
Undefined 0 (0) 1 1
IOS Press

Generating ontologies from Intelligent
Tutoring System courses. A generic
approach.
Hector Escudero a,∗, Ramón Fuentes-Gonzalez b

a Department of Mathematics and Computer Engineering, Public University of Navarre
b Automatics and ComputingAutomatics and Computing, Public University of Navarre

Abstract. In recent years a great effort has been done in order to create Intelligent Tutoring Systems that get close to the human
teaching. Some of the handicaps of the systems already created is the impossibility of sharing the courses between different
Intelligent Tutoring Systems and the difficulty to create them. Whereas a great amount of SCORM-compliant learning objects
is being created for being imported in educational systems, there is a research current that pleads for ontologies as domain
knowledge representation systems. We have created a generic and extensible authoring tool that creates courses for different
intelligent tutoring systems. The authoring tool allows the creation of courses for different types of intelligent tutoring systems
and saves those courses as ontologies. This allows the reusing of domain models between different Intelligent Tutoring Systems.
This paper focuses in the ontology creation and populating process.

Keywords: Intelligent tutoring system, Authoring tool, Ontology

1. Introduction

Intelligent Tutoring Systems (ITSs) are computer
based systems that provide individualized tutoring to
the students [27]. About 20 years ago, research by
Prof. Benjamin Bloom and others demonstrated that
students who receive one-on-one instruction perform
two standard deviations better than students in tradi-
tional classrooms [3]. That is, the average tutored stu-
dent performed as well as the top 2 percent of those
receiving classroom instruction. Besides, research on
prototype systems indicates that students taught by
ITSs generally learn faster and translate the learn-
ing into improved performance better than classroom-
trained participants.

Providing a personal training assistant for each
learner is beyond the training budgets of most organi-
zations. However, a virtual training assistant who cap-
tures the subject matter and the teaching expertise of

*Corresponding author. E-mail: hector.escudero@unavarra.es.

experienced trainers provides a captivating new op-
tion. ITS research has been done for more than three
decades by researchers in education, psychology and
artificial intelligence.

The good of ITS is to provide the benefits of one-
on-one instruction automatically and cost effectively.
Like training simulations, ITSs enable participants to
practice their skills by carrying out a task within highly
interactive learning environments. However, ITSs go
beyond training simulations by answering user ques-
tions and providing individualized guidance. Unlike
other computer-based training technologies, ITSs as-
sess each learner actions within these interactive envi-
ronments and develop a model of the knowledge, skills
and expertise. Based on the learner model, ITSs tai-
lor instructional strategies, in terms of both the content
and style, and provide explanations, hints, examples,
demonstrations and practice problems as needed [25].

However, ITSs are still seen with scepticism, since
they have not been extensively used in real educa-
tional settings. The main reason for this limited use

0000-0000/0-1900/$00.00 c© 0 – IOS Press and the authors. All rights reserved

2

is probably the fact that the task of constructing an
ITS is complex, time-consuming and involves a large
number of people, including programmers, instruc-
tors and experts of a specific domain. Moreover, once
constructed, an ITS for a specific domain cannot be
re-used for different domains without spending much
time and effort. An approach to simplifying the ITS
construction is to develop ITS authoring tools that can
be used by a wider range of people to easily develop
cost-effective ITSs [22].

In order to solve these problems, we propose a con-
figurable ITS course authoring system. We think that
the course creation can be independent of the tutoring
system. This is, there should be an authoring tool that
creates the courses for any ITS, and the courses created
should be imported into the ITS, that would represent
it. At the time of creating a course, the domain model
is the same for all the ITSs, but it must be adapted to
the limitations of each ITS. Therefore, there is a basic
structure that all the courses share. We have created an
authoring tool where the user can configure the char-
acteristics of the ITS where the course will be repre-
sented, and create the course using it. Then, the course
will be saved in a generic way, so it can be reused in the
same authoring tool to create a course for a different
ITS. This is the first part of our ongoing research, the
creation of an authoring tool capable of create courses
for a wide range of Intelligent Tutoring Systems, no
matter the teaching strategy they use. This tool is still
in prototype phase, but has been tested successfully
with two simple ITSs. The second part is taking the
most of the knowledge that the course creators gen-
erate. To achieve this, we have taken the decision of
saving the courses as ontologies. It must be remarked
that this authoring tool only creates the courses for the
ITSs. The idea is that these courses will be exported to
the specific format that each ITS needs, but also will be
saved in a generic way, so it can be exported, making
little variations, to other formats.

This paper presents the second part of the ongoing
research. It will be explained why have we cosen on-
tologies as saving format and the process that led us
to build the ontology. However, for the better under-
standing of the ontology building process, a brief ex-
planation of the generic authoring tool will be given. If
necessary, a deeper explanation can be found in [10].

This paper is organized as follows. Section 2 out-
lines the course creation tool. Section 3 presents the
process to save the courses as ontologies. In section
4 an example of a course is shown. Finally, section 5
discusses the main conclusions and future work.

2. The generic course creation tool

Every course is created to represent a specific do-
main model. Our aim is to convertir this model into an
ontology. Therefore, the way the authoring tool creates
these courses and domain models is important in order
to understand how the ontology is created.

An easy to understand way of codifying a domain
model is a concept map. A definition of a concept map,
given by [18] is ”concept maps are two-dimensional
representations of cognitive structures showing the
hierarchies and the interconnections of concepts in-
volved in a discipline or sub-discipline.” Once com-
pleted, the concept map is a visual graphic that repre-
sents how the creator thinks about a subject. Usually, a
concept map is divided into nodes that represent con-
cepts and links, that represent relationships (proposi-
tions) between concepts [15]. [5] and [28], for exam-
ple, have used concept-maps in tutoring systems to or-
ganize knowledge successfully. As the model will be
represented as a concept map, the best way to create
and represent it is a graph editor.

Each node of the graph represents a concept to be
taught, and the links represent the relations between
the concepts. Another thing to have in mind are the at-
tributes of the concepts. Depending on the ITS, con-
cepts contain different attributes. Those attributes can
be simple, like a text or a number, or complex. For
example, the concepts of the Iris Shell ([1],12) con-
tain two simple attributes, ”Estimated time” and ”Dif-
ficulty”, whereas the concepts of the AHA! System
[6], contain several complex attributes. The authoring
tool allows de definition of complex attribute types
combining some basic attributes. There are four basic
types in the authoring tool: Text, CheckBox, Combo
and List. In Texts the user can write anything, Check-
Boxes are for boolean values, Combos offer a set of
predefined values and Lists contain several attributes
of the same type. Those attributes can be combined to
create new attributes.

The authoring tool contains a visual graph editor
to create the concepts that will be part of the course.
Then, for each concept the information that will be rep-
resented to define that concept and the attributes are
created.

3. Choosing a language to save the courses

Now that the basis of the authoring tool has been
outlined, the process to define the ontology will be ex-

3

plained. The first idea to save the courses in a generic
way was to create an XML language for it. As the po-
tential information of the courses is known, it would
be easy to create a language able to store all the in-
formation created by the authoring tool. Then, making
the structure of the language public, anyone can cre-
ate a parser that translates the information saved in the
XML format to the specific format of the ITS.

This approach would fulfill the basic requirements
of the tool. Nevertheless, we started thinking if it
would be possible to make use of the knowledge cre-
ated by the users of the tool. The course creation pro-
cess is based in a set of concepts that have relations
between them. This could be seen as an ontology. It
is true that for simple courses, like online courses that
only have the ”next concept” relations the ontology
is nonsense, as the ”next” relation does not contribute
to specify any new knowledge about the two concepts
that links. However, more complex ITSs use relations
like ”is-a” or ”part-of” that can be used to generate
knowledge. The authoring tool will be used by people
that are expert in a subject, but not necessarily know
what an ontology is. When they create the course, they
will create a structure of concepts and relations based
on their experience and expertise. We know that this is
not the most common method to create ontologies, but
it could be a good approach for people that is not used
to work with ontologies and computers.

In recent years, there is a trend that claims that ITSs
should make use of ontologies. Back in 2000, [21]
maintained that future ITSs must be built upon on-
tologies and proposed building the system using three-
level ontologies. Level one and two ontologies should
define basic terms and definitions about those terms,
whereas the ontology on level three should work with
software modules. Later, they have built an instruc-
tional theory-aware system [13]. The basis of the sys-
tem is an ontology that contains all the instructional
theories. The creator of the course has to make re-
lations between predefined Learning Objects and the
theories of the ontology. This way, the tutoring system
triggers events, which depending on the theories previ-
ously selected, make different actions to happen. The
advantage of this system is the possibility of merging
different instructional theories. The course creator can
define different WAYs. This is, different ways to make
the learner acquire knowledge. The disadvantages are
that the ontology must be maintained by an expert and
that the domain model of the course is not reusable.
[2] present a system where ontologies are the core of
the system. The system is based in four ontologies: the

Domain Ontology, where the characteristics of the do-
main knowledge are provided, the Student model on-
tology, the Pedagogical model ontology and the Inter-
action ontology.

[9] outlines another tutoring system based in on-
tologies. They subdivide ontologies in three different
types, the ones that describe specific domains, the on-
tologies for creating community-oriented knowledge
structures and the ontologies for describing learning
communities. They want to take advantage of Seman-
tic Web technologies to enrich semantically the tools
for learning using those ontologies. Again, the main
part of what would be the course, the domain ontology,
must be created specifically for the tutoring system.

Finally, there are some systems that do not use on-
tologies in their domain model representations, but use
them to make content more accessible. Ontologies can
be used to search between large amounts of learning
objects, which sometimes are not directly understand-
able. [30] for example, use ontologies to search be-
tween the great amount of SCORM ([16] and [24]) ob-
jects available in the internet and choose the most ap-
propriate ones for the domain model that is being cre-
ated. [12] proposes a framework that eases the inter-
action between e-learning systems based on different
ontologies using a mapping ontology. Another exam-
ple is TM4L [8], an environment that uses ontologies
to annotate and search educational objects in different
repositories. In [31], data is extracted from raw text
and organized in concept maps. Then, ontologies are
derived from those concept maps. Finally, those on-
tologies can be used to sustain the production of e-
learning objects.

Those systems record the domain models as ontolo-
gies like our system, but still there are some differ-
ences. First, the content they create is specific for a
platform or ITS, whereas our system allows the gener-
ation of ontologies for any type of ITS. This makes the
ontology, and the domain model, independent of the
ITS. No matter which is the representation system of
the ITS (audio, video, web pages...) the ontology can
be imported into the system, and only the information
to be represented should change for each ITS or plat-
form. Second, the ontology creation is hidden to the
user. We expect that the users of the authoring tool will
not be used to computers. They only have to care about
creating a course about a knowledge domain they are
expert in. They will know that they can save and load
courses, but will not know that they are managing an
ontology.

4

3.1. Basic concepts of the ontology

There is no correct methodology to create an otol-
ogy. However, there are several rules that must be fol-
lowed in any ontology creation process independently
of the methodology chosen, and that can help making
decisions in some points of the process.

– There is no correct way to define a domain. There
always are alternatives. Most times, the result de-
pends on the final use of the ontology.

– The ontology creation process is an iterative pro-
cess.

– The concepts of the ontology should look like the
concepts and relations of the domain to be repre-
sented. Usually those will be nouns (for concepts)
and verbs (for relations) in sentences that describe
de domain.

Fig. 1. A first approach to the structure of the ontology.

Deciding the final use of the ontology, and if it will
be used for a generic or detailed use can guide the de-
cisions. Finally, the only way to prove if the ontology
is correct is to test it in the application it has been cre-
ated for. This way errors will appear, and the ontology
can be redefined. This iterative process will last until
the ontology is correct. Usually the ontology creation
methodology presented by [23] is followed. The prob-
lem of these methodologies is that the domain of the
ontology must be clear in order to follow all the steps.
In our case, the domain of the ontology varies depend-
ing on the course.

If our aim was just to record the information of the
course to be loaded later we could create an ontology
generic enough to contain all the courses. In the figure

1 there is a representation of an ontology that can con-
tain all the data created in the courses. The problem is
that this representation does not contribute to structure
the content and create new knowledge from the course.

The conclusion is that we have to create a new ontol-
ogy for each course. All courses contain several con-
cepts which are related, and those concepts contain at-
tributes and information.

3.2. Structure of the ontology

Fig. 2. Transformation of the course concept types into ontology
classes.

As mentioned previously, the course can be seen as a
set of concepts. Each concept will become an instance
of the new ontology. As instances need a class to be
created from, for each concept type a new class will be
created. ITSs are based on concept types. Theses con-
cept types can contain several attributes. Therefore, the
first step to create the ontology is to create the struc-
ture, so the instances, which will contain the knowl-
edge generated in the course, can be inserted.

The configuration of the ITS determines the num-
ber of different concept types and the attributes that
each concept type has. Therefore, we have to extract
the structure of the ontology from the configuration
of the ITS. The tool is based on based on Merrill’s
”Component Display Theory” (CDT) [20]. This in-
structional design theory is based in Basic Learning
Units (BLUs), which can contain several Instructional
Objectives (IOs). When the user defines the ITS, IOs
and BLUs are defined. BLUs contain several IOs, and
the content of each concept of the course is based
on the BLUs. Each IO and BLU contains several at-

5

Fig. 3. Adding the relations between concepts as ontology proper-
ties.

tributes, and these attributes are the ones that will de-
fine the concept types. Therefore, each concept type
becomes a class in the ontology, and the attributes be-
come properties of these classes (figure 2).

Besides, all the concepts of the ITSs have relations
between them. To reflect this in the ontology for each
relation a new property is created (figure 3). For exam-
ple, if the concept ”a” of the ITS has a relation ”rel”
which points to the concept ”b”, in the ontology a new
property will be added to the class ”a” called ”rel”. The
domain of this new attribute will be instances of class
”b”.

In our system attributes can be complex, this is,
some attributes contain other attributes. In an ontology
attributes can be hierarchised, saying that attributes ”a”
and ”b” are part of attribute ”c”. But there is a problem
when attribute ”c” can contain several appearances of
”a” and ”b” pairs. In that case a new class is needed.
This class will contain two attributes, ”a” and ”b”. The
class where the attribute ”c” is contained will have a
reference to the new class instances instead of contain-
ing the values on it’s instance (figure 4).

For example, in the AHA! System ITS the attributes
of the concepts are very complex. In the left side of
the figure 4 the hierarchy of the attributes of the AHA!
System is shown. The BLUs of the AHA! System con-
tain a list of attributes called Attribute AHA, whereas
the Attribute AHA contains attributes called Condi-
tional and Two Text. Finally, the Conditional attribute
contains a list of attributes called Three Text. In the
right side of the figure 4 the class hierarchy derived
from the attributes is shown. A new class is created for

Fig. 4. Transformation of the complex attributes into ontology
classes.

each complex attribute, and the relations between the
attributes are maintained in the ontology (figure 5).

Finally, the information represented in the course
must be stored. Each BLU contains a bit of in-
formation, and that information describes de con-
cept that the BLU represents. For that purpose the
”rdfs:isDefinedBy” property will be used.

”rdfs:isDefinedBy” is an instance of ”rdf:Property”
that is used to indicate a resource defining the sub-
ject resource (referencia a http://www.w3.org/TR/rdf-
schema/). Therefore, the information must be stored
in a resource and the the concept created must point
to that resource using the ”rdfs:isDefinedBy” property
(figure 6).

Fig. 5. Adding the complex attributes to the structure of the ontology.

Let’s show an example in order to clarify the whole
process. The Iris Shell, mentioned earlier is based

6

in Merrill’s ’Component Display Theory’, which can
contain four different types of BLUs: Concept, Pro-
cedure, Principle and Fact. Because of the complexity
of managing all BLUs types, the Iris Shell only uses
two of them: Concept and Procedure. Therefore, two
new classes are created for the ontology, the ”Con-
cept” class and the ”Procedure” class. The ”Concept”
class has two attributes, ”Significance” and ”Sum-
mary”. Then, a new property is created for each at-
tribute. The domain will be a String and the range the
”Concept” class. The ”Procedure’ BLU has the same
two attributes. There is no need to create the attributes,
but the class ”Procedure” must be added to the range
of the attributes. The final step is to define the relations
between the BLUs. The Iris Shell supports six differ-
ent relation types: co-requisite, prerequisite, post req-
uisite, is-a, part of and next. Therefore, six properties
must be created, one for each relation type. The range
and domain of these properties are the union of all the
BLU classes created, ”Concept” and ”Procedure” for
this example.

Fig. 6. Adding the information created in the course using the isDe-
finedBy property.

3.3. Populating the ontology

Once the ontology structure has been created it is
time to populate it with the data introduced using the
authoring tool during the course creation. Each node
created using the authoring tool will become an in-
stance of one of the BLU classes created. The second
step is to insert the values of the attributes introduced
during the course creation process into the properties
of each instance.

Besides the attributes, each BLU contains some in-
formation that will be shown to the student. During the
creation of the structure of the ontology, a class has
been created for each type of information representa-
tion. For each piece of information that has been added
to the BLU (text, image, avatar conversationĚ) a new
instance of the corresponding class will be created.
Finally, each BLU instance is related with the infor-
mation pieces that belong to it using the isDefinedBy
property.

The last step of the ontology population process is to
add the relations between the concepts. For each rela-
tion between the concepts created using the authoring
tool a new property is created. The subject and the ob-
ject of these properties will be an instance of the BLU
classes.

3.4. Implementation

Courses are saved in OWL format [14]. The Web
Ontology Languaje (OWL) is designed for use by ap-
plications that need to process the content of infor-
mation instead of just presenting information to hu-
mans. OWL facilitates greater machine interpretabil-
ity of Web content than that supported by XML, RDF
[17], and RDF Schema (RDF-S) [4] by providing addi-
tional vocabulary along with a formal semantics. OWL
can be used to explicitly represent the meaning of
terms in vocabularies and the relationships between
those terms (ontolgies). OWL provides three sub lan-
guages:: OWL Lite, OWL DL and OWL Full. OWL
Lite supports those users primarily needing a classifi-
cation hierarchy and simple constraints. OWL DL sup-
ports those users who want the maximum expressive-
ness while retaining computational completeness (all
conclusions are guaranteed to be computable) and de-
cidability (all computations will finish in finite time).
OWL Full is meant for users who want maximum ex-
pressiveness and the syntactic freedom of RDF with
no computational guarantees. For the ontology that the
authoring tool creates, it is enough with the use of the
OWL Lite sub language.

The ontology has been implemented using the Jena
Semantic Web Framework [19]. Jena provides a pro-
grammatic environment for RDF, RDFS and OWL,
SPARQL [26] and includes a rule-based inference en-
gine. The first step to start working with the framework
is to create a Model. The Jena framework is based in
statements. Therefore, an OWL model is defined as a
set of statements. Each statement asserts a fact about
a resource, and has three parts: the subject, the predi-

7

cate and the object. Each time a property is added to
a resource, one of those triples is created. The Jena
framework supports the distinction between Datatype-
Properties and ObjectProperties. DatatypeProperties
are properties that relate instances of classes and RDF
literals, whereas ObjectProperties relate instances of
two classes.

4. An example: how to work with a lathe

For the example, we are going to create a course
about how to work with a lathe, which will be compat-
ible with the Irirs Shell.

4.1. Configure the ITS

First of all, the characteristics of the STI mus be de-
fined. The Iris Shell can work with two IO, Knowl-
edge and Application. Therefore, these two IOs must
be created using the authoring tool. For each IO, the
attributes it contains and the representation formats it
can support must be defined. For this example, two
representation systems have been loaded into the sys-
tem: a text editor and the Ekit html editor.

Once the IOs are created is time to define de BLUs.
The Iris Shell can manage two BLUs: Concept and
Procedure. The Concept BLU can contain Knowledge
IOs, whereas the Procedure BLU can contain Knowl-
edge and Application IOs. Finally, the BLUs that the
ITS can support (figure 3) and the possible relations
between the BLUs must be defined. The relations that
the Iris Shel can manage are: co-requisite, post requi-
site, prerequisite, is-a, part-of and next.

4.2. Create the course

Now that the ITS is configured it is time to create
the course. The course will explain the different parts
of a lathe and some of the different uses it can have.
The first step is to create all the BLUs and the relations
between them. The relations must be introduced one
by one. In the top of the editor the user has to choose
the relation he/she wants to work with. In the figure 4
the ”is a” relations are shown.

Figure 4. The ”is-a” relations of the lathe course.
Once all the relations are introduced a whole view of
the concept map can be seen using the model viwer,
although this view is not editable (figure 5). Finally the
content of the course must be added to the BLUs. For
each BLU the attributes it contains and the information
that will be presented to student mus be created using
the editors defined for this tutor.

4.3. Save the course

First the structure must be created using the proce-
dure explained earlier. There course contains two con-
cept types, therefore two classes must be created (list-
ing 1).� �

1 O n t C l a s s u b a _ r e s _ c l a s s = model . c r e a t e C l a s s (
2 u r i + tu torName +" _ " + configUBA . getName ()) ;
3
4 u b a _ r e s _ c l a s s . a d d P r o p e r t y (RDFS . subClassOf ,
5 RDFS . Resource) ;
6
7 u b a _ r e s _ c l a s s . setRDFType (RDFS . C l a s s) ;
� �

Listing 1: Code to create the new classes from the
course concept types.

Then the attributes must be added as properties of
the newly created classes. The Iris Shell contains two
attributes, ”Significance” and ”Summary”. The prob-
lem is that both concepts share the same attributes. In
the Jena framework adding several classes as the range
of a property creates an intersection. Therefore, only
one class is allowed to be the range of a property at
a time. To allow several classes to contain the same
property a union must be created. Then, that union will
be the range of the property (listing 2).� �

1 RDFList u n i o n L i s t = model . c r e a t e L i s t (ubaNodeLis t) ;
2 O n t C l a s s u n i o n C l a s s = model . c r e a t e U n i o n C l a s s (nul l ,
3 u n i o n L i s t) ;
4
5 O n t P r o p e r t y prop = model . c r e a t e D a t a t y p e P r o p e r t y (
6 u r i + s a t t . getName ()) ;
7
8 prop . se tDomain (u n i o n C l a s s) ;
9 prop . s e t R a n g e (u n i o n C l a s s) ;
� �

Listing 2: Code to create a union class to set it as a
domain or range in a property.

The next step is to create the relations between the
concepts as properties of the classes. The Iris Shel can
manage six different properties: co-requisite, post req-
uisite, prerequisite, is-a, part-of and next (listing 3).� �

1 A r r a y L i s t r e l a t i o n s = c o n f i g T u t o r . g e t R e l a t i o n s () ;
2 I e r a t o r r i t = r e l a t i o n s . i t e r a t o r () ;
3 whi le (r i t . hasNext ()) {
4 C o n f i g R e l a t i o n r e l = (C o n f i g R e l a t i o n) r i t . n e x t () ;
5 O b j e c t P r o p e r t y prop = model . c r e a t e O b j e c t P r o p e r t y (
6 u r i + r e l . getName ()) ;
7 }
� �

Listing 3: Code to create the relations between the con-
cepts.

8

Once the structure is created it is time to insert the
instances into the structure. First, for each node in the
graph an instance of it’s corresponding class (Concept
or Procedure) is created (listing 4).� �

1 OntResource u b a _ r e s _ c l a s s = (OntResource) ubaMap . g e t (
2 uba . ge tType ()) ;
3
4 I n d i v i d u a l ubaRDF = model . c r e a t e I n d i v i d u a l (u r i
5 +ubaName , u b a _ r e s _ c l a s s) ;
� �

Listing 4: Code to create an instance of a concept of
the course.

Then, for each instance, the values of the attributes
are inserted (listing 5).� �

1 D a t a t y p e P r o p e r t y prop = (D a t a t y p e P r o p e r t y) t h i s .
2 d a t a t y p e P r o p e r t y M a p . g e t (a t tName) ;
3
4 ubaRDF . a d d P r o p e r t y (prop , v a l u e) ;
� �

Listing 5: Code to add the value to the properties of the
instances.

The next step is to create instances to store the con-
tent that will be shown to the student in each BLU, and
relate it to the instance of the BLU using the ”isDe-
finedBy” property (listing 6).� �

1 I n d i v i d u a l infoRDF = model . c r e a t e I n d i v i d u a l (u r i
2 +" I n f o _ " + infoName , i n f o _ c l a s s) ;
3 InfoRDF . a d d P r o p e r t y (i n f o P r o p 1 , infoName) ;
4 infoRDF . a d d P r o p e r t y (i n f o P r o p 2 , i n f o T y p e) ;
5 infoRDF . a d d P r o p e r t y (i n f o P r o p 3 , c o n t e n t) ;
6
7 ubaRDF . add I sDef inedBy (infoRDF) ;
� �

Listing 6: Code to create the instances where to store
the information of the concepts and the relation with
the instances using the isDefinedBy property.

Finally, for each relation in the graph, a property that
relates two instances of BLUs is created (listing 7).� �

1 R e l a t i o n r e l a t i o n = (R e l a t i o n) u r i t . n e x t () ;
2 UBA fromUBA = r e l a t i o n . getFromUBA () ;
3 UBA toUBA = r e l a t i o n . getToUBA () ;
4
5 I n d i v i d u a l f romResource = (I n d i v i d u a l) i n s t anceMap
6 . g e t (fromUBA . getName ()) ;
7 I n d i v i d u a l t o R e s o u r c e = (I n d i v i d u a l) i n s t anceMap
8 . g e t (toUBA . getName ()) ;
9 S t r i n g r e l T y p e = r e l a t i o n . ge tType () ;

10
11 O b j e c t P r o p e r t y prop = (O b j e c t P r o p e r t y) r e l a t i o n M a p
12 . g e t (r e l a t i o n . ge tType ()) ;
13 f romResource . a d d P r o p e r t y (prop , t o R e s o u r c e) ;

� �
Listing 7: Code to create the relations between the in-
stances.

As the ontology created is valid (not correct, we can-
not assure that the concepts and their relations are cor-
rectly described in the course), it can be imported into
an ontology editor like Protégè [29]. Once inside Pro-
tégè it can be exported to other formats or validated
with the rules that Protégè incorporates.

4.4. Loading the course

As the course is saved as an ontology by default,
when the user wants to reload the course the ontol-
ogy must be read. This could be done going through
the whole model reading the structure and instances,
but there is an easier way to do it. The Jena Frame-
work provides a programmatic environment for the
SPARQL language. SPARQL (Simple Protocol and
RDF Query Language) defines a standard query lan-
guage and data access protocol for use with the Re-
source Description Framework (RDF) data model. It
works for any data source that can be mapped to RDF.

For example, in the listing 8 the query to obtain all
the BLUs of a specific type stored in the ontology.� �

1 q u e r y S t r i n g =
2 "PREFIX r d f :
3 < h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns #> " +
4 "PREFIX un : < h t t p : / / www. u n a v a r r a . e s / s t i #> " +
5 "SELECT ? uba " +
6 "WHERE { " +
7 " ? uba r d f : t y p e " + " un : " + tu torName
8 + " _ " + bluType + " . " +
9 " } " ;
� �

Listing 8: SPARQL query to obtain all the BLUs of ont
type of the ontology.

5. Conclusion and future work

In this article an architecture for a generic author-
ing tool that creates courses for intelligent tutoring sys-
tem and the first steps of the implementation of the
core tool have been shown. Besides, the transforma-
tion of the courses into ontologies has been explained.
We believe that once it is finished most of the intelli-
gent tutoring system that exist nowadays could make
use of this tool in order to share the knowledge they

9

create. Although the freedom of the user is one of the
strengths of the tool, there should be a way to validate
the ontologies created. This could be achieved using
an automatic sematic validator [7] or a collaborative
space like in [11] where the authors can discuss the
domain models they create. The next steps will be the
completion of the core of the authoring tool and the
test of it in different scenarios.

References

[1] Arruarte Lasa, A. (1999), Fundamentals and design of IRIS:
a shell for building Intelligent Teaching-Learning Systems, AI
Commun. 12(1-2), 113

[2] Bittencourt, I. I., Costa, E., Silva, M., and Soares, E. (2009), A
computational model for developing semantic web-based educa-
tional systems, Know.-Based Syst. 22(4), 302

[3] Bloom, B., Engelhart, M., Murst, E., Hill, W., and Drathwohl,
D. (1956), Taxonomy of Educational Objectives: Handbook I,
Cognitive Domain, Longman

[4] Brickley, D. and Guha, R. (eds.) (10 February 2004), RDF Vo-
cabulary Description Language 1.0: RDF Schema, W3C Recom-
mendation, Available at http://www.w3.org/TR/rdf-schema/

[5] Chang, K. E., Sung, Y. T., and Chen, S. F. (2001), Learning
through computer-based concept mapping with scaffolding aid,
Journal of Computer Assisted Learning 17(1), 21

[6] De Bra, P., Aerts, A., Berden, B., de Lange, B., Rousseau, B.,
Santic, T., Smits, D., and Stash, N. (2003), AHA! The adaptive
hypermedia architecture, in HYPERTEXT ’03: Proceedings of the
fourteenth ACM conference on Hypertext and hypermedia, ACM,
New York, NY, USA, pp 81–84

[7] Dibie-Barthélemy, J., Haemmerlé, O., and Salvat, E. (2006),
A semantic validation of conceptual graphs, Know.-Based Syst.
19(7), 498

[8] Dicheva, D. and Dichev, C. (2006), C.: TM4L: Creating and
Browsing Educational Topic Maps, British Journal of Educa-
tional Technology - BJET 37, 391

[9] Dzbor, M., Stutt, A., Motta, E., and Collins, T. (2007), Represen-
tations for semantic learning webs: Semantic Web technology in
learning support, Journal of Computer Assisted Learning 23(1),
69

[10] Escudero, H. and Fuentes, R. (2010), Exchanging courses be-
tween different Intelligent Tutoring Systems: A generic course
generation authoring tool, Knowledge Based Systems

[11] Gaeta, M., Orciuoli, F., and Ritrovato, P. (2009), Advanced on-
tology management system for personalised e-Learning, Know.-
Based Syst. 22(4), 292

[12] Gasevic, Dragan; Hatala, M. (2006), Ontology Mappings to
Improve Learning Resource Search, British Journal of Educa-
tional Technology 37(3), 375

[13] Hayashi, Y., Bourdeau, J., and Mizoguchi, R. (2009), Using
Ontological Engineering to Organize Learning/Instructional The-
ories and Build a Theory-Aware Authoring System, Int. J. Artif.
Intell. Ed. 19(2), 211

[14] Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F.,
and Rudolph, S. (eds.) (27 October 2009), OWL-2 Web Ontol-
ogy Language: Primer, W3C Recommendation, Available at
http://www.w3.org/TR/owl2-primer/

[15] Jan Lanzing (1997), The concept mapping homepage,
http://users.edte.utwente.nl/lanzing/cm_home.htm

[16] Lora Aroyo, Stanislav Pokraev, R. B. (2003), Preparing
SCORM for the Semantic Web, in International Conference on
Ontologies, Databases, and Applications of Semantics, Catania,
Italy

[17] Manola, F. and Miller, E. (eds.) (10 February 2004),
RDF Primer, W3C Recommendation, Available at
http://www.w3.org/TR/rdf-primer/

[18] Martin, D. J. (1994), Concept Mapping as an Aid to Lesson
Planning: A Longitudinal Study., Journal of Elementary Science
Education 6(2), 11

[19] McBride, B. (2002), Jena: A Semantic Web Toolkit, IEEE In-
ternet Computing 6(6), 55

[20] Merril, M. (1983), Component Display Theory„ Instructional-
design Theories and Models, An overview of their current status
pp 279–333

[21] Mizoguchi, R. and Bourdeau, J. (2000), Using Ontological En-
gineering to overcome common AI-ED problems, Int. J. Artif.
Intell. Ed. 11 (2)(2), 107

[22] Moundridou, M. and Virvou, M. (2002), WEAR: A Web-
Based Authoring Tool for Building Intelligent Tutoring Systems,
in 2nd Helenic Conference on AI (ed.), Proceedings, Companion
volume, Thessaloniki, Greece, pp 203–214

[23] Noy, N. F. and McGuinness, D. L. (2001), "Ontology Develop-
ment 101: A Guide to Creating Your First Ontology", Technical
report, Stanford University

[24] of Electrical, I. and Engineers, E. (eds.) (12 June 2002), Draft
Standard for Learning Object Metadata, IEEE-Standards Associ-
ation

[25] Ong, J. and Ramachandran, S. (2003), Intelligent tutoring Sys-
tems: Using AI to Improve Training Performance and ROI, Net-
worker Newsletter 19(6)

[26] Prud’hommeaux, E. and Seaborne, A. (eds.) (15 January 2008),
SPARQL Query Language for RDF, W3C Recommendation,
Available at http://www.w3.org/TR/rdf-sparql-query/

[27] Schoksey, S. D. (2004), Master’s thesis, Worcester polytechnic
institute

[28] Shih, B.-J., Shih, J.-L., and Chen, R.-L. (2007), Organizing
Learning Materials through Hierarchical Topic Maps: An Illus-
tration through Chinese Herb Medication, Journal of Computer
Assisted Learning 23(6), 477

[29] Standfod, University (2010), "Protegé",
http://protege.stanford.edu

[30] Tsai, K. H., Chiu, T. K., Lee, M. C., and Wang, T. I. (2006), A
Learning Objects Recommendation Model based on the Prefer-
ence and Ontological Approaches, in ICALT ’06: Proceedings of
the Sixth IEEE International Conference on Advanced Learning
Technologies, IEEE Computer Society, Washington, DC, USA,
pp 36–40

[31] Zouaq, A. and Nkambou, R. (2008), Building Domain Ontolo-
gies from Text for Educational Purposes, IEEE Transactions on
Learning Technologies 1, 49

