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Abstract. Zero-shot learning (ZSL) which aims to deal with new classes that have never appeared in the training data (i.e.,
unseen classes) has attracted massive research interests recently. Transferring of deep features learned from training classes (i.e.,
seen classes) are often used, but most current methods are black-box models without any explanations, especially textual expla-
nations that are more acceptable to not only machine learning specialists but also common people without artificial intelligence
expertise. In this paper, we focus on explainable ZSL, and present a knowledge graph (KG) based framework that can explain
the transferability of features in ZSL in a human understandable manner. The framework has two modules: an attentive ZSL
learner and an explanation generator. The former utilizes an Attentive Graph Convolutional Network (AGCN) to match class
knowledge from WordNet with deep features learned from CNNs (i.e., encode inter-class relationship to predict classifiers), in
which the features of unseen classes are transferred from seen classes to predict the samples of unseen classes, with impressive
(important) seen classes detected, while the latter generates human understandable explanations for the transferability of features
with class knowledge that are enriched by external KGs, including a domain-specific Attribute Graph and DBpedia. We evaluate
our method on two benchmarks of animal recognition. Augmented by class knowledge from KGs, our framework generates
promising explanations for the transferability of features, and at the same time improves the recognition accuracy.

Keywords: Zero-shot Learning, Knowledge Graph, Explainable AI, Knowledge-based Learning, Graph Convolutional Network

1. Introduction

Recently, object recognition by deep learning which
learns features from abundant samples has gained a

*Corresponding author. E-mail: huajunsir@zju.edu.cn.

lot of successes. For example, it even outperforms hu-
man beings on the ImageNet ILSVRC challenges [1].
However, it still suffers from challenges from data col-
lection: when a new class emerges, hundreds of sam-
ples are needed for training while their labels are usu-
ally hard to acquire. This makes the recognition model

1570-0844/16/$35.00 © 2016 – IOS Press and the authors. All rights reserved
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less competitive. Therefore, the interest in zero-shot
learning is growing rapidly. It focuses on developing
deep learning models for those emerging classes with-
out training samples.

Zero-shot learning (ZSL) is widely introduced in
image classification tasks (e.g., [2]). It predicts the im-
ages of new classes (i.e., unseen classes) that do not
exist in the training set by transferring features learned
from the training classes (i.e., seen classes). The in-
spiration is that a human can recognize new objects
through the class knowledge (e.g., description) itself,
even without labeled samples. For example, consider-
ing the animal class “Serval”, even though a human has
never seen its samples in the past, s/he would still be
able to recognize it based on the description: “Serval,
a kind of animal with a Cat-like face and a Cheetah-
like body” (see Figure 1). With previous recognition
experience of Cat and Cheetah, s/he can easily infer
the appearance of Serval and identify it correctly.

The general principle of most ZSL algorithms is
to represent such class knowledge and utilize inter-
class relationship to transfer model parameters such as
neural network features from seen classes to unseen
classes. Some works (e.g., [3, 4]) leverage the word
embeddings of class names learned from text corpora
for transferring e.g., CNN features, while others (e.g.,
[5, 6]) prefer more complex knowledge like class hier-
archy and class attributes. These methods aim at learn-
ing and predicting for unseen classes ([3–8]), but are
black-box models: the transferability of features be-
tween classes is uninterpretable. This not only lim-
its human’s trust in prediction results of ZSL models,
considering that ZSL is a method which recognizes
the samples of new classes but has never been trained
with their labeled samples, but also restricts the poten-
tial of improving ZSL models, for example, with ex-
planations, machine learning specialists would master
which classes whose features are transferable to learn
the features of unseen classes and which are not so that
optimizing the ZSL models by adding necessary fea-
tures or removing inadequate features. Therefore, in
this paper, we focus on explaining the transferability
of features in ZSL and generating textual explanations
which can be understood by not only specialists but
also non-specialists.

There have been few works that explain ZSL with
human understandable knowledge. As far as we know,
the only work that is close to ours is by Selvaraju
et al. [9]. They first learn the mapping between class
attributes and individual neurons in deep networks,
and then transfer neurons from seen classes to un-

Cat

Cheetah

Serval

Seen Class

Unseen Class

Attribute
Knowledge

DBpedia Knowledge
felidae;

active in the day as well 
as at night;

Africa;

Fig. 1. An example of recognizing Serval (unseen class) with two
seen classes (Cat and Cheetah). We focus on explainable ZSL,
which extracts domain-specific attributes as well as general knowl-
edge, such as sharp ear, face appearance, long leg, spotted coat and
felidae ancestor, as evidence to generate textual explanations that are
more understandable by humans.

seen classes, where class attributes are taken as textual
explanations to justify the decisions made by unseen
classifiers (cf. more in Section 2.3). Such work indi-
cates that it is feasible to explain ZSL by class knowl-
edge such as class attributes. However, it focuses on
grounding the network neurons in interpretable seman-
tics but ignores the feature transferability which is the
core of ZSL. Also, its method is ad-hoc, only working
for predefined class attributes, while ours supports not
only attributes but also general knowledge in different
formats, coming from external KGs like DBpedia.

In this paper, we propose a KG based framework to
explain the transferability of features in ZSL. It first
adopts a KG named WordNet and an Attentive Graph
Convolutional Neural Network (AGCN) to model and
encode inter-class relationship for ZSL, which is also
known as an Attentive ZSL Learner (AZSL). Namely,
a matching between inter-class relationship and CNN
features is learned. It then uses an explanation gener-
ator to extract rich class knowledge from a domain-
specific Attribute Graph and general external KGs
(e.g., DBpedia) as evidence for ZSL explanation. For
example, as shown in Figure 1, the attribute knowl-
edge of sharp ear and the DBpedia knowledge of feli-
dae ancestor are used to illustrate the transferability of
features from Cat and Cheetah to Serval. Finally, we
propose multiple templates to generate human under-
standable explanations.

Briefly, our work contributes are as follows:

– A KG-based explanation framework for zero-shot
learning is proposed. It is among the first to ex-
plain the transferability of neural network fea-
tures in ZSL.
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– A novel ZSL algorithm called AZSL is built
upon WordNet and AGCN. It models the inter-
class relationship and the transfer of CNN fea-
tures from seen classes to unseen classes, which
not only shows improvements over the state-of-
the-art baselines, but also enables explaining the
transferability of CNN features in ZSL.

– An explanation generator is developed. It can
generate explanations with class semantics from
not only domain-specific KGs like Attribute
Graph but also general KGs like DBpedia.

– A series of templates are designed to orga-
nize these class semantics and generate human-
consumable natural language explanations.

– Lastly, experiments on two image classification
benchmarks are conducted to evaluate the ZSL
learner and the explanation generator1. Analyses
on different metrics and human assessment vali-
date the effectiveness of our method.

The structure of this paper is as follows. In Section
2, we review the related work. In Section 3, we set up
the background of our work. In Section 4, we introduce
the details of our KG-based explanation framework,
including the attentive ZSL learner in Section 4.2 and
the explanation generator in Section 4.3. In Section 5,
we report the evaluation results. Finally, we conclude
the paper and discuss some future directions.

2. Related Work

2.1. Zero-shot learning

Zero-shot learning (ZSL) has received a lot of at-
tention in machine learning community. Some work
by Larochelle et al. [10] has shown the ability to pre-
dict new (unseen) classes of digits that are omitted
from the training set, with the features from training
(seen) classes being transferred. In computer vision,
techniques for utilizing knowledge of classes to real-
ize the transfer of deep features from seen classes to
unseen classes have been investigated [2, 3, 5, 10, 11].

Early algorithms focus on utilizing class attributes
to model the semantic relationship of classes [6, 12–
14]. For instance, Lampert et al. [6] annotate each class
with a set of attributes and propose two attribute-based
classification methods, where the features are trans-

1Code and the Attribute Graph are available at https://github.com/
genggengcss/X-ZSL.

ferred between seen and unseen classes via attribute
sharing. Recent methods prefer to utilize class em-
beddings (i.e., the word embeddings of class names)
trained on classes’ textual descriptions to explore the
class semantics [3, 4, 15, 16]. For example, Frome
et al. [3] present a visual-semantic embedding model,
which linearly maps image (visual) features into the
class embedding space to predict the labels of images.
However, the state-of-the-art performance in zero-shot
image classification is achieved by those who utilize
KGs for class relationship [5, 17, 18]. For example,
Wang et al. [5] use WordNet to model the semantic re-
lationship of hierarchical classes and encode it using
GCN to predict classifiers for unseen classes. Consid-
ering that graph convolutional operation in GCN only
aggregates the features of first-order neighbors, the au-
thors propose to stack multiple graph convolutional
layers (e.g., 6) to propagate features towards distant
nodes. While Kampffmeyer et al. [18] propose a dense
connection scheme that connects distant nodes via ad-
ditional links to optimize the propagation of features
from distant nodes with only 2 convolutional layers.
Following the above ideas, we combine class embed-
dings and class hierarchy as class knowledge to trans-
fer features from seen classes to unseen classes. Un-
like the above GCN-based encoder, we propose to uti-
lize Attentive GCN to encode the inter-class relation-
ship, which can assign different importance to different
neighboring classes to augment the feature propaga-
tion between classes. Moreover, the learned attention
weights indicate the most contributing seen classes in
the feature transfer, enabling explaining the transfer-
ability of features.

There are also some ZSL methods for dealing with
the training sample shortage problem in other domains,
such as Natural Language Processing (NLP) includ-
ing text classification [19–21], entity linking [22, 23],
relation extraction [24] and machine translation [25].
These methods also introduce high-level knowledge of
labels to conduct feature transfer from seen labels to
unseen labels. Notably, NLP data and labels are both
symbol-based representation, which leads to benefits
in feature transfer. In contrast, the feature transfer in
our work is more challenging considering the gap be-
tween vision and symbol.

2.2. Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI), which
aims to produce interpretable models or predictions,
is becoming more and more popular nowadays [26–

https://github.com/genggengcss/X-ZSL.
https://github.com/genggengcss/X-ZSL.
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28]. Such methods enable humans to understand, trust,
and effectively manage AI systems and their decisions.
Some of the explainable works design white-box and
inherently interpretable models like rule-based sys-
tems [29], while others try to justify the prediction
of black-box models by for example approximating
its behaviour locally with simple interpretable linear
models [30], or quantifying the contribution of each
single input variable [31].

Some explanations target humans with AI expertise.
They can be used for system debug to manage and
develop machine learning models efficiently [32, 33].
While some explanations are for common people with-
out AI expertise, for example, they help medical doc-
tors to understand the decisions made by AI-based sys-
tems [34]. Most of these works prefer to generate tex-
tual explanations, which are more understandable by
humans. For example, Biran et al. [35] introduce lin-
guistic expressions from Wikipedia articles to explain
the stock price prediction with natural language sen-
tences. Li et al. [36] generate attributes and captions of
images to verify whether the system really understands
the image content when answering a visual question.

There are also a few works devoted to enriching
the explanation with knowledge graphs (KGs), by uti-
lizing human understandable background knowledge
and common sense in these KGs, as well as their un-
derlying semantics that can be inferred by reasoning
[37, 38]. For example, Tiddi et al. [38] exploit Linked
Data as background knowledge to generate explana-
tions for data clusters. Chen et al. [39] extract evidence
from local domain ontologies and external KGs like
DBpedia using Semantic Web techniques to explain
the results of flight delay forecasting.

Another related direction is to utilize the attention
mechanism to explain [40, 41]. For example, Yang et
al. [40] leverage attention layers to select words and
sentences that have a decisive effect on document clas-
sification as explanations. Our work also utilizes such
an attention technique but goes beyond it. It includes a
general framework to incorporate class semantics from
KGs and generate textual explanations for the core of
ZSL – the transferability of deep features.

2.3. Transfer Learning Explanation

ZSL is often regarded as a branch of transfer learn-
ing which aims at utilizing samples, features or model
parameters learned from one domain to guide the
learning in another domain [42, 43]. ZSL algorithms
usually transfer features learned by deep neural net-

works from seen classes (domains with labeled train-
ing samples) to predict the testing samples of unseen
classes (domains without labeled training samples).

Some works have been proposed to augment trans-
fer learning as well as ZSL with KGs [39, 44–46]. For
example, in [46], prior knowledge about the prediction
tasks and domains are expressed by ontologies and fur-
ther utilized to analyze the transferability of features
and samples to augment transfer learning. For another
example, Zhang et al. [44] propose a transfer learn-
ing based algorithm for long-tail relation extraction,
which incorporates data features from data-rich rela-
tions to tackle the prediction of data-poor relations.
Knowledge of the relation, which comes from a KG,
is investigated to enhance the feature learning of data-
poor relations, using KG embeddings and relation hier-
archy. In summary, these works indicate the feasibility
of studying transfer learning tasks and domains by ex-
ternal knowledge from KGs. In our study, we not only
utilize KGs for performance improvement (i.e., atten-
tive ZSL learner based on KG and AGCN), but also for
human understandable explanations.

Recent studies on transfer learning explanation fo-
cus on the analysis of feature transferability [39, 47–
49]. For example, Liu et al. [48] assume that the fea-
tures are transferable from a source domain to a target
domain if the source and target domains have similar
feature structures. Chen et al. [39] extract knowledge
(e.g., ontology axioms and DBpedia facts) that co-exist
in the source and target domain to explain the trans-
ferability of features learned by deep neural networks.
These works indicate that the transferability of features
is highly related to the knowledge of the source and
target domain. In this paper, we also focus on extract-
ing domain knowledge (i.e., class knowledge) to gen-
erate explanations for feature transferability. Different
from the above works, we on the one hand develop
a general framework that generates explanations from
different knowledge resources from multiple KGs such
as Attribute Graph and DBpedia. On the other hand,
we focus on KG-based ZSL – an essential and popular
transfer learning branch whose current solutions are all
black-box models without explanations.

Few works have been found to explain ZSL with
human understandable knowledge. The only work we
know is by Selvaraju et al. [9]. It first learns a map-
ping between class attributes and individual neurons in
a network, and then predicts unseen neurons based on
the attributes of unseen classes to optimize the learn-
ing of unseen classifiers. It also generates textual ex-
planations by inversely mapping the predicted neu-
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Seabirds are birds that are adapted to life within the 
marine environment. Most species nest in colonies, 
and feed both at the ocean's surface and below it. 
Seabirds can be highly pelagic, coastal, or in some 
cases spend a long time away from the sea. They 
also have provided food to hunters, guided 
fishermen to fishing stocks and led sailors to land.

dbr:White-bellied_storm_petrel

dbr:Red-footed_booby

dbr:Greater_crested_tern
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Fig. 2. An example of our two introduced KG resources for animal class Seabird. [Left] is the domain-specific Attribute Graph with correspond-
ing entity Seabird; [Right] is the general DBpedia with aligned entity dbr:Seabird.

rons to class attributes to validate the decisions made
by unseen classifiers. The authors focus on ground-
ing the transferred neurons in interpretable semantics,
however, ignore the transferability of features between
classes in ZSL. By contrast, the explainable ZSL pro-
posed in our work pays attention to the transferability
of deep features, which is more important for analyz-
ing the nature of ZSL. Also, in [9], the generation of
explanations relies on the input class attributes, while
our method can access external resources and gener-
ate explanations involving not only domain-specific at-
tributes but also general knowledge, which are more
expressive in comparison with the ad-hoc attributes.
Besides, the input class attributes also have an impact
on the prediction of the ZSL model, that is to say, any
changes for improving the diversity or quality of expla-
nations (i.e., improving the input attributes) may hurt
the classification performance. In contrast, the gener-
ation of explanations in our method is relatively inde-
pendent of the classification model, which is more flex-
ible than other explainable methods that need to make
a tradeoff between accuracy and interpretability.

3. Preliminaries

3.1. Zero-shot Learning

In zero-shot learning, the training set is denoted as
Dtr = {(xi, li)}N

i=1, where N is the number of train-
ing samples, xi represents the i-th training image and
li is its label. While the testing set is denoted as Dte =

{(x̃i, l̃i)}Ñ
i=1, and its labels have no overlap with the la-

bels in Dtr. We regard the labels in Dtr as seen classes,
denoted as S , and the labels in Dte as unseen classes,
denoted as U. For each class, a unique classifier will
be trained to predict whether a sample is of the class or

not. ZSL aims to learn classifiers for unseen classes by
transferring features learned from Dtr based on the se-
mantic relationship between seen and unseen classes.

There are usually two prediction settings in ZSL: the
standard ZSL and the generalized ZSL [17]. The for-
mer is to predict the labels of testing samples in Dte

with candidate labels from U, while the latter is a more
challenging but a more realistic case, which predicts
the testing samples of seen and unseen classes with
candidate labels from both seen and unseen classes
(i.e., S ∪ U). In our experiments, we evaluate the ZSL
model under both two settings to validate the effective-
ness of our AZSL.

3.2. Class Knowledge

In our study, we introduce three kinds of Knowledge
Graphs (KGs) to describe the class knowledge, which
depicts the semantic relationship between classes.
These KGs are used for transferring features in ZSL
model as well as generating explanations for the fea-
ture transferability. We briefly introduce them below.

WordNet [50] is a lexical knowledge base of En-
glish where nouns, verbs, adjectives and adverbs are
organized into sets of synonyms, each representing a
lexicalized entity. Semantic relations (hypernym, hy-
ponymy, meronymy, etc.) are used to link these enti-
ties. We utilize such a KG to build a hierarchical struc-
ture of classes, by aligning each class with an entity in
WordNet. In this structure, the edge that connects two
class nodes represents the “subClassOf” relationship.

Attribute Graph is a domain-specific knowledge
graph we created by collecting the attribute annota-
tions of classes. These annotations describe the char-
acteristics of classes, especially the visual ones, such
as the color, shape and important parts of objects. For
each class, we organize its attribute annotations in the
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form of triples (c, a, v), where c represents the class,
a represents the attribute item of this class and v is the
corresponding item value. Taking class Seabird as an
example, as Figure 2 [Left] shows, its attribute anno-
tation “grey wing color” can be described as (Seabird,
wing color, grey). We collect these annotations from
existing ZSL datasets (e.g., AwA [6] and CUB [51])
and Wikipedia descriptions of classes. The constructed
KG contains 1, 399 animal classes, 588 attributes and
8, 114 triples in total. It is now available in our GitHub
repository. Notably, the scale of Attribute Graph is
small compared with other public KGs, we look for-
ward to augmenting it by crowdsourcing in the future.
Besides, such attribute annotations are available in ani-
mal recognition tasks, while in other tasks or domains,
they can come from domain knowledge or experts.

DBpedia [52] is a general knowledge graph which
includes common sense and background descriptions
of classes. With knowledge from Wikipedia encyclo-
pedia, DBpedia is a large scale KG consisting of 4.58
million entities and 3 billion facts. Animal classes in
ZSL can be matched to entities in DBpedia. For ex-
ample, as shown in Figure 2 [Right], class Seabird
is aligned with entity dbr:Seabird. Different from At-
tribute Graph, DBpedia contains more general knowl-
edge, including the textual description of entity (i.e.,
abstract text) from property dbo:abstract, the seman-
tics between entities linked by different relations (e.g.,
hypernym), etc. In our experiments, we use public
DBpedia SPARQL Endpoint query service, which
loads 2016-10 DBpedia dump, to access the DBpe-
dia resources (more details at https://wiki.dbpedia.org/
public-sparql-endpoint).

In order to provide an overall explanation for ZSL
in animal recognition task, we take Attribute Graph
as well as DBpedia as external KGs to extract vi-
sual knowledge like “red leg color” as well as general
knowledge like descendants of “Seabird” in biology.

4. Methodology

4.1. Framework Overview

In this paper, we present a KG-based framework
to explain the transferability of features in ZSL in a
human understandable manner, including an Attentive
ZSL learner (AZSL) and an explanation generator, as
shown in Figure 3. AZSL first models the hierarchi-
cal relationship of seen classes, unseen classes as well
as their ancestor and descendant classes using Word-

K
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Fig. 3. Our proposed KG-based explainable ZSL framework.

Net, and then matches this class knowledge with deep
features extracted from CNNs, which pursue class dis-
crimination and are the core components of a classi-
fier. Specifically, we utilize AGCN to encode the inter-
class relationship and then predict a CNN classifier for
each class, in which the unseen classifiers are learned
by transferring features from seen classifiers. Consid-
ering that different seen classes have different contri-
butions in the feature transfer, we introduce an addi-
tional attention layer in AGCN to learn the attention
weights of seen classes. In this way, we select the most
contributing seen classes for unseen classes as well as
master the transfer of features from seen classes to un-
seen classes. Next, given unseen classes and their con-
tributing seen classes, the explanation generator ex-
tracts richer class knowledge from external KGs, such
as class attributes, semantic relations between classes
and textual descriptions of classes, as evidence to jus-
tify why these seen classes transfer their features to
the unseen ones (i.e., the transferability of deep fea-
tures from seen classes to unseen classes). The gener-
ator also generates natural language explanations with
these evidence using some hand-crafted templates.

4.2. Attentive ZSL Learner

AZSL utilizes the class knowledge from Word-
Net and an Attentive Graph Convolutional Network
(AGCN) to predict classifiers for unseen classes. As
Figure 4 shows, It first pre-trains a discriminative CNN
classifier for each seen class (Figure 4 [Right]), and
then encodes class knowledge to predict classifiers for
classes especially for unseen classes (Figure 4 [Left]).

4.2.1. CNN Classifier
Consider Convolutional Neural Network (CNN), a

frequently used network for feature extraction in object

https://wiki.dbpedia.org/public-sparql-endpoint
https://wiki.dbpedia.org/public-sparql-endpoint
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𝛼))

𝛼)

softmax

Training Stage
Testing Stage

Fig. 4. Overview of attentive ZSL learner. During training, AZSL encodes class knowledge to predict classifiers with multiple graph convolutional
layers and an attention layer; During testing, predicted classifiers are used to conduct nearest neighbor search to classify the testing images.

recognition, where significant features of images are
extracted to make predictions. Given an object class,
when we use its images to train a CNN, the second
to the last layer of the network will output a set of
class-specific parameters. These parameters constitute
a real-valued vector representing the discriminative vi-
sual features of this class, which can be used to classify
new images of this class. Therefore, in this paper, we
take this vector as a classifier and use it to classify the
testing images by performing nearest neighbor search
(more prediction details are in Section 4.2.3).

As a result, in AZSL, we hope to leverage AGCN
to predict such a classifier for each class especially for
each unseen class. In particular, as seen classes have
enough training samples to learn their classifiers, we
pre-train a set of seen classifiers with samples from
Dtr as ground truth to supervise the training of AGCN.
After training, the classifiers of unseen classes can be
learned to predict the samples from Dte.

4.2.2. Predicting Classifiers
AGCN is used to encode the graph-structured inter-

class relationship and predict a classifier for each class
node. It includes multiple graph convolutional layers
and an attention layer.

Graph Convolutional Layer is to conduct the con-
volutional operation on a graph, which propagates in-
formation between nodes and captures the dependency
of graph-structured data. In each convolutional layer,
the convolutional operator computes a node’s hidden
feature by aggregating features from its neighboring
nodes defined in the graph, and updates it to the next
layer. Mathematically, given a class node i, its hidden
feature at l-th layer is learned as follows:

hl
i = σ(Wl

∑
j∈Ni

hl−1
j

|Ni|
+ Blhl−1

i ) (1)

where Ni is the set of neighboring classes of class i.
According to the optimizer in graph convolutional op-
eration, the neighboring classes here mean the first-
order neighbors of i. Wl and Bl represent the layer-
specific weight matrix and bias term, respectively. σ(·)
denotes the activation function such as LeakyReLU
(More details are in [53]).

Stacking the convolutional layer one after another,
we can output the feature of class i at last layer: vi =
hL

i , with the features of other classes encoded. Moti-
vated by [3, 4], we use pre-trained word embeddings
of class names to initialize the class nodes. These em-
beddings, learned from text corpora [54], are seman-
tically meaningful representations of classes. Mean-
while, we implement the convolutional operation with
models proposed in [5] and [18], in which the differ-
ent adjacency matrices of graph that indicate the class
neighbors are defined and different numbers of convo-
lutional layers are used. We also compare the perfor-
mance of different graph convolutional operations.

Attention Layer. In the aggregation of graph con-
volutional layer, we find that different neighboring
classes have different impacts on the feature learn-
ing of a class. Therefore, in this paper, we propose
to utilize attention mechanism – stacking an attention
layer after graph convolutional layers to assign atten-
tion weights to the neighboring classes and analyze the
different contributions of different classes.

Specifically, for each neighboring class of class i,
its attention weight is computed by the similarity be-
tween its feature vector and vi, because when a neigh-
boring class contributes more to class i in the aggrega-
tion, their features are more similar. For a neighboring
class j, its attention weight is computed as:

αi j =
exp(cos(vi, v j)∑

k∈Ni
exp(cos(vi, vk))

(2)
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Slot Filling

Fig. 5. Illustrating for generating natural language explanation from external Attribute Graph and DBpedia.

where cos(·) denotes the cosine similarity, Ni is the
set of neighboring classes of class i, including class i
itself. The computed attention weights are used to up-
date the feature vector of class i as:

v̄i =
∑
j∈Ni

αi j · v j (3)

whereNi also denotes the set of neighboring classes of
class i, including class i itself.

It is noted that we stack the attention layer after mul-
tiple graph convolutional layers, as Figure 4 shows. We
have attempted to add an attention layer after each con-
volutional layer in the preliminary experiments, how-
ever, we found the model is hard to converge. It may
be because (i) the dimension of hidden features in our
model (e.g., 2, 048) is large compared with that in other
graph attention networks (e.g., 8 in [55]), or (ii) our
model is a regression model, whose training is often
more difficult than other graph attention networks that
are classification models (e.g., [55]).

Training. As previously illustrated, the feature vec-
tor of each class node we want the AGCN to output is a
classifier that represents class-specific visual features.
Therefore, we use pre-trained seen classifiers (cf. Sec-
tion 4.2.1) to supervise the learning of feature vectors
of classes. Specifically, for |S | seen class nodes (|S |
here means the number of all seen classes), we have
predicted classifiers v̄1...|S | and pre-trained classifiers
f1...|S |, the mean square error between them is com-
puted as the loss function to train the model:

1

|S |

|S |∑
i=1

LMS E( fi, v̄i) (4)

Obviously, the model is trained in a semi-supervised
manner. For unseen classes, their classifiers can be in-

ferred (learned) by aggregating visual features from
their neighboring seen classes.

4.2.3. Predicting Testing Samples
With predicted classifiers, we perform nearest neigh-

bor search to predict labels for testing samples. Specif-
ically, at test time, when a testing image arrives, AZSL
first extracts its features using pre-trained CNN, and
then multiplies the image features with these classifiers
to produce some similarity scores. The class corre-
sponding to the most similar classifier (i.e., the nearest
one) is the predicted label. Regarding different predic-
tion settings in ZSL, the candidate classifiers involve
unseen classifiers (i.e., {v̄i}|U|i=1) and the testing images
are from unseen classes when it is standard ZSL; while
in generalized ZSL, the candidates involve both seen
and unseen classifiers (i.e., {v̄i}|S |+|U|i=1 ) and the testing
images are from both seen and unseen classes.

Meanwhile, we can learn contributing seen classes
for each unseen class from attention layer. These seen
classes have high attention weights and each of them
is believed to be important in transferring features to
the unseen class. We name them as impressive seen
classes (IMSCs in short). In this way, we automatically
detect seen classes that have decisive effects on the fea-
ture learning of unseen classes, which is the basis for
analyzing the transferability of features in ZSL.

4.3. Explanation Generator

Given unseen classes and their impressive seen
classes, we introduce two external knowledge graphs,
the domain-specific Attribute Graph and the general
DBpedia, to extract reliable evidence and generate hu-
man understandable explanations to justify the feature
transferability between seen and unseen classes.

The explanation generation procedure is illustrated
in Figure 5. Briefly, we (i) match raw class names with
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entities of external KGs; (ii) adopt different strategies
to extract supported evidence from different external
KGs; and (iii) generate natural language explanations
with some templates.

4.3.1. Domain-specific KG: Attribute Graph
Considering that ZSL classes are naturally matched

with entities in Attribute Graph, we first begin by ex-
tracting evidence. In Attribute Graph, the evidence
refers to the common attributes shared by unseen
classes and their impressive seen classes. However, the
searching space is often large for finding the common
attribute set, especially when multiple impressive seen
classes exist. To this end, we develop a rule-mining
based method to find out the common attributes by
mining the association rules of classes, with an al-
gorithm named EvidenceMining proposed. The mined
rules illustrate the semantic association between seen
and unseen classes, and the supporting set of a rule
is a set of common attributes shared by these classes,
which are desired evidence to explain the feature trans-
ferability from seen classes to unseen classes.

Association rule mining is widely used in Data Min-
ing. It was first proposed for mining the association
rules of shopping items from a list of customer trans-
actions [56]. Each transaction consists of a set of items
purchased by a customer in a visit. An association rule
of items is like {bread ⇒ milk}, meaning that people
who purchase bread usually also purchase milk. In the
context of mining association rules of classes, a trans-
action is defined as a set of classes that both have a
specific attribute. The rule of classes means that these
classes are associated because they share a set of iden-
tical attributes.

Let A = {a1, a2, ..., an} and C = {c1, c2, ..., cm} be
the set of attributes and the set of classes of Attribute
Graph G respectively. Let D be a set of transactions,
where each transaction is labeled with an attribute ai

and consists of a set of classes C that both have at-
tribute ai. An association rule is an implication of the
form {X ⇒ Y}, where X and Y are sets of classes,
X ⊂ C, Y ⊂ C, and X ∩ Y = ∅. The rule has support
value s% when s% of attributes in D are shared by the
classes in X ∪ Y , denoted as support(X ∪ Y), accord-
ingly, the support set of the rule refers to a set of com-
mon attributes shared by the classes in X ∪ Y . Also,
the confidence value of the rule {X ⇒ Y} is com-
puted as: c% = support(X ∪ Y)/support(X), mean-
ing that among all attributes shared by the classes in
X, c% of them are also shared by the classes in Y .
For an unseen class u and its impressive seen class set

Table 1
Example of mining association rules of classes Polar bear, Raccoon
and Grizzly bear.

(a). DatabaseD

Transaction Label Class Items
claws Polar bear, Raccoon, Grizzly bear
black Raccoon, Grizzly bear
furry Raccoon, Grizzly bear, Polar bear

(b). Frequent Class sets

Class set Support Set (Attributes)
{Polar bear} claws, furry
{Raccoon} claws, black, furry
{Grizzly bear} claws, black, furry

{Polar bear,Grizzly bear} claws, furry
{Raccoon,Grizzly bear} claws, black, furry
{Polar bear, Raccoon} claws, furry

{Polar bear, Raccoon,Grizzly bear} claws, furry

(c). Rules

Rule support confidence
{Polar bear} ⇒ {Grizzly bear} 66.6% 100%
{Raccoon} ⇒ {Grizzly bear} 100% 100%
{Polar bear, Raccoon} ⇒ {Grizzly bear} 66.6% 100%

S = {s1, ..., sn}, the potential association rule of them
can be predefined as:

{s1} ⇒ {u}

...

{sn} ⇒ {u}

{s1, ..., sn} ⇒ {u}

(5)

Take unseen class Grizzly bear and its impressive
seen classes Polar bear and Raccoon as an example.
Let C = {Polar bear,Raccoon,Grizzly bear} and
A = {claws, black, f urry}. Consider the transaction
database D shown in Table 1. The frequent class sets
(i.e., the sets of classes whose support values are large
than the specified minimum support value) and their
support sets are firstly mined as Table 1(b) shows,
from which the rules of these classes can be gener-
ated. Specifically, for each frequent class set (contain-
ing more than one class), the classes in which are ran-
domly split into two parts, one is included in X while
the other is included in Y or vice versa, and form a
temporary rule {X ⇒ Y}. After traversing all possible
splits, a set of temporary rules can be generated. Then,
the confidence values of these temporary rules will
be computed, those whose confidence values are large
than the specified minimum confidence value will be
output as the mined rules. The mining of frequent class
sets and rules can be implemented by existing asso-
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Algorithm 1 Evidence Mining
Input: Attribute Graph G; Unseen class u and its im-

pressive seen class set S ; Minimum support and
confidence value smin, cmin; Predefined rule set R;

Output: A: explanatory evidence for u and S ;
1: C = {u, s1, ..., sn}; % Prepare class set
2: A = ∅; % Init. of attribute set
3: for each class c ∈ C do
4: % Get attributes of c
5: Ac = ExtractAttribute(G, c);
6: Append Ac to A;
7: end for
8: D = ConstructDataset(G, C,A); % Store Trans.
9: k = n + 1; % Size of frequent class set

10: % Mine frequent class sets F, return their support
values Vs and support sets Fs; Mine rule set RC

and return their confidence values Vc

11: F, Vs, Fs, RC , Vc = Apriori(D, k, smin, cmin);
12: Ru = Instantiate(R, C); % Instantiate predefined

rule set for u
13: % Filter mined rule set and Output desired rules
14: R′u = Filter(RC ,Ru);
15: % Output the support sets of rules as evidence
16: A = Get(R′u, Fs);
17: return A;

ciation rule mining algorithms such as Apriori [57].
As a result, as Table 1 shows, we mine a rule like
“{Polar bear,Raccoon} ⇒ {Grizzly bear}”, as well
as its support set: {claws, furry} which contains the
common attributes shared by these three classes and
can be taken as evidence to justify the transferability of
features from Polar bear and Raccoon to Grizzly bear.

Algorithm 1 illustrates the pseudocode of mining
rules and common attributes. Given an unseen class
and its impressive seen classes, we first extract at-
tributes of each class from Attribute Graph G to con-
struct the transaction database. Then, the Apriori algo-
rithm is applied to mine frequent class sets and rules,
with support value and confidence value constraints.
The mined rules cover all possible rules of classes we
input, however, only those from seen classes to unseen
classes are what we need. Therefore, we utilize the rule
set predefined in Eq. (5) to filter these mined rules and
output those from impressive seen classes to unseen
classes. Besides, for each frequent class set, Apriori
can simultaneously generate its support set (i.e., com-
mon attributes across the classes in the frequent class
set), therefore, for each filtered rule, we also output
its support set, which contains the common attributes

shared by the unseen class and its impressive seen
classes, and is the evidence we desire.

In this way, we not only mine the association rules
of seen and unseen classes with some measurements
produced, e.g., support value and confidence value, but
also extract common attributes from Attribute Graph
as evidence to explain the transferability of features
from seen classes to unseen classes.

4.3.2. General KG: DBpedia
Match ZSL class with DBpedia Entity. Different

from Attribute Graph whose entities can be directly
aligned with ZSL classes by name, the matching be-
tween DBpedia entities and ZSL classes is more chal-
lenging due to the ambiguity. One widely used and
effective approach is lexical matching, with an index
on the entity’s name, label, anchor text (description),
etc. In our paper, we use DBpedia Lookup service2,
which is based on the index of DBpedia Spotlight [58].
Specifically, we take raw class names as keywords to
look up the corresponding DBpedia entities. For ex-
ample, the entity “dbr:Cheetah” can be looked up by
the name string “Cheetah”3. In our preliminary experi-
ments, we have tried to use embedding based methods
such as word2vec [54] to compare the word vectors of
ZSL classes and DBpedia entities, however, the per-
formance of these methods is unsatisfactory in terms
of efficiency and accuracy. Instead, DBpedia Spotlight
has a good ability to link unstructured resources to DB-
pedia data, based on which the online lookup service
can immediately and accurately return the DBpedia
entity when entering a ZSL class name string.

One challenge of class to entity matching is that
only a part of ZSL classes have entity correspon-
dences. On the one hand, the entity corresponding to
a class may not exist in the KG. For example, DBpe-
dia only contains an entity for Chicken but no Cock
and Hen. The latter two however have totally differ-
ent appearances. On the other hand, some classes are
wrongly matched with DBpedia entities. For example,
Red fox is incorrectly matched with entity dbr:Fox,
while the correct matching should be dbr:Red fox. To
ensure the correctness of class to entity matching, we
manually check the matching results and remove the
incorrect ones. There are also some algorithms devel-
oped to automatically evaluate the entity matching re-
sults, for example, the string similarity based methods

2https://github.com/DBpedia/lookup
3dbr, dbo, etc. are URI prefixes in DBpedia. Please see

http://DBpedia.org/sparql?help=nsdecl
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Table 2
Triple patterns and corresponding SPARQL query items, where s, u represent entity patterns corresponding to seen and unseen classes respec-
tively, ∧ represents the joint operator of patterns.

Triple Pattern Diagram Query Item Illustration

(s, r, u)
s u

r SELECT ?r WHERE
{s ?r u.} s is directly related to u via relation r.

(u, r, s)
su

r SELECT ?r WHERE
{u ?r s.} u is directly related to s via relation r.

(s, r1, t) ∧ (u, r2, t)
𝑟" 𝑟#

s u

t
SELECT ?r1 ?r2 ?t WHERE
{s ?r1 ?t. u ?r2 ?t. }

s and u both related to entity t via relation r1 and r2,
respectively (r1, r2 may refer to the same relation).

(s, p, v) ∧ (u, p, v)
s u

v
p p SELECT ?p ?v WHERE

{ s ?p ?v. u ?p ?v.}
s and u both have property p and share the same

property value v.

(s, r1, t) ∧ (t, r2, u)
s u

t
𝑟" 𝑟# SELECT ?r1 ?r2 ?t WHERE

{ s ?r1 ?t. ?t ?r2 u. } s and u is related via a transitional entity t.

[59, 60] and the embedding based methods [61, 62] in
entity alignment tasks. However, considering that these
methods have some limitations and errors in real-world
applications (i.e., relying on well-designed matching
patterns or labeled entity pairs), and our work focuses
on studying the interpretability in ZSL, we decide to
manually check all matching results. It is expected that
some methods can be developed to release the pressure
of manual verification in the future.

Different from the attribute annotations in Attribute
Graph, the knowledge in DBpedia is massive and di-
verse. Therefore, with matched entities, we utilize
SPARQL queries4 to retrieve two kinds of evidence:
(i) abstract text which is an overall description of en-
tity with keywords included, and (ii) structured triples
which describe the fine-grained semantics of an entity,
e.g., properties and relations with other entities.

Extract Triples. Two kinds of triples are extracted:
(i) object triple, denoted as (h, r, t), where h is the head
entity, t is the tail entity, and r is the relation; (ii) prop-
erty triple, denoted as (h, p, v), where h is the head en-
tity, p is the data property and v is the data value (lit-
eral). From these triples, we can find some correlations
between seen and unseen entities (classes), which can
be taken as evidence to illustrate the transferability of
features from seen to unseen classes. However, only a
portion of triples are useful for describing the correla-
tions, we need a method to extract them efficiently.

To this end, we design some triple patterns, as
shown in Table 2. Based on these patterns, SPARQL
queries are developed to retrieve triples, from which
the relations or entities that associate seen and unseen
entities (classes), and the common properties shared by

4https://www.w3.org/TR/rdf-sparql-query/

seen and unseen entities (classes) are extracted. Con-
sider the example in Figure 1, where Cat and Ser-
val share the same ancestors Felidae. The fact can be
verified by triples (dbr:Cat, hypernym, dbr:Felidae)
and (dbr:Serval, hypernym, dbr:Felidae), which are
extracted according to the pattern ((s, r1, t)∧(u, r2, t)).
Notably, some extracted triples or entities are not de-
tailed enough to describe the correlation between en-
tities. For example, the entity dbc:Birds of Europe in
the triple (dbr:Ruff, dbo:family, dbc:Birds of Europe)
is a rather broad concept. This may bring useless infor-
mation and hurt the quality of generated explanations.

Extract Keywords from Abstract Text. The ab-
stract text of an entity can be directly accessed by
SPARQL queries since it is the data value of prop-
erty dbo:abstract. It describes the representative char-
acteristics of entities, especially visual characteristics.
However, some descriptions in abstract text are less
informative: e.g., the sentence “Dogs perform many
roles for people, such as hunting, herding, protection,
assisting police and military, companionship and, more
recently, aiding handicapped individuals” describes
the social background of dbr:Dog but does not men-
tion much useful information.

Therefore, we adopt TextRank [63], an unsuper-
vised automatic summarization algorithm, to extract
keywords from abstract text. The extracted words and
phrases are core and descriptive to represent the class-
specific properties so that illustrating the knowledge
shared between entities. For example, the extracted
keyword Africa in Figure 1 illustrates the same living
environment of Cheetah and Serval.

4.3.3. Template-based Explanation Generator
Aforementioned extracted items, including attributes

from Attribute Graph, as well as triples and keywords
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Table 3
Templates for generating natural language explanations. An overall illustration is first provided. s, u, t, r, p, a, ADJ, etc. are slots in templates to
be filled. The Left of table is for attributes, where part of attribute items are listed. The Center is for structured triples. The Right is for textual
keywords, where all Parts-of-Speech (POSs) of keywords (e.g., adjective (ADJ) and noun (NOUN)) and types of named entities (e.g., LOC) used
are listed. Notably, the POS tags attached to the attribute items (e.g., coat (ADJ)) mean the attribute values with different POSs.

Overall Illustration: The prediction for samples of u is supported by s.

Attributes & Templates Triples & Templates Keywords & Templates

Attribute Item Template Triple Pattern Template POS of
Keyword Template

color, size, species,
coat (ADJ), ... They are both a. (s, r, u), (u, r, s) s(u) is r of u(s). ADJ They are both [ADJ] ani-

mal/bird/other.

body part, shape,
coat (NOUN), ...

They both have
a.

(s, r1, t) ∧ (u, r2, t),
(s, r1, t) ∧ (t, r2, u)

s and u are both relevant to t
via relation r1, r2. (or s and
u are both a member of t.)

NOUN They both have [NOUN]. (or
they are similar in [NOUN].)

feeding, habitat They both eat
(or live in) a. (s, p, v) ∧ (u, p, v) s and u share the same v of

property p. ADJ+NOUN
s and u are similar in
[ADJ+NOUN]. (or s and u
both have [ADJ+NOUN].)

behaviour, habits They both be-
have (or like) a. (s1, r1, u)∧(s2, r2, u)

s1, s2 both belong to u. (or
s1, s2 are both species of u.)

named entity
(LOC, GPE) They both live in [LOC].

from DBpedia, constitute fine-grained class knowl-
edge which can be taken as evidence to explain the
transferability of features from seen classes to unseen
classes. To make these evidence more understandable,
we organize them with some hand-crafted templates.

Inspired by Slot Filling, a popular method of com-
pleting sentence in dialogue system, we design tem-
plates with classes, entities, attributes, relations, prop-
erties and keywords as slots, and take extracted items
as values to fill in. We design three different kinds of
templates, as shown in Table 3, for structured triples,
unstructured attributes and keywords respectively.

Attributes are domain-specific descriptions used for
annotating objects. The attribute values of the same at-
tribute item describe the same aspects of objects. For
example, attributes like head, tail, claws and leg de-
scribe the body parts of animals, which both belong to
the attribute item body part, while attributes like red,
green and blue describe the appearance colors of ani-
mals, which belong to the attribute item color. Consid-
ering that the attributes belonging to the same attribute
item can be expressed in a similar way, we design tem-
plates based on attribute items. For example, the com-
mon attribute sharp ear of Cat and Serval, which be-
longs to the attribute item body part, can be expressed
with the sentence: “They both have sharp ears”. Ta-
ble 3 lists some attribute items and their corresponding
templates. Notably, the number of extracted common
attributes varies a lot. In order to restrict the length
of generated sentences and avoid excessively repetitive
expressions, we randomly select 10 attributes to repre-
sent the knowledge between seen and unseen classes
when the number of common attributes exceeds 10.

Structured triples have fixed formats, especially
those extracted using the same triple patterns. Thus,
we design templates to textualize triples according to
the triple patterns as shown in the center of Table
3. The entities, properties and relations in extracted
triples are taken as values to fill the corresponding
slots in templates. For triples (dbr:Cat, hypernym,
dbr:Felinae) and (dbr:Serval, hypernym, dbr:Felinae)
extracted by pattern “(s, r1, t) ∧ (u, r2, t)”, the follow-
ing sentence can be generated: “Cat and Serval are
both relevant to Felinae via relation hypernym”. Note
that the DBpedia prefixes such as “dbr” in the triple
will be removed when generating sentences.

Keywords extracted from abstract text are natural
expressions consisting of adjectives, nouns, their com-
binations and so on. One example is spotted coat.
Therefore, we design templates based on the parts-of-
speech (POSs) of keywords and utilize POS Tagging to
generate natural language sentences. Specifically, each
keyword is first labeled with a POS tag, and then filled
into the template with the same POS slot. For the key-
word spotted coat labeled with an ADJ-NOUN tag, we
can use the template with ADJ-NOUN slot to gener-
ate the sentence: “They are similar in spotted coat”.
Additionally, some nouns have special meanings, for
example, Africa describing the habitat of Serval is a
location noun. To express them better, we further use
Named Entity Recognition (NER) [64] to identify the
named entities among these nouns and classify them
into different types, and then design different templates
regarding different types. The right of Table 3 lists the
types we adopt and their corresponding templates. In
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our experiments, we utilize SpaCy5, a frequently used
natural language processing toolkit, to conduct NER
and assign POS tags for keywords. It can return the re-
sults of NER and tagger simultaneously by only load-
ing model once. Moreover, in order to generate more
diverse expressions, we enrich the word in templates
with its synonyms from WordNet [65].

5. Evaluation

We conduct experiments on an image classification
task and evaluate our framework regarding the follow-
ing aspects: (1) accuracy of our attentive ZSL learner
(AZSL) in the standard ZSL and generalized ZSL set-
ting in comparison with the state-of-the-art ZSL base-
lines; (2) illustration of the feature transfer from seen
classes to unseen classes; (3) evaluation on the gen-
erated explanations, including human scoring, qualita-
tive analysis and case studies. Based on the generated
explanations, we also discuss the transfer of deep fea-
tures in ZSL.

5.1. Experiment Setting

5.1.1. Datasets
Two widely used image sets are adopted: Animals

with Attributes (AwA) [6] and ImageNet [66]. AwA
is a coarse-grained dataset, while ImageNet is diverse
in terms of granularity, i.e., it contains a collection
of fine-grained datasets, e.g., different vehicle types,
as well as coarse-grained datasets. Each AwA class
or ImageNet class corresponds to an entity of Word-
Net. For each dataset, we split the classes into two dis-
jointed parts – seen classes and unseen classes as in
[17]. The former have training images while the lat-
ter do not but are semantically related to the former.
Specifically, in ImageNet, 398 animal classes are used
as seen classes, each of them contains about 1, 000 im-
ages, while the classes that are one-hop away from the
seen ones in WordNet are taken as unseen classes. In
AwA, 40 classes are used as seen classes and 10 as un-
seen classes. It is noted that we only consider the “one-
hop” unseen classes in ImageNet, although those more
hops away can also be taken as unseen classes. It is be-
cause ZSL algorithms often perform worse when the
unseen classes are far from the seen ones [3–5]. In or-
der to investigate the explainable ZSL problem better,
we focus on these one-hop classes which are visually
and semantically similar with the seen classes.

5https://spacy.io/

We leverage WordNet to build the hierarchical graph
of classes in our datasets. Specifically, we first make an
alignment between ZSL classes and WordNet entities.
And then, these classes are connected with each other
via “subClassOf” relation edge, in our experiments,
we adopt two strategies to construct the edge. One
is to look up the hypernyms of classes using Word-
Net interface in NLTK toolkit6. The other is to uti-
lize a publicly available hierarchical structure of all
ImageNet classes7, from which a substructure that in-
cludes the ZSL classes in our datasets is extracted as
the hierarchical graph. These two strategies build the
same class hierarchy for us, for more details please re-
fer to our published code. Considering that AwA un-
seen classes are contained in the ImageNet unseen set
and several of the seen classes (24 out of 40) overlap
with the ImageNet seen set, we build a universal hi-
erarchical graph for two datasets. The total number of
graph nodes is 3, 969, in which the seen classes, un-
seen classes as well as their ancestors, descendants and
siblings are connected with each other. Although AwA
classes overlap with ImageNet classes, we train dif-
ferent AZSL models for different datasets considering
their different granularity and data distribution.

Especially, as ImageNet contains not only coarse-
grained subsets but also fine-grained subsets, the den-
sity of the connection between seen classes and un-
seen classes varies a lot: some seen (unseen) classes
whose first-order neighbors contain multiple (e.g., 5)
unseen (seen) classes (i.e., dense connection), while
some seen (unseen) classes whose first-order neigh-
bors are very few (e.g., 1) (i.e., sparse connection). Re-
garding different connection density, we extract a sub-
set ImageNet∗ from ImageNet with all sparsely con-
nected classes removed to evaluate our AZSL model,
in which each seen (unseen) class is connected with
more than two unseen (seen) classes. More statistics of
the dataset are listed in Table 4.

Additionally, in our experiments, we take partial
samples of seen classes as the validation set. Specif-
ically, the images of each seen class are split into 2
parts – 80% of them are used for training and 20%
are used for validation. For the generalized ZSL set-
ting, where the testing set contains some testing im-
ages from seen classes, we further split the above vali-
dation images into 2 parts, i.e., 10% of images are still
taken as validation set and 10% are taken as testing

6https://www.nltk.org/howto/wordnet.html
7http://www.image-net.org/api/xml/structure released.xml
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Table 4
Statistics of the image sets. “#Train/Val/Test” denotes the number of images for training/validation/testing. “Test(Seen/Unseen)” means the
testing images of seen or unseen classes in the generalized ZSL setting. Notably, we only test on AwA and ImageNet in the generalized ZSL.

Dataset
Classes

#
Seen

Classes #
Unseen

Classes #
# Train/Val/Test
in standard ZSL

# Train/Val/Test (Seen/Unseen)
in generalized ZSL

AwA 50 40 10 23,513 / 5,896 / 7,913 23,513 / 2,948 / 10,861 (2,948/7,913)
ImageNet 895 398 497 318,400 / 79,600 / 409,307 318,400 / 39,800/ 449,107 (39,800/409,307)

ImageNet∗ 473 174 299 139,200 / 34,800 / 244,925 - / - / -

set. More details of these splits are listed in Table 4.
During validation, these validation images will be pre-
dicted on seen classes to evaluate the prediction abil-
ity of learned seen classifiers so as to ensure that we
obtain well-trained unseen classifiers.

5.1.2. Baselines
The following ZSL methods are used as baselines:

DAP and IAP [6] which utilize the image attributes
to model the inter-class relationship, DeViSE [3] and
ConSE [4] which linearly map image features into
the class embedding space, SYNC [7] which devel-
ops a series of “phantom” classes as bases to asso-
ciate seen and unseen classes in the class embedding
space, GCNZ [5] and DGP [18] which utilize GCN
and WordNet to learn classifiers for unseen classes.

In our AZSL, we leverage Attentive GCN to opti-
mize the encoding of class knowledge so as to learn
more effective unseen classifiers. To demonstrate the
effectiveness of the attention layer in AGCN, we im-
plement graph convolutional layers with the graph
convolutional operations proposed in GCNZ and DGP.
The model referring to GCNZ is denoted as AZSL-G,
while referring to DGP is denoted as AZSL-D.

Besides, NIWT, which was proposed by Selvaraju
et al. [9], is a work for explaining ZSL. However, in
our paper, we do not make a comparison with it. It
is because that NIWT focuses on justifying the pre-
dictions made by unseen classifiers and grounding the
transferred neurons in interpretable semantics, while
our work focuses on explaining the transferability of
features from seen classes to unseen classes.

5.1.3. Model Configuration and Evaluation Metrics
We adopt ResNet50 – a successful CNN architecture

to extract the features of images [67]. For ResNet50,
the output parameter vector of the second to the last
layer has 2, 048 dimensions, therefore, the dimension-
ality of the classifier in our paper is also set to 2, 048.
Following GCNZ and DGP, we adopt 6 convolutional
layers for AZSL-G and 2 convolutional layers for
AZSL-D. Both of them contain one attention layer
with an attention weight threshold α = 0.01. The ini-

tial embeddings of class nodes (i.e., the word embed-
dings of class names) are trained on Wikipedia 2014
dump and Gigaword 5 corpus using Glove [68] model,
whose dimension is set to 300. The activation func-
tion in graph convolutional layer is LeaklyReLU with
negative input slope 0.2. We utilize validation set to
tune the hyperparameters of AZSL. A grid search is
conducted over parameter pools to explore the optimal
ones, such as {0.0001, 0.0002, 0.005} for the learning
rate, {5e-3, 5e-4, 5e-5} for the L2 regularization. In
the standard ZSL setting, the initial learning rate is fi-
nally set to 0.0002, the dropout parameter is set to 0.5,
L2 regularization parameter is set to 0.005, and Adam
optimizer is adopted. The optimal hyperparameters in
generalized ZSL are the same as in standard ZSL. For
EvidenceMining algorithm, the minimum support and
confidence value are set to 10% and 30% respectively.

We evaluate the ZSL model with Hit@k metric,
which represents the percentage of samples whose top
k scored labels hit the ground-truth label and is widely
used for performance measurement in ZSL. Notably,
in standard ZSL setting, the Hit@k is computed on the
testing samples of unseen classes, while in generalized
ZSL, the Hit@k is computed on the testing samples of
seen and unseen classes separately, denoted as Hits@k
and Hitu@k respectively. We set k to 1, 2, 5 in the stan-
dard ZSL setting, and 1 in the generalized ZSL setting.
k = 1 is widely believed to be the most important [17].
As AwA has only 10 unseen classes, we use Hit@1
(i.e., accuracy) alone in both two settings.

5.2. Evaluation of Attentive ZSL Learner

5.2.1. Standard ZSL Setting
We first report the results under the standard ZSL

setting in Table 5. It can be seen that the performance
of KG-based methods, including GCNZ [5], DGP [18]
and our AZSL, is much higher than that of traditional
methods, especially on ImageNet. This verifies that
class semantics extracted from a KG are more effec-
tive in modeling the inter-class relationship and can
significantly improve the ZSL performance. It is as ex-
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Table 5
Performance (%) of AZSL-G, AZSL-D and baselines on AwA, Ima-
geNet and ImageNet∗ in the standard ZSL setting. † indicates the re-
sults come from the original paper. “–” means the method cannot be
applied to the dataset. “±” represents the variation range of results
in the repeated experiments.

(a). AwA and ImageNet

Model
AwA ImageNet

Hit@1 Hit@1 Hit@2 Hit@5
DAP 41.4† – – –
IAP 42.2† – – –

DeViSE 54.2† 5.40 8.53 14.02
ConSE 45.6† 9.04 13.96 20.53
SYNC 54.0† 13.08 20.35 30.80
GCNZ 68.72± 0.08 29.31± 0.12 47.11± 0.13 71.63± 0.07

AZSL-G 69.39± 0.10 30.57± 0.09 48.23± 0.10 71.32± 0.08
DGP 83.98± 0.09 34.47± 0.04 51.59± 0.07 74.79± 0.09

AZSL-D 84.80± 0.13 34.81± 0.05 51.72± 0.07 74.54± 0.15

(b). ImageNet∗

Model
ImageNet∗

Hit@1 Hit@2 Hit@5
GCNZ 23.02 43.22 73.95

AZSL-G (us) 25.67 46.84 74.99
DGP 32.67 53.60 79.37

AZSL-D (us) 33.44 54.63 79.89

pected, because the semantics of class names and at-
tributes used by traditional methods is not as rich as
that of KG.

Compared with GCNZ and DGP – the state-of-the-
art methods utilizing KG semantics, our AZSL-G and
AZSL-D perform better in most settings. This indi-
cates the effectiveness of our Attentive GCN architec-
ture in dealing with the ZSL problem. Considering the
main goal of AZSL is to provide explanations for ZSL
and it is widely believed that there is a compromise
between a machine learning model’s interpretation and
accuracy [69], the performance improvement of AZSL
over GCNZ and DGP is still very promising.

We also evaluate KG-based methods on ImageNet∗,
a dense graph we extract from ImageNet. We find
that AZSL-G and AZSL-D both have more significant
outperformance over GCNZ and DGP respectively.
For example, on ImageNet, the Hit@1 outperformance
rate of AZSL-G is 4.3%, while on ImageNet∗ it in-
creases to 11.5%. This indicates the superiority of
AGCN in dealing with the densely connected KG. It
also validates the assumption: the performance of ZSL
model can be improved by taking the different contri-
butions of different seen classes into consideration.

5.2.2. Generalized ZSL Setting
From the above results, we observe that the KG-

based ZSL methods perform better than other tra-
ditional methods, therefore, in this subsection, we
mainly report the prediction results of KG-based meth-

Table 6
Performance (%) of AZSL-G, AZSL-D and KG-based baselines on
AwA, ImageNet in the generalized ZSL setting.

Model
AwA ImageNet

Hits@1 Hitu@1 Hits@1 Hitu@1
GCNZ 75.46 19.74 50.53 15.07

AZSL-G (us) 76.41 24.44 44.66 15.67
DGP 78.85 58.09 56.03 13.95

AZSL-D (us) 52.29 65.54 51.48 15.30

Table 7
Error analysis of DGP and AZSL-D on AwA in the generalized ZSL
setting. “from Seen/Unseen” means the wrongly predicted labels are
from seen class set or unseen class set.

Model
Misclassified

Testing Samples
Ratio of Predicted Labels

from Seen (%) from Unseen (%)

DGP
seen 82.6 17.4

unseen 90.3 9.7

AZSL-D
seen 46.7 53.3

unseen 75.5 24.5

ods, as Table 6 shows. We find that the performance
of all methods dramatically drops when predicting un-
seen testing samples (i.e., Hitu@1) compared in the
standard setting. It is expected because the label space
contains both seen and unseen classes during testing
and these models might tend to classify unseen test-
ing samples as seen classes considering that they have
never been trained with the samples of unseen classes.

To validate our assumption, we conduct error anal-
ysis on those wrongly classified unseen testing sam-
ples. As Table 7 shows, we count the distribution of
predicted labels of these misclassified testing samples.
Taking the prediction results of DGP on AwA as ex-
amples, 90.3% of all misclassified testing samples of
unseen classes are wrongly predicted as seen classes,
indicating the strong bias towards seen classes during
prediction. While our method AZSL-D alleviates the
bias – reducing the percentage of testing samples that
are wrongly classified as seen classes (from 90.3% to
75.5% ) and achieving 7.45% performance gain over
DGP on AwA. Results of AZSL-G and performance
on ImageNet also have similar trends.

We also find that our models perform not well when
predicting seen testing samples (i.e., Hits@1) in most
cases in comparison with baselines. It is likely to be
because the models are more easily confused by the
candidate classes from unseen class set during testing,
according to the error analysis in Table 7. This mo-
tivates us to explore optimized algorithms to classify
unseen testing samples correctly as well as retain high
accuracy on seen testing samples.
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Fig. 6. Impressive seen classes (IMSCs) as well as their normalized attention weights of 6 randomly selected unseen classes. 0.00 here means a
weight value below a threshold (very close to zero).

5.3. Illustration of Feature Transfer

In this subsection, we illustrate the transfer of deep
features from seen classes to unseen classes with the
learned impressive seen classes (IMSCs), including an
intuitive visualization and some quantitative analyses.

Firstly, Figure 6 visualizes some unseen classes
and their IMSCs, showing that these impressive seen
classes transfer their deep features to the correspond-
ing unseen classes. The presented examples in Figure
6 are mostly consistent with our common sense about
animals, for example, in our impression, Guanaco and
Llama are two animals that are similar in appearance.
We also evaluate the impact of IMSCs by analyzing
the performance drop when some IMSCs are removed,
as shown in Figure 7. Taking the prediction results of
AZSL-G as examples, the performance decreases in
all cases when some IMSCs are removed, in compari-
son with NO removing. Specially, it drops to 0 in most
cases when all IMSCs are removed. According to these
observations, we can conclude that our AZSL is capa-
ble of learning reasonable IMSCs for unseen classes
and these IMSCs play a key role in transferring their
features to unseen classes. They can be used to gener-
ate explanations to analyze the transferability of fea-
tures from seen classes to unseen classes.

We also observe that the number of IMSCs of dif-
ferent unseen classes varies dramatically. For exam-
ple, Indian mongoose and Guanaco have only one
IMSC, while Finch and Crab have 3 and 4 respectively.
We further count the distribution of IMSC size in Ta-
ble 8. An interesting finding is that most unseen classes

Guanaco Indian mongoose     Stork Antelope Finch Crab
Unseen Classifiers
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removing all
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Fig. 7. Hit@2 of AZSL-G when one IMSC is removed, all IMSCs
are removed and NO IMSCs are removed.

have only one IMSC (78.90%) or two IMSCs (5.72%),
while around 2% of all unseen classes have more than
two IMSCs. For example, class Rat has three impres-
sive seen classes Mouse, Hamster and Beaver, each of
them whose attributes extracted from Attribute Graph
are more than 30. The searching space is large for find-
ing a common attribute set among these classes. From
our statistics, although the proportion of unseen classes
with multiple IMSCs is not high, the EvidenceMining
algorithm provides a demonstration for our system to
be applied to other datasets and tasks. Moreover, we
not only extract common attributes using the algorithm
but also mine the association rules of seen and un-
seen classes with some measurements produced – sup-
port and confidence values, which illustrate the ratio of
common attributes to all attributes of these classes.

We also note that some unseen classes (around
13.20%) do not have any impressive seen classes. It
is probably because: (i) there are no neighboring seen
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Table 8
The distribution of impressive seen classes (IMSCs).

Size of
IMSC

0 1 2 3 4 5 6 7

Number of
Unseen Class

67 400 29 5 3 1 1 1

Ratio (%) 13.20 78.90 5.72 0.99 0.59 0.20 0.20 0.20

classes in the hierarchical graph, (ii) the visual features
of neighboring seen classes are quite different from
these unseen classes (meaning the gap between seman-
tic domain and visual domain), or (iii) the disability of
AZSL model, where the features can not be completely
transferred from seen classes to these unseen classes.

5.4. Evaluation of Explanations

In this subsection, we demonstrate how human be-
ings are satisfied with the generated textual explana-
tions. We also compare the impact of different external
KGs, and present some case studies.

5.4.1. Human Evaluation
For human evaluation, we invite 25 volunteers with-

out AI expertise to score the generated explanations.
The first language of volunteers is Chinese, they are all
undergraduate students who are fluent in reading En-
glish. We divide all unseen classes into 5 parts. Each
one contains about 100 unseen classes and correspond-
ing explanations. Each explanation is scored by 5 vol-
unteers, the final decision is made by majority voting.

We defined two metrics – readability and rational-
ity for evaluation. “G” (Good), “M” (Median) or “B”
(Bad) are scored for each metric.

Readability measures whether an explanation is
natural and fluent. “Good”: fluent, “Medium”: unnat-
ural but still understandable, “Bad”: confused and in-
comprehensible.

Rationality measures whether an explanation illus-
trates the transferability of features between classes.
“Good”: well illustrated, “Medium”: insufficient and
weakly illustrated, “Bad”: totally unconvincing.

These two metrics are scored independently. To help
volunteers deal with the evaluation better, we prepare
some guidelines and examples for them before scor-
ing to make sure they are familiar with the scoring
procedure. Besides, we also provide some images and
textual illustrations of classes as references as well as
some notes of generated explanations during scoring.
It is allowed that volunteers can skip the scoring item
if they are not sure about their judgment.

Table 9
Results of human evaluation on the generated explanations.

Readability Rationality

Score Ratio of
Explanations Score Ratio of

Explanations
G 36.58% G 73.20%
M 60.77% M 20.30%
B 2.65% B 6.50%

Table 9 presents the human evaluation results. We
can find that the explanations of most unseen classes
are satisfactory, especially on the rationality, and only
a very small ratio of explanations get “Bad” on read-
ability and rationality. It can also be seen that 60.77%
of explanations get Median on readability, but they do
not negatively impact people’s satisfaction with ratio-
nality. This indicates that the templates for explanation
generation need further refinement, which is among
our future work.

5.4.2. Impact of Different Types of KGs
We present some examples of the generated expla-

nations in Figure 8, with the evidence extracted from
Attribute Graph and DBpedia. For the unseen class
Horse, whose features are transferred from seen class
Zebra, our explanation generator extracts attribute ev-
idence such as hooves, longneck, chewteech, tail from
Attribute Graph to illustrate the common attributes be-
tween Horse and Zebra, and mine the association rule:
“{Zebra ⇒ Horse}” with support value 73.0% and
confidence value 90.0%. As the upper left of Figure
8 shows. Also, the generator extracts general knowl-
edge from DBpedia: some triples like (dbr:Horse,
dct:subject, dbr:Equus) and (dbr:Zebra, dct:subject,
dbr:Equus) which illustrate their common ancestor,
and some keywords like night vision and ears which
describe the same characteristics. With these evidence,
we can justify the transfer of features from Zebra to
Horse is reasonable (i.e., explain the transferability of
features from Zebra to Horse).

We find that the evidence from different external
KGs have different characteristics. Taking Rat in Fig-
ure 8 as an example, the evidence from Attribute Graph
are more likely to generate explanations in vision, such
as body parts (quadrupedal, paws) and coat appear-
ances (furry), while the evidence from DBpedia usu-
ally generate more general explanations, including not
only visual descriptions such as incisors, but also gen-
eral descriptions such as rodent ancestor and invasive
mammal in biology. We also have similar observations
in other examples, this is due to the nature of these two
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Horse
(Unseen Class)

IMSCs of Horse Rat
(Unseen Class)

IMSCs of Rat

Mouse (w: 0.36) Hamster(w:0.34) Beaver (w: 0.30)Zebra (w: 1.0)

Image

DBpedia Entity dbr:Horse dbr:Zebra dbr:Rat bdr:Mouse dbr:Hamster dbr:Beaver

Knowledge from 
Attribute Graph

hooves, longneck, chewteeth, tail, muscle, grazer, plains, grouped, 
quadrupedal, timid

quadrupedal, ground, nocturnal, paws, small, buckteeth, hibernate, nestspot, 
agility, furry

For rule 𝑍𝑒𝑏𝑟𝑎 ⇒ {𝐻𝑜𝑟𝑠𝑒} :
sup. = 73.0%; con. = 90.0%

For rule 𝑀𝑜𝑢𝑠𝑒 ,𝐻𝑎𝑚𝑠𝑡𝑒𝑟, 𝐵𝑒𝑎𝑣𝑒𝑟 ⇒ {𝑅𝑎𝑡} :
sup. = 26.8%; con. = 88.2%

Knowledge 
from 

DBpedia

DBPedia
Property/
Relation

(dbr:Horse, dct:subject, 
dbc:Equus)

(dbr:Horse, dct:subject, dbc: 
Herbivorous_animals)

(dbr:Zebra, dct:subject, 
dbc:Equus)

(dbr:Zebra, dct:subject, 
dbc:Herbivorous_animals)

(dbr:Rat, hypernym, dbr:Rodents)
(dbr:Hamster, hypernym, dbr:Rodents)

(dbr:Rat, dct:subject, dbc:Invasive_mammal)
(dbr:Mouse, dct:subject, dbc:Invasive_mammal)

Keywords 
of

Abstract
Text

ungulate mammal, 
domesticated, day and night 
vision, balance, large ears

black-and-white striped coats, 
ungulates, social, large ears, 

night vision

medium-sized, 
long-tailed 
rodents, 
incisors

pointed incisors, 
rounded ears, 

Rodentia, high 
breeding rate

rodents, sharp 
incisors, house 

pets, underground, 

semiaquatic 
rodent, nocturnal, 

building dams, 
four incisors

Generated
Explanation

&
Score

The prediction for samples of horse is supported by zebra. They 
are both grazer, grouped, quadrupedal, both have hooves, muscle, 
longneck, chewteeth, both live in plains, and behave timid. They 
are both species of equus, and are both a member of herbivorous
animals. They are both ungulate animal, and are similar in night 
vision and large ears.

The prediction for samples of rat is supported by mouse, hamster and beaver.
They are both quadrupedal, nocturnal, small, furry, both have paws, buckteeth, 
both live in ground, nestspot, both hibernate and behave agility. Rat and 
hamster are both relevant to rodents via relation hypernym, rat and mouse
both belong to invasive mammal. They are both have incisors.

Readability [G/M/B]: M
Rationality  [G/M/B]: G

Readability [G/M/B]: M
Rationality  [G/M/B]: G

Dolphin
(Unseen Class)

IMSCs of Dolphin Stork
(Unseen Class)

IMSCs of Stork

White stork (w: 0.51) Black stork (w: 0.49)Killer whale (w: 1.0)

Image

DBpedia Entity dbr:Dolphin dbr:Killer_whale dbr:Ciconiiformes dbr:White_stork dbr:Black_stork

Knowledge from 
Attribute Graph

hairless, toughskin, flippers, swims, tail, ocean, grouped, smart, 
fast, active white, black, water, wild, fish

For rule 𝐾𝑖𝑙𝑙𝑒𝑟	𝑤ℎ𝑎𝑙𝑒 ⇒ {𝐷𝑜𝑙𝑝ℎ𝑖𝑛} :
sup. = 48.6%; con. = 62.1%

For rule 𝑊ℎ𝑖𝑡𝑒	𝑠𝑡𝑜𝑟𝑘,𝐵𝑙𝑎𝑐𝑘	𝑠𝑡𝑜𝑟𝑘 ⇒ {𝑆𝑡𝑜𝑟𝑘} :
sup. = 83.3%; con. = 100.0%

Knowledge 
from 

DBpedia

DBpedia
Property/
Relation

(dbr:Dolphin, dct:subject, 
dbc:Animals_that_use_echoloc

ation)

(dbr:Killer_whale, dct:subject, 
dbc:Animals_that_use_echoloca

tion)

(dbr:White_stork, dbo:order, dbr:Ciconiiformes)
(dbr:Black_stork, dbo:order, dbr:Ciconiiformes)

Keywords 
of

Abstract
Text

aquatic, shaped teeth, well-
developed hearing, 

widespread, blubber under 
skin

oceanic, apex predators, 
toothed whale, a layer of 

blubber, excellent hearing, 
diverse diet

large, long-legged,
long-necked, wading, 
birds, soaring, long, 

stout bills, migratory

large bird, long red legs, 
wading, family, 

Ciconiidae, migrant, 
carnivore

large bird, wading, 
family, Ciconiidae, 

black plumage, long red 
legs, red beak

Generated
Explanation

&
Score

The prediction for samples of dolphin is supported by killer 
whale. They are both hairless, grouped, both have tough skin, 
flippers, tail, both swim, live in ocean, and behave smart, fast and 
active. They are both animals that use echolocation. They both 
have teeth, hearing and blubber.

The prediction for samples of stork is supported by white stork and black 
stork. They are both white, black, wild, both live in water and eat fish. White 
stork and black stork both belong to stork biologically. They are both large
wadding birds, and are similar in long legs.

Readability [G/M/B]: M
Rationality  [G/M/B]: M

Readability [G/M/B]: G
Rationality  [G/M/B]: G

Fig. 8. The explanations for unseen classes: Horse, Rat, Dolphin and Stork. In each case, images of the unseen class and its impressive seen
classes (IMSCs), their matched DBpedia entities, the extracted attributes, triples and keywords are displayed. The association rules of seen and
unseen classes from EvidenceMining algorithm are listed with their measurements (“sup.”: the support value, “con.”: the confidence value).
“(w:∗)” behind IMSC denotes the attention weights. The textual explanations as well as the evaluation results from volunteers are also displayed.
The sentences in italic are explanations generated with knowledge from Attribute Graph (i.e., attributes), while those marked with underline are
generated with knowledge from DBpedia (i.e., triples and keywords).



Y. Geng et al. / Explainable Zero-shot Learning via Attentive Graph Convolutional Network and Knowledge Graphs 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 10
The evaluation results of explanations with different numbers of
common attributes.

Attributes
#

Rationality Readability
G M B G M B

>10 85.71% 14.29% 0.00% 0.00% 100.00% 0.00%
5 ∼ 10 75.00% 21.88% 3.12% 40.63% 56.25% 3.12%
<5 72.68% 20.36% 6.96% 37.37% 59.79% 2.84%

KGs – Attribute Graph is a domain-specific knowledge
graph while DBpedia is a general one.

We also find and compare some limitations of these
two KGs. Due to the great cost on attribute annota-
tions, the scale of Attribute Graph is limited, and a
considerable portion of classes (about 90%), especially
those from ImageNet, whose attributes extracted from
Attribute Graph are no more than 10. For example,
the attributes of Stork and its IMSCs are few (see the
bottom right of Figure 8). In contrast, the resources
and knowledge from DBpedia are abundant, which can
be accessed as long as the ZSL classes are matched
with DBpedia entities. This setting is very friendly for
providing explanations for classes of large scale ZSL
datasets. However, different from human-annotated at-
tributes in Attribute Graph, the knowledge from DB-
pedia sometimes is noisy due to the natural expres-
sions in keywords. For example, in the case of Dolphin
and Killer whale (the bottom left of Figure 8), the key-
words “well-developed hearing” and “excellent hear-
ing” are extracted to describe their hearing, however,
only “hearing” is taken as the common keywords due
to the different adjectives. This incomplete knowledge
may hurt the quality of generated explanations, mo-
tivating us to explore better keyword extraction algo-
rithm to fully utilize the knowledge in abstract text.

In summary, the evidence from Attribute Graph
is more applicable to generate explanations for spe-
cific domain such as vision, especially when the at-
tribute annotations are sufficient, while the evidence
from DBpedia are more general and accessible: it can
deal with large scale ZSL problems with a number of
classes and can also be applied to different ZSL ap-
plications such as text classification. However, the evi-
dence from Attribute Graph and DBpedia are compat-
ible with each other, and can be combined.

5.4.3. Impact of Attribute Graph
From Figure 8, we observe that the number of at-

tributes extracted for different classes from Attribute
Graph varies a lot. For example, Horse, Dolphin and
Rat both have 10 common attributes while Stork only

has 5. In our statistics, 3.23% of all unseen classes (or
explanations) have more than 10 common attributes
extracted from Attribute Graph, 7.37% have 5 ∼ 10
common attributes while 89.4% have less than 5 at-
tributes. Therefore, we further analyze the impact of
the coverage of attributes on generating explanations.
Specifically, we reevaluate the quality of generated ex-
planations with different numbers of extracted com-
mon attributes, the results are shown in Table 10.

In all explanations with more than 10 common at-
tributes, 85.71% of them are scored with “Good” on
rationality, while 14.29% are with “Medium”. The
medium rationality may be because (i) we randomly
select 10 attributes to generate explanations when the
number of common attributes exceeds 10, however,
some representative attributes especially those that are
discriminative across different classes may not be se-
lected, making the generation results less convincing,
or (ii) the knowledge extracted from DBpedia may be
not compelling enough. We also note that the propor-
tion of explanations scored with “B” increases as the
number of attributes decreases, indicating that the at-
tributes can make up for the shortcomings of evidence
from DBpedia. Besides, most explanations get “G” or
“M” on rationality when the number of attributes is
less than 10 or even less than 5, meaning that our sys-
tem can still work well with DBpedia even though the
attributes from Attribute Graph are not rich enough.

As for the quality in readability, we find that there
is a slip when packing too many attributes. It might
be because there are many repetitive expressions in the
generated sentences. It is believed that randomly tak-
ing 10 attributes to generate is a good choice when the
number of attributes is more than 10, however, some
representative attributes may be lost as we mentioned
above. Therefore, we look forward to adopting some
strategies to improve the selection of attributes in the
future, for example, evaluating the relevancy between
classes and attributes to select the most relevant ones.

Generally speaking, the high coverage of attributes
has a positive effect on generating higher quality ex-
planations, especially in terms of rationality. However,
it is better to combine the knowledge from Attribute
Graph and DBpedia to complement each other.

5.5. Discussion on Feature Transfer in ZSL

In this subsection, we analyze the transfer of deep
features in ZSL according to our generated explana-
tions. We take the prediction results of AZSL-G in the
standard ZSL setting as examples.
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5.5.1. Successful and Failed Transfer
In ZSL, the samples of unseen classes are predicted

by transferring features from seen classes. However,
we find a case where some unseen classes have no fea-
tures transferred from seen classes, and the prediction
results on Hit@1 and Hit@2 are both 0. Such a case is
viewed as a failed transfer (FT). In contrast, the case
where some unseen classes have features transferred
from seen classes is a successful transfer (SF). For ex-
ample, the Hit@1 and Hit@2 of unseen class Eared
seal are both 0 and its feature transfer is failed, while
another class Frog whose features are transferred from
seen classes Tree frog and Tailed frog achieves 61.70%
Hit@1 and 79.62% Hit@2, is a successful case.

Those explanations scored with “Good” on rational-
ity illustrate the transferability of features from seen
classes to unseen classes well, and are regarded as
good explanations, while others are not. We find that
48% of unseen classes are SF with good explanations,
while 39% are SF without good explanations. The
shortage of good explanations may be due to (i) the
noise of knowledge extracted from the KG, (ii) the in-
correct or absent matching between classes and DB-
pedia entities as mentioned in Section 4.3.2, or (iii)
the absence of reasonable impressive seen classes for
unseen classes, while the successful transfer may be
due to the semantics implied in the class embeddings
(i.e., the initialization of class nodes). The first point
can be solved by developing more advanced methods
to extract knowledge, while the second point can be
improved by traditional ontology alignment systems
or modern semantic embedding methods. We also find
around 3% of unseen classes are FT with good expla-
nations. This may be because the learned unseen clas-
sifiers are not discriminative enough, resulting in poor
performance on Hit@1 and Hit@2, or the feature ex-
traction in CNN needs to be refined. This indicates that
on the one hand, the class knowledge can be further
enhanced to learn more discriminative unseen classi-
fiers, on the other hand, the encoded class knowledge
can be utilized to improve the CNN module. The rest
(10%) of unseen classes are FT without good explana-
tions. It may be because these unseen classes do not
have related seen classes in the ZSL datasets, resulting
in no seen features that can be transferred to them.

5.5.2. Different Types of Feature Transfer
From the generated explanations, we also find that

the transfer of features between seen classes and un-
seen classes have different types. For example, some
features are transferred between two sibling classes,

Table 11
Performance of AZSL-G with different types of transferability.

Transferability Ratio of
Unseen Classes

Performance (%)
Hit@1 Hit@2

ancestor 49.2 % 25.06 46.79
sibling 38.1 % 29.10 50.58

ancestor-sibling 1.2 % 66.05 79.52
other 11.5 % 37.40 49.56

while some features are transferred from one class to
its children or parents. Given a successful transfer be-
tween a seen class and an unseen class, we divide it
into four types: (i) ancestor which refers to the case
where the seen class is the ancestor of the unseen class
or vice versa (e.g., unseen class Stork is the ancestor
of seen classes White stork in Figure 8); (ii) sibling
which refers to the case where the seen class and the
unseen class are siblings (e.g., unseen class Horse and
seen class Zebra in Figure 8 are both the children of
Equus); (iii) ancestor-sibling which refers to the case
where the type of the feature transfer between seen and
unseen classes includes both ancestor and sibling; (iv)
other which refers to the case where there are no an-
cestor or sibling relationship between seen and unseen
classes.

We count all successful transfers in ImageNet ac-
cording to the different types of feature transfer. As
shown in Table 11, 49.2% of unseen classes, whose
features are transferred from ancestor seen classes,
achieve 25.06% on Hit@1, while 38.1% of unseen
classes, whose features are transferred from sibling
seen classes, achieve 29.10% on Hit@1. Nearly 90%

of unseen classes focus on these two kinds of fea-
ture transfer. It is because the inter-class relationship
our model input is hierarchical. We also find that the
prediction results of unseen classes with sibling type
are superior to those with ancestor type, probably be-
cause of the divergence of feature distribution between
ancestor classes and descendant classes considering
that the feature distribution of ancestor classes is more
complex than that of descendant classes. It is inspired
that the performance of ZSL model may be improved
by introducing sibling type feature transfer (e.g., intro-
ducing more sibling seen classes for unseen classes).
However, the combination of these two types achieves
the best performance, indicating that richer class se-
mantics are more helpful for the transfer of features.



Y. Geng et al. / Explainable Zero-shot Learning via Attentive Graph Convolutional Network and Knowledge Graphs 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6. Conclusion and Outlook

In this study, we investigate explainable ZSL with
(1) a new ZSL learner which utilizes the inter-class re-
lationships extracted from WordNet as well as the At-
tentive Graph Convolutional Network to predict clas-
sifiers for unseen classes, and (2) an explanation gen-
erator which generates human understandable expla-
nations with external Attribute Graph and DBpedia to
justify the transferability of features in ZSL. The study
is evaluated with two image sets. We not only achieve
higher classification performance than the state-of-the-
art baselines, but also generate promising explanations
which make the transferability of features in ZSL more
explainable. With the generated explanations, we also
analyze the transfer of features from seen classes to
unseen classes, which shows the potential of further
improving the performance of ZSL algorithms.

In our work, we extract class knowledge e.g., at-
tributes, triples and keywords from Attribute Graph
and DBpedia as evidence to illustrate the transferabil-
ity of features from seen classes to unseen classes.
From another point of view, these evidence also build
detailed semantic relationships between classes, which
may be helpful for the feature transfer in ZSL. There-
fore, in the future work, we can integrate these com-
mon attributes, keywords and triples into the hierarchi-
cal graph of classes to enrich the class semantics and
improve the performance of ZSL models [70, 71].

We also consider further improving the quality of
explanations by making full use of the knowledge in
external KGs. For example, we can use Semantic Web
techniques such as ontology that involves the domain
and range of properties to assist the knowledge extrac-
tion from Attribute Graph and DBpedia. Note that the
ontology of DBpedia is ready-made, while the ontol-
ogy of Attribute Graph may need to be designed man-
ually considering it is collected from attribute annota-
tions. We will explore this direction in the future.

Our work currently focuses on the image classifi-
cation tasks, we also look forward to applying it in
other domains like KG construction and natural lan-
guage processing. For example, it can be applied for
long-tail relation extraction [44] and zero-shot knowl-
edge graph completion [72]. The models proposed in
these tasks usually utilize label knowledge to trans-
fer data features from seen (or data-rich) labels to un-
seen (or data-poor) labels, we can also introduce at-
tention mechanism or other strategies into these mod-
els to attentively select the seen (or data-rich) labels
which are contributing to the feature learning of un-

seen (or data-poor) labels. With learned contributing
seen labels, the explanations of the feature transferabil-
ity can be made by accessing the knowledge from ex-
ternal KGs as our work does. It is noted that the exter-
nal KGs such as DBpedia can still be utilized to gener-
ate explanations for these tasks, while Attribute Graph
is specific to image classification. If necessary, we can
explore other external KGs for new applications or in-
troduce other domain-specific knowledge from domain
experts or public resources.
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