o J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Semantic Web 0 (2020) 1-0 1
10S Press

Differential Privacy and SPARQL

1

Carlos Buil-Aranda?, Jorge Lobo and Federico Olmedo ¢

2 Departamento de Informdtica, Universidad Técnica Federico Santa Maria and IMFD Chile Avda Esparia 1680,
Valparaiso Chile

E-mail: cbuil @inf.utfsm.cl

b Universidad Pompeu Fabra, ICREA, Roc Boronat 148, Barcelona, Spain

E-mail: jorge.lobo@icrea.cat

¢ Departamento de Ciencias de la Computacion, Universidad de Chile and IMFD Chile, Chile, Beaucheff,
Santiago Chile

E-mail:

Abstract. Differential privacy is a framework that provides formal tools to develop algorithms to access databases and answer
numerical and statistical queries with quantifiable accuracy and privacy guarantees. The notions of differential privacy are defined
independent of the data model and the query language. Most results have been on aggregation queries such as counting or finding
maximum or average values, and on grouping queries over aggregations such as the creation of histograms. The data model has
been typically the relational model and the query language SQL. However, good realizations of deferential privacy for queries
that required joins had been limited. This has imposed severe restrictions on applying differential privacy in RDF knowledge
graphs and SPARQL. By the simple nature of RDF data, most interesting queries accessing RDF graphs will require intensive use
of joins. Recently though, new techniques have been developed that can be applied to many types of joins in SQL with reasonable
results. This opened the question of whether these new definitions can be transferred to RDF and SPARQL. In this paper we
provide a positive answer to this question by presenting an algorithm that can answer count queries over a large class of SPARQL
queries that guarantees differential privacy, if the RDF graph is accompanied with some natural semantic information about its
structure. We have implemented our algorithm and conducted several experiments, showing the feasibility of our approach for
large databases. Our aim has been to present an approach that can be used as a stepping stone towards extensions and other
realizations of differential privacy for SPARQL and RDF.

Keywords: Differential Privacy, SPARQL

1. Introduction “Privacy is associated with liberty, but it is also asso-

ciated with privilege (private roads and private sales),

As many social norms, privacy, or the right to pri-
vacy, is an evolving term that is invoked in many con-
texts as eloquently described by Louis Menand in [1]:

ICarlos Buil was supported by Fondecyt Iniciacion 11170714
and by ANID - Millennium Science Initiative Program - Code
ICN17_002. Jorge Lobo was partially supported by the Span-
ish Ministry of Economy and Competitiveness under Grant Num-
bers: TIN-2016-81032-P, MDM-2015-052, and the U.S. Army Re-
search Office under Agreement Number W911NF1910432. Fed-
erico Olmerdo was also supported by ANID - Millennium Science
Initiative Program - Code ICN17_002

with confidentiality (private conversations), with non-
conformity and dissent, with shame and embarrass-
ment, with the deviant and the taboo (...), and with sub-
terfuge and concealment".

In order to get some formal underpinning of pri-
vacy in the context of electronic data collection and
publishing, Li et al [2] have looked at recent privacy
breaches, studied their general characteristics, and
concluded, perhaps not surprising, that an electronic
privacy breaches always ended with giving an attacker
the ability to identify using public data whether an in-

1570-0844/20/$35.00 (© 2020 — IOS Press and the authors. All rights reserved

=W N

©w o g o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

mailto:cbuil@inf.utfsm.cl
mailto:jorge.lobo@icrea.cat
mailto:\protect

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

2 Differential Privacy and SPARQL

dividual is member of a set or class that had been in-
tended to be anonymous (e.g., the class of individuals
with high cholesterol). Hence, they define preservation
of privacy as avoiding privacy breaches in the sense of
not disclosing set memberships of individuals.

For the public good, such the advance of public
health, or the fair distribution of government resources,
data is frequently made public. There are also situ-
ations in which governmental and commercial orga-
nizations collect and analyze data to improve or pro-
vide new services. But even in such cases, society ex-
pects certain level of privacy on the way these organi-
zations use the data. Publishing data with perfect pri-
vacy means that no assumption can be made about the
prior knowledge an attacker may have about the sup-
posedly anonymous set. Under this assumption, there
would be little utility in published data if prefect pri-
vacy is expected [2, 3]. Therefore, the research com-
munity has looked at weaker definitions of "accept-
able" privacy. Useful concepts like k-anonymity [4], I-
diversity [5] and ¢-closeness were developed but they
were shown to have weak privacy guarantees.

In spite of its limitations, a privacy notion that has
gained a lot of acceptance because of its formal prop-
erties is Differential Privacy. We will present precise
definitions later in the paper, but informally, differ-
ential privacy tries to hide the identity of individuals
that are members of a particular class, while still pro-
viding some guarantees about the utility of the pub-
lished data about the class. The basic principle is sim-
ple. Given a universe ID of all possible data sets and a
query f : D — R that can be applied to a dataset D in
D and results in a value of an abstract domain R, the
result f(D) is deferentially private if it is indistinguish-
able from the query applied to similar datasets, D'.
Instances of differential privacy use randomized algo-
rithms to answer queries, indistinguishability is guar-
anteed with a specific minimal probability, and the util-
ity of the answer is assessed by how diverse answers
among similar datasets must be in order to maintain
the differential privacy required. Smaller the diversity
required, the better the utility. This is called in the lit-
erature sensitivity of the query. Calculating sensitivity
is not trivial and approximations are used.

The notions of differential privacy are defined in-
dependently from the data model and query language,
but most results have been on aggregation queries and
grouping over aggregations in data sets in the con-
text of relational databases and the query language
SQL. Aggregations are queries such as counting, find-
ing maximum, minimum or average values of mem-

bers of a subset of the data that has certain property.
Grouping is the creation of histograms based on aggre-
gations. However, until recently, in order to get reason-
able approximations of sensitivity, good realizations of
deferential privacy for queries that required joins were
limited [6]. This put severe limitations on applying dif-
ferential privacy in RDF repositories and SPARQL.
By the simple nature that data in RDF repositories
is stored in binary relations, most interesting queries
will require operations equivalent to joins. Nonethe-
less, in 2018, Johnson et al [7] introduced a new ap-
proximation of sensitivity that can be applied to many
types of SQL joins with very reasonable results. This
opened up the question of whether this new definition
can be transferred to RDF and SPARQL. In this pa-
per we provide a positive answer to this question by
presenting an algorithm that can answer count queries
over a very large class of SPARQL queries that guar-
antees differential privacy. This result has been pos-
sible by introducing the notion of a Differential Pri-
vacy Schema that allows us to redefine Johnson et al’s
sensitivity approximation of SQL queries in the appro-
priate terms for answering SPARQL queries. A Dif-
ferential Privacy Schema groups sets of RDF tuples
into sub-graphs that can be then used as single units
for privacy protection. Examples show that this type
of schema naturally arises from the semantics of the
data stored in the tuples, and it should not be diffi-
cult for an administrator to define. We demonstrate the
applicability of our proposed sensitivity approxima-
tion by implementing a Differential Privacy query en-
gine that uses the approximation to answer counting
and grouping SPARQL queries, and evaluate the im-
plementation running simulations using the Wikidata
knowledge base. We also run simulations using the
Watdiv evaluation framework to find classes of queries
that can be answered with reasonable utility in smaller
datasets.

The rest of the paper is organized as follows: in
Section 2 we introduce the readers with the funda-
mental concepts of Differential Privacy. We present in
Section 3 the core concepts of SPARQL used within
the paper. It is in this section where we introduce the
concept of Differential Privacy Schema. In Section 4
we prove the correctness of our proposed approxima-
tion to sensitivity and in Section 5 we evaluate the ef-
fectiveness of our proposed approximation in an im-
plementation that we apply to both synthetic and real
world datasets and queries. We present related work in
Section 6, and we conclude the paper in Section 7.

© O d o U W NP

s s s s s s s D D DWW W W W WwWw W W W NNNNNDNNDNNN R R R R R R e R e e
H O W 0 < o 0 W N O W Jdo 0 WN PR O VW Do U W N R O LV ®Jd o W NP O

Differential Privacy and SPARQL 3

2. Background

We now describe the framework of differential pri-
vacy, the problem that arises when applying differen-
tial privacy to SQL queries with general joins and how
it has been addressed.

2.1. Definition

Intuitively, a randomized algorithm is differentially
private if it behaves similarly on similar input datasets.
To formalize this intuition, the framework of differ-
ential privacy relies on a notion of distance between
datasets. We model datasets as a multiset of tuples
and we say that two datasets are k-far apart if one
can be obtained from the other by changing the value
of k tuples. Formally, this corresponds to the notion
of bounded differential privacy [8], where all datasets
separated by a finite distance share the same number
of tuples. In the reminder, we let ID be the set of all
possible datasets, and use d(D, D’) = k to denote that
D,D’ € D are k-far apart. In particular, two datasets
D,D’ € D that are 1-far apart are called neighbours,
written D ~ D',

Definition 1. Let €,6 > 0. A randomized algorithm A
is (e, 6)-differentially private if for every pair of neigh-
bour datasets D, D’ € D and every set S C range(A),

PrlA(D) € S] < e“PrlA(D') € S| +6.

This inequality establishes a quantitative closeness
condition between Pr[A(D) € S| and PrlA(D’) € §],
the probabilities that on inputs D and D', the out-
come of A lays within S. The smaller the € and §, the
closer these two probabilities are, and therefore, the
less likely that an adversary can tell A(D) and A(D’)
apart. In other words, parameters € and ¢ quantify the
privacy guarantees of the randomized algorithm.

Multi-table datasets Our notions of dataset and dis-
tance between datasets can be extended to collections
of datasets as follows: A dataset formed by multi-
ple sets Tq,...,T, will contain (tagged) data points
belonging to 74,...,7T, and the distance between
two such datasets D, D’ will reduce to d(D,D’) =
S d(mi(D),m(D")), mi(D) representing the subset
of data points from D belonging to T;. In the context
of relational databases, the T;s correspond to relational
tables.

2.2. Realization via Global Sensibility

Establishing differential privacy for numeric queries
of limited sensitivity is relatively simple. The Lapla-
cian mechanisms [9] says that we can obtain a dif-
ferentially private version of query f: D — R by
simply perturbing its output: On input D, we return
f(D) plus some noise sampled from a Laplacian dis-
tribution. The noise must be calibrated according to
the global sensitivity GSy of f, which measures its
maximum variation upon neighbour datasets; formally,
GS; = maxp (o | /(D) — F(D)].

Theorem 1. Given a numeric query f: D — R of
global sensitivity GSy, the randomized algorithm

A(D) = f(D)+Lap(%¥)

is an (€, 0)-differentially private version of f.

Here Lap(1) represents sample from the Laplacian dis-
tribution with parameter A, a symmetric distribution
with probability density function pdf(x) = 2—1&6*“‘/ 4
mean 0 and variance 24%. Parameter A measures how
concentrated the mass of the distribution is around its
mean 0: The smaller the A, the less noise we add to
the true query result and therefore, the more faithful
the mechanism becomes. In the realm of differential
privacy, this "faithfulness" property is referred to as
the mechanism utility. An important point here is that
utility and privacy are always conflicting requirements:
adding more noise results in more private and—at the
same time—less useful mechanisms.

In practice, when implementing the Laplacian mech-
anism we approximate the global sensibility of queries
by exploiting their structures: Numeric queries are typ-
ically constructed by first transforming the original
dataset using some standard transformers and by re-
turning as final result some aggregation on the so ob-
tained dataset. For example, we join two tables, fil-
ter the result (dataset transformations) and return the
count (aggregation) of the obtained table. The global
sensitivity of such a query can be estimated from the
so-called stability properties of the involved transform-
ers. Intuitively, a stable transformer can increase the
distance between nearby datasets at most by a multi-
plicative factor. Formally, we call a dataset transformer
T:D — D a-globally-stable if d(T(D),T(D")) <
ad(D,D’) for every D,D’ € D. Transformers with
bounded global stability yield bounded global sensi-
tivities: GSypor < @GSy whenever T is a-globally-
stable.

O 0 d oy U s W NP

Gr O s s s s R B R D D W W W W W W W W W W NN NN NN R B R B R R B e e
H O W I o U W NP O W W d oUW N R O WV o Jo U s W NP O VW W Jdo U s W NP O

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

4 Differential Privacy and SPARQL

Conversely, the use of transformers with unbounded
stability might result in queries of unbounded sensitiv-
ity. A prominent example of a transformer exhibiting
this problem is join. Assume we join two tables, say #;
and #, by matching a pair of their attributes. A modi-
fication in a mere tuple from #; may result in the addi-
tion and/or deletion of an unpredictable number of tu-
ples in the result of the join, leaving elementary queries
such as counting the number of tuples in a join already
out of the scope of the Laplacian mechanism. The ap-
plicability of differential privacy approaches based on
query global sensitivity is thus rather limited.

2.3. Realization via Local Sensibility

To handle queries that involve transformers of un-
bounded stability, such as joins, we require the use
of more advanced techniques. The Laplacian mecha-
nism calibrates noise according to the query, overlook-
ing the fact that queries are done on concrete datasets,
hence the employed noise could be potentially cus-
tomized for each dataset. Nissim et al. show how to
exploit this idea of instance-based noise [10, 11]. Their
approach relies on the notion of local sensitivity.

Definition 2. The local sensitivity LSj(rk) (D) at dis-
tance k € Ny of a numeric query f: D — R on dataset
D € D is defined for k = 1 as

(1) ’
LS./ (D) = D) — f(D")].
;D) =, max |f(D) — f(D")|
And fork > 2 as
(k) (1) /v
LSY/ (D) = LS/ (D).
S;°(D) D | {%E}g/)gk Sy (D)

When k = 1 we simply write LSy for LS}l) and refer to
it as the local sensitivity of f.

For answering a query f on dataset D, we can-
not simply use noise calibrated according to LS;(D)
because the noise level itself may reveal information
about D [7]. Instead, we should use an approximation
of LS/ that is insensitive to small variations of its input
dataset. This is captured by the notion of smooth upper
bound.

Definition 3. A function U: D — Ry is called a -
smooth upper bound of the local sensitivity LS;: D —
Ryo of query f: D — R if it satisfies the following
requirements:

1. U(D) > LS;(D) for all dataset D, and

2. U(D) < LUD") for all neighbour datasets D
and D'

We can readily achieve differential privacy by
adding noise calibrated according to a smooth upper
bound of the query local sensitivity [11, Corollary 2.4].

Theorem 2. Let f: D — R be a numeric query and
let U: D — Ry be a B-smooth upper bound of its
local sensitivity LSy. Moreover, let § € (0,1) and let
B < WZM)’ Then, the randomized algorithm

A(D) = f(D)+ Lap(2422

€
is an (€, 6)-differentially private version of f.

The benefits of this mechanism are twofold. On the
one hand, it allows handling queries that fail to have
a bounded global sensitivity, but do have a bounded
local sensitivity. These include e.g. the query we con-
sidered earlier, consisting of the count of the join be-
tween two tables. On the other hand, it does not require
computing the local sensitivity of the queries themself,
but only a smooth upper bound thereof. This is key for
its practical adoption since calculating the local sen-
sitivity of queries is computationally prohibitive: As
observed by Johnson ef al. [7], “it requires running
the query on every possible neighbour of the original
dataset”.

To apply the mechanism from Theorem 2, we must
provide a smooth upper bound for the local sensitivity
of queries. We can construct the smooth upper bound
using approximations for the local sensitivity at fixed
distances.

Lemma 1. Let f: D — R be a numeric query and as-
sume that U®) is a pointwise upper bound of the local
sensitivity LS;k) of f at distance k, that is,

u() > (D) foralDeD.
Then,
UD) = max e PUD (D)

0<k<size(D)

is a B-smooth upper bound of the local sensitivity
LS¢(D) of f on D.

The goal of Section 4 is to apply the differential pri-
vacy mechanism from Theorem 2 to SPARQL count
queries. We will study how to efficiently construct up-
pers bounds for the local sensitivity of queries at fixed
distances. To do so, we will in turn leverage local sta-
bility properties of SPARQL dataset transformers.

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

© O d o U W NP

s s s s s s s D D DWW W W W WwWw W W W NNNNNDNNDNNN R R R R R R e R e e
H O W 0 < o 0 W N O W Jdo 0 WN PR O VW Do U W N R O LV ®Jd o W NP O

Differential Privacy and SPARQL 5

3. SPARQL Preliminaries

In this Section we introduce briefly the SPARQLI.1
structural features we consider most important in the
application of Differential Privacy. These features are
those that will affect the query sensibility as presented
in Section 2. These features are divided in

1. data-driven features and
2. query structural features.

We assume the reader is familiar with the RDF data
model [12] and with SPARQL [13].

3.1. Data-driven features

In the relational database model, Differential Pri-
vacy protects the disclosure of the presence or absence
of a single tuple in the database.

In our context, where a dataset is an RDF graph G,
what we would like to protect is the disclosure of the
presence or absence of a sub-graph of G that repre-
sents the contribution of a single individual or entity to
G. We aim to protect the identity of the individual or
the entity. Hence, we want to characterize G as a set
{g1,---,&n} of sub-graphs such as each g; represents
the contribution of entity i to the dataset G = |Jg;.
Similarly to the case of relational databases, we define
graphs at distance 1 as graphs that are represented by
sets of sub-graphs of the same cardinality which differ
in a single sub-graph. In general, there might be parts
of G that are public and we don’t care to protect. We
will discuss later how we can use the information that
some portions of the graph are public to improve the
upper bounds of local sensitivity.

It will be through semantic information provided by
the administrator of the RDF graph G, that we will
be able to identify the sub-graphs that characterize G.
This semantic information will be a finite set of ba-
sic graph patterns (BGPs) plus some additional con-
straints that we will later formally define as a Differen-
tial Privacy schema. There is only a subclass of BGPs
that can be members of a Differential Privacy schema.
To identify those BGPs, we need the concept of a join
vertex from [14]. A join vertex in a BGP B is a variable
that appears either as a subject or as an object multiple
times in B. We call B a star BGP, if it is either a single
triple pattern with no join vertex, or it is a BGP with
(1) a single join vertex appearing once and only once
in every triple pattern in B, and (2) no repeated pred-
icates. We call the star simple if both the subject and
the object in every triple pattern in the star are vari-

ables. In a simple start we call the center of the star the
join vertex if there are multiple patterns in the star, or
the subject of the triple pattern in case that the star is a
singleton set.

Note that start BGPs are similar to Star queries [14],
except that in a star query the center of the star must
always appear as a subject. This is a constraint that we
do not need to impose, but it is important for every
triple patter in a star to share either its subject or its
object with the other triple patterns. A graphical repre-
sentation of a star BGP is a star with the join vertex in
the center with all property arrows either coming into
or going out from the vertex.

We say that two star BGPs are disjoint if they don’t
have predicates in common. Figures 3 and 4 show two
disjoint star BGPs with central vertex 7v0. Now we can
formally say:

Definition 4. A Differential Privacy schema P is a fi-
nite set of pair-wise disjoint simple stars.

It is obvious that because stars in a differential pri-
vacy schema do not share predicates, the evaluation of
any two BGPs over an RDF graph will use disjoint sets
of RDF triples to find the mappings. Hence, given an
RDF graph G, we will call the (RDF) graph induced
by a star BGP B from G the set of RDF triples used
to obtained the solution mappings [B]s as defined by
the standard SPARQL query semantics [13], and the
graph induced by a Differential Privacy schema P, the
union of the graphs induced by each of the star BGPs
in the schema.

We say that a graph G complies with a Differential
Privacy schemes P iff G coincides with the graph in-
duced by P from G.

Example 3.1. Take the RDF graph in Figure 1. The
graph complies with the schema
P = {{(?s1,type.701)},
{(?s2, lives, 702), (752, enemy, 703) },
{(?s4, hires, ?04), (754, has,?05)} }

This graph is partitioned into the subgraphs
g1 = {(Joker, type, Clown)},
gz = {(Gotham, type, City)},
= {(Joker, enemy, Batman), (Joker, lives, Gotham)},
g4 = {(Batman, enemy, Joker), (Batman, lives, Gotham)},
g5 = {(Gotham, hires, Clown), (Gotham, has, Police) }

Administrators must provide a Differential Privacy
schema for their RDF graphs. Such a schema always
exists for every graph since the union of all singleton
BGPs of the form {(7X, p, 7Y)} that can be defined us-
ing all predicates p that appear in G is a Differential

O 0 d oy U s W NP

Gr O s s s s R B R D D W W W W W W W W W W NN NN NN R B R B R R B e e
H O W I o U W NP O W W d oUW N R O WV o Jo U s W NP O VW W Jdo U s W NP O

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

6 Differential Privacy and SPARQL

Gotham
— S~
hires has

“
lives lives

Y

enemy —{ Joker

Figure 1. RDF graph with a three star schema

Privacy schema. This schema indicates that each RDF
triple is the contribution of a different entity and needs
privacy protection, and although this is possible, it is
not usually the case. In many situations, an entity pos-
sesses a collection of properties that are collected in a
set of RDF triples, all having a term in common, and
hence, captured by a simple star BGP, that contains: 1)
a triple pattern (?X, p, 7Y), for each predicate in the set
of RDF triples, and 2) its center is determined by the
position the common term that appears in all the triples
of the collection. Figure 1 shows an example. This is
why Star triple patterns are common SPARQL queries.
Administrators should then provide Differential Pri-
vacy schemes with the largest stars possible since, as
we will see later, it will allow better approximations of
local sensitivity.

There is a second characteristic typical of a schema
compliant graph G that we can exploit: if tp =
(?X, p,?Y) is a triple pattern in a simple star B of a
schema centered in 7X, the solution mappings u €
[tp]G. are such that the number of mappings with the
same mapping for ?X can be bound to be smaller or
equal to a constant x. In many cases k = 1. Take for ex-
ample, employees identified by a company id as sub-
jects of RDF triples with a predicate that identifies an
employee salary, or age, or seniority status, all have
k = 1. An employee might have several phone num-
bers, but the administrator can constrain the graph to
a maximum of, let’s say, 5 numbers per employee and
set k = 5. We call « the sensitivity of the triple pattern.
The definition is similar if 7Y is the center. For star
pattern S, the sensitivity of S, denoted sen(S) is the
multiplication of the sensitivities of the triple patterns
in§.

Henceforth, we assume we have an RDF graph G
that complies with a Differential Privacy schema P,
and in addition, we also know the sensitivity sen(S') of
all its triple patterns. With PP, we can get the set of sub-
graphs {g1,...,g,} of G. A graph g belongs to the set

iff there is a star pattern S € P with center 7X, a solu-
tion assignment u € [S]s and g is the graph induced
by the SPARQL pattern S FILTER 7X = u(7X). In
this case, we say that g belongs to S and denote the set
of all sub-graphs, {g1,...,8x}, by P(G). Note that for
any distinct pair of sub-graphs, g; and g;, their inter-
section is empty.

3.2. SPARQL query structural features

For queries, we continue to follow the notations
from [14] and develop differential privacy over the
SPARQL fragment of basic graph patterns with fil-
ter expressions (CBGP). In this fragment, a query is
denoted by a pair B = (B, F), where B is a BGP
and F = {fi1,...,f,} is a finite set of filter expres-
sions. B represents the SPARQL graph pattern P =
((...(BFILTER f1)...)FILTER fy), and its mean-
ing, denote by [B]g, is the multiset of solution map-
pings [P]c as defined by the standard semantics of
SPARQL queries [13]. Filter expressions will have no
disjunctions, no conjunctions, and no equalities involv-
ing two variables since these equalities can be removed
from the filters by variable renaming.? Note that nega-
tion of equalities are allowed. We also assume that in
a graph G that complies with a Differential Privacy
schema P, all predicates appearing in triple patterns of
a CBGP also appear in P.

A user query is a CBGP B that will be always
wrapped by one of the following two aggregation op-
erations:

1. COUNT(B) for which its semantics [COUNT(B)]g,
is defined as the cardinality of the multiset [B]g.

2. COUNTsy, . 7x,(B), where ?X1,...,7X, are vari-
ables that appear in B, and for which its seman-
tics [COUNTvy, _7x,(B)] . is defined as grouping
solution mappings from [B]¢ according to one or

more variable expressions 7X; ...7X,,.

Example 3.2. For the schema P of the RDF graph in
Figure 1, let

B = {(7s, lives, ?p), (s, enemy, ?e), (?e, lives, 7p),
(?s,type, 7c)}

F = {?% # Cat})

Then (B, F) is a CBGP.

Let var(E) be the set of variables that appear in the
expression E, where E can be either a CBGP, a BGP
or a Differential Privacy schema.

2Observe that F is essentially a conjunction of filters.

26

29

© O d o U W NP

s s s s s s s D D DWW W W W WwWw W W W NNNNNDNNDNNN R R R R R R e R e e
H O W 0 < o 0 W N O W Jdo 0 WN PR O VW Do U W N R O LV ®Jd o W NP O

Differential Privacy and SPARQL 7

For a simple star S and a triple pattern tp = (s, p, 0)
such as (?x, p, 7y) € S, let centers (tp) = s if 7x is the
center of S'; otherwise centers (tp) = o.

For any query B = (B, F), we can naturally define
from a Differential Privacy schema P, a split B_p of B
as follows: B-p = {Bj,...,B,}iffevery B; € B.p is
a maximal subset of B for which there exists a simple
star S € P such that pred(B;) C pred(S) and for
any two triple patterns, 7p,tp’ € B;, centers(tp) =
centers (tp’). Because the stars in P are disjoint and
the B;’s are maximal, this split is unique. We will call
S the covering star of B;.

Example 3.3. From our previous CBGP example,
B_-p has three members:

By = {(7s, lives, ?p),(?s, enemy, ?e)}

By = {(7s, enemy, ?e),(7e, lives, 7p)}

By = {(7s,type, 7c)}

The interest of B. p is that it lets us isolate the part
of the graph necessary to answer each B;. Let denote
by Gy, the graph induced by S ;

Lemma 2. If'S; is the covering star of B; then
[Bi]c = [Bilcs,

Then, following the terminology defined in [15] for
joins between multisets of solution mappings, we can
extend the lemma to B as follows:

Lemma 3.

[Blc = [Bilas, > [B2lcs, = - - [Bulcs,

Recall that B is such that [B]s can be evaluated
using only equi-joins. This implies that there is an
ordering of the elements in B.p such as [Bi]g, >
[Bi+1les,,, can also be done with equi-joins. In other
words, var(B;) Nvar(Biy+1) # 0. We call this order a
normal ordering of B p. For national convenience, we
will assume that the indexing we use for B p follows
a normal order.

We are now in place to define Differential Privacy
for SPARQL count and histogram queries.

4. Towards Differential Privacy for SPARQL

The goal of this section is to provide the basic no-
tions to assure privacy over SPARQL counting queries.
As we said before, a randomized algorithm is differ-
entially private if it behaves similarly on similar input

datasets. That notion is formalized by defining a dis-
tance between graphs. However, as we saw in the pre-
vious sections, the distance should be selected care-
fully, since different distance measures may give dif-
ferent privacy properties.

For the rest of the paper, we assume that there
is a fixed Differential Privacy schema P, and all
RDF graphs are compliant with this schema. The dis-
tance between two graphs, d(G1, G2) is defined when
|P(G1)] = |P(G2)|, and it will be the cardinality
of the difference, P(G1) \ P(G2), between G, and
G». Because the number of sub-graphs is the same
in P(G1) and P(G2), distance is commutative as ex-
pected.

Based on Lemma 1, we develop in this section, for a
user query Q and an RDF graph G that complies with
a Differential Privacy schema P, an upper bound Z/Iék)

of the local sensitivity Lsg), to get a S-smooth upper

bound Uy (G) of the local sensitivity LSo(G) of Q on
G. With that in mind, we turn to the concept elastic
sensitivity of Johnson et al. [7] to define such upper
bounds.

4.1. Elastic sensitivity

The main goal of Elastic Sensitivity is to provide
a sensitivity measure without losing utility in excess.
This is an open research question in the database and
privacy communities and the authors of [7] introduced
Elastic Sensitivity as a practical method to provide Dif-
ferential Privacy within Uber data analysis using rela-
tional databases and SQL.

We will redefine their notions in order to apply them
to RDF graphs and SPARQL. Thus, elastic sensitivity
of a query Q at distance k from the true graph G is de-
noted by S®)(Q, G), and it will be defined in terms of
another function that tries to capture the idea of local
stability but for CBGP queries. We will call this func-
tion the elastic stability of SPARQL transformations
defined by the BGP part of CBGPs. Given a BGP B, its
elastic stability, denoted S,g];)) #(B,G), bounds the local
sensitivity a distance k of COUNT(B).

To define elastic stability we need to count the most
popular result mapping (maximum frequency) for any
variable ?x that appears in a CBGP B given a graph G.
This can be calculated using the query

SELECT (COUNT(?v0) as?c) WHERE {70 ?p 70}

ORDER BY 0. DESC(?c) LIMIT 1

O 0 d oy U s W NP

Gr O s s s s R B R D D W W W W W W W W W W NN NN NN R B R B R R B e e
H O W I o U W NP O W W d oUW N R O WV o Jo U s W NP O VW W Jdo U s W NP O

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

8 Differential Privacy and SPARQL

We denote this value by mp(?X, B,G). we will also
need to estimate the most popular result mapping from
graphs at distance k from G, denoted by mpy(?X, B, G).
mpy is defined inductively on the cardinality of B.p =
{Bl,...,Bn}Z B B

For |B-p| = 1: mpy(?X, B,G) = mp(?X,B,G) + k *
sen(S), where S is the covering star of Bj.

For |B.p| = n+ 1: Let By € B.p, and V =
var(B-p \ {B1}) Nvar(By). Then,
mp(?v, B,G) =

arg max mpy(?v, B-p \ {B1},G) x mpy(?u, B1,G)
max uev

arg max mpy(?u, B-p \ {B1},G) x mp(?v, B1,G)
uev

We extend the definitions to a set of variables V as fol-
lows:

mp(V, B,G) = arg max mp(?v, B, G)
_ vev _
mpi(V, B,G) = arg max mpi(?v, B,G)
vev

For variables that don’t appear in B,mp(?v,B,G) =
mpi(?v, B,G) = 0. We will also define the elastic sta-
bility of a CBGP B by induction on the cardinality of
B.p ={Bj,...,B,}, and we will use the fact that the

B;’s are indexed in a normal order.

For [B.p = 1]: S%).(B,G) = sen(S), where § is the
covering star of Bj.

For |Bop| = n+ 1: Let B = B.p \ {Bi}.
We have two cases. If the covering star S of Bj
is not the covering star of any other B; € B,
SggF(Bs G) =
mpy(var(By) Nvar(B'), B1,G) x SggF(B’,G)
mpy(var(By) Nvar(B'),B',G) x S,(QIBF(Bl,G)
If the covering star S of B; is also the covering star
of another B; € B/,
S,(elgF(B,G) = mpy(var(By) Nvar(B'), B1,G) X SgBF(B’,G)+
mpy(var(By) Nvar(B'), B, G) x S,ggF(Bl,G)—&-
Skor(B1.G) x Sip(B.G)
Note that a BGP is a CBGP with F empty.

Lemma 4. For any CBGP query B = (B, F), and any
graph G compliant with schema P:

max

(k) (k)

The main observation is that when G changes in one
of its sub-graphs g;, and that sub-graph belongs to the
star pattern S, then the number of RDF tuples in G
can change in the worst case by sen(S). If these RDF

triples contribute as result mappings of a join vertex,
the number of new mappings can increase by as much
as the most popular result mapping of the joining triple
pattern. If this triple pattern is outside the scope of S.
For example, if B = {70, p, 7u), (7u, p’,7v1)}, and
the triple (s, p,0) is part of g; and o happens to be
the most popular result mapping for (?u, p’, 7v1), then
there will be at most mp(?u, (?u, p’, 7v1), G) new map-
pings in the result if (7, p’, 7v1) doesn’t belong to S .
If it does, there can be more because the same new
triple can participate twice in the same join. Formally,

Proof. The proof of this lemma follows the same strat-
egy that the proof in [7, Lemma 2] and it is by induc-
tion on the structure of B.

— Case |B-.p| = 1 where S is the covering star of
B, the sensibility is sen(S) = «, a parameter given
by the DBA.

— Case |B-p| = n + 1: we have a covering star
S 1 for partition B; and a set with n covering stars
for partitions B' = {Bs,...B,+1}. We want to
bound the number of RDF triples in G that can
change in the worst case by sen(S). First, let’s as-
sume S is not the covering star of any B; in B’.
In this case either G, or Gy from a covering star
S’ € {S2...S,} changes but not both, thus, ei-
ther SlglgF(Bl,G) =0or S,(elgF(B,-,G) = 0 where
B; € B’ (we are modifying the triples affecting
only one privacy partition schema):

1. When 8$%,.(B;,G) = 0, B', induction hy-
pothesis, may contain SIE,IB)F(B’ ,G) changed
result mappings, producing at most
mpy(var(B')Nvar(B1), B, G) x Slglgp(B’, G)
changed mappings in the joined SPARQL
pattern.

2. In the symmetric case, when S,gIBF(B’ ,G) =
0, B; may contain S,ng)F(Bl,G) = sen(Sq)
changed rows, producing at most
mpy(var(By)Nvar(B'), B,G) XSIglgF(Bl, G)
changed rows in the joined SPARQL pat-
tern.

We chose the maximum between the two val-
ues when calculating S,ggF(B, G). On the other
hand, if S; also covers another B; € B, a
change in By can also imply changes in B’. The
changes in B’ can affect the join for RDF tuples
in the original G. This, in the worst case, can

cause mpy (var(B")Nvar(B1), B,G) XSI(;Z;F(B', G)

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

© O d o U W NP

s s s s s s s D D DWW W W W WwWw W W W NNNNNDNNDNNN R R R R R R e R e e
H O W 0 < o 0 W N O W Jdo 0 WN PR O VW Do U W N R O LV ®Jd o W NP O

Differential Privacy and SPARQL 9

changed mappings in the joined SPARQL pattern.
In addition, the change in By, which may contain
S,glgF(Bl, G) = sen(S 1) changed rows, can cause
mpi(var(B1) N var(B'),B,G) x SIg];))F(Bl,G)
changed rows in the joined SPARQL pattern
from original tuples in G. We also need to con-
sider that the change allows new joins between
new rows in both B; and B’, for a total of
S,(;Z))F(Bl,G) X S,g]z))F(B’,G) changed mappings
in the joined SPARQL pattern. The sum of these
three values is what the definition of SI(QIBF(B, G)
uses.

O

As in Johnson et al. [7], this lemma leads us to our
main theorem.

Theorem 3. For any user query Q, and any graph G
compliant with schema P:

59(0.6) > Lsy)(G)

Proof. We assume that Q are SPARQL Count and
Histogram (Count with GROUP_BY) queries.

— Case Count queries: the result follows directly
from Lemma 4 since the result of the counting
query is given by the application of the sensitivity
calculation for the CBGPs in the query.

— Case Histogram (with GROUP_BY) queries. In
a GROUP_BY query each changed triple affects
two result mappings in the query since one modi-
fied triples will generate a mapping that may fall
into one group and losing that mapping another
group. Thus 28%® (0, G).

O

Our implementation of an (e, 6)-differential privacy
algorithm 4 from Theorem 2 uses 81(;3 » to implement

U according to Lemma 1.

5. Evaluation

Having characterized formally how an algorithm
can be implemented to enforce Differential Privacy on
SPARQL queries based on privacy schemes, in this
section, we present an empirical evaluation of how
the algorithm would behave in real scenarios. Alug et
al. [14] have identified three main types of SPARQL
queries, namely, Star, Snowflake and Path (or Linear)

shaped queries. Analysis of real SPARQL query logs
had confirmed that this classification covers most user
queries in practice. Our evaluation presents the results
based on this query classification. We devised our eval-
uation in two parts. First, we used data from the Wiki-
data project [16] using its query logs. We also taken
5 queries from the Wikidata examples found at its
SPARQL endpoint® (the Wikidata examples, besides
of being in the log files, are clear examples of the query
types we describe). For the second part, we used the
Watdiv evaluation framework where we have direct
control on the generate RDF triples in relation to the
query types. In Watdiv, we can also control the size of
the graph which allows us to show the effect the graph
size has on the query sensitivity For each query we
calculate the Elastic Sensitivity and run simulations of
two kinds. In one, we assume the URI to be private
and hence subject to Differential Privacy. But since this
URI will be public in many cases, we also run simu-
lations ignoring the calculation of Differential Privacy
for the URI. The evaluation shows that this simple ob-
servation has a significant impact in sensitivity.

Setup We did our analysis on a 2016 Macbook Pro
with 8 GB of RAM memory. The implementation
was done using Java 1.8 and the SymlJava library
for symbolic-numeric computation [17]. We used the
SecureRandom Java class to generate the random
numbers to calculate the Laplacian probability distri-
bution since that class implements a well-tested ran-
dom number generator*, an essential component for
ensuring the correctness our privacy guarantees algo-
rithm. The code and all the queries used for this evalu-
ation are available in GitHub °.

5.1. Data & Queries

Wikidata For evaluating our approach we use real
world data and queries from Wikidata [16]. Wikidata
is a collaboratively edited knowledge base hosted by
the Wikimedia Foundation. It is a common source
of data for Wikimedia projects such as Wikipedia,
and it has been made available to the general pub-
lic under a public domain license. Wikidata stores
86,671,701 items (RDF resources), and 1,084,935,969
statements (triples®). For queries, we randomly se-

3https://query.wikidata.org

“https://docs.oracle.com/javase/8/docs/api/java/security/
SecureRandom.html

SRepository https://github.com/cbuil/PrivacyTest1

Shttps://tools.wmflabs.org/wikidata-todo/stats.php

O 0 d oy U s W NP

Gr O s s s s R B R D D W W W W W W W W W W NN NN NN R B R B R R B e e
H O W I o U W NP O W W d oUW N R O WV o Jo U s W NP O VW W Jdo U s W NP O

https://query.wikidata.org
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://github.com/cbuil/PrivacyTest1
https://tools.wmflabs.org/wikidata-todo/stats.php

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

10 Differential Privacy and SPARQL

2twitterName

wdt:P2002
wdt:P106

wdt:P279

wdt:P279

Figure 2. Snowflake query shape

lected 10 queries from the latest query log files avail-
able 7 (from 2018-02-26 to 2018-03-25) and 5 exam-
ples from the Wikidata endpoint (F1, F5, S1, S3 and
L5 — see naming description below). In total we se-
lected 5 queries for each type: Star, Snowflake and Lin-
ear. Star queries were selected with varying forms of
triple patterns that restrict the amount of intermediate
results within the query (listed as S1 to S5 in the fig-
ures and tables below). An example of a Star query
is depicted in Figure 3. This corresponds to Query S3
of the Wikidata list. Figure 4 is an example of a Path
query and it corresponds to Query L5 in our list (L1 to
L5). Figure 2 depicts a Snowflake query corresponding
to Query F5 (Queries F1 to F5 plus two derived queries
F2’ and F5'). More details will be discussed later.

We highlight that these query shapes are similar to
those identified by Bonifatti ef al. [18]. The patterns
identified there, Chains, Trees, and Flowers from Wiki-
data queries, are similar to the Snowflake, Path and
Star patterns from Watdiv. We follow the Watdiv name
conventions in this paper. Our query selection is based
on 17 different types of queries from the Watdiv tem-
plates.

Watdiv. We complement our evaluation using the
Watdiv evaluation framework. Although Watdiv is a
stress testing evaluation suite, they provide a suit of
queries that cover the most common SPARQL join
types. As we described in Section 2, when applying
Differential Privacy to a dataset it is of utmost impor-

?gender

wdt:P21
wdt:P735

<—@@—> ?givenname

wdt:P31
wdt:P172

?ethnicgroup

Figure 3. Star query shape

(wdQs)

wdt:P31

psv:P570
psv:P570
D

wikibase:timeValue

‘?Eate

Figure 4. Linear query shape

tance to understand the transformations happening to
the data during the query. The use of Watdiv helps us
in that regard, since it provides a complete classifica-
tion of the different join types in SPARQL. We use the
100 million triples dataset from the Watdiv Test Suite,
one order of magnitude smaller than the Wikidata set.

As mentioned earlier, our Watdiv tests use 17 dif-
ferent types of queries from the Watdiv templates
(Snowflake, Linear and Star queries with variations
that include different number of join variables, differ-
ent number of triple patterns per query, and cardinal-
ities). The query naming corresponds to the queries
in the Watdiv companion site 8. As with the Wiki-

7https://iccl.inf.tu— dresden.de/web/Wikidata_ SPARQL_Logs/en

8https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

Differential Privacy and SPARQL 11

data query set, Queries S1 to S5 are Star queries, L1
to L5 are Linear queries and F1 to F5, F2’ and F5’
are Snowflake queries. Syntactically, all these queries
have one term that looks like a variable except that in-
stead of being prefixed by a question mark, “?”, the
first symbols is “%”. This term is used by the Watdiv
tool as a placeholder for an URI that will be generated
at query evaluation time. Different URIs will produce
different mappings.

A Differential Privacy schema was designed for
each query using the following procedure. Each vari-
able (or URI placeholder term) that appeared as a sub-
ject of triple pattern of the query was designated as the
center of a star BGP of the schema for the query. Then,
any triple pattern with the same variable in the subject
was made member of the same star BGP. For example.
the schema associated with Wikidata’s S4 query (Fig-
ure 3) has a single BGP, {((?human, P31, ?gender),
(Phuman, P172, ?ethnic_group),

(?human, P735, ?given_name),

(?human, P734, 7 family_name)}. The
schema associated with Query F5 has three
BGPs, {(?person, P2002, TtwitterName)},
{(?person, P106, Toccupation),

(?occupation, P279, 7tmp1)}, and
{(?tmp1, P279,70864503)}. To calculate the elastic
sensitivity of a query Q given a Differential Privacy
schema P, we need to calculate the size P(G), given
G, the graph that Q will access. This is done by adding
the number of tuples in the mappings generated by
each each of the BGPs in P.

5.2. Results

5.2.1. Wikidata Experiments

Table 1 shows the results of the Wikidata query eval-
uations. Queries showing a polynomial in the Sensi-
tivity column are evaluated using Elastic Sensitivity,
while the non polynomial queries are evaluated using
Restricted Sensitivity by applying a fixed value for the
most popular join value within the star.As discussed
before, the variable x in the expression must be chosen
to maximize S® (,).

Looking at the results in Table 1 and in Figure 5 the
first thing to notice is that those queries with an error
under 1% are all Star queries. This confirms our hy-
pothesis (also reflected in the Watdiv simulations be-
low) that star queries behave well. All queries with er-
ror greater than 1% are linear or snowflake queries.
We can also notice several exceptions to this general
rule: query F3 reported one of the lowest errors in the

experiment: this is because in that query we find the
type (property P31 in Wikidata), resulting in a large
query graph and thus lowering the overall query sen-
sitivity. We see a similar behavior in queries L1, L3,
and F2, none of them being Star queries and all of
them having low error rates due to the large graph gen-
erated by the P31 predicate. On the other hand, as
we can see in Table 2, the query sensitivity of F5 is
calculated by a second degree polynomial with large
constants, 11077112403 + 545676x + x2, causing a
query error beyond 6 orders of magnitude (Figure 5).
The answer to this query is meaningless. That partic-
ular query is asking for the Twitter accounts of biol-
ogists, involving three Star patterns connected by two
joins forming a path. These three join operations am-
plify the high sensitivity of querying a specific type
of person (biologists, which generates a high count for
the "most popular" value) result in large constants in
the polynomial, and thus a high query sensitivity. In
practice, an implementation should calculate the sen-
sitivity of a query first, and if the result is higher than
certain threshold, then the system should automati-
cally reject the query for privacy concerns. If users
do not have restrictions in the kind of queries they
can ask to a public site (e.g., not having a fix set
or predefined query templates), there will always be
queries with high sensitivity that should not be an-
swered. The last observation is about Queries F3’ and
F5’. Both queries are modified versions of queries F3
and F5 respectively. These queries have a high er-
ror (specially query FS5) since they are accessing very
specific information. Query F5 contains a triple pat-
tern of the form ?xwdr : P279,wd : Q864503 which
is accessing the Twitter accounts of biologists while
query F3 asks for participants in a mass shooting event
(?x, wdt : P279,wd : 021480300). In both F3’ and F5’
we removed the sensitive URIs (wd:Q21480300 and
wd:Q864503) making more generic these queries and
immediately decreasing the amount of error returned.

5.2.2. Watdiv

The most important conclusion of the Watdiv exper-
iments is the effect of the graph size in sensitivity. Ta-
ble 2 shows that all the Watdiv queries that need to
join BGPs from their Differential Privacy schema have
high sensitivity. It is important to notice that query
graphs in WatDiv are up to three orders of magnitude
smaller than in Wikidata, making each query sensitiv-
ity higher than Wikidata sensitivities. Recall that the
variable x in the expression must be chosen to maxi-
mize S®(,) Some of the errors are very high too. This

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

O O d o U W N

g g s s D s R R R D D W W W W W W W W W W NN NDNDNNDNNN R R R R R e e
H O W 0w J o LB W N E O W 0 Jd o s W NP O VW 0 d oYy s W NN O VW T Yy U W NP O

12 Differential Privacy and SPARQL

g

‘ ‘ _-.|I“

‘IIII.II
s o2 B m

Figure 5. In this chart we plot the median error (blue) for the
17 evaluation queries from Wikidata and the size of the graph
from which the COUNT was calculated. Notice that the graph
size (in log scale) for each query is at least one order of mag-
nitude greater, and thus the results for Snowflake and Linear
shaped queries have more utility.

Query % error Graph Sensitivity Elastic
Size Stability

S1 0.303 85M 1 X

S2 0.002 85M 1 X

S3 3.24E- 620,322 1 X

05

S4 0.0001 85M 1 X

S5 0.008 647,282 1 X

L1 0.679 88M 986,303 999,613 + x

L2 12.22 342793 19,899 20,282 + x

L3 0.432 86M 986,284 999,618 + x

L4 2085 189M 28M (1 +
X)*(999,375
+X)

L5 0.19 88M 3,052 (1+x)?

Fl1 1.269 1343M 31.8 1+x

F2 2.559 91IM 29M 6 +
X)*(998,728
+X)

F3 0.018 88M 59,047 59,843 +x

F3’ 0.006 88M 59,047 59,843 +x

F4 6.924 88M 88,109 89,298 + x

F5 1630M 6,305,923 | 10,905M 21,117+
X)*(524,559
+X)

F5’ 938784 6,305,909 | 10,904M 21,115+
x)*(524,559
+X)

Table 1
Wikidata Queries used .

is mostly due to the method Watdiv uses to generate
queries: it fixes a URI so that it can be used to control
the cardinalities for the rest of the variables. That is to

o

”

’ I I I |
1d Nl

.

FSs3ss 18 s Fr FL

Figure 6. In this chart we plot the median error (blue) for the
17 evaluation queries from Watdiv and the size of the graph
from which the COUNT was calculated. We see how in all
queries but those Snowflake shaped queries we obtain the de-
sired privacy parameters. For Snowflake queries the privacy
highly depends on the semantic information provided by the
administrator in the Differential Privacy schemes to identify
most repeated attributes.

P15 135 P st w1 B s4 F4

say, it can control the size of the intermediate results
that are required to compute the joins. As with Wiki-
data, we modified queries F2 and F5 to not depend on
the privacy of the URI as follows. We dropped the URI
from the queries and introduced a selection over a nu-
meric attribute. For example, in Query F5, depicted in
Figure 2, we drop (wsdbm/Retailer9247,0f fers, 7v0)
and add the filter (?v3 > 30). Now one can see that
even though the sensitivity is still high, the errors are
under %1. Figure 6 clearly contrasts queries with joins
between BGPS and queries without joins. Except for
F2' and F5’, all queries without joins are listed before
the queries with joins.

Table 3 shows a subset of the queries but this time
using € = 0.1 to calculate the sensitivity. This is too
low for most of the queries involving joins since the
errors are high for the size of the graph. We left though
F2' and F5'. The error for F2’ is high but the error for
F5’ is under ~1%.

Errors over ~1% are usually unacceptable. This
means that our method, as it is in the case of rela-
tional databases, will be appropriate for large graphs
when queries required several joins over the BGPs
in a schema. Nevertheless, queries that are within a
BGP will have sensitivity 1, and will have manageable
noise.

Our plan is to look for other types of semantic prop-
erties that can be incorporated into the Differential Pri-
vacy schema to improve the calculation of sensitiv-
ity. One possible direction is to use some kind of re-
stricted sensitivity (see [19, 20] that introduces a gen-

O o J o s W N

[@ 2 I e > T~ T N S e T St e Oy L O O O O R O O R O O S S I O S I N T S e O T T T R e e e
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Differential Privacy and SPARQL 13

Query % error Graph Sensitivity Elastic
Size Stability
Fl1 0.85 1.4M 23 5+x
F2 3.17 58,622 17.03 I+x
F2’ 0.5 53,674 16.9 I+x
F3 0.018 88M 59,047 59,843 +x
F4 6.8M 71,853 42.5M (1 +x)*2 +

X)*(35,640 +
X)

F5 1637.2 609,672 1662 1+ x)*2 +
X)
F5' 0.002 609,672 20.8 2+ X
L1 118.4 1.6M 21.9 1+x
L2 277.6 224,985 1869.7 1,906 + x
L3 7.37 1.6M 1 X
L4 0.05 146,964 1 X
L5 6.49 9,862 2612 2,681 + x
S1 68.85 58,746 17.8 3+x
S2 0.28 53,237 1 X
S3 0.009 3,189 1 X
S4 5,386 70,010 1014 1,036 + x
S5 0.01 2,164 1 X
Table 2

Watdiv queries used in the evaluation spanning different
query shapes, cardinalities, join variables and triple patterns,
which are the parameters most affected in the calculation of
the noise added to the COUNT operation. We set the Epsilon
parameter to 1.0 obtaining error rates of maximum 17% for
most of the queries (but S1, S4 and L2).

Query | % error | Sensitivity
F2 388.97 167.02
F2’/ 14.92 165.72
F4 19.46 219.98
F5 1887 217.94
F5’ 0.101 201.85
L4 0.31 1
S2 8.95 1
S3 0.06 1
S5 0.34 1

Table 3

Watdiv queries evaluated using the privacy parameter Epsilon = 0.1.
Only those queries not having a join or a FILTER present below 17%
error percentages.

eral framework to incorporate semantic information
into the calculation of sensitivity approximations).

6. Related Work

The study of how to guarantee the privacy of indi-
viduals contributing personal data to a dataset is a long
studied problem. In this work we have focused on how

to guarantee this privacy in RDF data graphs accessed
through SPARQL queries using Differential Privacy.
The related work can be roughly classified into those
that provide some privacy guarantees to accesses to
data stored in (social) graphs and those that guaranty
privacy over the results returned by SPARQL queries.
We briefly look over these works in this section.

6.1. SPARQL state of the art

In the context of the Semantic Web and the Web of
Linked Data there have been several approaches to ad-
dress privacy concerns related queries to RDF data. A
good survey can be found in [21]. There is the basic
privacy protection that a SPARQL engine must pro-
vide from queries that directly return individuals’ data.
Similar to the case of relational databases where this
kind of protection can be done replacing some attribute
values with nulls, the work presented in [22] and [23]
describes how to use blank nodes to hide sensitive data.
But, simply replacing URIs with blank nodes does not
necessarily prevent a user to get private information
about. Class information, such as size of a class, or the
distribution of values over partitions of the class, which
is often be made public can also reveal individual pri-
vate data.

All the effort directed to provide tools to efficiently
access Linked Data in the semantic Web is to make as
much data as possible easily available. This has to be
balanced with the need to protect the privacy of indi-
viduals. The aim of the work such as k-anonymity or
[-diversity is to be able to provide answers to queries
about classes; k-anonymity is used in [24, 25] to an-
swer queries in RDF datasets. Unfortunately, it is well-
known that k-anonymity does not provide formal guar-
antees for privacy. In contrast, Differential Privacy pre-
cisely prescribes how to characterize the privacy guar-
anties of data query answering algorithms. The only
work known to us that directly uses Differential Pri-
vacy over RDF datasets is [21]. The authors propose a
method for applying Differential Privacy to SPARQL
queries. However, they provide a Differential Privacy
realisation through local sensitivity without the use
of a smoothing function, violating thus the privacy
guarantees described in [26]. In [27] the authors pro-
vide a query language that processes RDF streams in
a privacy-preserving fashion called SihlQL. Limiting
queries to that language permits servers to continu-
ously release privacy-preserving histograms (or distri-
butions) from online streams.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

14 Differential Privacy and SPARQL

6.2. Privacy in Social Graphs

One of the most well-known approaches to pro-
vide deferentially private queries over social graphs is
by the use of Restricted Sensitivity [19]. The authors
of Restricted Sensitivity define adjacency of graphs
based on two notions: differences on edges and differ-
ences on vertices. The distance between two graphs,
G1 and Go, is given by the smallest number of changes
(either on edges or vertices) needed to transform Gy
and G, into the same graph, giving rise to two defi-
nitions of restricted sensitivity. The authors also pro-
vide efficient algorithms to calculate these sensitivi-
ties for a class of social graph queries that involve
only one join. The authors of [20] extended the previ-
ous notion of edge-based restricted sensitivity by using
weighted datasets. Briefly, the aim is to increase the
utility of the answer by calculating noise with weights
added to each edge that contributes to the solution.
Our notion of Differential Privacy schema of sensi-
tivity is a vertex-based sensitivity by observing that
each g; € G can be interpreted as a single node. The
class of queries for which efficient implementations
of Restricted Sensitivity exist corresponds to the exe-
cution of joins between Start patterns. Our proposed
Elastic Sensitivity can be then interpreted as a gener-
alization of Restricted Sensitivity. In Restricted Sen-
sitivity, the polynomial associated to a query is al-
ways of degree 1 and the value of x is bounded by a
constant (which is provided by the system administra-
tor). Elastic Sensitivity is based on a variable selec-
tivity (the values of x are obtained directly from the
dataset), and generalizes to multiple joins. Other works
such as [28] proposed a method to use Differential Pri-
vacy for subgraph counting queries with unrestricted
joins (through node differential privacy), however, an-
swering this type of queries is computationally diffi-
cult (NP-hard). The result is then more of theoretical
interest and limited for general application.

7. Conclusions

In this paper we have introduced a framework to de-
velop Differential Privacy tools for RDF Data reposi-
tories, and we have used the framework to develop an
(e, 8)-differential privacy SPARQL query engine for
COUNT queries. A crucial component of our frame-
work is the concept of Differential Privacy Schema.
Without it, we would have not been able to develop
a differential privacy preserving algorithm to publish

data of acceptable quality. The concept is independent
of the sensitivity approximation used and we hope that
others can build on the concept to get better query an-
swering algorithms.

We have implemented our algorithm and tested it
using the Wikidata RDF database, queries from its log
files and other example queries found at the Wikidata
endpoint. We have also used the Watdiv framework
to generate different types of queries and datasets.
The simulations show the approach to be effective
for queries over large repositories, such as Wikidata,
and in many cases for queries within the 10 of thou-
sands answers to aggregate. However, even though
Elastic Sensitivity has been designed to bind the sta-
bility of joins, the sensitivity of a query with joins can
still be very high. In the case of SQL queries in re-
lational databases, in order to keep the noise under
a single percentage digit, the databases should have
over IM tuples and € = 1. This is also the case
for SPARQL queries. When working with the smaller
Watdiv datasets, it is difficult to provide reasonable pri-
vacy guarantees for general queries because of the size
of the query graph. The evaluation shows though that
we can safely evaluate Star queries.

We can still apply several optimizations to our
framework. For example, public graphs can be treated
as public tables. If they participate in joins, we can
directly use their most popular result mappings dur-
ing calculation of the query sensitivity. We partially
demonstrate the effect of such optimization when we
assume one of the URISs in the queries to be public, re-
sulting in lower sensitivities and fewer errors. We can
also consider the approaches described in other state
of the art works [7] to add aggregation functions like
sum and averages to our framework.

There are many pending issues to address. From the
more practical point of view, more operations need to
be implemented. There are also issues about the im-
pact that such algorithms will have on SPARQL query
engines. From the more formal side, it is still impor-
tant to keep searching for better approximations of lo-
cal and global sensitivities as well as alternative defi-
nitions that are less onerous than differential privacy.
One possibility is to find a way to apply Restricted
Sensitivity to more types of queries by adding more se-
mantic information to the Differential Privacy Schema.

References

[1] L. Menand, Why Do We Care So Much About Privacy?, The
New Yorker XCIV(17) (2018), 24-29.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

(2]

(3]

[4

=

(51

[6

—_

[7

—

[8

—_

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

Differential Privacy and SPARQL 15

N. Li, W. Qardaji, D. Su, Y. Wu and W. Yang, Membership
privacy: a unifying framework for privacy definitions, in: Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, ACM, 2013, pp. 889-900.

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov and
M. Naor, Our data, ourselves: Privacy via distributed noise
generation, in: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Springer,
2006, pp. 486-503.

L. Sweeney, k-anonymity: A model for protecting privacy, In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 10(05) (2002), 557-570.

A. Machanavajjhala, J. Gehrke, D. Kifer and M. Venkitasub-
ramaniam, 1-diversity: Privacy beyond k-anonymity, in: 22nd
International Conference on Data Engineering (ICDE’06),
IEEE, 2006, pp. 24-24.

F.D. McSherry, Privacy integrated queries: an extensible plat-
form for privacy-preserving data analysis, in: Proceedings of
the 2009 ACM SIGMOD International Conference on Manage-
ment of data, ACM, 2009, pp. 19-30.

N. Johnson, J.P. Near and D. Song, Towards practical differen-
tial privacy for SQL queries, Proceedings of the VLDB Endow-
ment 11(5) (2018), 526-539.

D. Kifer and A. Machanavajjhala, No Free Lunch in Data Pri-
vacy, in: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’11, ACM,
New York, NY, USA, 2011, pp. 193-204. ISBN 978-1-4503-
0661-4. doi:10.1145/1989323.1989345. http://doi.acm.org/10.
1145/1989323.1989345.

C. Dwork, Differential Privacy, in: 33rd International Col-
loquium on Automata, Languages and Programming, part Il
(ICALP 2006), 33rd international colloquium on automata, lan-
guages and programming, part ii (icalp 2006) edn, Lecture
Notes in Computer Science, Vol. 4052, Springer Verlag, 2006,
pp. 1-12. ISBN 3-540-35907-9. https://www.microsoft.com/
en-us/research/publication/differential-privacy/.

K. Nissim, S. Raskhodnikova and A. Smith, Smooth Sensitiv-
ity and Sampling in Private Data Analysis, in: Proceedings of
the Thirty-ninth Annual ACM Symposium on Theory of Com-
puting, STOC "07, ACM, New York, NY, USA, 2007, pp. 75—
84. ISBN 978-1-59593-631-8. doi:10.1145/1250790.1250803.
http://doi.acm.org/10.1145/1250790.1250803.

K. Nissim, S. Raskhodnikova and A. Smith, Smooth Sen-
sitivity and Sampling in Private Data Analysis, 2011,
Draft full version v1.0. http://www.cse.psu.edu/~ads22/pubs/
NRS07/NRS07-full-draft-v1.pdf.

R. Cyganiak, D. Wood and M. Lanthaler, RDF 1.1 Concepts
and Abstract Syntax, 2014.

S. Harris and A. Seaborne, SPARQL 1.1 Query Language,
W3C Last Call Working Draft http://www.w3.org/TR/2010/
WD-sparqll1-query-20101014/, 2012.

G. Alug, O. Hartig, M.T. Ozsu and K. Daudjee, Diversified
stress testing of RDF data management systems, in: Interna-
tional Semantic Web Conference, Springer, 2014, pp. 197-
212.

J. Pérez, M. Arenas and C. Gutierrez, Semantics and complex-
ity of SPARQL, TODS 34(3) (2009).

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

D. Vrandeci¢ and M. Krotzsch, Wikidata: a free collaborative
knowledgebase, Communications of the ACM 57(10) (2014),

78-85.
Y. Liu, P. Zhang and M. Qiu, Fast Numerical Evaluation for

Symbolic Expressions in Java, in: 2015 IEEE 17th Interna-
tional Conference on High Performance Computing and Com-
munications, 2015 IEEE 7th International Symposium on Cy-
berspace Safety and Security, and 2015 IEEE 12th Interna-
tional Conference on Embedded Software and Systems, 2015,
pp- 599-604. doi:10.1109/HPCC-CSS-ICESS.2015.19.

A. Bonifati, W. Martens and T. Timm, Navigating the maze
of wikidata query logs, in: The World Wide Web Conference,
2019, pp. 127-138.

J. Blocki, A. Blum, A. Datta and O. Sheffet, Differentially
Private Data Analysis of Social Networks via Restricted Sen-
sitivity, in: Proceedings of the 4th Conference on Innova-
tions in Theoretical Computer Science, ITCS *13, ACM, New
York, NY, USA, 2013, pp. 87-96. ISBN 978-1-4503-1859-
4. doi:10.1145/2422436.2422449. http://doi.acm.org/10.1145/
2422436.2422449.

D. Proserpio, S. Goldberg and F. McSherry, Calibrating data to
sensitivity in private data analysis: a platform for differentially-
private analysis of weighted datasets, Proceedings of the VLDB
Endowment 7(8) (2014), 637-648.

R.R.C. Silva, B.C. Leal, FT. Brito, V.M. Vidal and
J.C. Machado, A differentially private approach for querying
RDF data of social networks, in: Proceedings of the 21st In-
ternational Database Engineering & Applications Symposium,
ACM, 2017, pp. 74-81.

B.C. Grau and E.V. Kostylev, Logical foundations of privacy-
preserving publishing of Linked Data, in: Thirtieth AAAI Con-
ference on Artificial Intelligence, 2016.

R. Delanaux, A. Bonifati, M.-C. Rousset and R. Thion, Query-
based Linked Data Anonymization, in: International Semantic
Web Conference, Springer, 2018, pp. 530-546.

F. Radulovic, R. Garcia Castro and A. Gomez-Pérez, Towards
the anonymisation of RDF data (2015).

B. Heitmann, F. Hermsen and S. Decker, k-RDF-
Neighbourhood Anonymity: Combining Structural and
Attribute-based Anonymisation for Linked Data., in: PrivOn
ISWC, 2017.

C. Dwork, A. Roth et al., The algorithmic foundations of differ-
ential privacy, Foundations and Trends®) in Theoretical Com-
puter Science 9(3—4) (2014), 211-407.

D. Dell’Aglio and A. Bernstein, Differentially Private Stream
Processing for the Semantic Web, in: Proceedings of The
Web Conference 2020, WWW 20, Association for Comput-
ing Machinery, New York, NY, USA, 2020, pp. 1977-1987.
ISBN 9781450370233. doi:10.1145/3366423.3380265. https:
//doi.org/10.1145/3366423.3380265.

S. Chen and S. Zhou, Recursive mechanism: towards node dif-
ferential privacy and unrestricted joins, in: Proceedings of the
2013 ACM SIGMOD International Conference on Manage-
ment of Data, ACM, 2013, pp. 653-664.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://doi.acm.org/10.1145/1989323.1989345
http://doi.acm.org/10.1145/1989323.1989345
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://www.microsoft.com/en-us/research/publication/differential-privacy/
http://doi.acm.org/10.1145/1250790.1250803
http://www.cse.psu.edu/~ ads22/pubs/NRS07/NRS07-full-draft-v1.pdf
http://www.cse.psu.edu/~ ads22/pubs/NRS07/NRS07-full-draft-v1.pdf
http://www.w3.org/TR/2010/WD-sparql11-query-20101014/
http://www.w3.org/TR/2010/WD-sparql11-query-20101014/
http://doi.acm.org/10.1145/2422436.2422449
http://doi.acm.org/10.1145/2422436.2422449
https://doi.org/10.1145/3366423.3380265
https://doi.org/10.1145/3366423.3380265

	Introduction
	Background
	Definition
	Realization via Global Sensibility
	Realization via Local Sensibility

	SPARQL Preliminaries
	Data-driven features
	SPARQL query structural features

	Towards Differential Privacy for SPARQL
	Elastic sensitivity

	Evaluation
	Data & Queries
	Results
	Wikidata Experiments
	Watdiv

	Related Work
	SPARQL state of the art
	Privacy in Social Graphs

	Conclusions
	References

