangedTriples. The output overwrites oABox.

updateLevel(level, updatedTriples, sABox, tTBox, tAB-
ox, propertyMappings, iriGraph) This operation re-
flects the changes in source to the SDW.

Input Parameters: level is a target level, updat-
edTriples is the set of updated triples (generated by the
ChangedDataCapture operation), sABox is the source
data of level, tT Box and tABox are the target TBox
and ABox, propertyMappings is the set of property-
mappings, and iriGraph is the IRI graph.

Semantics: As we consider that the changes only
occur at the instance level, not at the schema level, only
the 3rd elements (objects) of the triples of sABox and
updatedTriples can be different. For the simplicity of
calculation, we define sABox, and updatedTriples as
the following relations:

sABox = (instance, property, oldVal)
updatedTriples = (instance, property, newVal)
This operation updates tABox by deleting invalid

triples from tABox and inserting new triples that
reflect the changes. As SPARQL does not support
any (SQL-like) update statement, we define two sets
DeleteTriples and InsertTriples that contain the triples
to be deleted from tABox and inserted to tABox, re-
spectively. To get the final tABox, we first take the
set difference between tABox and DeleteTriples us-
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ing Equation 16 and then, take the union of tABox and
InsertTriples using Equation 17.

tABox = tABox− DeleteTriples (16)

tABox = tABox ∪ InsertTriples (17)

To get the updated objects and old objects of triples
for source instances, we take the natural join between
updatedTriples and sABox, i.e.,

NewOldValues = updatedTriples 1 sABox

(18)

We define DeleteTriples and InsertTriples as

DeleteTriples =
⋃

(i,p,nV)∈ updatedTriples

del(i, p, nV)

(19)

InsertTriples =
⋃

(i,p,nV,oV)∈ NewOldValues

in(i, p, nV, oV)

(20)

The del(i, p, nV) and in(i, p, nV) functions depends
on the update type of the level attribute correspond-
ing to p. We retrieve the update type of the level at-
tribute from tT Box using Equation 21. The update-
Type(prop,tTBox) function returns the update type of a
level attribute prop from tTBox (see the blue-colored
rectangle of Figure 1).

updateType = (updateType(return(p,

propertyMappings), tT Box)) (21)

In the following, we describe how the functions,
del(i, p, nV) and in(i, p, nV, oV) are defined for differ-
ent values of updateType.

If updateType= Type-1 update
If updateType is Type-1 update, the new value of

the property will replace the old one. Therefore, the
triple holding the old value for the property will be
deleted from tABox and a new triple with the up-
dated value of the property will be inserted into tABox.
Equation 22 defines del(i, p, nV) for the Type-1 up-

date. For an instance i in the source, the existing equiv-
alent IRI in the target can be retrieved from the IRI
graph iriGraph, i.e., IRIi = lookup(i, iriGraph). re-
turn(p, propertyMappings) in Equation 22 returns the
target level attribute that is mapped to p from proper-
tyMappings.

del(i, p, nV) = EXECUTEQUERY(((?i, ?p, ?val)

FILT ER (?i = IRIi && ?p = return(p, property

Mappings))), tABox, (?i ?p ?val)) (22)

Equation 23 describes how to create an RDF triple
for the Type-1 update. First, we retrieve the equiv-
alent value of oV in the target using Equation 24.
As the retrieved value can be either a literal or an
IRI, we create the object of the triple by replac-
ing the oV portion of that value with nV . The re-
place(org_str, search_pattern, replace_pattern) func-
tion updates the string org_str by replacing the sub-
string search_pattern with replace_pattern. The sub-
ject of the output RDF triple is the level member equiv-
alent to i and the predicate is the target property equiv-
alent to p.

in(i, p, nV, oV) = {(IRIi, return(p,mapping),

replace(targetValue(i, p), oV, nV)} (23)

where,

targetValue(i, p) = EXECUTEQUERY((IRIi,

return(p,mapping), ?v), tABox, ?v) (24)

If updateType= Type-3 update
Like the Type-1 update, Type-3 update also replaces

the old property value with the current one. Besides,
it also keeps the old property value as the latest old
property value. Therefore, the triples that contain the
current and old property value should be removed from
the target. Equation 25 defines del(i,p,nV) for the Type-
3 update, which retrieves the triples containing both
current and old property values.

As besides new value Type-3 keeps the latest old
value of the property by adding another property,
we define in(i,p,nV,oV) in Equation 26 which creates
a triple for the new value and a triple for the old
one. For a property property, concat(property, “_old-
Value") creates a property to contain the old value of
the property by concatenating the “_oldValue” with
property. The function targetValue(i, p) returns the
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objects of triple whose subject and predicate corre-
spond to i and p, defined in Equation 24.

del(i, p, nV) = EXECUTEQUERY(((?i, ?p, ?val)

FILT ER(?i = IRIi && ?p ∈ (return(p, property

Mappings), concat(return(p, propertyMappings),

“_oldValue”))), tABox, (?i, ?p, ?val)) (25)

in(i, p, nV, oV) = {(IRIi, return(p,mapping),

replace(targetValue(i, p), oV, nV), (IRIi, concat

(return(p, propertyMappings), “_oldValue”),

targetValue(i, p))} (26)

If updateType= Type-2 update
In Type-2 update, a new version for the level mem-

ber is created (i.e., it keeps the previous version and
creates a new updated version). Since the validity in-
terval (defined by type2:toDate) and status (de-
fined by type2:status) of the previous version
need to be updated, triples describing the validity in-
terval and status of the previous version should be
deleted from tABox. Equation 27 defines del(i, p, nV)
for Type-2 update. The first operand of the union in
Equation 27 retrieves the expired triples of IRIi (the
level member corresponding to i) from tABox. As
the level of IRIi can be an upper level in a hierar-
chy, the validity intervals and the status of the level
members of lower levels referring to IRIi need to be
updated, too. Therefore, the current validity intervals
and status of the associated level members will also
be deleted. The second operand of union in Equa-
tion 27 getExpiredTriplesAll(IRIi) returns the set of
expired triples of the members of all lower levels re-
ferring to IRIi (described in Equation 28). The func-
tion getTriplesImmediate(IRIi) returns the set of ex-
pired triples of the members of immediate child level
referring to IRIi (described in Equation 29).

del(i, p, nV) = EXECUTEQUERY(((IRIi, ?p, ?val)

FILT ER (?p ∈ (type2:toDate,

type2:status))), tABox, (IRIi, ?p, ?val))

∪ getExpiredTriplesAll(IRIi) (27)

getExpiredTriplesAll(IRIi) =

⋃
(ic p v) ∈ getExpiredTriplesImmediate(IRIi)

getExpiredTriplesAll(ic) (28)

getExpiredTriplesImmediate(IRIi) =

EXECUTEQUERY((?ic, ?p, IRIi) AND (?ic,

rdf:type,qb4o:LevelMember) AND (?ic,

?p, ?v) FILT ER (?p ∈ (type2:toDate,

type2:status))), tABox, (?ic, ?p, ?val))
(29)

To reflect the changes in the target, a new version of the
level member (with the changed and unchanged prop-
erty values) is created. Equation 30 defines in(i,p,nV,oV)
for Type-2 update. The IRI for the new version of
IRIi is newIRIi = updateIRI(IRIi, iriGraph). The up-
dateIRI(iri, iriGraph) function updates the existing IRI
iri by appending the current date with it and returns the
updated one. An RDF triple is generated for nV , where
the object is composed by replacing the old value
with the new value, the predicate is the target level
attribute equivalent to p, and the subject is newIRIi

(first operand of the union operation in Equation 30).
The call of update2Insert(irio, irin,cp) in Equation 30
returns the triples required to reflect the changes in
tABox. Here, irio and irin are the old and new version
(IRI) of a level member and cp is the predicate of the
updated triple (i.e., the property whose value has been
changed). The values of type2:status for new and
existing versions are set to “Current" and “Expired",
respectively. The validity interval of existing version is
ended on sysdate()-1 and the validity interval of new
version is from sysdate() to “9999-12-31". The sys-
date() returns the current date in year-month-day for-
mat as we consider that at most one update operation
can be applied on the SDW in a day. The value “9999-
12-31" in the type2:toDate indicates that the in-
stance is still valid; this is a usual notation in tem-
poral databases [11]. As the new version of the level
member also contains the triples for its unchanged
properties, we retrieve the triples of a level mem-
ber’s old version irio with unchanged properties using
retrieveTriples(irio, cp) which returns all triples of irio
except the triples with the properties cp (changed prop-
erty), type2:toDate, type2:fromDate, and
type2:status (described in Equation 32). We re-
place the IRI of old version with the new one using the
replace() function. To propagate the current version to
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its descendants (i.e., the level members those are asso-
ciated to irio); the function updateAssociates(irio, irin)
creates new versions for the associated members of
all lower levels in the hierarchy so that they refer to
the correct version (described in Eq. 33). The func-
tion getAssociates(irio) returns the set of triples that
describe the members that are connected to irio with a
property. For each member connected to irio, we cre-
ate a new version of it and also recursively update the
members dependent on it using Equation 35.

in(i, p, nV, oV) =

{(newIRIi, return(p, propertyMappings),

replace(targetValue(i, p), oV, nV)} ∪

update2Insert(IRIi, newIRIi, return(p,

propertyMappings)) (30)

update2Insert(irio, irin, cp) =

{(irio,type2:status, “Expired”),

(irio,type2:toDate, sysdate()− 1),

(irin,type2:fromDate, sysdate()),

(irin,type2:toDate, “9999− 12− 31”),

(irin,type2:status, “Current”)}

∪ replace(retrieveTriples(irio, cp), irio, irin))

∪ updateAssociates(irio, irin) (31)

retrieveTriples(lm, cp) = EXECUTEQUERY(((lm,

?p, ?v) FILT ER (?p /∈ (cp,type2:toDate,

type2:fromDate,type2:status))),

tABox, (lm, ?p, ?v)) (32)

updateAssociates(irio, irin) =⋃
(ic,p)∈getAssociates(irio)

recursiveU pdate(ic, p)

(33)

getAssociates(irio) = EXECUTEQUERY

(((?ic, ?p, irio) AND (?ic,rdf:type,qb4o:

LevelMember)), tABox, (?ic, ?p)) (34)

recursiveU pdate(ic, p) =

{(updateIRI(ic, iriGraph), p, ic)} ∪

update2Insert(ic, updateIRI(ic, iriGraph), p)
(35)

This operation updates the target ABox, tABox.
We refer to [10] for the semantics of the Exter-

nalLinking operation and to [13] for the semantics of
the MaterializeInference operation.
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