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Abstract. The evolution of the Semantic Web has given rise to multiple knowledge bases (KBs) with access to a large amount of
structured data. However, querying these knowledge bases through SPARQL remains a challenge for the average user. Question
answering systems based on natural language can help alleviate this challenge. In this paper, we present a knowledge base
question answering system that answers questions in English and French. Our method is based on transforming natural language
questions into SPARQL queries by leveraging the syntactic information of questions. We describe a set of lexico-syntactic
patterns used to automatically generate triple patterns and SPARQL queries. Our results over DBpedia show that the use of the

lexico-syntactic patterns can improve the results of the system.

Keywords: Question answering, Lexio-syntactic Patterns, DBpedia, SPARQL Query Generation

1. Introduction

Many applications rely on the SPARQL standard in
order to query data based on an RDF model. The use of
SPARQL does however come with a significant draw-
back represented by its learning curve. Several systems
[1, 2] have been developed to hide SPARQL from the
average user by accepting a specific set of inputs that is
used to generate specific SPARQL queries. SPARQL
queries are then built by trying different combinations
of all the words in the question and returning only
those combinations that obtain some answer. While
such systems are effective, they are reliable only for
simple queries and do not deal well with ambiguities.
More so, if additional restrictions are applied to re-
duce ambiguity, the system can sometimes feel unnat-
ural to users. Some more sophisticated systems are
able to accept questions entirely written in natural lan-
guage without imposing additional constraints to the
user. Such systems include [3, 4] and take into consid-
eration not only keywords but also additional seman-
tic and syntactic representations to build more accurate
and complex SPARQL queries.

*Corresponding author. E-mail: nikolay.radoev@polymtl.ca.

While natural language questions written without
any restrictions can be complex, it can be observed that
people often ask similar questions and similar struc-
tures can be found in different questions [5]. This pa-
per is based on the question-answering system LAMA
[6], which is based on various multilingual (French /
English) lexico-syntactic patterns that can help gen-
erate corresponding SPARQL queries. These patterns
can be used in any question-answering (QA) system
that wants to leverage the power of syntax and POS-
tagging to generate SPARQL queries. We show the rel-
evance and effectiveness of the proposed patterns on
two different QA datasets [7, 8].

The remainder of the paper is structured as follows.
In the next section, we analyze the two datasets and
describe the LAMA system. We then detail the two
different types of patterns implemented in the system.
This is followed by an evaluation on question answer-
ing datasets to determine patterns’ frequency and their
impact on a question answering system. After a discus-
sion on the evaluation results and a review of related

work, we conclude with some final remarks.
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2 Bilingual Question Answering using Lexico-Syntactic Patterns

2. Methodology

In this section, we describe the datasets and the
LAMA system, which is used as a proof of concept for
the interest of the proposed patterns. A more in-depth
description of the datasets allows for a better under-
standing of their particularities and the type of ques-
tions that can be asked to a QA system. A description
of the LAMA system also allows us to give an exam-
ple of a practical application of the patterns outside of
their theoretical description.

The work presented here used the DBpedia knowl-
edge base as the reference KB throughout this paper.
For readability purposes, we have abbreviated some of
the URIs by using the prefixes in Table 1. The dbo:
prefix represents classes, concepts and some properties
in DBpedia’s ontology while dbp: and dbr: represent
properties and resources respectively.

dbo http://dbpedia.org/ontology/

dbr http://dbpedia.org/resource/

dbp http://dbpedia.org/property/
Table 1
DBpedia prefixes

2.1. Dataset and Question Analysis

In this work, we used two different corpora contain-
ing questions designed to be answered using a particu-
lar knowledge base, in this case DBpedia. Each ques-
tion also contains the expected answer as well as a
sample SPARQL query used to obtain that answer.

We classify each question as either simple or com-
plex. A question is defined as simple if it can be trans-
lated into a SPARQL query that contains only one
triple pattern, otherwise it is considered as a com-
plex question. For example, the question Who died of
malaria? is a simple question since it can be expressed
using the following triple pattern:

?x dbo:deathCause dbr:malaria .

The question Who died from malaria in North Bor-
neo? is considered a complex question since it requires
the 2 following triple patterns for a complete answer:

7x dbo:deathCause dbr:malaria .
?7x dbo:deathPlace dbr:North_Borneo .

We now present the two datasets that have been used
in our experiments.

Question Type | QALD | LC-Quad
Date 6.5% 1.3%
Number 6.8% 2.7%
Boolean 21.0% 7.4%
Resource 65.8% 88.6%

Table 2
Question Types per Dataset

2.1.1. QALD Dataset

The QALD dataset is a combination of both the
QALD7 and QALDS training datasets provided for the
QALD competition [7] in 2017 and 2018, respectively.
Given their similarity, both datasets were merged for
a total of 560 questions. Duplicate questions appear-
ing in both sets were removed for a final count of 384
unique questions. Filtering was done purely on com-
plete string match and thus questions like What bas-
ketball players were born in X?, where X is a differ-
ent location name in each dataset, were kept as differ-
ent queries. Since our aim is to compare ourselves to
a baseline, the merge allows us to have a bigger and
more varied dataset for comparison.

QALD is overwhelmingly composed of simple
questions (298 out of the 384 questions), representing
78% overall. We partitioned the questions according
to the type (Date, Number, Boolean or Resource) of
the expected answer. The general distribution per type
can be seen in Table 2. The last category (Resource)
designates questions for which the expected answer is
one or more URIs and for which no other more appro-
priate type was found. The dataset is mostly composed
of Resource questions but has a non-negligible amount
of Boolean questions.

The QALD questions are also translated in multiple
languages (6 different languages including French, En-
glish, Spanish, Italian, German and Danish) but only
the French and English translations were considered in
our experiments. The provided SPARQL query and an-
swers only contain references to the English version of
DBpedia. that is, URISs that refer to English Wikipedia
such as dbr:The_Hobbit representing The Hobbit (the
book). This distinction is important since URIs about
the same concept in English and French DBpedia can,
sometimes, refer to different triples describing the con-
cept. For example, if we want to find who is the pub-
lisher of The Hobbit, we can use the dbo:publisher
property to get dbr:George_Allen_&_Unwin in En-
glish. However, using the same property in the French
version of DBpedia, we get fr.dbr:Editions_Stock (the
original publisher of the french version of the book)
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Bilingual Question Answering using Lexico-Syntactic Patterns 3

and in order to get the same information as in English,
we need to use the dbo.firstPublisher property.

2.1.2. LC-Quad Dataset

The LC-Quad(SQA) dataset is similar to QALD in
its structure but does only contain questions in English.
It also provides both the answers to the questions and
the SPARQL queries used to obtain those answers on
the English DBpedia knowledge base.

Despite having a larger number of questions than
QALD, the LC-Quad dataset contains many questions
that are redundant in their structure. For example, the
question "Who was married to X?" appears 7 times in
the dataset with different entities at position X. Just like
QALD, those types of questions are kept in the final
dataset.

As for the question type distribution, LC-Quad dif-
fers from QALD by presenting a high amount (3853
or 77.1%) of complex questions. The general type dis-
tribution is provided in Table 2 and shows a significant
bias towards Resource type questions. The questions
in the dataset are generated from patterns, which can
explain the distribution.

We must note that the LC-Quad dataset contains a
non-negligible amount of noise represented by spelling
mistakes, wrong capitalization and missing words in
some of the provided questions. This can have an im-
pact on the final performance analysis since both syn-
tactic parsing and POS tagging are sensitive to such
noise, especially if some words are missing.

2.2. Overview of the LAMA System

One of the main reasons for exploring a pattern-
based approach to generate SPARQL queries from nat-
ural language questions was to enhance our question
answering system LAMA [6] and reduce its reliance on
ad-hoc heuristics and pre-defined rules.

LAMA (Language-Adaptive Method for Question
Answering) is a system originally designed to answer
simple questions in both French and English. Even
though it has been originally targeted at simple ques-
tions, the first version of LAMA [9] was still able to
answer a very limited amount of complex questions.

Figure 1 shows the system’s processing pipeline.
The system is modular and based on components that
can be modified or replaced with custom ones if a dif-
ferent behaviour is desired.The pre-processing phases
(Syntax Parsing and Question Classification) generate
additional intermediate structures (dependency tree,
POS tags, question type) that are passed to the core

processing module, which transforms the syntax tree
in an intermediate representation. This representation
is parsed to generate one or more triple patterns used
in the SPARQL requests to the Knowledge Base.

The system also interacts with several external re-
sources: DBpedia, Wikipedia and the Google Translate
APIL. In the case of Wikipedia, we used it only to train
a Word2Vec model for the Property Detection phase in
both English and French [10]. Other Word2Vec models
[11] could be exploited, but given the wealth of data
and the proximity between DBpedia and Wikipedia,
Wikipedia remains a good source for model training
in multiple languages. The Google translate API is an
optional module that can be used for questions when
working in languages other than English. This module
leverages the larger amount of data in English KBs to
better answer the question. This is explained in more
detail in section 2.2.2.

There are many different existing frameworks for
parsing natural language sentences, focusing on differ-
ent particularities of the language. We rely on Google’s
Cloud Natural Language API (CNL), which combines
multiple tools for different tasks. Based on the Syn-
taxNet projet, Cloud Natural Language API offers syn-
tactic parsing, POS tagging, dependency parsing and
basic entity annotation. Another interesting property of
this tool is that it supports multiple languages.

CNL’s parsing is done on pre-trained models, with

English being based on the Penn Treebank and OntoNotes

corpora [12]. To keep uniformity in this paper and
all the given examples, the Universal Dependencies
project notation is used. As an example, using this no-
tation on the sentence When was the statue of liberty
built?, we generate the following POS-tags :

When(ADV) was(VERB) the(DET) Statue(NOUN)
Oof(ADP) Liberty(NOUN) built(VERB) ?

As for the dependency parsing, the universal anno-
tation is also being used. As not all dependencies are
represented in all languages, Table 3 presents the most
used dependencies, as well as a brief explanation.

2.2.1. Pre-processing and Question Type
Classification.

The Pre-processing step involves parsing the input
question to extract the sentence’s syntactic tree repre-
sentation as well as the POS tag for each word. This
step is explained in more detail in section 4. These
representations are saved and passed forward into the
pipeline. Following this step, the system classifies the
question into one of the following categories: Boolean,
Date, Number and Resource. An additional subtype,
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Figure 1. LAMA’s Pipeline
Dependency Details Example
A Denotes a relation between the . .
subj(V,S) . . subj(be,Obama) => Obama is
verb V and its subject S
D d bet bV
dobj(V,0) ependenicy betweer @ ver dobj(buy,book) => buy a book
and its direct object O

Dependency between an adjective A L .

amod(N,A) . amod(building,old) => old building
and the modified noun N

conj(A,B) Conjunction between two elements conj(Michel,Amal) => Michel and Amal

Table 3
Dependency details
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Bilingual Question Answering using Lexico-Syntactic Patterns 5

Aggregation is applied to questions that require count-
ing or ordering (descending or ascending).

Classification is done by using patterns that have
been manually extracted from the QALD6 and QALD7
training data sets [6]. The pattern-based approach is
relatively easy to implement and can be adapted to
a multilingual setting by requiring a separate set of
user-defined patterns for a new language. Applied only
to French and English, the question classification was
able to accurately predict the question type of 92% of
the QALDY7 test set. The remaining 8% were instances
where a more specific type was not detected and was
declared as Resource by default. In some cases, in-
formation stored in DBpedia uses the wrong format.
For instance, when asking for the budget of the Lego
Movie, the answer is a string literal and not a num-
ber. The impact of a wrong classification is minimal
as long as a question is not classified as a Boolean,
given that those types of questions are answered with
an ASK query that only returns true or false.

Based on the classification result, the question is
then handled by a specific solver that inherits from a
base Question Solver module. All solvers perform the
same steps as seen in Figure 1 and detailed in sections
2.2.2 through 2.2.4. Individual solvers can be modified
to allow for custom rules for property and entity ex-
traction. For example, the solver for Date type ques-
tions will try to look for keywords such as When, What
time, What date, etc or words representing time such
as birthdate, ending, etc. If no specific rules are given,
the described default behaviour is used.

2.2.2. Entity Extraction.

After the question is parsed and classified, the sys-
tem tries to extract a semantic representation from the
question, starting with the entities.

First, a coarse-grained extraction is done by iden-
tifying and removing the question word (who is, who
are, when was, etc.). The remaining string is then
decomposed into all possible substrings, which are
searched for in the target knowledge base (DBpedia in
this case) after appending the dbr: prefix and replac-
ing the space character by the underscore character. A
heuristic where definite articles, such as the, are always
appended to the following word is also used. All valid
entities (i.e. the ones that exist in the knowledge base)
are kept as possible candidates. Entities are then sorted
in a descending order using the computation formula
shown below. One of the advantages of this method
is that only existing entities are kept and the system

guarantees that if an entity is used, its URI points to an
existing entry in the knowledge base.

For example, Who is the queen of England? gen-
erates the following sub-strings after removing the
question indicator (who is): the queen of England,
the queen, England, the queen of, of England. Out of
those, only the first 3 are kept as valid entities since
the queen of and of England are not DBpedia enti-
ties. Based on the assumption that entities are most
likely a noun or a part of a nominal phrase NP (the
queen of England for example), potential entities ex-
tracted from nouns are ranked higher than potential
candidates from verbs or other grammatical groups.
To increase the set of potential entities, we add cap-
italization and pluralization but penalize entities dis-
covered after these transformations. For example, the
word queen can also lead to Queen, Queens and queens
but all those transformations have a lower score than
the original word (scores of 4 and 3, respectively, in-
stead of 5 for the original word, as we will see in more
detail below) since pluralization and/or capitalization
was required to obtain them. If no entities are found us-
ing all these methods, the semantic annotator DBpedia
Spotlight [13] is used as a back-up tool.

In the case of languages other than English, an op-
tional translation step can take place where the initial
question is translated to English. In fact, the French
DBpedia chapter is less complete than its English
counterpart and all the question answering competi-
tions (QALD, LC-Quad) expect an URI from the En-
glish DBpedia. This translation increases the chance of
finding an entity, especially in languages with limited
presence in a knowledge base (KB), but comes with a
potential risk of a false negative since we cannot guar-
antee that the provided translation, even if semantically
correct, matches the English label in the KB.

The different modifications (capitalization, transla-
tion, stemming) are combined to calculate a score that
is used to rank the entities. The score is computed as
follows, with e being the entity string:

S(e) = length(e) — T x % +2x U xnsp(e) -P

where:
length(e) is the number of letters in e
nsp(e) is the number of spaces in e
P is the number of characters added or removed if
plural form was added or removed, respectively.
T = 1 if e was translated, O otherwise
U = 1 if e has no capitalization, O otherwise
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6 Bilingual Question Answering using Lexico-Syntactic Patterns

We consider the number of spaces for entities that
span multiple words, often names or titles of movies,
paintings, etc. This is however only considered if some
of the words in the entity are already capitalized. This
is done to reduce the risk of transforming unrelated
words into entities. For instance the creator can be
transformed into the Creator, an existing entity in DB-
pedia but this is incorrect in this case. Similarly, trans-
lated word groups incur a penalty proportional to their
length. This is done to prioritize words in the native
language of the query and to reduce translation errors.
The penalty factor of 2 was determined empirically
in the first versions of the system. With this formula
and our previous example, the entity queen of England
(score of 18 ) is ranked higher than the other two based
on its length and the fact that it is composed of multiple
words.

Both dependency (Table 4) and POS (Table 6)
patterns rely on identifying particular words as sub-
jects or objects in the question, and these words will
be reused in the generated SPARQL query. In or-
der to facilitate the transformation from a string lit-
eral to a valid URI, the system offers the function
getEntity(x), which matches x to one of the already
detected entities in the question. If more than one
valid entity (in the case of multi-word entities) are
found, they are all returned along with their respec-
tive rankings, sorted in descending order based on
their score. For instance, the question Did Tolkien
write the Hobbit? can be matched with a lexico-
syntactic pattern that recognizes the subject Tolkien
and the object Hobbit, which are respectively tagged
as the potential subject and object in the triple pat-
tern. The application getEntity(Tolkien) will return
dbr:J._R._R._Tolkien, while getEntity(Hobbit) will re-
turn both dbr:The_Hobbit (the book) and dbr:Hobbit
(the fictional race). Based on the score computed as
explained before, dbr:The_Hobbit is correctly chosen
as the most likely candidate for the triple pattern.

2.2.3. Property Extraction.

After extracting the entities, the system detects and
extracts possible properties from the question. It uses
a lexicon that maps various expressions to the same
property.

2.2.4. Lexicon Generation.

In order to help with the property extraction, we
automatically extract a property lexicon based on
our chosen knowledge base DBpedia. The lexicon
is built once and used by the system in an offline
phase. For each property, we extracted its URI as well

as the corresponding labels in different languages,
French and English in our case. Some properties in
the dbo: domain have labels for both languages, such
as dbo:author : author(en) and auteur(fr) while others
only have English labels. The extraction was executed
both on the dbo: and dbp: prefixes. Extraction was also
run on the dbp: domain of the French version of DB-
pedia since language-specific properties are defined in
this domain instead of dbo:. For each label, we mapped
all corresponding URIs. When several URIs exist in
dbo and dbp, we favor the URI of the dbo: domain
first. For instance, the label "parent” has 2 URISs in both
namespaces and thus lead to the following mapping :

{"parent" : [dbo:parent, dbp:parent] }

The generated lexicon is stored as a hash table, al-
lowing for a fast lookup (O(1)) and reducing the cost
of the lookups required for the query analysis. It al-
lows us to find existing properties based on their la-
bel and its presence in the question. We use a combi-
nation of string matching and Levenshtein distance, as
described in subsection 2.2.2. When working with lan-
guages other than English, translations can be used for
properties without labels for the original language.

While our lexicon is extracted automatically from
DBpedia, it can still be enriched by adding additional
bindings that are either generated by other means or
created manually. This can be especially helpful in
cases where a property is expressed using literals that
are quite different from the label in the knowledge
base. LAMA uses a different approach for such cases,
relying on word embeddings, as explained in the fol-
lowing sections.

Unlike entities, in most cases, the expression of
a property cannot be directly matched with its rep-
resentation in the knowledge base. For example, us-
ing the same question as before, dbr:J._R._R._Tolkien
and dbr:The_Hobbit are connected by the dbo:author
property in DBpedia, while in the question this prop-
erty is expressed by the word write. We first try to
match the label to an existing property in our property
lexicon either by a full match to the word label or to
its derivative. A derivative is defined as a literal with a
Levenshtein distance of less than 3 (determined empir-
ically), applied only to the end of the initial word la-
bel. Levenshtein distance is used instead of stemming
and lemmatization since it is a simpler substitution for
both and can help with spelling mistakes at the end of
words (common in languages such as French). While
this is helpful, it does not cover cases where the desired
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Bilingual Question Answering using Lexico-Syntactic Patterns 7

property is significantly different from the word label.
To reduce the number of false positives, a property is
considered valid only if it exists in the target base and
is used in relation with at least one of the extracted en-
tities.

To alleviate the problem of a label-property dif-
ference, LAMA uses a Word2Vec word embeddings
model trained on Wikipedia to match a potential word
to a valid property as long as the cosine similarity be-
tween the vector representation of the words is above
a certain threshold (0.6 in our case). Taking write as an
example, we cannot find a direct valid property, but its
derivative writer can be mapped to dbo:writer, a valid
property in our lexicon. This however does not satisfy
the second condition since neither of the two entities
uses it as a property. Using the Word2Vec model, we
find a cosine similarity of 0.719 between writer and
author, a word that can be mapped to the DBpedia
property dbo:author, which is also related to both enti-
ties. In the case of multiple properties matching all the
criteria, they are all saved and ranked based on their
cosine similarity.

Like the entity extractor, the property extractor mod-
ule offers a helper function called getProperty(x)
where x is the word or group of words denoting the po-
tential property. In some questions, no expression can
be targeted as a potential property since the relation be-
tween two entities is implicit. In those cases, x is a pair
of entities and the system tries to find at least one valid
property that connects those entities. For example, the
question "Was Margaret Thatcher a chemist?” con-
tains both dbr:Margaret_Thatcher and dbr:Chemist
but no other words denoting a relationship since Was is
a question word and is thus removed. However, look-
ing into DBpedia, we find that both of those entities
are connected by the dbo:profession property which is
the property returned by the getProperty() function.

2.2.5. Syntax Tree Representation

After each extraction step, the original syntactic tree
representation is modified by replacing words with
their corresponding entities or properties while main-
taining the dependency between those new nodes. In
some cases, multiple words are replaced by a single
node, most commonly noun phrases representing a sin-
gle entity. In such cases, dependencies between the
words are removed as they are merged into a single
node. During this process, the tree is no longer a purely
syntactic representation but has semantic information
injected into it. Finally, words that are not mapped to
an entity or a property are considered as filler words

and are thus removed. Such words are most often ques-
tion markers such as who, when, where, did, etc. or
left-over determinants.

and

R

Silmarillion

the

(a) Syntactic tree

dbo:author

[ dbrJ _R _R._Tolkien ] dbr-The_Hobbit

dbr.The_Silmarillion

(b) Semantic representation after entity and
property extraction

Figure 2. Tree representation for the question: Did Tolkien write the
hobbit and the Silmarillion?

For example, as seen in Figure 2 the question Did
Tolkien write the Hobbit and the Silmarillion? is
transformed in [dbr:J._R._R._Tolkien] [dbo:author]
[dbr:The_Hobbit] [dbr:The_Silmarillion] with the
word Did being pruned and the determinants the being
merged into the new entities.

This process allows to simplify the question’s rep-
resentation by removing useless words and gradually
building partial semantic data for some segments. This
is particularly useful when handling complex ques-
tions. Also, for some complex questions, the result-
ing representation can be analyzed as separate simple
questions.The syntax tree traversal is done inorder, i.e.
traversing nodes in a left - root - right order.

For example, the question What cars made in
Canada are electric? can be represented as [What cars
made in Canada] - [are] - [electric], where the left sub-
tree is analyzed separately and mapped to a variable X
which is the reused as the left node of the rest of the
tree: [X] - [are] - [electric].

2.2.6. SPARQL queries and triple patterns
A basic SPARQL query, according to the standard
definition, contains three parts :

— abody section describing the data to be retrieved
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8 Bilingual Question Answering using Lexico-Syntactic Patterns

— an optional section describing the data that can be
retrieved if available

— a modifier section with all the additional modifi-
cations to be applied to the data retrieved from the
previous sections

In this paper, we are mainly interested in the first
section, the body of the SPARQL request. The body is
composed of triple patterns, similar to RDF triples.

Given a set of lexico-syntactic patterns P, we aim
to generate the set S containing one or more triple pat-
terns that represent the semantics of a given question.
A single pattern p € P generates at least one triple pat-
tern. When more than one triple are generated, some
of the variables can be shared. For example, the ques-
tion Who are the people who played a sport in the
Olympics? can be expressed using the following triple
patterns set where the object of the first triple is also
the subject of the second one:

?people dbo:playedIn ?x.

?x dbo:sportOf dbr:0lympic_Games.

In theory, such triple chaining can be done with po-
tentially an unlimited amount of triples. However, in
practice, most questions rarely require a large number
of triples. These queries can also be split in individual
triple queries that can be run in a sequence, allowing
for all the intermediate results to be available for stor-
age and additional use.

Each of the three elements in a triple pattern can be a
variable. Variables can either be bound to specific URI
or literal or free and take any value in their domain. In
the case of free variables, they are expressed by 7x.

A single triple pattern can be defined as (s,p,0) €
XUR) x (XUP) x (XURUL) where R are all re-
sources, P all properties and L all literals in the knowl-
edge base being targeted by the SPARQL query and X
is the set of all variables usable in the query.

2.3. SPARQL Query Generation

The last step of the process pipeline is the gener-
ation of the SPARQL query. Each query can either
take the form of ASK queries (for Boolean questions)
or SELECT queries for all other types of questions.
The system also supports the ORDER BY modifier
and the COUNT function when handling sorted or
aggregation-based questions. After building and exe-
cuting the SPARQL query, only non-null answers are
kept, with the exception of ASK queries, which always
return either true or false.

The SPARQL Builder takes information from the
various patterns (these are detailed in the next section)
applied to the initial question and generates the corre-
sponding triple or set of triples as represented in Ta-
bles 4 and 6. The result of this step along with in-
formation generated by previous steps is passed on
to the SPARQL Request Handler that creates the final
SPARQL query. In the case of multiple possible triples
and/or combinations, the different possibilities are also
generated and stored. For example, if there are 2 dif-
ferent possible properties for a triple, 2 different triple
patterns are generated, each with one of the two prop-
erties.

The generated queries that are independent from
each other are ran in parallel against the standard
DBpedia endpoint : https://dbpedia.org/spargl with a
built-in timeout of 5 seconds to prevent system lock
and to limit computation time. A query that times out
is considered as returning an empty answer (or false
for Boolean questions).

In the following sections, we detail the patterns used
in LAMA.

3. Dependency-based Patterns

As already stated, our work is based on using
SyntaxNet as a dependency parser. SyntaxNet is a
transition-based dependency parser [14] [15], mean-
ing it processes data from left to right and it creates
dependency arcs between the different tokens in the
initial query. After the parsing, SyntaxNet produces a
single direct acyclic graph representing the dependen-
cies between all words in a given sentence. Figure 3
shows a graphic representation of a question and its
dependency parse tree.

Did Tolkien write the Hobbit and the Silmarillion

Figure 3. Dependency parse of a simple query

For every dependency arc in the tree representation,
we can create pairs of head and modifier tokens inside
a dependency relation. For example, write and Hobbit
are represented as dobj(write,Hobbit) with dobj(v,0)
being the dependency relation. We do not need to
transform all dependency arcs into pairs, since not all
dependencies have the same usefulness. Such depen-
dencies can be ignored and even classified as noisy
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Bilingual Question Answering using Lexico-Syntactic Patterns 9

# Diagram Dependency pattern SPARQL Example Syntax Tree
setEntity(s) Barack <—— marry —s Michelle
subj obj subj(v, s) g Y Did Barack subj ob]
1 ’ ’ . getProperty(v) .
obj(v, 0) . marry Michelle ?
getEntity(o).
. Canadian —> athlete
@—>® getEntity(y) amod
2 amod amod(x/aps,y/NN) getProperty() Canadian athlete
getEntity(x).
dobj
played —> people sport
subj
getEntity(s1) cubj
getProperty(vy)
2. Gi ' was T» Olympics
subj(V1,8 1) dobj(V1.,D1) 1ve me peopie o0
3 bj(Va.Dy ) dobj(Va.Ds) who played a sport
su ol
ket e ) that is in the Olympics.
7X
getProperty(v2)
getEntity(d2)
subj
Tolkien <— write
subj
dobj
dobj getEntity(s)
getProperty(v)
. Hobbit ———> Silmarillion
subj(S,V) getEntity(01) Did Tolkien write
4 conj dobj(V, 01), the Hobbit and
conj(01,02) getEntity(s) the Silmarillion?
getProperty(v)
getEntity(o2)
Table 4

Lexico-Syntactic Patterns

and thus removed in order to simplify the analysis of a
question. One frequent such a case is the dependency
between a determinant and its head noun.

As previously mentioned, the first set of patterns
are based on the dependency graph generated by the
parser. Those patterns are shown in Table 4. For each
pattern, we show both a visual representation as well
as the dependency relations based on the universal rep-
resentation. We also give the generated triple patterns
representing the semantics of the pattern.

Pattern detection can be best illustrated with a spe-

subj(Tolkien,write)
dobj(write, Hobbit)
dobj(write, Silmarillion)
conj(Hobbit, Silmarillion)

And using our dependency patterns, we can generate
the following triple patterns:

dbr:Tolkien dbo:author dbr:Hobbit.
dbr:Tolkien dbo:author dbr:Silmarillion.

The same example can also work if we replace Did

cific example. Using the question Did Tolkien write the
Hobbit and the Silmarillion?, we can observe the pres-
ence of the last pattern described in Table 4.

The dependency tree of the question is already pre-
sented in Figure 3 from which we can extract the fol-
lowing dependency relations (Note that we have here a
distributive interpretation of the conjunction):

Tolkien write ... with Who wrote ... . In this case, the
pattern is also instantiated, but the subject of the gen-
erated triple is replaced by the free variable ?x based
on the question word Who. The only difference in the
final SPARQL query is that the absence of a free vari-
able leads to an ASK form, while its presence indicates
the need to use the SELECT form.
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10 Bilingual Question Answering using Lexico-Syntactic Patterns

4. POS-based Patterns

In addition to dependency patterns, the system also
uses POS-based patterns.

POS tag Meaning
ADJ Adjective
ADP Adposition
(preposition and postposition)
ADV Adverb
CONIJ Conjunction
DET Determiner
NOUN/NN Noun
NUM Cardinal number
PRON Pronoun
PRT Particle
PUNCT Punctuation
VERB/VB Verb (all tenses and modes)
WP Wh-pronoun
X Others
AFFIX Affix
Table 5
POS tags

We rely on a POS (Part of Speech) tagger that as-
signs a tag that specifies the grammatical function of
each of the words in a given sentence.

In our experiments, we used the SyntaxNet tagger,
with the default configuration. It is based on the Uni-
versal Dependencies project with some minor modi-
fications in the notation [16]. A full list can be seen
in Table 5. For the sake of readability, NN and VB
are used instead of NOUN and VERB throughout this
paper. It is however important to note that NN does
not represent only singular nouns as in the Penn Tree-
bank Project but all types of nouns. The tagger offers
a coarse-grained level of POS tagging represented by
the tags in Table 5.

Our POS patterns are presented in detail in Table 6.
For each pattern, we show the pattern itself represented
in the format X,,, where X is the token and tag is the
POS tag associated with it. We used the [J symbol to
represent tokens that may be ignored. We sometimes
associate a tag to this symbol to specify a word that
must be present with this tag, but that will not be used
in the query. Here, we show a few POS-based patterns
that can be mapped to one or more triple patterns to
generate a SPARQL query representing the semantics
of the original question.

POS patterns can be used by themselves or in con-
junction with dependency-based patterns, as it is the

case in LAMA. Using POS patterns can help by cover-
ing additional use cases, confirming already generated
triples or generating a correct tagging when the sen-
tence is inaccurately handled by the syntactic parser.
For instance, both first patterns in Tables 4 and 6 detect
similar representations so only one type of pattern is
necessary to cover these specific cases. However, this
redundancy can help by extracting patterns using POS
that are missed due to an incorrect dependency parse.
POS tagging using SyntaxNet (Parsey McParseface)
has a very high rate of accuracy : 96.27% for French
and 95.34% for English.

For the POS-based patterns, the order of the words
matters and has to appear as is in the original question
for the pattern to be recognized. However, some tags
can be ignored, most notably the DET tag which often
does not change the meaning of the question. Such ele-
ments are denoted by using the [ X | notation where X
is the tag that can be ignored. For example, in the ques-
tion : "Who invented the plane?" we obtain the tags
WP VERB [DET] NN but the word the represented
by [DET] can be dropped without altering the original
question. In some cases, a pattern requires some spe-
cific tokens which are represented by the ( X ) notation
where X is the token or set of tokens that is required.

For each pattern in Table 6, we also show how the
SPARQL request is built, using the functions already
described in a previous section. The use of the pattern
is also illustrated using a question from one of the two
corpora.

As an example, we can take the following ques-
tion from the QALD dataset: Who developed Skype?
along with its representation given by the POS tagger:
[Whowp developedyp Skypeny ]. Based on the tags, we
are able to instantiate the second pattern shown in Ta-
ble 6. In this case, we can map specific words of our
question to the different variables of the pattern:

- XWP = Who
— Yyp = developed
— Zyn = Skype

Using our SPARQL helper functions and replacing
our question word Who with a SPARQL variable, we
generate the following triple pattern :

dbr:Skype dbo:developer ?answer .

Which gives us the following result :

— http://dbpedia.org/resource/Microsoft
— http://dbpedia.org/resource/Skype_Technologies
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Bilingual Question Answering using Lexico-Syntactic Patterns 11

# Pattern SPARQL Example POS Tags
getEntity(X)
1 Xyn Yve [Uper] Znn getProperty(Y) Did Barack marry Michelle ? Barackyy marryyg Michelleyy
getEntity(Z)
getEntity(Z)
2 Xwp Yve ZNn getProperty(Y) ‘Who developed Skype ? Whowp developedyg S kypenn
2answer
getEntity(Y) Whenapy wasyg
3 Xapv Ove Yn Zvs getProperty(Z) ‘When was the Statue of Liberty built? . .
Statue of Libertyyy builtyp
2answer
Zanswer
4 Xper Yyv O typeOf Which presidents were born after 1945? Whichpgr presidentsyy [...]
getEntity(Y)
getEntity(¥) What is the official color of Whatywp (is) [...] colorny
5 | WP (TOBE) Xyy (OF) Yvy getProperty(X) the University of Oxford? (of) Univefsity of Oxfordyn
Zanswer
etEntity(Y)
6 (TO BE) Yyn [Operl Zun getgProperé(Y, 7Z) Was Margaret Thatcher a chemist? (Was) Margar&.:l Thatcher vy
. chemistyy
getEntity(Z2)
L] Xcons( BoTH 1 AND ) The RDF triple is repeated
7 OR and the entity targeted What cars are fabricated in Canada What cars are fabricated
X [ by the conjunction or adverb X AND the USA? in [Canada] ANDcony [USA]
Apv(BOTH | AND) is replaced in each triple

Table 6

POS TAG Patterns

Based on the gold standard provided for the ques-
tion, we can check that the generated triple can indeed
provide the correct answer to the question.

While the first example was quite simple and the
input question matches exactly the used pattern, our
patterns can be chained together in order to present
more complex queries. For instance, starting from the
previous question and adding more information : Was
the developer of Skype and Windows founded before
20102, we get a more complex question that is a com-
bination of our 5 and 7 pattern.

To see how this works, let us first see the result of
POS tagging:

Wasy g theper developeryn ofapp Skypeno andcony
Windowsyy foundedyy beforeapp 2010nym

We can see that the segment

Wasyp thepgr developerny ofapp Skypeno

matches the 5"¢ pattern, resulting in the following
triple pattern:

dbr:Skype dbo:developer ?answer .

Now considering the whole segment Wasyp thepgr
developeryy ofapp Skypeno andcony Windowsyy, we
see that it matches the 7% pattern, whose effect is to
repeat the triple pattern, replacing the target entity by
the one that is represented by the second part of the
coordination, thus resulting in this final form:

dbr:Skype dbo:developer ?answer .
dbr:Windows dbo:developer ?answer .

After processing the question with these patterns,
what remains is WaSVBfOI/H’ldedVB beforeADp 20]0NUM7
and we know that its subject corresponds to the vari-
able ?answer. This time restriction is handled by the
base version of LAMA which matches the keywords
before and 2010 to a simple less than(<) FILTER con-
straint. This leads us to create the following SPARQL
segment:

?answer dbo:foundingYear ?Y .
FILTER (?Y <2010)

Combining both segments, we get the final complete
SPARQL query that can answer the question:

ASK WHERE {
dbr:Skype dbo:developer ?answer .
dbr:Windows dbo:developer ?answer .
?answer dbo:foundingYear 7Y .
FILTER (?Y < 2010)

The ability to use multiple patterns on the same
query can help to more accurately understand the ques-
tion and generate as much of the final request as possi-
ble. The triple patterns retrieved after applying the pat-
terns can be applied in a system’s pipeline as its done
in LAMA or can be used to test if an automatically
generated query contains valid semantic structures.
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12 Bilingual Question Answering using Lexico-Syntactic Patterns

5. Experiments and Evaluation Results

We evaluate our lexico-syntactic patterns based on
two different criteria : i) the presence of each pattern
in the two datasets QALD and LC-Quad, and ii) the
relative impact of the patterns on the LAMA system’s
performance.

5.1. Pattern presence in datasets

The first evaluation aims to verify the presence of
the different patterns in both the QALD and LC-Quad
datasets and thus their usefulness. The aim of this ex-
periment is not to obtain a presence of 100% for each
pattern since it would indicate that either i) the pat-
tern is too generic and matches almost anything or
ii) the dataset lacks variety and is not very represen-
tative of the real world. Patterns are also not mutu-
ally exclusive, as multiple patterns can be present in
the same question. For example : What french athletes
won a gold medal? has both the first and the second
dependency-based patterns with {athletes,won,medal }
matching the first one and {french athletes} matching
the second one.

Both QALD and LC-Quad are described in detail in
sections 2.1.1 and 2.1.2, which show the particularities
for both datasets.

Table 7 shows the distribution between the different
dependency-based patterns in the datasets. A pattern
is counted as long as it is detected in a question and
patterns detected multiple times in the same question
are only counted once.

5.1.1. QALD analysis

Looking at the results for the QALD dataset, we can
see that as far as the dependency-based patterns are
considered, pattern 1 is much more frequent than oth-
ers while the last two occur less than 20% of the time.
This can be explained by looking at the composition
of the QALD dataset: 78% 1is represented by simple
questions that very often match the subject, verb, ob-
Jject pattern directly. Even complex questions can of-
ten contain the same pattern. For example, the question
Did Rowling write the first book of the Harry Potter
series? matches the first pattern with {Rowling,write,
book}. The relatively low occurrence of the last two
patterns can also be explained by the bias towards sim-
ple questions in QALD and the fact that those pat-
terns generate two triple patterns and are thus exclu-
sively targeted towards complex questions. However, it
is interesting to note that 32% of the QALD questions

are classified as complex and patterns 3 and 4 collec-
tively cover 29.6% of questions, meaning that almost
all complex questions in the QALD dataset are covered
by those patterns.

The analysis of the POS-based patterns for QALD
shows similar results with patterns 1, 2 and 4 much
more present than the rest. This is most likely due to
the higher occurrence of simple questions.

Interestingly, both Did Gustave build the Eiffel
Tower (pattern 1) and Who built the Eiffel Tower (pat-
tern 2) also match the first dependency-based pat-
tern,which shows that using both patterns can offer
some redundancy and increased accuracy. As for the
patterns 5 and 6 we observe a much lower frequency,
around 5% for both. As explained above, a low fre-
quency does not correlate necessarily with a bad pat-
tern as the examples given in Table 4 show questions
that can occur naturally.

5.1.2. LC-Quad analysis

Compared to QALD, dependency-based patterns
frequency in LC-Quad is more balanced, especially
when it comes to patterns 3 and 4. This is explained
by the larger presence of complex questions in the
dataset as well as more general variation between
questions. This indicates that dependency-based pat-
terns are more present and can be potentially more use-
ful in a context where the questions are more com-
plex and varied. Increased complexity in questions
also means that there is an increased chance of ques-
tions containing more than one pattern, allowing for
a combination of patterns to produce more complex
SPARQL queries.

Frequencies of POS tagging patterns for LC-Quad
are roughly similar to the results obtained for QALD.
There are however some differences for pattern 3
which are explained by the fact that questions that
match the pattern What/Which X [...] are much more
frequent. Similarly, pattern 7 which matches complex
questions using conjunction is more frequent in LC-
Quad than QALD given QALD’s composition. Simi-
lar to QALD, patterns 5 and 6 have a lower frequency
but, as explained in the previous section, should still
be considered representative. Finally, the last pattern
is much more present in LC-Quad, mostly due to the
higher presence of complex questions and the fact that
this pattern targets specifically those types of ques-
tions.
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Bilingual Question Answering using Lexico-Syntactic Patterns 13

Pattern | QALD | LC-Quad
1 0.714 0.573
2 0.341 0.472
3 0.122 0.308
4 0.174 0.445

Table 7

Dependency-based pattern frequency

Pattern | QALD | LC-Quad
1 0.443 0.568
2 0.331 0.447
3 0.247 0.365
4 0.376 0.342
5 0.065 0.095
6 0.054 0.106
7 0.154 0.378

Table 8
POS tag-based pattern frequency

5.2. Patterns Impact on the LAMA system

In order to verify that lexico-syntacic patterns are
not only present but can be actually useful for an-
swering natural language questions, they were inte-
grated in our question answering pipeline LAMA [6].
The system was then tested with both datasets using
dependency-based and POS-tag-based patterns sepa-
rately, as well as a combination of both pattern sets. In
all cases, the Macro F-score was computed on the fi-
nal answers returned by the question answering system
and not only by considering the generated SPARQL
query. In fact, only a single SPARQL query was pro-
vided in the gold standard and there can be multiple
valid SPARQL queries for the same question. As per
LAMA’s original design, we have opted for a sim-
pler but more conservative evaluation where partial an-
swers were not accepted, i.e., if the number of items in
the answers returned by the system is a subset of the
answers in the golden standard, the question is consid-
ered as incorrectly answered.

Table 9 shows the F-score for the different exper-
iments separated by dataset. Looking at the data for
QALD we can see that using one of the two types of
patterns to the pipeline leads to a small increase in per-
formance (about 4% for QALD and 22-25% for LC-
Quad) but the combination of both approaches leads to
an additional improvement of 3% for QALD and 6%
for LC-Quad.

Results for the LC-Quad dataset are the most inter-
esting. We can observe a significant improvement in F-

Method F-score
QALD
No patterns (base system) 0.844
Dependency patterns 0.886
POS-tag patterns 0.872
Both patterns 0.905
LC-Quad
No patterns (base system) 0.535
Dependency patterns 0.783
POS-tag patterns 0.754
Both patterns 0.816
Table 9

Impact of LAMA on LC-Quad and QALD

score when adding patterns to the answering process.
This is most likely due to the increased proportion of
complex questions in the dataset compared to QALD.
Also, as seen in the previous section, around 40% of
the questions in LC-Quad match patterns based on the
presence of conjunctions. As already established, the
LC-Quad dataset offers a more varied set of questions
and using syntax and POS-tag patterns seems to sig-
nificantly improve the performance of the system, es-
pecially when it comes to complex questions.

5.3. French questions analysis

As already mentioned, the aim of the presented pat-
terns is to apply common patterns to different lan-
guages in order to extract semantic information from
questions. Throughout this article, we have used both
English and French as example languages and thus,
we need to evaluate the patterns’ performance in both
languages. While the English evaluation is relatively
straightforward and based on measuring the impact of
patterns on LAMA’s performance, evaluating French
queries is a bit more complicated. The additional chal-
lenge is brought by both the available datasets and
the knowledge base being used. Among both datasets,
only QALD offers questions in more that one language
but the answers and the SPARQL queries are only
given based on the English version of DBpedia (e.g.
property labels are in English). Since different versions
of DBpedia do not contain the same data or the same
properties between entities, we cannot guarantee that
all questions from the dataset can be answered cor-
rectly or even at all using French DBpedia. Translating
the entities in the provided answers cannot be guaran-
teed to be correct for the same reasons.

For example, if we take the question Which museum
exhibits The Scream by Munch? / Dans quel musée est
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14 Bilingual Question Answering using Lexico-Syntactic Patterns

exposé Le Cri de Munch? from the QALD dataset, we
get dbr:National_Gallery_(Norway) from the English
DBpedia (same as the answer provided in the dataset)
and dbr:Musée_Munch for the French DBpedia. While
the French answer is different than what is provided,
it is correct since the entity Le_Cri (The Scream) is
indeed related to Musée_Munch by the dbo:museum
property. However, if we use the French DBpedia, the
answer returned will be considered as incorrect due to
these differences.

In order to focus on evaluating the interest of triple
patterns without the aforementioned limitations of the
knowledge base, the evaluation is done differently for
French. For each pattern, we look at the SPARQL gen-
erated from questions in French. Each triple or set of
triples is compared to the generated triple in English.
The comparison is a binary classification (yes/no) that
the generated triples are i) semantically equivalent to
the question or a part of it and ii) similar to the ones
generated in English. This qualitative evaluation is
done by asking a person familiar with SPARQL and
DBpedia, but not with the patterns being used, to de-
termine if the two criteria have been respected.

For instance, the question Qui est connu pour le pro-
Jjet Manhattan et le prix Nobel de la paix?/ Who is
known for the Manhattan Project and the Nobel peace
prize generated the following triples :

7x dbo:knownFor dbr:Projet_Manhattan .
7x dbo:knownFor dbr:Prix_Nobel_de_la_paix .

This satisfies both criteria since the triples convey
the same meaning as the original question and are sim-
ilar to the triples generated in English : same property
and same entities (similarity can be proven by the fact
that they are linked using the sameAs property). The
accuracy of the SPARQL patterns is calculated by ap-
plying the two criteria to the generated triple patterns
: (i) semantic equivalence to English (yes/no) and (ii)
for those considered equivalent, we count those with
correct elements (entities and properties).

Results from the evaluation are presented in Table
10 and 11. We can notice that some of the POS tag
patterns are not used, such as the 5% since it does not
exist in French and the 6” which is replaced by the
following pattern :

(Est-ce que) Xyy (ETRE) Yyy
where étre is the infinitive of the verb fo be

These results show that the triple patterns generated
in French are quite close to the expected results. POS-

Pattern | SPARQL Accuracy
1 0.933
2 0.905
3 0.916
4 0.925
Table 10

Dependency-based patterns in French

Pattern | SPARQL Accuracy
1 0.892

0.904

0.860

0.854

N/A

0.917

0.931
Table 11

POS tag patterns in French

~N N W

based patterns are a bit less accurate than dependency-
based patterns. This is mostly due to the fact that
French tends to be more verbose than English and
adding additional words can generate more POS tags
and reduce the accuracy of pattern matching.

5.4. Error analysis

While syntactic and POS-tagging approaches have
shown to be a promising tool in improving QA-
systems’ performance, they are not infallible and pose
certain limitations, especially when it comes to gener-
ating the triple patterns associated to each pattern.

First of all, given that both approaches rely on an
accurate parsing of the question, they are directly de-
pendant on the accuracy of the parser. The parser can
be affected by the quality of the model on which it was
trained as well as the quality of the original question.
While most syntactic parsers in English are quite accu-
rate [14], other languages do not have such high qual-
ity tools. This can be sometimes corrected by translat-
ing the question in English but such a method can be a
source of errors if the translation is erroneous or modi-
fies the semantics of the question. This can be however
the only option for languages that do not have any syn-
tactic parsers available. The CoNLL Shared Task [14]
evaluates the performance of the ParseySaurus (now
just called Parsey) dependency parser with an average
labeled attachment score (LAS) of 77.93%. While lan-
guages such as English and French have a score of
84.45% and 83.1% respectively, some other languages
such as Latvian are at 52.52%.
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The quality of the question can also negatively affect
pattern detection. By quality, we mean the amount of
grammatical and orthographic errors that can change
how the parser or POS tagger interprets the words.
Sometimes, missing only one letter can change how an
entire sentence is interpreted.

For example, by only removing the letter e in our
verb we get the question : Who creatd the Eliffel
Tower?. Instead of matching the first lexico-syntactic
pattern (subj(v,s), obj(v,s)), we now have Tower as the
subject and Who as an attribute to the verb, a structure
that does not match any pattern.

In this case, it is also important to note that using
both types of patterns (dependency and POS) can help
reduce the risk of incorrect pattern detection. In our
previous example, the spelling mistake has caused the
dependency parsing of the question to change, how-
ever the POS tagging has remained the same and this
question is still matched with the second POS-tag pat-
tern.

There is however no guarantee that one or more mis-
takes will not significantly alter the correct syntax and
POS parsing and if a pattern is missed or wrongly rec-
ognized, it can lead to an incorrect SPARQL query
generation and thus, to a wrong answer.

6. Future Work

The evaluation of our pattern-based approach shows
that there is a net benefit in using lexico-syntactic
patterns, based both on dependency and POS, in or-
der to translate natural language questions into more
formal and structured SPARQL query representations.
The patterns presented in this paper, with a few ex-
ceptions, also aim at covering more than just the En-
glish language. Our LAMA system is now able to an-
swer simple and complex questions in both English
and French. Additional work can be done to enrich the
set of existing patterns by either targeting more cross-
language patterns that apply to as many languages as
possible or by focusing on language specific patterns.
Language specific patterns can be especially powerful
when trying to analyze spoken questions rather than
written ones. With the recent development in the field
of smart assistants and voice recognition, questions
are more often spoken than written. In fact, spoken
questions often exhibit much less formal or sometimes
even incorrect syntax and word structures. This can
be seen in questions such as Qui a gagné le mondial
2018? (Who won the 2018 world cup?) that are very

likely to be phrased as follows when spoken : C’est
qui qui a gagné le mondial 2018 ? (Who is it that won
the 2019 world cup?), changing the sentence’s depen-
dency parse.The question is whether question answer-
ing systems should adapt to incorrect phrase structures.
Deep learning networks might be better able to handle
these cases.

7. Related Work

While Question Answering systems are not recent
inventions [17], progress has been made in the field
of Question Answering over Linked Data, especially
in the last few years [18]. Pattern-based approaches
have been used in QA systems as well as other parts of
the Semantic Web field. This section aims to explore
some of the related work done in both QA systems
and pattern-based approaches and does not cover ques-
tion answering systems based mostly on deep learning
techniques, which adopt a very different approach to
the problem.

Generally, QA systems follow a similar approach to
produce answers: the user’s question is taken as in-
put, parsed to extract the different relations between
the entities and then a query (most often written in
SPARQL) is generated and submitted to one or more
KBs [1, 2, 6]. These systems try to answer questions by
relying mainly on the identification of entities and their
properties and then trying to form coherent SPARQL
queries that can be run against the target KBs. Sys-
tems such as WDAqua-corel [2] and Xser [1] make
use of string matching to generate different possible
interpretations for the words in a given question, i.e.
considering each word as a potential entity or property.
Some other systems use parsers to annotate questions
such as QAnswer [19] that uses the Stanford CoreNLP
parser for POS tagging and HAWK [20] that makes
use of clearNLP[21] for its POS tags. Using informa-
tion from parsers can help improve the system’s per-
formance and reduce vulnerability to spelling mistakes
and other shortcomings of string matching methods.

Most of the promising systems [1—4, 20] rely on se-
mantic structures in order to find answers to a given
question. SemGraphQA [3] generates direct acyclic
graphs representing possible interpretations of the
query and only keeps the graphs that can be found in
DBpedia’s graph representation. In a similar fashion,
WDAqua-corel [2, 22] focuses on the semantics of the
extracted entities from the question, and explores the

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51



@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
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RDF graphs of the entities to determine the appropriate
relationships.

WDAgqua-corel is the closest system to LAMA in
terms of objectives, as it is a multilingual system. It
handles questions in five different languages: English,
French, Spanish, Italian and German. It does not take
into consideration the language of the original query
and makes no use of NLP tools which allows it to be
robust to ill-formed questions. This system is indeed
truly multilingual with only very few adjustments re-
quired to add a new language, but the performance
is quite limited with an F-score of 0.37 and 0.27 for
French and English respectively on their QALD-7,
Task 1 benchmark [7].

While question answering systems generally rely on
a semantic representation of the question and use POS
tags for some of them [20, 21], LAMA also uses de-
pendency parsing in addition to POS tags. Addition-
ally, the semantic representation in LAMA is derived
from an initial syntax tree representation that is modi-
fied after entity and property extraction. Compared to
WDAqua-corel, LAMA obtains a much higher perfor-
mance but is limited to English and French.

Several works in the Semantic Web field, not all re-
lated to question answering, have adopted a pattern-
based approach for solving different issues. The BOA
[23] system aims to extract structured data as RDF
from unstructured data. BOA has a set of manually
crafted patterns but also presents an algorithm for gen-
erating new patterns by training a supervised machine
learning model over different corpora or knowledge
bases. Patterns are generated for each property p by
looking for a pair of entities or labels {s,0} such as
that the triple {s,p,0} is found in the used knowledge
base. Patterns are only saved as such if they are above a
certain threshold for the number of occurrences in the
training dataset. This method is again based on seman-
tics only and does not take in consideration syntax or
part of speech. It works well for generating RDF data
from text, but it has a limited use for QA systems such
as LAMA since both s and o need to be existing enti-
ties in the KB and questions often generate triples that
contain free variables, not bound to a particular entity.

SPARQL2NL [24] is a system that aims to verbalize
SPARQL queries, i.e., convert them into natural lan-
guage and it uses syntax dependencies in order to do
so. Query verbalization is done based on on the predi-
cate p of the {s,p,0} triple. Depending if p’s realization
is a verb, a noun or a variable, different dependency
patterns are applied to the triple. For instance, if p is
a verb, an equivalent of our 1* dependency pattern is

applied to the triple. While SPARQL2NL does the in-
verse of what LAMA aims to do, its dependency rule
have inspired some of LAMA’s own dependency pat-
terns. However, since LAMA works with natural lan-
guage queries, it can also leverage the use of POS pat-
terns for the triple generation.

8. Conclusion

In this paper, we present lexico-syntactic patterns
aimed at improving question answering systems. The
patterns are separated in two different categories :
dependency-based patterns and POS (part of speech)
patterns. We also present LAMA, a QA system that
leverages the use of these patterns to improve its per-
formance. Our evaluation on the LC-Quad and QALD
datasets shows that the use of patterns does indeed in-
crease the performance of the system, especially in the
case of complex queries. In addition, we have evalu-
ated the use of patterns in languages other than En-
glish, more precisely in French.

There are potential improvements that could be
made to the system, most notably the enrichment of de-
pendency and POS patterns. Through our error analy-
sis, we have identified that spelling mistakes and gram-
matical errors can negatively impact the system’s per-
formance. In future work, we should aim to reduce the
impact of such factors on the system and enrich the set
of available patterns. We could also explore the pos-
sibility of checking for logical coherence between the
system’s output and the expected answers. For exam-
ple, if we are looking for someone’s date of birth, we
expect the answer to be in the form of a date. Finally,
future development should also take into account the
increasing use of "smart assistants" that consider spo-
ken questions and not just written queries.
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Pattern SPARQL Example POS Tags
getEntity(X)
Est- Barack
Xnn Yve [Oper] Zuy getProperty(Y) s Cé'z’que' arac Barackyy mariéyp Michelleyy
. a marié Michelle ?
getEntity(Z)
getEntity(Z)
Xwp Yve ZNN getProperty(Y) Qui a développé Skype ? Quiwp développéys Skypeny
2answer
tEntity (Y d
getEntity(Y) Quand la Statue de Liberté Quan, ,ADV .
Xapy Yyy Ovs Zyp getProperty(Z) L L Statue de Libertéyy
a été construite ? L K
Qanswer étéyp construitey
Zanswer
1s idents
Xper Yyv O typeOf Que/s pre§1 ents Quelspgr présidentsyy [...]
. sont nés apres 1945?
getEntity(X)
getEntity(Y)
A Est- M t Thatch Est-
(EST-CE QUE) Yyy (ETRE) Zyy getProperty(Y,) st-ee que Margaret 1 hatcher (Est-ce que)
. a été chimiste ? Margaret Thatcher yy chimisteyy
getEntity(Z)
L] X, The RDF triple is repeated
 SCONIC 8381 QUELET) and the entity targeted Quelles voitures sont fabriquées Quelles voitures sont fabriquées
X [.] by the conjunction or adverb X au Canada ET les Etats-Unis ? au [Canada] ETcony [Etat-sUnis]
4pv(AINSI QUE | ET) ™~ is replaced in each triple

Table 12
POS TAG Patterns
# Diagram Dependency pattern SPARQL Example Syntax Tree
. Barack <— mari > Michelle
tEntit subi i
@ subj : : obj @ subj(v, s) getEntity(s) Est-ce que Barack subj obj
1 . getProperty(v) .
obj(v, 0) . a marié Michelle ?
getEntity(o).
Q{)_> @ getEntity(y) canadien 4)(1 athlte
amo
2 amod amod(x/apy,y/NN) getProperty() athléte canadien
getEntity(x).
dobj dobj
jouent  personnes sport
getEntity(sq)
getProperty(vy) ot .
Tanswer. Donne-moi les est dob ymprques
3 subj(V1,S 1) dobj(V1,D1) personnes qui jouent
subj(Vz,D1) dobj(V2,D2) un sport qui est
Zanswer dans les Olympiques.
getProperty(va)
getEntity(d2)
subj
bi Tolkien <—— écrit
O
dobj
dobj getEntity(s)
getProperty(v) ) ) o
@ b5V ) getEntity(o1). Est-ce que Hobbit —> Silmarillion
A subj(o, . P
4 . conj dobi(V, 01), Tolkien a'ecnt
coni(01.02) le Hobbit et
W10z getEntity(s) le Silmarillion?
getProperty(v)
getEntity(o2)
Table 13
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