
Journal Title 0 (2020) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Sequential Linked Data: the State of Affairs
Enrico Daga a,*, Albert Meroño-Peñuela b, and Enrico Motta a

a Knowledge Media Institute, The Open University, United Kingdom
E-mails: enrico.daga@open.ac.uk, enrico.motta@open.ac.uk
b Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
E-mail: albert.merono@vu.nl

Abstract. Sequences are among the most important data structures in computer science. In the Semantic Web, however, little
attention has been given to Sequential Linked Data. In previous work, we have discussed the data models that Knowledge Graphs
commonly use for representing sequences and showed how these models have an impact on query performance and that this
impact is invariant to triplestore implementations. However, the specific list operations that the management of Sequential Linked
Data requires beyond the simple retrieval of an entire list or a range of its elements –e.g. to add or remove elements from a
list–, and their impact in the various list data models, remain unclear. Covering this knowledge gap would be a significant step
towards the realization of a Semantic Web list Application Programming Interface (API) that standardizes list manipulation
and generalizes beyond specific data models. In order to address these challenges towards the realization of such an API, we
build on our previous work in understanding the effects of various sequential data models for Knowledge Graphs, extending our
benchmark and proposing a set of read-write Semantic Web list operations in SPARQL, with insert, update and delete support.
To do so, we identify five classic list-based computer science sequential data structures (linked list, double linked list, stack,
queue, and array), from which we derive nine atomic read-write operations for Semantic Web lists. We propose a SPARQL
implementation of these operations with five typical RDF data models and compare their performance by executing them against
six increasing dataset sizes and four different triplestores. In light of our results, we discuss the feasibility of our devised API
and reflect on the state of affairs of Sequential Linked Data.

Keywords: Sequential Linked Data, Benchmark, RDF, SPARQL

1. Introduction

Sequences are representations of real-world sets of
entities that require an order and possibly a refer-
ence to their position. They support a large variety of
domain knowledge, such as scholarly metadata (pa-
per authors — e.g., the last author), historical data
(biographies and timelines), media metadata (track-
lists — e.g., the fourth track), social media content
(recipes, howto) and musical content (e.g., scores as
MIDI Linked Data [25]). Applications typically need
to perform a variety of operations on lists, including
multiple types of access and edits, typically in the form
of queries (in, e.g., SPARQL). The practical complex-
ity of these queries can have a potentially tremendous
impact on performance and service availability [9].

*Corresponding author. E-mail: enrico.daga@open.ac.uk.

The Semantic Web community has engineered var-
ious list models across the years, for example, the
Ordered List pattern [16], which refers to the con-
struct rdf:List in the RDF W3C specification.
A pragmatic solution refers to each member of the
list using RDF containment membership properties
(rdf:_1, rdf:_2,. . .) within an n-ary relation of
type rdf:Seq. Alternative options may involve pick-
ing a solution from the Ontology Design Patterns cat-
alogue [12], for example, the Sequence ODP1. How-
ever, either of these choices could have a significant
impact in terms of query-ability (fitness for use in ap-
plications), performance and, ultimately, availability of
the data. In our previous work [13, 26], we have shown
that most of these practical list models can be re-

1Sequence: http://ontologydesignpatterns.org/wiki/Submissions:
Sequence.

0000-0000/20/$00.00 © 2020 – IOS Press and the authors. All rights reserved

mailto:enrico.daga@open.ac.uk
mailto:enrico.motta@open.ac.uk
mailto:albert.merono@vu.nl
mailto:enrico.daga@open.ac.uk
http://ontologydesignpatterns.org/wiki/Submissions:Sequence
http://ontologydesignpatterns.org/wiki/Submissions:Sequence

2 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

duced to five methods: rdf:Seq, rdf:List, URI-
based, number-based, and the sequence ontology pat-
tern. We also started a benchmark initiative to evaluate
their querying performance in various dataset sizes and
triplestore configurations. This work is, however, lim-
ited to evaluate read operations only. Other SPARQL-
based benchmarks evaluate competing storage solu-
tions against generic use cases, deemed to be represen-
tative of critical features of the query language [10] or
to mirror how users query Linked Data [30].

Therefore, important questions that remain unan-
swered are:

– Is the usability of Sequential Linked Data mod-
elling solutions affected by the introduction of
write operations, like insert, update, and delete?

– Which of these methods should be recommended
for Sequential Linked Data, towards the realiza-
tion of a generic, SPARQL-based Application
Programming Interface (API)?

In this article, we propose to extend our empiri-
cal evaluation approach of Semantic Web lists with
a full set of well-grounded, read-write atomic opera-
tions that could constitute the core of a Semantic Web
List API. We seek inspiration for these operations in
five classic computer science sequential data struc-
tures. These data structures give rise to a set of nine
atomic read-write operations. This set of operations
leads to the core research question: how lists should
be modelled in order to support these operations effi-
ciently? How do these operations perform in current
RDF list models? To answer this questions, we im-
plement these operations as SPARQL queries, and we
use these queries to develop our experiments on query
performance. For this, we re-use our surveyed meth-
ods for modelling sequences in RDF [13], and we ex-
tend our proposed pragmatic benchmark [26] for as-
sessing their performance in conjunction with these
atomic SPARQL queries in a number of triplestores
and dataset sizes. Specifically, we demonstrated in [13]
how the efficiency of retrieving sequential linked data
depends primarily on how they are modelled and that
the impact of a modelling solution on data availabil-
ity is independent from the database engine (triple-
store invariance hypothesis). Here, we complement
this analysis by focusing on data management and per-
form a thorough assessment of List read-write opera-
tions for the Semantic Web.

Our contributions are:

– A list of nine atomic, read-write list operations
in SPARQL towards the realization of a Seman-
tic Web List API, consisting of: first, rest, ap-
pend, append_front, prev, popoff, set, get, and re-
move_at. We base these operations on those that
build the basis of the classic computer science
sequential data structures of linked lists, double
linked lists, stack, queue, and array (Section 3)

– An extension to our RDF list benchmark, support-
ing those operations (Section 5)

– Experiments to evaluate the performance of these
read-write operations in SPARQL with compet-
ing list data models, on datasets of increasing
sizes, and against four different triplestores (Sec-
tion 6).

The rest of the paper is structured as follows. We
introduce the research methodology in Section 2. We
report our findings in atomic read-write list operations
based on sequential data structures in Section 3. Sec-
tion 4 provides background on the modelling solutions
we aim at evaluating. In Section 5 we use the atomic
read-write list operations to formalise SPARQL update
queries and extend our benchmark. Section 6 reports
on the experiments. Results are discussed in Section 7.
We survey the related work in Section 8 and conclude
our paper in Section 9.

In this article we use the following namespace pre-
fixes:

midi: <http://purl.org/midi-ld/midi#>
midi-note: <http://purl.org/midi-ld/notes/>
midi-prog: <http://purl.org/midi-ld/programs

/>
prov: <http://www.w3.org/ns/prov#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
rdfs: <http://www.w3.org/2000/01/rdf-schema#>
xml: <http://www.w3.org/XML/1998/namespace>
xsd: <http://www.w3.org/2001/XMLSchema#>
song: <http://purl.org/midi-ld/song/example/>
ex: <http://www.example.org/>

2. Methodology

In this section, we specialise the methodology previ-
ously introduced in [13] to pragmatically evaluate the
performance of competing models for the representa-
tion of Sequential Linked Data in relation to a stan-
dard List API, grouping atomic read-write operations.
Phases of the methodology are requirements, survey,
formalisation, and evaluation.

E. Daga et al. / Sequential Linked Data: the State of Affairs 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Requirements The reference scenario is the access
and manipulations of Lists stored as RDF data and ex-
posed on a Semantic Web API, backed by a SPARQL
endpoint, following an approach akin to [15]. In the
initial phase, we identify the core set of standard,
atomic read-write operations that a generic, SPARQL-
based API for the management of lists should support.
To do this, we select computer science data structures
that could be used to encode such data requirements,
to infer possible operations. Then, we collected Linked
Data models for encoding the same data requirement,
and encoded the operations using SPARQL to return
an ordered sequence for developers to use. By evaluat-
ing the efficiency of the SPARQL queries, we want to
answer the question: how should we encode sequences
to support fast and agile development of applications
with Linked Data? To focus on lists, we restrict our-
selves to sequential data structures, i.e. an element can
only reference linearly a single following or preceding
element (this excludes data structures such as trees or
graphs). We define a list as an unbound ordered distinct
set, where each element appears only once in the se-
quence, which does not have any restriction of length2.
The main objective is to identify the fundamental op-
erations for sequential data access and manipulation.
By relying on computer science data models for se-
quences, we aim to collect all these operations.

Survey Modelling solutions should be relevant to
practitioners by referring to a real dataset adopting the
modelling practice. After listing the modelling solu-
tions, we abstract them in structural patterns and en-
sure these patterns are minimal with respect to the data
model. Surveyed schemas can incorporate other re-
quirements (for example, a list of authors may include
components to express things other than the order such
as affiliation or email). Here, we reuse the survey of
RDF Lists included in [13].

Formalisation Each list modelling solution and op-
eration should be encoded in RDF and SPARQL. No-
tably, each list modelling pattern must be challenged
to fit the API operations designed in the require-
ments phase and the respective solutions encoded in
SPARQL queries. By doing this, it is fundamental to

2Typically, lists are distinguished from sets because they allow the
same item to be repeated multiple times. However, the data structure
itself does necessarily have distinct slots, each one of them point-
ing to some object (that can be referenced multiple times). In RDF,
this is typically achieved using intermediate entities, for example, as
blank nodes.

ensure that the output is semantically equivalent, ide-
ally the same, for all query variants. Besides, it is fun-
damental that queries are minimal by keeping them in
the simplest form, for example, adopting good prac-
tices for SPARQL query optimization [32]. Particu-
larly: (a) avoiding subqueries, when possible, (b) re-
ducing the use of SPARQL operators to the minimum
necessary, (c) projecting variables only when strictly
necessary, and (d) preferring blank nodes to named
variables3. We build upon our previous work [13, 26]
to achieve this.

Evaluation The objective of this phase is to evalu-
ate the different solutions empirically. As Linked Data
are based on a Web application architecture (the clien-
t/server approach), the performance measure we fo-
cus on is overall response time. This means that the
cost of the operation includes both the query evalu-
ation and also the output serialisation and the trans-
fer of the HTTP response payload to the client. In or-
der for results to be relevant to real applications, we
measure the overall response time with different data
sizes and generate a set of realistic datasets at differ-
ent scales. We perform experiments for each modelling
prototype, each atomic read-write operation, with dif-
ferent dataset sizes, and with different database en-
gines.

Therefore, although database engines may perform
differently, we expect that the experimental results
would evidence a difference that depends on the nature
of the modelling solutions. Here, we focus on the rela-
tionship between models, operations, dataset sizes, and
triplestore implementations, to foster a broader discus-
sion on where the strengths, and possible weaknesses,
of a SPARQL-based list manipulation API lie.

3. Requirements from sequential data structures

In this Section, we identify abstract data structures
that are typically considered to represent ordered se-
quences from classic computer science data structure
texts [7, 28]. We focus on linear data structures that
(a) preserve the order of the items, (b) are continuous
sequences, (c) have unrestricted size, and (d) include
a single element in each position. In what follows, we
describe the data structures by listing the core func-
tions they are meant to support and express their ex-
pected behaviour by axiomatic semantics.

3In fact, blank nodes do not require the matching node value to be
kept in memory as part of the query solution to be projected.

4 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

3.1. Linked List

The abstract list type L with elements of some type

E is defined by the following functions and axioms:

append_ f ront : (E × L)→ L

f irst : L→ E

rest : L→ L

f irst(append_ f ront(e, l)) = e

rest(append_ f ront(e, l)) = l

e ∈ E, l ∈ L

(1)

where append_ f ront is the operator that constructs

memory objects which hold two values or pointers

to values. It is implicit that append_ f ront(e, l) 6=
l, append_ f ront(e, l) 6= e, append_ f ront(e1, l1) =

append_ f ront(e2, l2) i f f e1 = e2 and l1 = l2. Note

that f irst([]) and rest([]) are not defined, for [] repre-

senting th empty list.

Examples. The use of Linked Lists is straightfor-

ward for users of most programming languages. E.g.,

append_ f ront(alice, [bob, carl]) = [alice, bob, carl];

and then f irst([alice, bob, carl]) = alice and subse-

quently rest([alice, bob, carl]) = [bob, carl].

3.2. Double Linked List

A variant of a linked list is one in which each item

has a link to the previous item as well as the next. This

allows easily accessing list items backward as well as

forward and deleting any item in constant time. Fol-

lowing the definition of linked lists, a double linked

list is defined with the same functions and axioms but

defining an additional prev pointer and append func-
tion:

append_ f ront : (E × L)→ L

append : (L× E)→ L

f irst : L→ E

rest : L→ L

prev : L→ L

f irst(append_ f ront(e, l)) = e

rest(append_ f ront(e, l)) = l

prev(append(l, e)) = l

e ∈ E, l ∈ L

(2)

Examples. Analogous to Linked Lists, with the ad-
dition of the append and prev functions that ap-
pend an element to the end of the list and return the
list preceding an element, respectively. For example,
append([bob, carl], alice) = [bob, carl, alice]; and then
prev(append([bob, carl], alice)) = [bob, carl].

3.3. Stack

A stack is a collection of items in which only the
most recently added item may be removed. The lat-
est added item is at the top. Basic operations are
append_ f ront, already introduced, and popo f f . Of-
ten f irst (also known as top) is available, too. This
data structure is also known as "last-in, first-out"
queue (LIFO). These operations have the following
axiomatic semantics:

popo f f : (S)→ E

popo f f (append_ f ront(e, s)) = s

f irst(append_ f ront(e, s)) = e

append_ f ront(popo f f (s), s) = s

f irst(popo f f (s), s) 6= s

s ∈ S , e ∈ E

(3)

E. Daga et al. / Sequential Linked Data: the State of Affairs 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

where S is a stack and e is a value. Here, S is to be
considered a sequential data structure analogous to L
in the previous section.

Examples. In a stack, elements are piled on top of
each other, and can be accessed only by popping them
off the top first. For example, popo f f ([alice, bob, carl]) =
[bob, carl]. As usual, f irst([alice, bob, carl]) = alice
but does not imply any change in the sequence.

3.4. Queue

A queue is a collection of ordered items that sup-
ports addition of items (to the tail) and access (or dele-
tion) to the earliest added item only [2]. Typically, the
retrieval of the earliest item (head of the queue), corre-
sponds to its deletion. In what follows we specify three
operations: (1) append - adds an element at the end of
the queue; (2) first - retrieves the element at the top of
the queue; and (3) popoff - deletes the element from
the top of the queue. The following axioms summarise
the semantics of the operations:

f irst(append(v, [])) = v

popo f f (append(v, [])) = []

f irst(append(v, append(w,Q))) =

f irst(append(w,Q))

⇐⇒ Q = []

popo f f (append(v, append(w,Q))) =

append(v, popo f f (append(w,Q)))

⇐⇒ Q = []

(4)

where Q is a queue and v and w are values. Here, Q is
to be considered a sequential data structure analogous
to L and S in the previous sections.

The queue data structure, also known as FIFO list
(first in, first out) is generally conceived as having un-
limited size, although there can be implementations
that force a fixed number of items (bounded queue [1]).
However, here we only consider queues of unlimited
length.

Examples. Queues complement the behaviour of
stacks, by allowing elements to be added on
one side and accessed on the other. Following
our previous examples, append(alice, [bob, carl]) =

[bob, carl, alice], with f irst([bob, carl, alice]) = bob
and its subsequent removal from the queue with
popo f f ([bob, carl, alice]) = [carl, alice].

3.5. Array

An Array is a collection of objects that are randomly
accessible by an index, often an integer value. Since
our focus is on sequential data structures as defined
in our methodology, we only consider sorted arrays,
where the index is an integer. In addition, we restrict
the definition to a data structure whose index also rep-
resents the position of the item in the list. For exam-
ple, the item at index 2 being the second element in the
sequence. Also, we do not consider arrays with con-
strained sizes or including null values (gaps in the se-
quence). An implication of this is that removing one
item implies the shifting of others and a reduction in
size of the array. The operations on Arrays are the fol-
lowing:

set : (E × I × A)→ A

get : (I × A)→ E

remove_at : (I × A)→ A

get(i, set(e, i, a)) = e ⇐⇒ |a| > i

remove_at(i, a) = b

→ a j = b j ⇐⇒ j < i;

a j−1 = b j ⇐⇒ j > i

e ∈ E; a, b ∈ A; i ∈ I

(5)

where A are arrays, E are elements, and I are the
possible indexes in A. Here, A is to be considered a
sequential data structure analogous to L, Q and S in
the previous sections.

Examples. Arrays are typically used for in-memory
scenarios, consequently performing faster but at the
cost of memory allocation management and secu-
rity. set and get store and retrieve, respectively,
one element of the structure. remove_at is a conve-
nience function to delete an element by shifting all
its subsequent elements of one position. For exam-
ple, set(alice, 1, [daniel, bob, carl]) = [alice, bob, carl],

6 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

where random elements can be accessed with
get(2, [alice, bob, carl]) = bob, and removed with
remove_at(2, [alice, bob, carl]) = [alice, carl].

Table 1
Summary of operations and relevant abstract data structures.

Operation LL DLL S T QU ARR

f irst : L→ E x x x x -

rest : L→ L x x - - -

append : L× E → L x x - x -

append_ f ront : E × L→ L x x x -

prev : L→ L - x - - -

popo f f : L→ L - - x x -

set : E × I × L→ L - - - - x

get : I × L : E - - - - x

remove_at : I × L→ L - - - - x

In this section we illustrated five computer science
data structures and identified several key operations for
sequential data management. Table 1 summarises our
requirements, showing the list of operations and their
relevance to the abstract data structures discussed.

4. RDF modelling approaches to sequential data

In this section we present a summary of Seman-
tic Web list models and their properties, recalling the
research in [13]. These models were surveyed by se-
lecting them from the following sources, including
W3C standards4 ontology design patterns [18], re-
source track papers in the International Semantic Web
Conference (e.g. [5], [25]), and lookups of relevant
terms in Linked Open Vocabularies [35]. In what fol-
lows, RDF data models are described as a collection
of common practices in the Linked Data community,
and are not to be understood as recommendations (see
Section 7). For further details and a description of the
surveying methodology, see [13].

4.1. RDF Sequences

The RDF Schema (RDFS) recommendation [8]
defines the container classes rdf:Bag, rdf:Alt,
rdf:Seq to represent collections. Since rdf:Bag
is intended for unordered elements, and rdf:Alt
for “alternative” containers, whose typical process-

4https://www.w3.org/standards/

Fig. 1. The RDF Sequence model. _:x represents the list entity, here
an instance of rdf:Seq according to the standard.

ing will be to select one of its members, these two
models do not fit our sequence definition, and thus
we do not include them among our candidates. Con-
versely, we do consider RDF Sequences: collections
represented by rdf:Seq and ordered by the proper-
ties rdf:_1, rdf:_2, rdf:_3, ... instances of the
class rdfs:ContainerMembershipProperty
(see Figure 1).

Properties. RDF Sequences indicate membership
through various properties, which are used in triples in
predicate position. Ordering of elements is absolute in
such predicates through an integer index after an un-
derscore (“_”).

4.2. URI-based Lists

An approach followed by some resources in the
LOD community [5, 25] consists of establishing list
membership through an explicit property or class
membership, and assigning order by a unique identi-
fier embedded in the element’s URI. For instance, the
triple

1 <http://ld.zdb-services.de/resource/1480923-0>
2 rdf:type
3 <http://purl.org/ontology/bibo/Periodical>

indicates that the subject belongs to a list of periodicals
with list order 14809234, while the triple

1 <http://purl.org/midi-ld/piece/8cf9897/track00>
2 midi:hasEvent
3 <http://purl.org/midi-ld/piece/8cf9897/track00/

event0006>

identifies the 7th event in a MIDI track [25] (see Fig-
ure 2). Clearly, a URI-based data model could have
many ways to incorporate the index value and this may
affect the performance of the string manipulation task
in the overall query execution. However, here we eval-
uate how the necessity of a string manipulation func-
tion (whatever it is) impacts the usability of the data

https://www.w3.org/standards/

E. Daga et al. / Sequential Linked Data: the State of Affairs 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 2. The URI-based list model. _:x represents the list entity, not
necessarily a blank node, linked to all list elements. In this example,
the order of the elements is implicit in the tail of the URI, although
it could appear before.

model compared to other alternative solutions.5 In our
benchmark data, entities are naturally bound to a single
list. Besides, the URI pattern could be used success-
fully in those cases where entities need to be bound to
multiple lists or multiple positions in the same list, by
using surrogate entities. However, this does not change
the nature of the pattern.

Properties. URI-based lists indicate containment
through the use of a class membership and a member-
ship property. Order is absolute and given by sequen-
tial identifiers embedded in the item URI string.

4.3. Number-based Lists

Another practical model, used e.g. in the Sequence
Ontology/Molecular Sequence Ontology (MSO) [17],6

also uses class membership or object properties to
specify the elements that belong to a list, but use a lit-
eral value in a separate property to indicate order. For
instance, the triple

1 <http://purl.org/midi-ld/piece/8cf9897/track00>
2 midi:hasEvent
3 <http://purl.org/midi-ld/piece/8

cf9897/track00/event0006>

indicates that the object belongs to a list of events; and
the additional triple

1 <http://purl.org/midi-ld/piece/8cf9897/track00/
event0006>

2 midi:absoluteTick "6"^^xsd:int

indicates that the event has index 6 (see Figure 3).

5We observe, and are aware of, the challenges introduced by this
list data model. Furthermore, embedding list order indexes in URIs
can have a critical impact on variance and uncertainty of both data
and queries. Specifically for the latter, parsing these indexes may
incur in low query performance and generability. Nonetheless, we
have decided to include, and to a reasonable extent within its expres-
sivity study, this model due to its popularity in Linked Data datasets.

6https://github.com/The-Sequence-Ontology/Specifications/
blob/master/gff3.md

Fig. 3. The Number-based list model. _:x represents the list
entity, here connecting to all list elements through a specific
midi:hasEvent property that links tracks to events. Order is ex-
plicit in each list element through other arbitrary properties (e.g.
midi:absoluteTick).

Properties. Number-based lists indicate contain-
ment through the use of class membership and a mem-
bership property. Order is absolute and given by an
integer index in a literal as an object of an additional
property.

4.4. Sequence Ontology Pattern

A number of models use RDF, RDFS and OWL to
represent sequences in domain specific ways. For ex-
ample, the Time Ontology [21] and the Timeline On-
tology7 offer a number of classes and properties to
model temporality and order, including timestamps,
but also before/after relations. The Sequence Ontology
Pattern8 (SOP) is an ontology design pattern [18] that
“represents the ’path’ cognitive schema, which under-
lies many different conceptualizations: spatial paths,
time lines, event sequences, organizational hierarchies,
graph paths, etc.”. We select SOP as an abstract model
representing this group of list models (see Figure 4).

Fig. 4. The Sequence Ontology Pattern model. _:x repre-
sents the list entity that connects to list elements through the
midi:hasEvent property. The first list element follows no other
element, and the last precedes no other element.

7http://motools.sourceforge.net/timeline/timeline.html#
8http://ontologydesignpatterns.org/wiki/Submissions:Sequence

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
http://motools.sourceforge.net/timeline/timeline.html#
http://ontologydesignpatterns.org/wiki/Submissions:Sequence

8 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 5. The RDF List model. _:x represents the list entity in a blank
node of type rdf:List, as defined in the standard. Subsequent
sublists are defined analogously through blank nodes connected via
rdf:rest; the list ends with rdf:nil.

Properties. SOP lists indicate list membership
through properties. Order is relative and given by the
sequential forward or backward traversal of the se-
quence.

4.5. RDF Lists

The RDFS recommendation [8] defines a vocabu-
lary to describe closed collections or RDF Lists. Such
lists are members of the class rdf:List. Resem-
bling LISP lists, every element of an RDF List is rep-
resented by two triples: <Lk rdf:first Ek>, where
Ek is the k-th element of the list; and <Lk rdf:rest
Lk+1>, representing the rest of the list (in particular,
rdf:nil to end the list) (see Figure 5).

Properties. RDF Lists indicate membership through
the use of a unique property rdf:first in predicate
position. Ordering of elements is relative to the use of
the rdf:rest property, and given by the sequential
forward traversal of the list.

In the following sections we will refer to the data
models using the following names:

SEQ Sequences are represented using the rdf:Seq
model, where the position is hard-coded into a
predicate URI.

URI The position of the items in the list is hard-
coded into the list item URI identifier.

NUMB The position of the item is recorded as a
literal value of a list item property.

SOP The sequence is modelled following the Se-
quence ontology design pattern.

LIST The sequence is modelled according to the
RDF List specification.

5. Query formalisation and benchmark
preparation

To evaluate the performance of atomic read-write
Semantic Web list operations, we use the List.MID
benchmark, “an RDF list data generator and query
template set specifically designed for the evaluation
of RDF lists” [26]. Following our methodology (Sec-
tion 2), in this section we extend the benchmark and
propose a set of SPARQL query templates for sup-
porting our requirements, according to the patterns de-
scribed in Section 4. In addition, we recall the proce-
dure for producing the data and the extensions made to
the data generator component.

5.1. Queries

We extend the list of supported operations in the
benchmark, by considering all the atomic read-write
operations that derive from the sequential data struc-
tures discussed in Section 3. In summary, the opera-
tions are:

– FIRST: returns the first element of the list
– REST: returns all the subsequent elements from

the list starting from the second one
– APPEND: adds the specified element at the end

of the list
– APPEND_FRONT: adds the specified element at

the beginning of the list
– PREV: returns all the previous elements from the

list from the current one
– POPOFF: returns the first element of the list and

removes it from the list
– SET: replaces the indicated element of the list

with the supplied element
– GET: returns the indicated element of the list
– REMOVE_AT: removes the indicated element of

the list

In order to systematically evaluate these in datasets
following one of the RDF list modeling patterns (Sec-
tion 4), we implement these operations as SPARQL
query templates, considering the definitions and ax-
iomatic semantics specified in Section 3.

To satisfy the requirement of supporting Web ap-
plication development, we assume to always return
the sequence in a format that preserves its order. We
choose to return items and lists in a tabular representa-
tion with the SPARQL result set format. Therefore, all
the operations that return something are implemented
as SELECT queries. Figure 6 shows the queries devel-

E. Daga et al. / Sequential Linked Data: the State of Affairs 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT ?event
FROM <%%DATASET%%>
WHERE {

<%%TRACK%%> midi:hasEvents [?seq ?event] .
BIND (xsd:integer(SUBSTR(str(?seq), 45)) AS ?

index)
FILTER (?index = %%INDEX1%%)

} LIMIT 1

(a) SEQ

SELECT ?event
FROM <%%DATASET%%>
WHERE {

<%%TRACK%%> midi:hasEvent ?event .
BIND (xsd:integer(SUBSTR(str(?event), 77)) AS ?

index)
FILTER (?index = %%INDEX1%%)

}
LIMIT 1

(b) URI

SELECT ?event
FROM <%%DATASET%%>
WHERE {

<%%TRACK%%> midi:hasEvent ?event .
?event midi:id ?tick

} ORDER BY ASC(?tick)
LIMIT 1 OFFSET %%INDEX1%%

(c) NUMB

SELECT ?event
FROM <%%DATASET%%>
WHERE {{

SELECT ?event (count(?prev) as ?i)
WHERE {

<%%TRACK%%> midi:hasEvent ?event .
?event sequence:follows* ?prev .

} GROUP BY ?event
}}
ORDER BY ?i LIMIT 1 OFFSET %%INDEX1%%

(d) SOP

SELECT ?event
FROM <%%DATASET%%>
WHERE {{

SELECT ?event (count(?mid) as ?i)
WHERE {

<%%TRACK%%> midi:hasEvents ?events .
?events rdf:rest* ?mid .
?mid rdf:rest* ?elt .
?elt rdf:first ?event

} GROUP BY ?event
}}
ORDER BY ?i LIMIT 1 OFFSET %%INDEX1%%

(e) LIST

Fig. 6. Queries for the GET operation. The operation is supposed to return the entity at a given position in the list. In the minimal form, the
operation returns the URI of the entity. It can be seen how each modelling solution requires a SPARQL query using different language operators.
In some cases, it was impossible to avoid subqueries in order to compute the position of each item in the list and compare it with the required
index.

oped for the GET operation. All queries return the list
item at a given position. The queries include three tem-
plate parameters: (a) DATASET, pointing to a named
graph with the list of a specific size; (b) TRACK, to
be substituted with the URI of the song MIDI Linked
Data database used by the benchmark to represent the
list in that dataset; and (c) INDEXn, used when the op-
eration requires to reference a specific position in the
list (as in the case of GET or REMOVE_AT)9. As it
can be seen from the examples in Figure 6, the queries

9Note that in INDEXn, n refers to the parameter name, that can
be more then one, and not the replaced index value.

are developed in a compact way, following the min-
imality principles explained in Section 2. The opera-
tion is supposed to return the entity at a given position
in the list. In the minimal form, the operation returns
the URI of the entity. It can be seen how each mod-
elling solution requires a SPARQL query using differ-
ent language operators. In some cases, it was impossi-
ble to avoid using subqueries in order to compute the
position of each item in the list and compare it with
the required index. In addition, when the index param-
eter is positioned in the OFFSET clause, we reduce its
value of 1 to keep it consistent with the semantics of

10 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the operator (OFFSET 1 returning the second element
onward).

When the operation requires pointing to a specific
item (GET, SET, and REMOVE_AT), we performed
two experiments for each operation. The first, by pick-
ing a random position in the lower half of the se-
quence. The second, by picking a random index in the
higher half of the sequence. In order to make the exper-
iments comparable, we used the same value in query-
ing all the models on the same list size. This method
will give a reasonable approximation of real cases. The
values are reported in Table 2, which also includes a
decimal number representing the normalised value be-
tween 0 (representing the position of the first item in
the list) and 1 (representing the last item in the list).
The queries can be found online in the GitHub reposi-

Size Low value (position) High value (position)
500 168 (0.33) 332 (0.66)

1k 343 (0.34) 657 (0.65)

2k 578 (0.29) 1222 (0.61)

3k 728 (0.24) 2472 (0.82)

5k 1211 (0.24) 3789 (0.75)

10k 2678 (0.26) 7322 (0.73)
Table 2

Positions of the n-th items for benchmarking the operations GET,
SET, and REMOVE_AT with the various list sizes.

tory of the benchmark10.

5.2. Data preparation

Next to updating the benchmark with the aforemen-
tioned queries, we recall here the RDF list data genera-
tion procedure. The List.MID benchmark implements
an algorithm to generate RDF datasets with lists ac-
cording to the modeling patterns discussed above. The
benchmark uses real-world data using MIDI files [34],
a symbolic music encoding, as a basis. The reason for
this is that MIDI files, and symbolic music notations
in general, must encode musical events (the start of a
note, the end of a note, the switching of one instrument
for another, etc.) in strict sequential order to preserve
musical coherence. Consequently, List.MID uses
the midi2rdf algorithm proposed in [24] to gener-
ate RDF graphs from MIDI files. The generator uses
the Semantic Web list models presented in Section 4 to
encode lists of MIDI events. Importantly, each dataset

10See https://github.com/enridaga/list-benchmark/tree/master/
queries

midi:MIDIFile mo:Track

mo:available_as

midi:Piece midi:Track midi:Event

mo:MusicArtist
foaf:maker

midi:hasTrack
midi:hasEvent

xsd:int
midi:tickOffset

midi:NoteOffEventmidi:NoteOnEvent

midi:Note
midi:velocity

midi:ProgramChangeEvent

xsd:int

midi:note

prov:wasDerivedFrom

midi:channel

midi:Program

xsd:int

midi:note

xsd:intxsd:string

xsd:int

rdfs:label midi:octave

midi:pitch

midi:program

xsd:string
rdfs:label

<http://dbpedia.org/
resource/Grand_piano>

rdfs:seeAlso

xsd:floatxsd:int

midi:metricWeight

midi:scaleDegree

xsd:int

xsd:string

midi:format

midi:key

xsd:string

midi:lyrics

<http://purl.org/midi-ld>

void:inDataset

Fig. 7. Excerpt of the MIDI ontology. Tracks contain lists of sequen-
tial MIDI events.

is always stored in a different named graph in order to
falicitate the systematic management of lists and the
benchmarking of quadstores. List elements are given
indices in the exact same order they occur in original
MIDI files, guaranteeing predicable conversions. Fig-
ure 7 shows an excerpt of the MIDI ontology used by
the original midi2rdf algorithm [24, 25, 34]. The
relevant elements here are midi:Track, each con-
taining a sequence of related musical events (e.g. notes
played by one single instrument); and midi:Event,
each representing a musical event that happens in a
strict order within the track (e.g. the start of a note, the
end of a note). In the present work, we extend the data
generation component as follows:

– To generate datasets following the number-based
list model, the tool can be set to generate unique
and sequential IDs for list elements instead of us-
ing the original, to avoid collisions in the position
of the items and be consistent with the definition
of list we consider in this study.

– The list of operations is extended to the atomic
read-write Semantic Web list operations derived
from Section 3

– New dataset sizes are included to generate lists of
500, 2k, 3k, 5k, and 10k elements

Full instructions for using the benchmark and the
source code are available on GitHub11.

We prepared a dataset for each modelling solution
and six MIDI tracks of different sizes: 500, 1k, 2k, 3k,
5k, and 10k list items respectively. Therefore, we gen-
erate a dataset with a list of size 500 implementing, for
example, the S eq pattern, one of size 1k, and so on for
each sizes and model types, for a total of 30 datasets.
The number of triples varies depending on the size
of the list, the content of the item (the MIDI events),

11https://github.com/midi-ld/List.MID

https://github.com/enridaga/list-benchmark/tree/master/queries
https://github.com/enridaga/list-benchmark/tree/master/queries
https://github.com/midi-ld/List.MID

E. Daga et al. / Sequential Linked Data: the State of Affairs 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

and the modelling solutions. In our previous work [13]
it was possible to run experiments with very large
datasets (up to 120k items), since we only tested a few
read operations. In contrast, we observed in prelimi-
nary tests that many of the update operations consid-
ered here require significant resources and happen to
be challenging even on lists of a few thousands items.
Therefore, we reduced the overall scale of the bench-
mark in order to make the differences attributable to
the modelling solutions observable in the results. We
report statistics about the size of datasets used in the
present work in Figure 8.

6. Experiments

We performed experiments with multiple triple
stores. Each database was prepared by loading all the
data, each one of them in a different named graph. At
runtime, the query template was adapted to target a
specific named graph, for example, the data for testing
the Seq model on a 3k list item12.

Experiments are performed with the following
databases and only considering the SPARQL RDF en-
tailment regime:

– Virtuoso Open Source V7, configured to expect
12G of free RAM, no additional rules enabled ex-
cept the basic SPARQL 1.1.

– Blazegraph 2.1.5, Java VM configured with 12G
of max heap, without reasoning or inferencing
support rather then the plain SPARQL 1.1 sup-
port.

– Apache Fuseki v3 on TDB, Java VM with 12G of
max heap.

– Apache Fuseki v3 In Memory. This is the same
system as the TDB-based but using a full in-
memory setting, also with 12G of max heap
space.

All databases are initialised with the same memory
capacity. However, we could have given different re-
sources to the database engines and maybe even differ-
ent data alongside the graphs used in the benchmark.
As klong as these variables remain stable for all the
experiments, we are still able to compare the results
and observe how the different modelling solutions im-
pact on the performance. The objective of the exper-

12One may argue that the use of an index on the graph component
may affect performance. However, whatever the impact of using the
FROM clause is, it will be equally distributed in the various models.

iments is not to obtain a general measure of the cost
of each operation or an evaluation of the efficiency of
the database systems but to compare the observations
to evaluate the usability of different modelling prac-
tices. Therefore, we assume no knowledge of the in-
dexing mechanism of the database and of the nature
of the data in the database, outside the presence of a
list to be queried. We agree that in theory these may
have an impact in the performance of the queries and
for this reason we isolated each combination in a dif-
ferent graph, making the reasonable assumption that
the FROM clause would be used in query optimisation
for the purpose of reducing the impact of surrounding
data.

The client application performing the queries and
measuring the response time resides on the same ma-
chine as the database, in order to avoid the potential
impact of network speed - that could change during
the experiments - on the overall response time. Exper-
iments are executed on a Linux VM equipped with In-
tel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz 8-core
and 32G RAM. During the experiments, no application
was running on the instance apart from system pro-
cesses, the target database server, and the experiment
itself.

To summarise, the dimensions considered in our ex-
periments are, therefore: (a) Model (one of): Seq, List,
Number Index, SOP, URI Index (b) Dataset Size (one
of): 500, 1k, 2k, 3k, 5k, 10k (c) Operation (one of):
FIRST, GET (low index), GET (high index), REST,
PREV, APPEND, APPEND_FRONT, POPOFF, SET
(low index), SET (high index), REMOVE_AT (low in-
dex), and REMOVE_AT (high index). (d) Database
(one of): Virtuoso, Blazegraph, Fuseki-TDB, Fuseki-
Mem.

Therefore, each experiment combines one of 5 data
models, 6 list sizes, 12 operations (each operation
implemented in 5 different queries according to the
related data model), and 4 database engines. These
makes a total of 1440 experiments performed using 60
different queries included in the benchmark. The pro-
cess of running the experiments can be summarised as
follows:

1. Select database engine
2. Load all the data
3. Restart the database engine
4. Select one data model and one operation
5. Run the related query on each list size, starting

from the smaller and proceeding with lists of in-
creasing sizes, interrupting the query after 5 min-

12 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k

2000

5000

10000

25000

50000

100000

Tr
ip

le
s

SEQ URI NUMB SOP LIST

Fig. 8. Size of the datasets in number of triples

utes if no response is returned. The client waits 5
seconds between repeating the query 10 times in
total.

6. Stop the instance after the queries are all com-
pleted and move to point 3 for the next iteration,
until all experiments are performed.

7. On results collection, we identify experiments re-
turning an error or timed out as well as verify that
the response content is correct.

In what follows, we report on overall response time,
meaning the amount of time the client had to wait be-
fore obtaining the complete answer. We report on mea-
sures referring to average values on 10 repetitions, in-
cluding the standard deviation (SD). Most of the read
operations (FIRST, GET, REST, and PREV) reported
an SD value below 10% of the total time. A few cases
reported a higher SD, but they all referred to short
response times (below the second) and are therefore
not problematic (for example, the FIRST operation al-
ways completes below 200 milliseconds). Write oper-
ations (APPEND, APPEND_FRONT, POPOFF, SET,
REMOVE_AT) reported sometimes a SD up to 20% of
the total time. We can conclude that the reported av-
erages are significant and represent well the response
time of a client application querying lists of that form
and size. Figures 11-22 report the average values re-
sponse time, including the standard deviation, in a se-
quence of bar charts. Supplementary material is avail-
able for reproducibility [14].

7. Mapping requirements and RDF modelling
solutions

We discuss the results of the experiments by look-
ing into each operation individually first. After that,

we derive more general conclusions in relation to the
abstract data structures introduced in Section 3. Re-
sults for each of the operators are presented in bar
charts (see figures 11-22). Each figure presents four
bar charts, each one of them dedicated to the results
pertaining a database engine. The results are grouped
by list size (horizontal axis) and reported as bar charts.
The y axis represents the average response time, in
milliseconds, and the standard deviation, distributed in
logarithmic scale (except for Figure 11, where this was
not needed). Unless differently specified in the com-
ing discussion, a bar with diagonal lines indicates an
experiment that was interrupted after the time limit of
five minutes. Two additional horizontal lines provide a
visual reference at 1 and 5 seconds. The following ob-
servations refer to the results with all the database en-
gines, unless differently specified. A discussion of the
performance of the different database engines would
be out of scope. We avoid to do this unless when it is
useful to argue on the behaviour of the data models.
Reported queries show the SPARQL code sent to the
database after any parameter substitution is applied.

FIRST The operator requires access and retrieval
of the item at the top of the list. For example, the
SPARQL query for the LIST data model is the follow-
ing:

1 SELECT
2 ?event
3 WHERE {
4 song:track00 a midi:Track ;
5 midi:hasEvents/rdf:first ?event
6 }
7 LIMIT 1

Results are reported in Figure 11. We consider the fluc-
tuation in the measurements on the various sizes and
the related standard deviation as not significant as the

E. Daga et al. / Sequential Linked Data: the State of Affairs 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

response is always returned in less than 200 millisec-
onds in all cases.

GET (low index and high index) Results are reported
in Figure 12 and 13. The operator performs a lookup
and retrieves the N-th element of the sequence. The op-
eration scales well for all models with a materialised
index (URI, NUMB, and SEQ). When the index is im-
plicit, it is derivable from the position of the element
in the nested structure (SOP and LIST), as in the fol-
lowing query (taking the case of the SOP data model):

1 SELECT
2 ?event
3 WHERE {{
4 SELECT ?event (count(?prev) as ?i)
5 WHERE {
6 song:track00 midi:hasEvent ?event .
7 ?event sequence:follows* ?prev .
8 }
9 GROUP BY ?event

10 }}
11 ORDER BY ?i
12 LIMIT 1
13 OFFSET 657

However, this happens at a high cost, as it can be seen
from the results of both experiments. In particular, with
large lists, the operation either times out (Blazegraph
and Virtuoso), or returns an error (a StackOverflow
Java exception, in the cases of Fuseki with a 10k-sized
list). This result is significant and it will be shown how
the reasons behind it impact several operations that de-
pend on retrieving items at specific positions in the list.

REST The operation returns the content of the se-
quence, except for the first element, following the se-
quence order. The following is an example query for
the SEQ data model:

1 SELECT
2 ?event
3 WHERE {
4 song:track00 midi:hasEvents [?seq ?event] .
5 # extracted from, e.g. rdf:_32
6 BIND (xsd:integer(SUBSTR(STR(?seq), 45))
7 AS ?index) .
8 % FILTER (?index > 1)
9 }

10 ORDER BY ?index
11 OFFSET 1

Models based on a nested structure perform poorly
as the databases require to traverse the graph for re-
trieving all the elements, performing an aggregation to
compute the index, and sort the returned elements, as
in the case of LIST:

1 SELECT ?event
2 WHERE {

3 {{SELECT ?event (count(?mid) as ?i)
4 WHERE {
5 song:track00 midi:hasEvents ?top .
6 ?top rdf:rest* ?mid .
7 ?mid rdf:rest* ?elt .
8 ?elt rdf:first ?event .
9 FILTER (?elt != ?top)

10 }
11 GROUP BY ?event
12 ORDER BY ?i}}
13 }

As shown in Figure 14, this harms the scalability of
the approach with a response time of more than four
seconds with only 1k items in the list!

PREV This operation aims to retrieve the sequence
except for the last element. The performance of the
data models is comparable to the REST operator, ex-
cept this time, the query needs to know the highest in-
dex, as the sequence is of dynamic size. A notable ex-
ception is the negative performance of the SEQ data
model in combination with Virtuoso. The SPARQL
query is akin to the following:

1 SELECT
2 ?event
3 WHERE {
4 song:track00 midi:hasEvents [?seq ?event] .
5 BIND (xsd:integer(SUBSTR(str(?seq), 45))
6 AS ?index) .
7 FILTER (?index < ?max) .
8 # Find the Max
9 {{SELECT (MAX(?pos) as ?max)

10 WHERE {
11 song:track00 a midi:Track ;
12 midi:hasEvents [?seq []] .
13 BIND (xsd:integer(SUBSTR(str(?seq), 45))
14 AS ?pos)
15 }}}
16 } ORDER BY ?index

Extracting the index from the predicate seems more
demanding than doing the same from the entity URI.
We are not quite sure why this is the case and can only
note that the string manipulation is performed on the
predicate rather than a subject or object triple. How-
ever, this was the only case in which the results have
been partly inconsistent across triple stores.

APPEND This operation adds an element to the end
of the list. To do this, a SPARQL query requires either
to compute the new index value (for models material-
izing indexes) or reaching the last item in the sequence
through path traversal. All data models perform rea-
sonably well with small list sizes. The following is the
query for the LIST data model:

1 DELETE { ?elt rdf:rest rdf:nil }
2 INSERT {
3 ?elt rdf:rest [

14 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4 a rdf:List ;
5 rdf:first <http://example.org/appended-event> ;
6 rdf:rest rdf:nil
7]
8 } WHERE {
9 song:track00 midi:hasEvents ?events .

10 ?events rdf:rest* ?elt .
11 ?elt rdf:rest rdf:nil
12 }

In relation to the latter problem, it is interesting to
note how the SOP model has the advantage of directly
linking all items to the container entity (the list) and,
therefore, does not require to traverse the whole list:

1 INSERT {
2 song:track00
3 midi:hasEvent
4 ex:appended-item .
5 ex:appended-item
6 sequence:follows ?event .
7 ?event sequence:precedes
8 ex:appended-item .
9 } WHERE {

10 song:track00 midi:hasEvent ?event .
11 FILTER NOT EXISTS {
12 ?event sequence:precedes []
13 }
14 }

This difference is reflected in the experiments results
that show how SOP is generally more efficient than
LIST, reported in Figure 16. However, NUMB, SEQ,
and URI perform generally better.

APPEND_FRONT This operation is agile for both
models based on linking items (SOP and LIST). In
contrast, models based on materialised indexes require
some refactoring of all the remaining items in the list!
Results are displayed in Figure 17. However, only SEQ
and URI seem to suffer from this operation, while the
index update of NUMB seem very efficient. This dif-
ference is reflected in the experiments results illus-
trated in Figure 17.

POPOFF Similarly to the previous operation, re-
moving the head of a list also requires an update of all
indexes in models that materialise them. For example,
SEQ and URI require to refactor the predicate and the
entity names involved, which requires some string ma-
nipulation. These operations are reflected in the per-
formance (see Figure 18. For example, the SEQ data
model can be updated with the following query:

1 DELETE {
2 ?events rdf:_1 ?event
3 }
4 INSERT {
5 ?events ?shifted ?event
6 }
7 WHERE {

8 BIND (iri(concat("http://www.w3.org/1999/02/22-rdf
-syntax-ns#_", str(?index - 1))) as ?shifted)
.

9 song:track00 midi:hasEvents ?events .
10 ?events ?seq ?event .
11 BIND (xsd:integer(SUBSTR(str(?seq), 45))
12 AS ?index) .
13 FILTER (?index > 1)
14 }

URI is the model with the worst performance, for simi-
lar reasons to the case of APPEND_FRONT. We report
the resulting query in Figure 9.

SET (low index and high index) This operation gives
results that are similar to GET. LIST and SOP suffer
from the same shortcomings, as it can be seen in Fig-
ure 12 and 20. NUMB, SEQ, and URI are more effi-
cient data models.

REMOVE_AT (low index and high index) This op-
eration is the most expensive of all, as it requires to
find the item in to be removed and shift all subsequent
items, refactoring additional data, when appropriate.
Performance data is reported in Figure 19 and 20. SEQ
performs better with the low index than with the high
one but only going slightly over the five seconds aver-
age on some cases. The cost of the operation is on the
side of materializing the index, for example, in case of
NUMB (the most efficient of the data models):

1 DELETE {
2 song:track00 midi:hasEvent ?e .
3 ?e midi:id 23789 .
4 ?event midi:id ?oldId
5 }
6 INSERT {
7 ?event midi:id ?newId
8 }
9 WHERE {{

10 SELECT ?event ?oldId ?newId WHERE {
11 song:track00> midi:hasEvent ?event .
12 ?event midi:id ?oldId .
13 FILTER (?oldId > 23789) .
14 BIND ((?oldId-1) AS ?newId)
15 }
16 }}

For SOP and LIST, the query needs to traverse the links
and perform multiple joins to refactor the graph struc-
ture (see Figure 10).

Looking at our results, we can now answer the key
questions of our research:

– (1) Do RDF lists modelling practices have an im-
pact on the performance and availability of se-
quential Linked Data?

– (2) Can we distinguish between patterns and
anti-patterns able to model lists in representative
generic use cases?

E. Daga et al. / Sequential Linked Data: the State of Affairs 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 DELETE {
2 song:track00 midi:hasEvent ?popthis ;
3 midi:hasEvent ?olduri .
4 ?popthis ?p1 ?o1 .
5 ?olduri ?p ?o .
6 }
7 INSERT {
8 song:track00 midi:hasEvent ?newuri .
9 ?newuri ?p ?o .

10 }
11 WHERE {
12 # Point to the first element
13 BIND (<http://purl.org/midi-ld/piece/2473e18eec6cc55b82c5dddab3bea353/track00/event0000> as ?popthis) .
14 OPTIONAL { ?popthis ?p1 ?o1 }
15 OPTIONAL { ?olduri ?p ?o }
16 {{
17 SELECT ?olduri ?newuri WHERE {
18 song:track00 midi:hasEvent ?olduri .
19 BIND (xsd:integer(SUBSTR(str(?olduri), 77))
20 AS ?index) .
21 FILTER (?index > 0) .
22 BIND (?index-1 AS ?newindex) .
23 BIND (
24 IF (STRLEN(str(?newindex)) = 1, CONCAT("000",str(?newindex)),
25 IF (STRLEN(str(?newindex)) = 2, CONCAT("00",str(?newindex)),
26 IF (STRLEN(str(?newindex)) = 3, CONCAT("0",str(?newindex)),
27 str(?newindex)
28)
29)
30) AS ?strindex
31) .
32 BIND (iri(concat("http://purl.org/midi-ld/piece/2473e18eec6cc55b82c5dddab3bea353/track00/event", ?

strindex)) as ?newuri) .
33 }
34 }}
35 }

Fig. 9. The SPARQL Update query for POPOFF + URI

Table 3
Meanings of the Likert scale used to evaluate the data models in relation to each operation. In the figures 11-22, two thresholds are visualised at
1 second (green line) and 5 seconds (orange line), respectively.

5 Very good Average response time below 1 second on all list sizes and database engines

4 Good Average response time below 1 second, with exceptions on some list sizes or database engines, never above the 5 seconds

3 Medium Average response vary often above 5 seconds

2 Poor Average response time always above 5 seconds

1 Very Poor Average response time always above 5 seconds with some errors or interruptions after timing out

We performed a qualitative analysis of the perfor-
mance of data models on each operation, illustrated
in Table 4. The data models are classified in 5 Lik-
ert categories, explained by Table 3. Finally, Table 5
summarises the fitness for use of each surveyed RDF
data model with relation to the abstract data structures
(the general use cases studied in the requirements sec-
tion). The most visible performance issues are related
to RDF models following the approach of linking sub-
sequent items. Pragmatically, the only use case where
they seem usable is when the Web application requires
a stack. Indeed, in order to retrieve the pointer to one
item, queries need to traverse all the preceding ones.

This problem affects negatively the performance of
all operations aimed at retrieving portions of the list
(PREV, REST) but also the ones depending on find-
ing the n-th elements of the sequence (GET, SET, RE-
MOVE_AT). Operations requiring to switch the posi-
tion of elements in the list, such as REMOVE_AT and
POPOFF, still require to retrieve the target item be-
fore performing the index update. Interestingly, mate-
rialising the index as an RDF property seems to be the
way to go in all cases, as managing the consistency
of the index in a data property seems more sustain-
able than exploiting the links in the graph, also consid-
ering eventual book-keeping operations, such as index

16 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 DELETE
2 {
3 song:track00 midi:hasEvent ?event .
4 ?event sequence:precedes ?next .
5 ?next sequence:follows ?event .
6 ?prev sequence:precedes ?event .
7 ?event sequence:follows ?prev .
8 }
9 INSERT {

10 ?prev sequence:precedes ?next .
11 ?next sequence:follows ?prev .
12 }
13 WHERE {
14 song:track00 midi:hasEvent ?event
15 OPTIONAL { ?event sequence:precedes ?next } .
16 OPTIONAL { ?event sequence:follows ?prev } .
17 {{
18 {{
19 SELECT ?event (count(?prev) as ?i)
20 WHERE {
21 song:track00 midi:hasEvent ?event .
22 ?event sequence:follows* ?prev .
23 }
24 GROUP BY ?event
25 ORDER BY ?i
26 LIMIT 1
27 OFFSET 23789
28 }}
29 }}
30 }

Fig. 10. The SPARQL Update query for the SOP + REMOVE_AT

Table 4
Performance of data models with relation to the operators. 5: very good, 1: very poor. (*) The combination PREV/SEQ is good on three out of
four database engines.

SEQ URI NUMB SOP LIST

FIRST 5 5 5 5 5

GET (low index) 5 5 5 1 1

GET (high index) 5 5 5 1 1

REST 5 5 5 1 1

PREV 3* 5 5 1 1

APPEND 4 5 4 5 1

APPEND_FRONT 4 4 5 5 5

POPOFF 4 5 4 5 5

SET (low index) 5 5 5 1 1

SET (high index) 5 5 5 1 1

REMOVE_AT (low index) 4 1 5 1 1

REMOVE_AT (high index) 3 1 5 1 1

update. Overall, the efficiency of retrieving sequential
linked data depends heavily on how they are modelled
and can vary depending on the application use case.
This is demonstrated experimentally by our results,
where in 59 out of 60 combinations of data models and
operations, performance results were coherent across
the various databases (the exception being the PREV
operation with the SEQ model that gave different per-

formance on Virtuoso, see Figure 15b). Therefore, the
triple store invariant hypothesis, introduced in [13] re-
ferring to read operations, is confirmed also for update
operations. Indeed, modelling practices have an im-
pact on the performance and availability of sequential
linked data retrieval and management. Crucially, the
behaviour of the various models is consistent among
different triple stores and allow us to distinguish de-

E. Daga et al. / Sequential Linked Data: the State of Affairs 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Mapping of abstract list data types with RDF data models. In this table we answer the question: Should we adopt this data model to implement
the given abstract data type? Possible answers are: Yes, Maybe, or No.

Abstract Data Type Operations SEQ URI NUMB SOP LIST

LL FIRST, REST, APPEND, APPEND_FRONT Y Y Y N N

DLL FIRST, REST, PREV, APPEND, APPEND_FRONT M Y Y N N

ST FIRST, APPEND_FRONT, POPOFF Y M Y Y Y

QU FIRST, APPEND, POPOFF Y M Y Y M

Arr SET, GET, REMOVE_AT M M Y N N

sign patterns that perform well in practice from oth-
ers that perform worse —from the point of view of the
identified requirements. Finally, the most efficient way
of representing order is by using indexes in property
values like in NUMB.

Embedding the ordering semantics in string URIs
does not seem an elegant solution. Indexes hidden
in URIs perform less well in the case of manage-
ment operations, both on the entity (subject/object)
and the rdf:Seq method (predicate). The reasons
are probably related to database indexes on the ba-
sic triple patterns. However, here we focus on trends
observed among the various database engines and do
not discuss specific differences between them. Using
the rdf:Seq pattern may be a reasonable solution iff
SPARQL engines would account of the special mean-
ing of container membership properties and sort those
predicate URIs accordingly. A small update to the
SPARQL specification seems a reasonable way to go.

In our previous work [13], we hypothesised that
modelling solutions that do not store an index (SOP
and LIST) would, in principle, better fit management
operations. In this article, we considered a thorough
set of core operations and evaluated the various mod-
elling solutions with relation to the problem of man-
aging sequences as Linked Data. With the given re-
sults, the methods relying on rdf:List (the rec-
ommended standard) and SOP (a high-quality on-
tology engineering solution) underperform in com-
monly used triple stores and, under these circum-
stances, their use should be discouraged for manag-
ing lists in Linked Data Web applications. We can only
recommend their usage when requirements such as the
expressivity of the representation or the compliance to
OWL2 reasoning are a priority over SPARQL query
performance. The inclusion of the URI-based pattern
in our study indeed corroborated the unpredictability,
variance, and low query generality of this data model;
and despite its popularity in Linked Data we cannot
recommend its usage under those requirements.

Finally, it is worth remarking how our evaluation of
the data models was done with relation to efficiency
of managing Linked Data with the purpose of support-
ing Web application development, leaving out other di-
mensions of analysis such as expressivity of the model
at the logic level, compliance with high-level onto-
logical requirements, and compliance to entailment
regimes. Besides, we only focused on sequences ac-
cepting a single item in each position and most of
the operations implemented in the benchmark (like the
queries for GET and REMOVE_AT) would not be cor-
rect outside that assumption.

Our analysis is primarily directed to study sequen-
tial linked data in the context of Web application de-
velopment, when the RDF data needs to move out-
side the database system possibly in a non-RDF for-
mat. This assumption had a significant impact in pe-
nalising models based on linked elements (SOP and
LIST). Operations such as REST or PREV would be
significantly more efficient when returning the list in-
memory rather then producing a serialised ordered list
as the distributed Web architecture requires.

In this study, we only take care of atomic opera-
tions. Realistic applications will be necessarily more
complex and involve a number of queries performed
in batch or subsequently, having different workload.
However, we assume that their complexity and perfor-
mance will necessarily be a function of the efficiency
of the atomic operations studied in this article.

The motivation behind the need for evaluating prag-
matically competitive modelling solution comes from
the unique socio-technical context of Linked (Open)
Data, where datasets are designed and implemented
for a multiplicity of potential use cases, some of them
not known in advance. This context is radically dif-
ferent from the case of application-specific databases,
whose data model can be optimised for specific sets of
queries. Our work [13] and this article, report on the
first pragmatic study on the efficiency of data manage-
ment operations from the point of view of alternative

18 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

RDF modelling patterns. We establish our approach
on the triple store invariant hypothesis, introduced in
this article. As a result, in the proposed benchmark,
we don’t give much importance to the way system-
specific optimisations may interfere with the measure-
ments, focusing exclusively at keeping those elements
equivalent across the various experiments. All mod-
els are evaluated with increasing list sizes on the same
running instance. In our experiments, all data are in the
same database. We consider this aspect a good feature
of our benchmark, representing the existence of a "data
context" in which our data models (the objects of our
observations) reside. In real applications, the data that
is being queried and used typically resides alongside
other data. Although indexes in the database may be
shared across named graphs, and this may contribute
to general performance, we assume that this is of sec-
ondary importance and that it is sufficient to keep the
data context the same for all the experiments. How-
ever, this is an assumption of our approach, and we do
not evaluate that. Future work could focus on studying
the role of the data that is not needed by the query but
is still in the database. Finally, our results show a broad
consistency in behaviour across different triple stores,
which is what we wanted to prove: that the impact of
modelling solution is triple store invariant. In future
work, we may want to also evaluate how the impact of
data models is data context invariant.

8. Related work

The application of Web APIs backed by SPARQL
Endpoints is an active research area, mainly concerned
with making it easier for developers to interact with
RDF data [15, 23]. This concern is a core motivation
for the present work, whose purpose is to characterise
the requirements for a Sequential Linked Data API
and evaluate possible implementations of such API in
SPARQL by comparing a set of prototypical options as
data models.

In our previous work [13] we propose a set of list
modelling patterns that emerge from global Linked
Data publishing. We already reviewed modelling solu-
tions for lists in Section 4. These patterns are used in a
subsequent benchmark, List.MID [26], that we also
apply and extend here. We refer to [13] for the related
work on modelling sequential linked data.

We focus on practical approaches for benchmark-
ing with the SPARQL language. For a theoretical
study on the complexity of SPARQL, see [29]. The

Semantic Web community has developed a number
of benchmarks for evaluating the performance of
SPARQL engines, proposing both benchmark queries
and benchmark data. The Berlin SPARQL Benchmark
(BSBM) [6] generates benchmark data around explor-
ing products and analyzing consumer reviews. The
Lehigh University Benchmark (LUBM) [20] facilitates
the evaluation of Semantic Web repositories by gener-
ating benchmark data about universities, departments,
professors and students. SP2Bench [31] is a bench-
mark for SPARQL processors that enables compari-
son of optimization strategies, the estimation of their
generality, and the prediction of their benefits in real-
world scenarios; it includes a benchmark data gener-
ator based on the DBLP bibliographic database [22].
Similarly, the DBpedia SPARQL benchmark [27] fo-
cuses on human-written queries against non-relational
schemas. The Waterloo SPARQL Diversity Test Suite
(WatDiv) focuses on “a wide spectrum of SPARQL
queries with varying structural characteristics and se-
lectivity classes” [3]. Other datasets, such as Linked
SPARQL Queries (LSQ) [30], focus exclusively on of-
fering benchmark queries from (structured) SPARQL
query logs but typically miss benchmark data against
which to run these queries. More recently, frameworks
aiming at the comparability and integration of these
benchmarks have emerged, such as IGUANA [10]13.
Pragmatic approaches to benchmarking are not new,
and it is common practice to develop ad-hoc bench-
marks to support specific applications (e.g. [33]).
Benchmark methodologies have been proposed for
covering specific aspects of SPARQL, for example,
federation [19].

The Linked Data Benchmark Council (LDBC) is an
industry-led initiative aimed at raising state of the art
in the area by developing guidelines for benchmark
design. For example, LDBC stresses the need for ref-
erence scenarios to be realistic and believable, in the
sense that should match a general class of use cases.
Besides, benchmarks should expose the technology to
a workload, and by doing that it is essential to focus
on choke points when defining the various tasks [4].
These guidelines inspire our previous work on propos-
ing a benchmark, List.MID, for evaluating the per-
formance of common Semantic Web list representa-
tions under various query engines and operations [26].

It is important to stress how our objective is different
from existing database benchmarks, that are designed

13See also https://github.com/dice-group/triplestore-benchmarks

https://github.com/dice-group/triplestore-benchmarks

E. Daga et al. / Sequential Linked Data: the State of Affairs 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

to evaluate the performance of RDF database systems
under certain workloads or to evaluate their overall ef-
ficiency to support certain SPARQL operators. In other
words, we are not benchmarking RDF database sys-
tems and their efficiency in dealing with lists. In con-
trast, our aim is to compare the alternative modelling
approaches to lists in RDF and, therefore, study their
usability by Web applications that want to query and
update linked data. Where operations need it, we fol-
low existing evaluation approaches on fixed-point se-
quence segmentation [11] and limiting variance to one
single sequence per dataset.

9. Conclusions

In this article, we focused on Sequential Linked
Data and evaluated the feasibility of an API specifica-
tion for managing lists on the Semantic Web. With the
aid of a model-centric and task-oriented approach to
benchmark development [13], we were able to study
pragmatically how to better manage Sequential Linked
Data and identified a fundamental performance prob-
lem of typical, recommended solutions. A significant
result lies in the fact that managing indexes as literals is
by far more sustainable than relying on the graph struc-
ture to establish order or embedding the index value in
an entity or predicate strings.

In the future, we aim at further exploring the appli-
cations of Sequential Linked Data. We expect that a
thorough analysis of end-user applications will expand
the set of operations. Specific cases could require test-
ing membership containment and manipulating por-
tions of the list. Moreover, incorporating our proposed
list operations in the SPARQL specification could open
new research possibilities in query performance and
data storage, for example by encapsulating and push-
ing down such list operations to underlying triplestore
data structures and consequently reducing query com-
plexity. Finally, we work towards the development of
a fully-fledged linked data Web API for efficient man-
agement of ordered sequences in RDF.

References

[1] "Bounded queue", in Dictionary of Algorithms and Data Struc-
tures [online] (2019), https://xlinux.nist.gov/dads/HTML/
boundedqueue.html, accessed 22/09/2019

[2] "Queue", in Dictionary of Algorithms and Data Structures [on-
line] (2019), https://www.nist.gov/dads/HTML/queue.html,
accessed 22/09/2019

[3] Aluç, G., et al: Diversified Stress Testing of RDF Data Man-
agement Systems. In: The Semantic Web – ISWC. pp. 197–
212. Springer, Cham (2014)

[4] Angles, R., et al: The linked data benchmark council: a graph
and rdf industry benchmarking effort. ACM SIGMOD Record
43(1) (2014)

[5] Beek, W., et al: LOD Laundromat: a uniform way of publishing
other people’s dirty data. In: Semantic Web – ISWC. pp. 213–
228. Springer (2014)

[6] Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. In-
ternational Journal on Semantic Web & Information Systems
5(2), 1–24 (2009)

[7] Black, P.E.: Dictionary of algorithms and data struc-
tures (1998), https://www.nist.gov/dads/HTML/, accessed
22/09/2019

[8] Brickley, D., Guha, R.: RDF Schema 1.1. Tech. rep., World
Wide Web Consrotium (2014), https://www.w3.org/TR/rdf-
schema/

[9] Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.:
Sparql web-querying infrastructure: Ready for action? In: In-
ternational Semantic Web Conference. pp. 277–293. Springer
(2013)

[10] Conrads, F., et al: Iguana: A generic framework for benchmark-
ing the read-write performance of triple stores. In: The Seman-
tic Web - ISWC 2017 (2017)

[11] Czajka, P., Radoszewski, J.: Experimental evaluation of algo-
rithms for computing quasiperiods (2019)

[12] Daga, E., Blomqvist, E., Gangemi, A., Montiel, E., Nikitina,
N., Presutti, V., Villazon-Terrazas, B.: D2. 5.2: pattern based
ontology design: methodology and software support. Tech.
rep., NeOn Project. IST-2005-027595. (2007)

[13] Daga, E., Meroño-Peñuela, A., Motta, E.: Modelling and
querying lists in rdf. a pragmatic study. In: ISWC Workshops:
QuWeDa. pp. In–Press (2019)

[14] Daga, E., Meroño-Peñuela, A.: Software and data for the exper-
iments (Sep 2020). , https://doi.org/10.5281/zenodo.4030439

[15] Daga, E., Panziera, L., Pedrinaci, C.: A basilar approach for
building web apis on top of sparql endpoints. In: CEUR Work-
shop Proceedings. vol. 1359, pp. 22–32 (2015)

[16] Dodds, L., Davis, I.: Linked data patterns. Online:
http://patterns. dataincubator. org/book (2011)

[17] Eilbeck, K., et al: The sequence ontology: a tool for the unifi-
cation of genome annotations. Genome biology 6(5) (2005)

[18] Gangemi, A.: Ontology Design Patterns for Semantic Web
Content. In: The Semantic Web – ISWC. Springer (2005)

[19] Görlitz, O., Thimm, M., Staab, S.: Splodge: Systematic gener-
ation of sparql benchmark queries for linked open data. In: In-
ternational Semantic Web Conference. pp. 116–132. Springer
(2012)

[20] Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL
Knowledge Base Systems. Journal of Web Semantics – Sci-
ence, Services and Agents on the World Wide Web 3(2), 158–
182 (2005)

[21] Hobbs, J.R., Pan, F.: Time Ontology in OWL. W3C working
draft 27, 133 (2006)

[22] Ley, M.: The dblp computer science bibliography: Evolution,
research issues, perspectives. In: International symposium on
string processing and information retrieval. pp. 1–10. Springer
(2002)

https://xlinux.nist.gov/dads/HTML/boundedqueue.html
https://xlinux.nist.gov/dads/HTML/boundedqueue.html
https://www.nist.gov/dads/HTML/queue.html
https://www.nist.gov/dads/HTML/
https://doi.org/10.5281/zenodo.4030439

20 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[23] Meroño-Peñuela, A., Hoekstra, R.: grlc Makes GitHub Taste
Like Linked Data APIs. In: The Semantic Web – ESWC 2016
Satellite Events. pp. 342–353. Heraklion, Greece (2016)

[24] Meroño-Peñuela, A., Hoekstra, R.: The Song Remains The
Same: Lossless Conversion and Streaming of MIDI to RDF
and Back. In: The Semantic Web: ESWC Satellite Events
(ESWC 2016). LNCS, vol. 9989, pp. 194–199. Springer (2016)

[25] Meroño-Peñuela, A., et al.: The MIDI Linked Data Cloud. In:
The Semantic Web - ISWC 2017. vol. 10587, pp. 156–164
(2017)

[26] Meroño-Peñuela, A., Daga, E.: List.MID: A MIDI-Based
Benchmark for Evaluating RDF Lists. In: The Semantic Web –
ISWC 2019 (2019)

[27] Morsey, M., et al: Dbpedia sparql benchmark–performance as-
sessment with real queries on real data. In: The Semantic Web
– ISWC. Springer (2011)

[28] Pierce, B.C., Benjamin, C.: Types and programming lan-
guages. MIT press (2002)

[29] Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity
of SPARQL. In: The Semantic Web - ISWC (2006)

[30] Saleem, M., et al: LSQ: Linked SPARQL Queries Dataset. In:
The Semantic Web - ISWC 2015. LNCS, vol. 9367. Springer
(2015)

[31] Schmidt, M., et al: SPˆ 2Bench: a SPARQL performance
benchmark. In: Data Engineering, 2009. ICDE’09. IEEE
(2009)

[32] Schmidt, M., et al: Foundations of sparql query optimization.
In: 13th International Conference on Database Theory. ACM
(2010)

[33] Thakker, D., et al: A pragmatic approach to semantic reposi-
tories benchmarking. In: Extended Semantic Web Conference.
Springer (2010)

[34] The MIDI Manufacturers Association: MIDI 1.0 Detailed
Specification. Tech. rep., Los Angeles, CA (1996-2014), https:
//www.midi.org/specifications

[35] Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M.,
Vatant, B.: Linked Open Vocabularies (LOV): a gateway to
reusable semantic vocabularies on the Web. Semantic Web
8(3), 437–452 (2017)

https://www.midi.org/specifications
https://www.midi.org/specifications

E. Daga et al. / Sequential Linked Data: the State of Affairs 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
0

50

100

150

200

Text

Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
0

20

40

60

80

100

Text

Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
0

50

100

Text

Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k
0

50

100

Text

Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 11. FIRST. The operation is very efficient in all our experiments. Fluctuation of SD is not significant as the response is always returned in
less than 200 milliseconds.

22 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 12. GET (low index). The operation scales well for all models with a materialised index (URI, NUMB, and SEQ), and it is problematic
with LIST and SOP. The errors produced by Fuseki (Figures 12c and 12d) are Java Stack Overflow errors, while the others refer to the client
waiting for more then five minutes. (Results are equivalent to the ones of GET with the high index. See Figure 13.

E. Daga et al. / Sequential Linked Data: the State of Affairs 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 13. GET (high index). The operation scales well for all models with a materialised index (URI, NUMB, and SEQ), and it is problematic
with LIST and SOP. The errors produced by Fuseki (Figures 12c and 12d) are Java Stack Overflow errors, while the others refer to the client
waiting for more then five minutes. (Results are equivalent to the ones of GET with the low index. See Figure 12.)

24 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 14. REST. SOP and LIST perform poorly as the databases require to traverse the graph to retrieve all the elements and sort them in memory.

E. Daga et al. / Sequential Linked Data: the State of Affairs 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 15. PREV. The performance of the data models is comparable to the REST operator (see Figure 14), except this time, the query needs
to know the highest index, as the sequence is of dynamic size. A notable exception is the negative performance of the SEQ data model in
combination with Virtuoso (Figure 15b). This was the only case in which the results have been inconsistent across triple stores.

26 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
1

100

10.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

100

10.000

Text

Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
1

100

10.000

Text

Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k
1

100

10.000

Text

Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 16. APPEND. All data models perform reasonably well with small list sizes. In contrast with LIST, the SOP model has the advantage of
directly linking all items to the container entity (the list) and, therefore, does not require to traverse the whole list. However, NUMB, SEQ, and
URI perform generally better.

E. Daga et al. / Sequential Linked Data: the State of Affairs 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

10

100

1.000 Text

Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
1

10

100

1.000 Text

Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k
1

10

100

1.000 Text

Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 17. APPEND FRONT. This operation is agile for both models based on linking items (SOP and LIST). In contrast, models based on
materialised indexes require some refactoring of all the remaining items in the list! However, the index update seem very efficient in the case of
NUMB.

28 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(b) Virtuoso

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 18. POPOFF. Removing the head of a list also requires an update of all indexes for SEQ, URI, and NUMB. However, SEQ and URI require
some string manipulation. This is reflected in the overall performance. URI is the model with the worst performance, for similar reasons to the
case of APPEND_FRONT (Figure 17).

E. Daga et al. / Sequential Linked Data: the State of Affairs 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 19. SET (low index). LIST and SOP suffer from the same shortcomings. NUMB, SEQ, and URI are more efficient data models. (Results
are equivalent to the ones of SET with the high index. See Figure 20.)

30 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(b) Virtuoso

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 20. SET (high index). LIST and SOP suffer from the same shortcomings. NUMB, SEQ, and URI are more efficient data models. (Results
are equivalent to the ones of GET with the low index. See Figure 19.)

E. Daga et al. / Sequential Linked Data: the State of Affairs 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 21. REMOVE AT (low index). This operation is the most expensive of all, as it requires to find the item in to be removed and shift all
subsequent items, refactoring additional data, when appropriate. Results are generally similar to the ones of REMOVE_AT with the high index
(See Figure 22). NUMB is the most efficient data model.)

32 E. Daga et al. / Sequential Linked Data: the State of Affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(a) Blazegraph

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(b) Virtuoso

500 1k 2k 3k 5k 10k
1

100

10.000

1.000.000

Text
Text

(c) Fuseki TDB

500 1k 2k 3k 5k 10k

10

1.000

100.000

Text
Text

(d) Fuseki (In memory)

SEQ URI NUMB SOP LIST Error 1" 5"

Fig. 22. REMOVE AT (high index). This operation is the most expensive of all, as it requires to find the item in to be removed and shift all
subsequent items, refactoring additional data, when appropriate. Results are similar to the ones of GET with the low index (See Figure 21), with
the exception of SEQ. NUMB is the most efficient data model.

	Introduction
	Methodology
	Requirements from sequential data structures
	Linked List
	Double Linked List
	Stack
	Queue
	Array
	

	RDF modelling approaches to sequential data
	RDF Sequences
	URI-based Lists
	Number-based Lists
	Sequence Ontology Pattern
	RDF Lists
	

	Query formalisation and benchmark preparation
	Queries
	Data preparation

	Experiments
	Mapping requirements and RDF modelling solutions
	Related work
	Conclusions
	References

