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Abstract. Under the umbrella of the Semantic Web, Linking Open Data projects have made available a large number of seman-
tically intra- and inter-connected links. As an example, in the biomedical domain, data about disorders, disease related genes and
proteins, clinical trials, and drugs or interventions are accessible on the Linked Open Data cloud. In addition, domain ontologies
have been used to annotate scientific data. For instance, publications in PubMed have been annotated using controlled vocabulary
(CV) terms from ontologies such as the Medical Subject Header (MeSH) or the Unified Medical Language System (UMLS).
These annotations have been successfully mined to discover associations between drugs and diseases using techniques that have
been labeled as Literature-Based Discovery (LBD). Given the large scale of the linked datasets in the Linked Open Data cloud,
there is a need to develop scalable techniques that can provide answers in close to real time, to explain a phenomena, to identify
anomalies, or to explore a discovery. This paper describes an authority flow based ranking technique that is inspired by LBD
methods. The ranking is tailored to a layered graph. The input terms are in the first layer and the ranking will efficiently identify
and assign high scores to terms in a third (or subsequent) layer, corresponding to potential novel discoveries. The terms, links
and scores are modeled as a Bayesian network. Two sampling techniques are proposed to only traverse the terms that may have
high scores. The first technique implements a Direct Sampling reasoning algorithm to approximate the ranking scores of nodes in
the Bayesian network; it visits only the nodes with the highest probability. The second technique samples paths in the Bayesian
network with the highest conditional probability. An experimental study reveals that the proposed ranking techniques are able to
reproduce state-of-the-art discoveries. In addition, the sampling-based approaches are able to reduce execution times and reach
high levels of accuracy.

Keywords: Link Prediction and Discovery, Direct Sampling, Bayesian Networks, Literature-Based Discovery, Path Sampling,
Authority-flow Ranking Metrics, Probabilistic Logic Sampling

1. Introduction

Emerging technologies such as the Semantic Web
and Semantic Grid, and the Linking Open Data initia-
tive have made available a great number of intra- and
inter-connected resources. In the context of the Linked

Open Data cloud [21], there have been dramatic in-
creases in multiplicity, diversity and the size of the re-
sources. In October 2007, the Cloud consisted of 12
datasets with two billion RDF triples and two million
RDF links. By May 2009, the Cloud had 93 datasets,
4.2 billion RDF triples and 142 million RDF links.
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Currently, there are approximately 13 billon triples
over 200 datasets.

The life science resources are also a good exemplar
of both dramatic growth and constant evolution. For
example, gene expression data has grown exponen-
tially, and many bibliographic resources have grown at
a rate of 300% per year. PubMed 1 and BIOISIS 2, the
two largest interconnected bibliographic databases in
biomedicine, illustrate the scale of scientific literature.
PubMed publishes over 18.5 million references to jour-
nal articles, while BIOSIS makes available more than
20 million abstracts. These resources can be queried
using query languages such as SPARQL 3. SPARQL
endpoints can be used to recover some of this data [21];
for example, this SPARQL endpoint 4 has been set up
to access PubMed.

Many ontologies and controlled vocabularies have
become available under the umbrella of the Semantic
Web. Ontologies may be specified in different standard
languages including XML 5, OWL 6 and RDF 7. On-
tologies provide the basis for the definition of concepts
and relationships that support global interoperability
among Web resources. The health and life science do-
main have been particularly successfully in developing
and exploiting ontologies. This includes MeSH (Med-
ical Subject Headings) [31], Disease [8], Galen [35],
EHR_RM [9], RxNorm [44] and GO [13]. Ontologies
can annotate concepts, describe their meaning, cap-
ture scientific knowledge. For example, MeSH terms
are used by curators to annotate PubMed publications;
during the annotation process, the ten or twelve most
relevant MeSH terms that describe a publication are
selected. Similarly, clinical trials published at Clinical
Trials 8 may be annotated with MeSH, SNOMED and
RxNorm.

Knowledge encoded in annotations, together with
the knowledge represented within the ontologies, may
provide the basis for new discoveries. For example,
annotations shared by a group of genes have con-
tributed to identify possible relationships between
these genes [45,52]. Further, patterns between the

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://bioisis.net/
3http://www.w3.org/TR/rdf-sparql-query/
4http://labs.mondeca.com/

sparqlEndpointsStatus/details/bio2rdf-pubmed.
html

5http://www.w3.org/TR/REC-xml/
6http://www.w3.org/TR/owl-ref/
7http://www.w3.org/TR/rdf-primer/
8http://clinicaltrials.gov/

MeSH terms annotating a set of publications have been
used to discover potential novel associations between
drugs and diseases [49]. The techniques to mine anno-
tations to discover associations have been labeled as
Literature-Based Discovery (LBD).

Given the large scale of the linked datasets in
the Linked Open Data cloud, there is a need to de-
velop scalable techniques that can provide answers in
close to real time, to explain a phenomena, to iden-
tify anomalies, or to explore a discovery. This paper
describes an authority flow based ranking technique
[41,54] that is inspired by LBD methods. The ranking
is tailored to a layered graph. The input terms are in the
first layer and the ranking will assign scores to terms
in a third (or subsequent) layer. The terms, links and
scores are modeled as a Bayesian network. We devise
a ranking technique that is able to assign high scores
to potential novel associations.

Furthermore, given the size of the search space,
and to reduce the effects of the number of avail-
able sources and annotations on the performance,
we propose two approximate solutions named graph-
sampling and path-sampling. Our proposed sampling
techniques rely on the Probabilistic Logic Sampling
approach defined by Henrion [22]; they are able to ef-
ficiently infer the probability of a potential novel asso-
ciation between a drug and a disease. These techniques
sample scenarios in a Bayesian network that models
the topology of data connections, where nodes repre-
sent data entries. They also estimate ranking scores
that measure how important and relevant are the asso-
ciations between two terms; these scores correspond to
the conditional probability of the node in the network
that represents one of the two terms. In addition, the
approximate techniques exploit information about the
topology of the links and their ontology annotations,
to guide the ranking process into the space of relevant
and important terms. The main difference between the
two sampling techniques relies on the search technique
used to sample the events in the Bayesian network. In
the graph-sampling technique, a breadth-first search
strategy is followed to sample the nodes with the high-
est conditional probabilities; on the other hand, path-
sampling follows a depth-first strategy to sample paths
with the highest conditional probability.

We show the effectiveness of the ranking techniques
as well as their efficiency in two domains. First, we
empirically show how the proposed techniques can
be used to identify meaningful associations between
drugs and diseases. We use publications from PubMed,
their MeSH annotations and the semantic types of the
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MeSH terms represented in the Unified Medical Lan-
guage System (UMLS); we also use different ground
truth sets to verify the quality of the discovered re-
lationships. We study four different MeSH terms that
correspond to drugs or substances and verify that, in
some cases, the accuracy of our techniques with re-
gards to the ground truth sets is high, i.e., they may
identify more than 70% of the objects discovered by
the exact solution or reported as relevant by state-of-
the-art techniques or sources of data.

Second, we study the efficiency and effectiveness of
the sampling techniques with respect to the exact so-
lution in a bibliographic data domain; we observe that
the precision of the sampling techniques may be up
to 98%. The empirical results suggest that these rank-
ing techniques provide an efficient and effective solu-
tion to the problem of mining annotated datasets in the
Linked Open Data cloud.

We summarize our contributions as follows:

– An authority-flow metric able to distinguish terms
that may correspond to novel discoveries.

– Two sampling techniques that efficiently traverse
a Bayesian network, which represents authority-
flows between the Web of terms and identify
highly scored paths between terms.

– An extensive empirical study that reveals the ben-
efits of using authority-flow metrics and sampling
techniques, to discover or validate links.

This paper is composed of six additional sections.
Section 2 illustrates techniques proposed in the area
of Literature Based Discovery (LBD) by showing the
discovery reported by Srinivasan et al. in [49], where
curcumin longa was associated with retinal diseases.
In Section 3, we compare existing approaches. Section
4 defines the authority-flow based ranking metric, and
section 5 describes the sampling techniques that ap-
proximate the ranking metric scores. Section 6 reports
our experimental results. Finally, we give our conclu-
sions and future work in Section 7.

2. Motivating Example

Consider the area of Literature-Based Discovery
(LBD), where by traversing scientific literature anno-
tated with controlled vocabularies like MesH, drugs
have been associated with diseases [49,51]. LBD can
perform Open or Closed discoveries, where a scien-
tific problem is represented by a set of articles that dis-
cuss an input problem (Topic A), and the goal is to
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Fig. 1. Open Discovery Graph LBD

prove the significance of the associations between A
and some other C topics discussed in the set of publica-
tions reachable from the initial set of publications rel-
evant to A. Srinivasan et al. [49] followed this idea and
improved the Open and Closed techniques by recog-
nizing that articles in PubMed have been curated and
heavily annotated with controlled vocabulary terms
from the MeSH (Medical Subject Headings) ontology.
Relationships between publications and terms are an-
notated with weights or scores that represent the rele-
vance of the term in the document. MeSH term weights
are a slight modification of the commonly used TF-
IDF scores. Figure 1 illustrates a directed graph that
models terms and publications visited during the eval-
uation of an Open discovery. Topic A is used to search
on the PubMed site and retrieve relevant publications,
named PubA. Then, MeSH term annotations are ex-
tracted from publications in PubA, and filtered by us-
ing a given set of semantic types of the Unified Medi-
cal Language System (UMLS)9; only MeSH terms of
the UMLS types: (a) Gene or Genome, (b) Enzyme, or
(c) Amino Acid are selected. This new set of MeSH
terms is named B and is used to repeat the search on
the PubMed site. Sets PubB , C and PubC are built
similarly, but,C terms are only of the UMLS types: (a)
Disease or Syndrome, or (b) Neoplastic Process.

Srinivasan’s algorithm implemented in the Manjal
system [49], considerably reduces the space of inter-
mediate results by taking into account just the top-M
terms that annotate the curcumin’s publications; i.e.,
only the top-M terms in the set B are considered in
the search and the TF-IDF scores are used to compute
these top-M terms. Nevertheless, it still requires hu-
man intervention to create intermediate datasets, and

9http://www.nlm.nih.gov/research/umls/
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may rank terms that do not conduce to potential novel
discoveries. We propose an authority-flow based rank-
ing metric that ranks all the intermediate nodes not
only based on a local score, but also by considering the
importance or authority of the terms that point to the
ranked term. Similar to the Srinivasan’s algorithm, the
sub-graph that reaches the top-k potential novel nodes
is comprised of highly ranked intermediate nodes, but
these nodes will be also pointed by highly ranked
nodes, and the number of these nodes is relatively
small as we will see in our experimental study. Thus,
this property provides the basis for our two sampling
techniques that approximate the nodes that conduce to
novel discoveries by just visiting a reduced number of
nodes. We illustrate the usage of these techniques in
the context of Literature-based Discovery and present
an extensive experimental study that shows the effec-
tiveness and efficiency of these techniques.

3. Related Work

3.1. Linking Open Data

During the last years, communities from different
areas have published data in the Cloud of Linked Data
following the publication guidelines, and several Link-
ing Open Data projects have been developed. However,
the number of triples is still much larger than the num-
ber of links between them; by the time that this paper
was written, there were billions of triples while there
were only millions of links between them.

To specify links between data sources, the ontol-
ogy voID [56] has been proposed; it enables the dis-
covery and use of Linked Data, and provides the ba-
sis for our proposed approach. Additionally, with the
goal of supporting the specification of the conditions
to be satisfied by each pair elements to be linked, dif-
ferent declarative languages have been defined [19,57].
LinQL [19] extends SQL with the functionality to cre-
ate links, and to define when two elements are syn-
onyms, hyponyms or similar; it also provides the pos-
sibility to access SQL accessible knowledge bases, and
to decide the semantic relationship between two terms.
Silk-LSL [57] is defined on top of RDF and also sup-
ports the functionality of expressing the condition to be
satisfied by synonyms, hyponyms or similar terms. Ad-
ditionally, Silk-LSL offers a larger set of built-in func-
tions as aggregations and weighting. Although these
frameworks have been successfully used to link exist-
ing Cloud datasets, they do not provide built-in meth-

ods to semantically link two terms; however, methods
as the one we propose in this paper, could be incorpo-
rated as new built-in functions, and thus, enhance their
capabilities and effectiveness.

Furthermore, several Linking Open Data projects
have been conducted, and different applications and al-
gorithms to discover links between datasets have been
developed. Also, a variety of systems to discover links
and to use Linked Data to solve real-world problems
in diverse domains, have been proposed. The Linking
Open Drug Data (LODD) task has connected a list of
datasets that includes disorders and disease genes [14],
clinical trials [20] and drug banks [60]. The TWC
LOGD Portal [7] provides access to Open Govern-
ment Data [1]; Momtchev et at. [32] implemented
PIKB that links pathway, genes, and publications to
the Uniprot dataset and the LODD data; Raimond et
al. [40] developed a tool to interlink music related data
into the Web of Data; Kobilarov et al. [27] interlinked
BBC data with DBpedia and MusicBrainz; and Han-
nemann et al. [18] describe a Linked Data service for
data managed at the German National Library system;
finally, Cheung et al. [5,47] report a Linked Data based
system to support neuroscience research. Although the
datasets created or accessed by these systems repre-
sent a valuable contribution to the Cloud, the major-
ity of the discovered links represent direct connections,
created by applying similarity metrics or named entity
resolution techniques. Additionally, none of the exist-
ing link discovery techniques make use of information
about the link structure to identify connections. In this
paper, we propose an alternative approach that relies
on authority-flow based ranking techniques and makes
use of the topology of the links and their annotations,
to assign the highest ranking scores to the paths that
correspond to potential novel associations.

3.2. Link Prediction and Ranking Approaches

Several descriptive and predictive inference tasks
based on link structure as well as on the semantics
encoded in the ontological annotations of the entries,
have been proposed to discover potential novel asso-
ciations between data entries [12,17,23,24,28,36,45].
In general, the idea is to perform random walks in
the space of possible associations and discover those
that satisfy a particular pattern; correspondences be-
tween the discovered patterns are measured in terms
of similarity functions. In [16], heuristics are used to
discover relevant subgraphs within RDF graphs; re-
lationships among the metadata that describe nodes
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are used to discover relevant relationships among en-
tities. To decide if two objects are semantically sim-
ilar, Jeh et. al. [24] propose a measure that reflects
when two objects are similar based on the relationships
that they hold with similar objects. Yan et al. [17] de-
veloped strategies to efficiently search subgraphs that
are similar to a given query graph. Barna et al. [45]
describe a greedy algorithm that generates the dense
subgraph of the graph that represents known connec-
tions between genes to discover potential novel associ-
ations. Parundekar et al. [36] propose a learning tech-
nique to generate semantic descriptions of available
datasets, and link the instances of these datasets to ex-
isting data in the Cloud. Hu et al. [23], and Kuramochi
and Karypis [28], describe efficient algorithms to dis-
cover subgraphs (patterns) that occur in graphs and to
aggregate them. Finally, Toupikov et al. [53] propose
the usage of source formal descriptions provided in
voiD documents, to efficiently implement link analy-
sis ranking metrics like PageRank [2] and HITS [26],
and use the ranking scores for measuring popularity
of the linked datasets. A weight function is defined to
represent user preferences for going from one dataset
to another, and this function is included into Page-
Rank and HITS to obtain more precise rankings. In
any case, the importance of a node is dissipated when-
ever the out-degree of the node is high. In this pa-
per we also propose an authority-flow based ranking
technique, but this technique ranks paths between data
terms, and the authority of one node is computed in
terms of score functions that measure how important
is a link between two nodes. Additionally, because we
want to identify potential novel associations between
terms, the importance of a node, not necessarily should
be dissipated among all the nodes to which it is linked.
For example, the MeSH term Luteinizing Hormone
indexes 45,068 publications in the curcumin layered
graph presented in Section 2. Based on the PageRank
metric the importance that this term should transfer to
its children, should be reduced proportionally to this
number of links; however, in the sub-graph that com-
prises the top-5 novel MeSH terms identified by the
Srinivasan’s algorithm, Luteinizing Hormone is part of
21,589 paths. Considering that 481 MeSH terms an-
notate the curcumin’s publications and the number of
paths that reach these top-5 terms is 2,662,887, this
term is one out of 481 and conduces to almost 1% of
the paths that reach the top-5 terms; so, it should be
highly ranked as well as their descendant nodes. To
model this situation, our ranking metric does not pe-
nalize the importance of a node when the degree of

the node is high, and it is able to highly rank terms as
Luteinizing Hormone. Finally, the proposed techniques
exploit the semantic encoded in the annotations and the
topology of the graph induced by the data links, to dis-
cover the associations with the highest scores. Annota-
tions as well as the topology of the layered graphs are
considered during both the computation of the score
functions and the computation of the metric values for
each node of the graph. Thus, whenever a node is an-
notated with a large number of terms, or these terms
are close in the ontology used to annotate the publica-
tions, the score function will take high values; similar
if a node is pointed by a large number of highly ranked
nodes, its score will be high whenever these nodes are
semantically relevant for it. For example, in case of
links between publications and their MeSH terms an-
notations, a publication will have high values of the
metric, if the MeSH terms that index this publication
also index a large number of other publications in the
same layer of the graph, and they have high scores.
On the other hand, a MeSH term will have high metric
values if it has been used to annotate a large number
of publications, and these publications have been an-
notated with similar MeSH terms. Note that although
PageRank and HITS are able to capture importance
and relevance of the terms, they do not reflect the type
of information that the score function can reflect.

We illustrate the usage of our techniques in two do-
mains: life science and bibliographic data; however,
our hypothesis is that these techniques could also be
used in other domains, e.g., in social networks such as
Facebook or Twitter, to discover relevant associations
or trends. Recently, Moore et al. [33] propose a ran-
dom walks based approach able to highly rank nodes
in a graph that may be useful for a given node, or ex-
plain how two nodes are related in the graph. Shortest
paths between the input nodes are computed to solve
these two problems. The top-k solutions are computed
among the shortest paths and based on weights of the
nodes which are computed in terms of the degrees of
a node; thus, topology of the graph is considered. This
metric could be used to explain the results suggested
by our approach; nevertheless, because our approach
relies on layered acyclic directed graphs where all the
paths have the same length and the direction of edges
represent different types of connections between con-
cepts, applying this shortest path undirected based ap-
proach may not significantly contribute to solve the
problem of highly ranking the most potential relevant
paths or identifying them efficiently. On the contrary,
we are interested in distinguishing portions of the orig-
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inal graph that comprise the relevant or novel terms.
Empirically, we have observed that our studied layered
graphs are comprised of only a small number of tar-
get terms that may correspond to potential discover-
ies and the sub-graphs that reach these target objects
are very dense. For example, the layered graph for the
term curcumin presented in Section 2 is comprised of
24,455,484 paths that reach 570 target terms in the last
layer of the graph; however, the top-5 terms discov-
ered by the Srinivasan’s algorithm are part of a sub-
graph with 2,662,887 paths, i.e., less than 1% of the
target terms are reached by over 10% of the paths of
the graph. Thus, instead of a metric able to rank among
the target nodes, the ones that are reachable from nodes
with high degrees, we need a metric able to discrimi-
nate the top-k nodes that are part of dense sub-graphs.

3.3. Approximate Inference

A typical inference task in a Bayesian network is
to compute the posterior probability of a set of nodes
given some observed values of evidence. Several algo-
rithms have been developed to efficiently perform ex-
act inference in a Bayesian network [3,6,15]; however,
exact inference in large and complex networks may be
intractable, and approximate solutions have been de-
fined [22,30,34,62]. Commonly approximate Bayesian
network inference algorithms rely on Monte Carlo al-
gorithms to generate a set of randomly selected nodes
according to some known distribution, and then ap-
proximate probabilities based on the frequencies of ap-
pearances in the sample. The main challenge of these
algorithms is to reach estimates that satisfy the re-
quired confidence levels and are consistent with the
network evidence values, while the size of the sample
remains small; several approaches have successfully
achieved this goal and depending on the properties
of the Bayesian network, their performance and qual-
ity can be quite good [4,11,22,30,34,50,62]. Based on
these techniques, we devise two sampling techniques
that follow two different search strategies, and provide
an efficient and effective solution to the Literature-
Based Discovery problem.

Finally, sampling techniques have been also applied
to the problem of estimating authority-flow metrics.
Fogaras et. al. [11] implement a Monte-Carlo based
method to approximate personalized PageRank scores.
They sample paths whose length is determined by a
geometric distribution. Paths are sampled from a Web
graph based on a probability that represents whether
objects in the paths can be visited by a random surfer.

This approach approximates PageRank; however, it is
not applicable to our proposed approach because the
length of the paths is determined by the number of
layers in the results graph, which in our case is fixed
and cannot be randomly chosen. In contrast, our tech-
niques sample objects in a layer graph of n layers, and
the search is performed layer by layer, until the last
layer of the graph is visited. Objects with higher prob-
ability to be visited by a random surfer, and links be-
tween these objects will have greater chance to be cho-
sen during the sampling process. Thus, the techniques
may be able to only traverse relevant paths of length n
which may correspond to relevant discoveries.

4. A Ranking-flow based Solution to Discover
Semantic Associations

We propose ranking-flow based solutions to the
problem of semantic association discovery. The pro-
posed techniques take advantage of existing links be-
tween data published on the Cloud of Linked Data, or
make use of annotations with controlled vocabularies
such as MeSH, GO, PO, etc. We present an exact solu-
tion and two approximate sampling-based techniques,
which have been implemented in BioNav [55].

The exact ranking technique extends existing authority-
flow based metrics like PageRank, ObjectRank and
their extensions of layered graphs [41]. This ranking
approach assumes that portions of Linked Data com-
prise a layered graph, named layered Discovery Graph,
where nodes represent published data and edges corre-
spond to intra- or inter-dataset links.

A layered Discovery Graph, lgDG=(Vlg, Elg), is a
layered directed acyclic graph, comprised of a finite
number k of layers, L1, . . . , Lk. Layers are composed
of data entries that point to data entries in the next layer
of the graph; data entries are filtered, and a link be-
tween the same two objects is represented at most in
one layer of the graph. Data entries in the k-th layer
(last layer) are called target objects. Authority-flow
based metrics rank the target objects, and these scores
are used to identify relevant associations between ob-
jects in the first layer and target objects.

Figure 2 illustrates an example of a layered Discov-
ery Graph that models the Open Discovery Graph in
Figure 1. In this example, odd layers are composed of
MeSH terms while even layers are sets of publications.
Also, an edge from a term b to a publication p indicates
that p is retrieved by the PubMed search engine when b
is the search term. Finally, an edge from a publication
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p to a term b represents that p is annotated with b. Each
edge e = (b, p)(resp., e = (p, b)) between the layers li
and li+1 is annotated with the TF-IDF score; this value
either represents how relevant is a term b in the col-
lection of documents in li+1, or a document relevance
regarding a set of terms. The path of thick edges con-
nects Topic A with C3; the value 0.729 corresponds to
the authority-flow score and represents the relevance
of the association between Topic A and C3. B and C
terms are filtered based on different criteria, so, never
a link between the same publication and MeSH term
will appear more than once in the graph.
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Fig. 2. A layered Discovery Graph

Given a layered Discovery Graph lgDG=(Vlg, Elg)
of k layers, the authority-flow scores of the target ob-
jects are formally defined as a ranking vector R:

R = Mk−1 ×Rini =

(
k−1∏
l=1

M

)
×Rini (1)

where, M is a transition matrix and Rini is a vector
with the scores of the objects in the first layer of the
graph. An entry M [u, v] in the transition matrix M ,
where u and v are two data objects in lgDG, corre-
sponds to α(u, v) or is 0.0. The value α(u, v) is calcu-
lated according to a score function that considers se-
mantics encoded in the link, e.g., if the link represents
that a publication is annotated with a MeSH term, then
this score may reflect relatedness between this annota-
tion and the rest of the annotations of the publication.

M [u, v] =

{
α(u, v), if (u, v) ∈ Elg,
0.0, otherwise. (2)

Furthermore, score functions represent information
about the topology of the graph in a way that nodes
with high values of the metric lgWP are linked by
many nodes or linked by highly scored nodes. For ex-
ample, in Figure 2, C3 is pointed by relevant nodes.
In the context of LBD, we use this metric to discover
novel associations between a topic A and MeSH terms
in the last layer of the lgDG.

4.1. Score Functions

We consider two types of score functions in the lay-
ered graph Weighted Path Count (lgWP) metric: the
TF-IDF score function of a link between a and b de-
notes how important or relevant is a for the type of
concepts to which b belongs [46]; the taxonomic score
function reflects relevance of a to b in terms of how
similar are to b the rest of the concepts that are asso-
ciated with a. Formally, these functions are defined as
follows:

Consider an edge e=(a,b) between nodes a and
b in layers li−1 and li, respectively. The TF-IDF
score function for e, tf-idf(a,b,li−1,li) is equal to
(w(a, li−1, li) × C(li−1, li)), where w(a) is equal to
A(a, li−1)×B(a, li) and:

– A(a,li−1): is the augmented document frequency
of a which is defined as

A(a, li−1) = 0.5 + 0.5×
( tf(a, li−1)

tfmax(li−1)

)
(3)

where, tf(a, li−1) is the frequency of a in layer
li−1, and tfmax(li−1) is the maximum frequency
of any node in li−1. A value close to 1.0 indicates
that node a frequently appears in layer li−1.

– B(a,li): inverse term frequency log2( N(li)
Np(li)

), where
N(li) is a finite number that corresponds to the
cardinality of the domain of nodes in li, and
Np(li) corresponds to the number of nodes in li
that are associated with node a.

– C(li−1, li): is a cosine normalization for all the
nodes in layer li−1, i.e.,

C(li−1, li) =
1(∑

a′∈li−1
w(a′, li−1, li)2

)1/2
(4)
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Labels of edges of the Layered Discovery Graph in
Figure 2 illustrate the values of the TF-IDF score func-
tion; a value close to 1.0, for example tf-idf(p1,B2),
indicates that publication p1 has more annotations
that the rest of the publications in PUB_A; assuming
that annotations are done by experts, this is an indi-
cation that a large number of MeSH terms properly
describe the publication. Furthermore, the taxonomic
score function assumes that nodes in layer li are part
of a taxonomy, and captures the taxonomic distance
between the nodes in layer li that are related to node
a. Thus, the taxonomic score function for e, tf-idf(a,b)
is equal to (w(a, li−1, li) × C(li−1, li) × dtx(a, b)),
where, dtx(a, b) corresponds to the average of the tax-
onomic distance values between b and nodes in layer
li that are associated with a, i.e.,

dtx(a, b) =
1

t

∑
b′∈li

d(b, b′) (5)

where, t is the number of nodes in layer li that are re-
lated to a, and d(b, b′) is the value of the taxonomic
distance between b and b′. In the following example,
we consider a metric based on the similarity function
proposed by Pekar and Staab [38] that captures the
ability to represent the taxonomic distance between
two vertices with respect to the depth of the com-
mon ancestor of these two vertices; nevertheless, any
other taxonomic distance metric or semantic similar-
ity function could be used to capture the relatedness
of two terms in an ontology [25,29,37,39,42,58]. In
addition to the annotation information considered by
the TF-IDF score function, the taxonomic score func-
tion reflects the relatedness of the terms used to anno-
tate a publication; a value close to 1.0 indicates that
the publication may have a large number of related
or similar MeSH annotations. Assuming annotations
are done by experts, this is an indication that a large
number of related MeSH terms describe the publica-
tion. To illustrate the impact on the score values of
the topology of the MeSH ontology used to annotate
PubMed publications, consider the publication with
PMID 15493372 which is annotated with the MeSH
terms Isoenzymes, Arachidonate 5-Lipoxygenase, Cy-
clooxygenase; because this publication is annotated
with only three MeSH terms of the UMLS types: (a)
Gene or Genome, (b) Enzyme, and (c) Amino Acid, the
TF-IDF score function value is 0.26. However, if the
topology of MeSH is considered, the taxonomic score
function is able to reflect that the link between this

publication and the MeSH term Cyclooxygenase 2 has
a greater score (0.08); this is consistent with the fact
that this term is the closest in the taxonomy to the other
two terms, and it best represents the content of the
publication. Currently, our taxonomic score functions
are defined for existing specifications of polyhierarchy
biological ontologies such as, MeSH or SNOMED-
CT, where under the Closed World Assumption, a node
classification is the inference task needed to compute
a score function value. Considering a more general
approach based on Open World Assumption will re-
quire first, the adaptation of existing biomedical on-
tologies and then, the extension of ontology similar-
ity metrics to measure with certain degrees of uncer-
tainty, unknown facts that cannot be inferred from the
concepts represented in the ontology. This extension
would enhance expressiveness and accuracy of the on-
tologies and our discovery process; however, it is out
of the scope of this paper.

5. Approximate Techniques to Discover Semantic
Associations

Although rankings induced by an authority-flow
based metric may distinguish relevant associations, the
computation of this ranking may be costly. Thus, to
speed up this task, we propose sampling-based tech-
niques that extend the Probabilistic Logic sampling
approach [22] and traverse only nodes in the layered
graph that may conduce to highly ranked objects. We
briefly summarize the Probabilistic Logic sampling,
next, we define the Estimate Relevant Links problem;
finally, we present two approximate solutions.

5.1. Probabilistic Logic Sampling

Bayesian networks are directed acyclic graphs com-
prised of nodes or random variables and arcs that
correspond to direct probabilistic dependencies be-
tween them. Bayesian networks encode joint proba-
bility distributions over a set of finite nodes or ran-
dom variables, which are computed as products of the
conditional probabilities of the variables given their
parents in the network. Nodes are conditionally in-
dependent of their predecessors, given their parents,
i.e., nodes are conditionally independent of their non-
descendants and all other nodes in the network, given
their parents, children and children’s parents [43]. To
overcome intractability of exact inference solutions in
Bayesian networks, several approximations have been
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proposed [15]. The Probabilistic Logic sampling pro-
posed by Henrion [22] is the simplest approximate ap-
proach where a set of randomly generated samples of
the network are generated during one iteration of the
sampling; approximate probabilities of the query vari-
ables are computed according to the frequencies of the
nodes sampled during the sampling process; the influ-
ence arrows are considered during both the sampling
and the computation of the approximate probabilities.
This process is repeated r times, where r is a finite
number, where different scenarios are generated for
each sample; the probability of x, Pr(x), after sam-
pling r scenarios is the average of the probability of x
in the scenario s, Pr(x)s, in which the variable x was
true, i.e.,

Pr(x) =
1

m

r∑
s=1

Pr(x)s (6)

For each conditional probability, Pr(x|y) the Prob-
abilistic Logic sampling approach proposes to generate
a sample for each of the independent parameters, i.e.,
Pr(x|y) and Pr(x|ȳ), ensuring that samples of Pr(x)
can also be done after their parents, Pr(y) and Pr(ȳ) ,
are sampled. Thus, conditional probabilities represent
the conditional dependencies that the sampling process
needs to respect. Although Probabilistic Logic sam-
pling has shown to work very well when no prior ev-
idence has been observed [15], the performance and
quality of the approach can be impacted by the strategy
followed to perform the search. In this work, we pro-
pose two sampling techniques that rely on the Proba-
bilistic Logic sampling approach, but implement two
different search techniques to sample the nodes in the
Bayesian network. In the graph-sampling technique, a
breadth-first search strategy is followed to sample the
nodes with the highest conditional probabilities; path-
sampling respects a depth-first strategy to sample paths
with the highest conditional probability.

5.2. Approximating Potential Relevant Associations

Problem Estimate Relevant Associations: Given a
layered Discovery Graph, lgDG = (Vlg, Elg), the
computation of highly ranked target objects is reduced
to estimating a subgraph lgDG of lgDG, so that with
high confidence (at least δ), the relative error ε of the
distance between the top-k target objects in lgDG, i.e.,
the expected top-k E(topk), and the exact top-k target
objects in lgDG, i.e., topk is at least δ, i.e.,

Pr(|topk − E(topk)| ≤ ε) ≥ δ (7)

A set SS={lgDG1, ..., lgDGm} of independent and
identically distributed (i.i.d.) subgraphs of lgDG is
generated. Then, lgDG′ is computed as the union
of the m subgraphs. Each subgraph lgDGi is gener-
ated using a sampling technique on a Bayesian net-
work that models all the navigational information en-
coded in lgDG and in the transition matrix M of the
authority-flow metric. We propose two sampling tech-
niques: graph-sampling and path-sampling. Graph-
sampling is based on a Direct Sampling technique
over the Bayesian network, that generates the most
relevant sub-graph lgDGi by visiting the most rele-
vant nodes in the Bayesian network. The second sam-
pling approach follows a Monte-Carlo technique on
the Bayesian network to just produce the paths with
the highest conditional probability to be traversed.

Given a layered graph, a Bayesian network is for-
mally defined as follows:

A Bayesian network BN=(VB,EB) for a layered Dis-
covery Graph lgDG, is built as follows:

– BN and lgDG are homomorphically equivalent,
i.e., there is a mapping f: VB → Vlg, such that,
(f(u), f(v)) ∈ Elg iff (u, v) ∈ EB.

– Nodes in V B correspond to discrete random vari-
ables that represent if a node is visited or not dur-
ing the discovery process, i.e., VB = {X | X takes
the value 1 (true) if the node X is visited and 0
(false), otherwise}.

– Each node X in VB has a conditional probability
distribution10:

Pr(X | Par(X)) =

n∑
j=1

α
(
f(Yj), f(X)

)
×Pr(Yj)×Yj

(8)

where, Yj is the value of the random variable that rep-
resents the j-th parent of the node X in the previous
layer of the Bayesian network, Yj can be 0 or 1; n
corresponds to the number of parents of X . The value
α(f(Yj), f(X)) represents values of the score func-
tion of the edge (f(Yj), f(X)); the score function can
be TF-IDF or taxonomic, and it corresponds to an entry
in the transition matrix M . It is seen as the probability

10Par(X) represents the parents of X in the Bayesian network.
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to move from Yj to X in the Bayesian network. Fur-
thermore, the conditional probability distribution of a
node X represents the collective probability that X is
visited by a random surfer starting from the objects
in the first layer of the layered Discovery Graph. Fi-
nally, the probability of the nodes in the first layer of
the Bayesian network corresponds to a score that indi-
cates the relevance of these objects with respect to the
discovery process; these values are represented in the
Rini vector of the ranking metric.

5.3. A Graph-Sampling based Ranking Solution

The first sampling technique traverses the Bayesian
network by performing a breadth-first search that vis-
its the nodes with the highest conditional probability.
The breadth-first search is based on a Direct Sampling
method for a Bayesian network that generates events
from the Bayesian network [43].

Given a Bayesian network generated from the lay-
ered Discovery Graph lgDG, the Direct Sampling gen-
erates each subgraph lgDGi. Direct Sampling selects
nodes in lgDGi by sampling the variables from the
Bayesian network based on the conditional probabil-
ity of each random variable or node. Algorithm 1 de-
scribes the Direct Sampling algorithm.

Algorithm 1 The Direct Sampling Algorithm
Input: BN=(VB,EB) A Bayesian network for a layered dis-
covery graph.
Output: A subgraph lgDGi

TP ← topologicalOrder(BN);
for X ∈ TP do

Pr(X| Par(X))←∑n
j=1 α(f(Yj), f(X))× Pr(Yj)× Yj ;

if ( Pr(X| Par(X)) >= randomNumber) then
Xi ← 1;

else
Xi ← 0;

end if
end for

Variables are sampled, following a topological or-
der starting from the variables in the first layer of the
Bayesian network; this process is repeated until vari-
ables in the last layer are reached. The values assigned
to the parents of a variable define the probability dis-
tribution from which the variable is sampled. The con-
ditional probability of each node in the last layer of
lgDGi corresponds to the approximate value of the
implemented metric.

Figure 3(a) illustrates the behavior of the graph-
sampling technique; highlighted nodes correspond to
visited notes and comprise a subgraph lgDGi. Di-
rect Sampling is performed as follows: initially, all the
nodes in the first layer have the same probability to be
visited and all of them are considered. All their chil-
dren or nodes in the second layer are also visited and
the conditional probability is computed; nodes with
the highest scores survive, i.e., n5 and n7. Then, the
children of these selected nodes are also visited, and
the process is repeated until nodes in the last layer are
reached. Note that nodes n9 and n11 are the target ob-
jects with the highest values of the lgWP metric and
with the highest conditional probability. These nodes
are pointed by nodes with high lgWP scores or pointed
by many nodes; thus, they are very likely to be visited
when the Direct Sampling algorithm is performed.
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Fig. 3. Approximate Bayesian Network Inference Techniques

Once an iteration i of the Direct Sampling is final-
ized, the sampled layered Discovery Graph lgDGi =
(Vi, Ei) is created. Nodes in Vi correspond to the vari-
ables sampled during the Direct Sampling process that
are connected to a visited variable in the last layer
of the Bayesian network. Additionally, for each edge
(u, v) in the Bayesian network that connects nodes
f(u) and f(v) in Vi, an edge (f(u), f(v)) is added to
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Ei. The conditional probabilities of the target objects
of each subgraph lgDGi correspond to the approxi-
mate values of the ranking metric. After all the sub-
graphs lgDG1, . . . , lgDGm are computed, an estimate
lgDG′ is obtained as the union of these m subgraphs.
The approximation of the ranking metric in the graph
lgDG′ is computed as the average of the approximate
ranking metric values of target objects in the subgraphs
lgDG1, . . . , lgDGm. A bound of the number of itera-
tions or sampled subgraphs is defined in terms of the
Chernoff-Hoeffding’s bound.

Theorem 1 Consider a sampled layered graph lgDGi,
a term t, and the random variable Xt(lgDGi) that
equals 1 or 0 when the object t is a target object in
lgDGi or not. Let St be another random variable that
averages the variables Xt(lgDGi) for the samples
lgDG1, . . . , lgDGm, i.e.,

St =
1

m

m∑
i=1

Xt(lgDGi) . (9)

Let pr be the probability of a term t being a tar-
get object of a sample layered graph lgDGi, i.e.,
Pr(Xt(lgDGi) = 1) = pr. Since the sequence
Xt(lgDG1), Xt(lgDG2),. . . ,Xt(lgDGm) represents
a sequence of Bernoulli trials, pr corresponds to the
probability of success of the trials or the expectation
of St denoted by E(St). Thus, an upper bound for m
is the following:

m ≤ ln(2)− ln(Pr(|St − E(St)| ≥ ε))
2ε2

(10)

Proof By using the Chernoff-Hoeffding’s bound, the
size m of the sample must satisfy the following for-
mula to ensure that the relative error of the estimation
of E(St) is greater than some given constant ε with
some probability:

Pr(|St − E(St)| ≥ ε) ≤ 2e(−2mε
2) (11)

5.4. A Path-Sampling based Ranking Solution

Similarly, the path-sampling technique traverses the
Bayesian network and approximates each sub-graph
lgDGi by following a Monte-Carlo based method to
generate N random paths that will comprise the sub-
graph lgDGi. The conditional probability is computed

for each visited node by considering the conditional
probability of their parents times the authority-flow
values of the edges that comprise the path; indepen-
dence of the event of visiting each edge is assumed.

The process to generate each random path is defined
as follows: Let us sample a collection of i.i.d. paths
ξ1, . . . , ξN ∼ P from lgDG as follows: starting with
a “particle” at X = s in the first layer of the result
graph lgDG, choose a node X with probability Pr(X|
Par(X))←

∑n
j=1 α(f(Yj), f(X))×Pr(Yj)×Yj ; and

set X as visited. These statements are repeated until Y
becomes a node in the last layer of the layered graph,
i.e., a target object is reached. Algorithm 2 describes
the path-sampling technique.

Algorithm 2 The Path-Sampling Algorithm
Input: BN=(VB,EB) a Bayesian network for a layered dis-
covery graph;
N an integer representing the number of paths to sample;
L the number of layers of BN.
Output: A subgraph lgDGi

Node← a random sample from events in the first layer of
BN;
Node.Visited← true;
NumberPaths← 0;
while NumberPaths ≤ N do

PathLength← 0;
while PathLength ≤ L do

for X ∈ Node.Children do
Pr(X| Par(X))←∑n

j=1 α(f(Yj), f(X))× Pr(Yj)× Yj ;
end for
Node ← a random sample event X from
Node.Children such that,
Pr(X| Par(X)) >= randomNumber;
Node.Visited← true;
NumberPaths← NumberPaths +1;

end while
end while

Figure 3(b) illustrates the behavior of the path-
sampling technique; highlighted nodes correspond to
visited notes and comprise a subgraph lgDGi. Path-
sampling iterates until N paths are generated. To gen-
erate one path, path-sampling performs as follows: ini-
tially, all the nodes in the first layer have the same
probability to be visited and one is randomly chosen,
suppose it is n3. All their children or nodes of this se-
lected node are considered and the conditional proba-
bility is computed for all of them; the child node with
the highest scores survives, i.e., n7. Then, the children
of this selected node are also visited, and the process is
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repeated until nodes in the last layer are reached. Sup-
pose two paths are required, then nodes n9 and n11
can be reached. Note that these nodes are sink nodes
of the paths with the highest values of the lgWP metric
and with the highest conditional probability.

Let Sp
′
={ξ1,ξ2,...,ξN} be the paths of the layered

graph lgDGi such that each ξi, 1 ≤ i ≤ N , is ran-
domly chosen, with replacement, from the set of paths
in the exact layered graph lgDG.

A sampled graph lgDG
′

corresponds to the mini-
mal sub-graph of lgDG that contains only the nodes
in Sp

′
. A bound of the number of sampled paths is de-

fined in terms of the Chernoff-Hoeffding’s bound as
follows:

Theorem 2 Let Xt(ξi) be an independent identically
distributed (i.i.d.) binary random variable that has
value 1 if the sink node of the path ξi is the term t, and
0 otherwise. Let St be another random variable that
averages variables Xt(ξi) for objects in Sp

′
, i.e.,

St =
1

N

N∑
i=1

Xt(ξi) (12)

Let pr be the probability that t is the sink node of
the path ξi, i.e., Pr(Xt(ξi) = 1) = pr; the sequence
Xt(ξ1), Xt(ξ2),. . . ,Xt(ξN ) represents a sequence of
Bernoulli trials and pr corresponds to the expectation
of St denoted by E(St). Thus, an upper bound for the
number of paths to be sampled, i.e.,N , is the following
and the time complexity of this method is Θ(N × L),
where L is the number of layers of the layered Discov-
ery Graph.

N ≤ ln(2)− ln(Pr(|St − E(St)| ≥ ε))
2ε2

(13)

Proof The number of paths to sample, N , has to sat-
isfy the following formula to ensure that the relative
error of the estimation of E(St) is greater than some
given constant ε with some probability:

Pr(|St − E(St)| ≥ ε) ≤ 2e(−2Nε
2) (14)

6. Experimental Evaluation

In this section we show the quality of our proposed
discovery techniques. First, we compare the results ob-
tained by our ranking technique with respect to the re-

sults obtained by the Manjal system [49]; then, we val-
idate and compare associations discovered by our ap-
proach with information published at specialized web-
sites. Finally, we show the behavior of our proposed
ranking techniques on bibliographic data. Experiments
were executed on a Sun Fire V440 equipped with two
UltraSPARC IIIi processors running at 1.593 GHZ
with 16 GB RAM. Results are shown for several iter-
ations of the sampling techniques and only for top-k
concepts; the number of iterations and the top-k have
been experimentally set up; a trade-off between exe-
cution time and quality of the results have considered
during the configuration of these two parameters.

Experiments were designed under the assumption of
the following hypotheses:

Hypothesis 1: As explained in Section 2, Srinivasan’s
algorithm relies on MeSH terms that annotate
a PubMed publication, to identify the potential
novel associations between drugs and diseases,
and reduce the space of PubMed publications that
need to be traversed during the discovery process.
However, many irrelevant publications and MeSH
terms can be visited during the search, and a large
number of target concepts can be generated. Be-
cause our proposed sampling techniques visited
only concepts, publications and MeSH terms that
are related to highly ranked concepts, and only
a small percentage of target concepts have high
values of the lgWP metric, we hypothesize: i) the
concepts highly ranked by our sampling tech-
niques correspond to the ones identified by Man-
jal, ii) the highly ranked target concept will be
produced by traversing just a reduced number of
the concepts that Manjal will traverse, i.e., by
traversing a dense sub-graph that comprises the
highly ranked target objects.

Hypothesis 2: Because the sampling techniques iden-
tify highly ranked target concepts, and these con-
cepts correspond to MeSH terms used to anno-
tate publications that are: i) annotated with a large
number of MeSH terms, or ii) indexed by MeSH
terms associated with publications related to the
input drug, and these terms index a large number
of publications. Then, these highly ranked target
concepts correspond to diseases that possibly can
be treated with the input drug.

Hypothesis 3: Because the sampling techniques tra-
verse highly ranked intermediate nodes, irrele-
vant target nodes that are reachable from poorly
ranked intermediate nodes, may be discarded dur-
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ing the sampling. Thus, accuracy of the sampling
may be higher than the one reached by computing
the exact values of lgPW for the whole graph.

6.1. Experiment Configuration

Datasets: We used two datasets. The first dataset
is comprised of PubMed publications from the
NCBI source11, all the Medical Subject Headings
(MeSH) terms, and all the links between MeSH
terms and PubMed publications (indices and an-
notations). The second dataset is composed of
bibliographic data from DBLP12. In both cases,
we stored the datasets in an Oracle 10g database.
For the PubMed database, we downloaded all
the PubMed publication ids (circa September
2010), and their corresponding MeSH terms, and
stored them in two tables, PubMed_MeSH and
MeSH_PubMed. The former relates a publica-
tions with all the MeSH terms that correspond to
their annotations; the later relates MeSH terms to
all publications that these terms index. Both ta-
bles store the TF-IDF score function values.
The DBLP data was also stored in four rela-
tional tables: Conferences, Year, Paper and Au-
thor. Relationships between a conference and a
paper with a year in which the conference was is-
sued and the paper published, are stored in two
tables C_Y and P_Y, respectively. Similarly, the
relationships between a paper and the authors of
the paper, and the paper and the conference where
the paper is published, are stored in the tables
P_A and P_C, respectively. Tables C_Y, P_Y, P_A
and P_C have an attribute score computed from
an authority-flow value assigned to each of the
relationships that represent these tables, divided
by the number of instances in the corresponding
table. Figure 4 illustrates the database schemas
of the DBLP; relationships are labelled with the
authority-flow values considered in this experi-
ment used to compute the score values.

Query Benchmarks: We ran our ranking-based dis-
covery approach on PubMed data to discover se-
mantic associations between the terms curcumin,
gingko, aloe, and tacrolimus, and MeSH terms
that represent diseases; the sizes of the corre-
sponding layered graphs are reported in Table 1.
Layered graphs were built following the criteria

11http://www.ncbi.nlm.nih.gov/
12http://www.informatik.uni-trier.de/ ley/db/

proposed by Srinivasan et al. [49] and explained
in Section 2; data from tables PubMed_MeSH
and MeSH_PubMed was selected. Additionally,
we ran 3 sets of 30 queries against DBLP; layered
Discovery Graphs were comprised of 5 layers and
at most 876,110 nodes and 4,166,626 edges. Au-
thor’s names with high, medium and low selectiv-
ity were considered; high selectivity means that
the author has few publications while low selec-
tivity represents that the author is very productive.

Metrics: We report on performance and quality of
our ranking techniques. Performance is measured
in terms of runtime, which corresponds to the
user time produced by the time command of the
Unix operation system; this value represents the
elapsed time between the submission of the query
and the output of the target MeSH terms that may
correspond to the novel discoveries; time to trans-
fer data from the database to main memory is the
dominant contribution to this time metric. Qual-
ity is expressed as precision and the values of the
normalized top-k Spearman’s rho distance metric
with ties. Precision measures the percentage of
concepts that are produced by the proposed rank-
ing techniques that are present in the ground truth;
because we compare lists of the same size, preci-
sion and recall have the same values. The normal-
ized top-k Spearman’s rho metric with ties, mea-
sures how distinct are the orders or permutations
of two lists [10]. This metric is defined as follows:
let φ1 and φ2 be 2 top-k lists; each set of tied
results is called a bucket. Thus, the ranked lists
can be viewed as ranked bucketsB1, B2, . . . , Bn.
The position of bucket Bi, denoted pos(Bi) is
the average location within bucket Bi. We assign
φ(x) = pos(B) where φ(x) is the rank of term x,
and B is the bucket of x. ρ is the Spearman’s rho
metric, which is a normalized distance measure
that lies in the interval [0,1]. The following for-
mula represents the normalized Spearman’s rho
distance metric of top-k lists φ1 and φ2:

ρ(φ1, φ2) =
(
∑k
i=1 |φ1(i)− φ2(i)|2)1/2

(k×(k+1)×(2k+1)
3 )

1/2
(15)

The maximum value of (
∑k
i=1 |φ1(i)− φ2(i)|2)1/2

occurs when list φ1 is the reverse of list φ2 and

this value corresponds to (k×(k+1)×(2k+1)
3 )

1/2

and the normalized value is equal to 1.0; while a
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value of 0.0 represents that φ1 and φ2 have ex-
actly the same elements and in the same order.

Implementations: The ranking and sampling tech-
niques were implemented in Java 1.6.1, and the
databases were stored in Oracle 10g. To compute
the exact and the sampling methods for a given
query, the entire graph and the Bayesian network
are both kept in main memory.

Conference C_Y P_Y AuthorPaperYear P_A

P_P

0.3 0.30.3 0.1

0.70.7

0.2 0.2

Score Score Score

Score

Fig. 4. The DBLP schema

MeSH term #Nodes #Edges #Paths

Curcumin 3,107,901 10,261,791 24,455,484

Gingko 1,906,962 31,909,304 24,548,174

Aloe 4,705,163 16,027,100 22,070,602

Tacrolimus 5,569,784 31,527,717 592,211,756

Table 1
Size of PubMed Layered Graphs

6.2. Effectiveness of the Ranking Techniques with
respect to Manjal

To reproduce the Manjal’s results [49], we ran the
metric lgWP on a layered Discovery Graph lgDG
of curcumin (5 layers with 3,107,901 nodes and
10,261,791 edges). We ranked the target objects in the
graph and observed that our ranking technique was
able to produce 4 of the top-5 semantic associations
identified by Manjal [49]; our ranking technique ex-
hibits a precision of 80%. Table 2 compares the top-5
target objects discovered by Manjal [49] and the ones
discovered by our ranking technique.

Benefits of the graph-sampling technique were also
studied; we ran this sampling process for 5 itera-
tions, i.e., 5 sampled subgraphs were computed. Ta-
ble 3 highlights 4 out of the top-5 MeSH terms identi-
fied by Manjal [49], that are also identified by graph-
sampling. Table 4 reports on the number of target
MeSH terms produced by Manjal and the ones pro-
duced during each iteration of graph-sampling; graph-
sampling is able to discover 80% of the top novel

k Manjal Ranking lgWP

1 Retina Testis
2 Spinal Cord Retina
3 Testis Spinal Cord
4 Pituitary Gland Obesity

5 Sciatic Nerve Pituitary Gland

Table 2
Curcumin Top-5 MeSH terms- Manjal Ranking [49] versus lgWP
Ranking

MeSH terms, while the number of target terms is re-
duced by up to one order of magnitude. Additionally,
the number of nodes visited by the exact solution and
by graph-sampling during 5 iterations is reported; also
it shows the execution time of each iteration. The exact
solution ran in 207.3 secs. while one iteration of the
graph-sampling consumed around 60 secs; less than
3% of the graph nodes were visited by one iteration.

Finally, we measured the normalized Spearman’s
rho distance metric between the top-k MeSH dis-
covered by the Manjal system [49], the exact imple-
mentation of the lgWP ranking technique, and the
top-k terms produced during each iteration of graph-
sampling; we report on values of k equal to 5, 10, and
20. In Figure 5(a) we can observe that the normalized
Spearman’s rho distance is 0.14 for iteration “i=5” in-
dicating that both rankings are very similar; in fact this
ranking is even better than the one provided by the
exact lgWP solution. However, the similarity between
these rankings is lower as k increases; Spearman’s rho
is almost 0.7 when k is 20.

Similarly, we ran the path-sampling technique to ap-
proximate the most relevant links between curcumin
and the MeSH terms corresponding to diseases; the
sampling process generated between 10 and 60 paths.
Table 5 reports the top-10 MeSH terms identified by
path-sampling. We can observe that of the top-5 MeSH
terms identified by the Manjal system [49] (column 1
in Table 2), up to 4 are also identified among the top-10
MeSH terms identified by the path-sampling.

We also report on the number of target MeSH terms
produced by Manjal and the ones produced during
each iteration of path-sampling (Table 4). We can ob-
serve that path-sampling is able to discover 80% of
the top novel MeSH terms, while the number of tar-
get terms is reduced by up to three orders of mag-
nitude. Finally, we measured the normalized Spear-
man’s rho distance metric between the top-k MeSH
discovered by the Srinivasan’s algorithm, the exact im-
plementation of the lgWP ranking technique, and the
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k i=1 i=2 i=3 i=4 i=5

1 Spinal Cord Spinal Cord Spinal Cord Spinal Cord Spinal Cord
2 Retina Retina Retina Retina Retina
3 Pulmonary Alveoli Pulmonary Alveoli Testis Testis Pulmonary Alveoli

4 Testis Astrocytoma Glioblastoma Pulmonary Alveoli Testis
5 Astrocytoma Pituitary Gland Pulmonary Alveoli Glioblastoma Pituitary Gland
6 Hypothalamus Glioblastoma Peritonitis Pituitary Gland Glioblastoma

7 Meningitis Meningitis Astrocytoma Astrocytoma Meningitis

8 Peritonitis Astrocytoma Myocarditis Meningitis Pulmonary Artery

9 Obesity Coronary Vessels Testicular Neoplasms Peritonitis Neostriatum

10 Escherichia coli Escherichia coli Pituitary Gland Anemia Escherichia coli

Table 3
Curcumin-Effectiveness of Graph-Sampling Versus Top-5 Manjal’s
Terms

Target MeSH Terms

Manjal 570

Graph-Sampling i=1 i=2 i=3 i=4 i=5

4.21% 6.66% 8.59% 10.70% 12.45%

Path-Sampling i=10 i=20 i=30 i=40 i=60

1.40% 2.98% 4.9% 5.96% 7.01 %

Visited Nodes

Exact lgWP 3,107,900

Graph-Sampling i=1 i=2 i=3 i=4 i=5

0.28% 0.59% 0.89% 1.19% 1.49 %

Path-Sampling i=10 i=20 i=30 i=40 i=60

0.001% 0.003% 0.004% 0.006% 0.009 %

Execution Time (secs.)

Exact lgWP 230.7

Graph-Sampling i=1 i=2 i=3 i=4 i=5

26% 52.44% 77.58% 105.33% 130%

Path-Sampling i=10 i=20 i=30 i=40 i=60

10.14% 21.41% 32.68% 43.95% 66.49%

Table 4
Efficiency of the RankingTechniques Curcumin-Sampling Techniques

top-k terms produced during each iteration of path-
sampling; we report on values of k equal to 5, 10 and
20. In Figure 5(b) we can observe that the normalized
Spearman’s rho distance is slightly different when 30,
40, 50 or 60 paths are sampled.

6.2.1. Discussion
In this experiment we can observe that the lgWP

is able to assign the highest scores to 4 of the top-5
terms identified by the Majal system. This indicates
that the sub-graph generated by the local ranking per-
formed by the Srinivasan’s algorithm where only top-

MB are considered during the search, is approximated
by the sub-graph comprised of nodes with high val-
ues of lgWP. However, as can be seen in Table 4 only
a reduced number of nodes comprised this sub-graph;
thus, the sampling techniques exploit this property,
and are able to accurately approximate this sub-graph
and reach a great number of the top-5 novel MeSH
terms just by visiting a small number of intermediate
nodes. In fact, it can be seen from Figure 5, that graph-
sampling seems to better approximate the Srinivasan’s
algorithm discoveries than the exact computation of
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k i=10 i=20 i=30 i=40 i=50 i=60

1 Spinal Cord Anemia Obesity Anemia Testis Testis
2 Hypothalamus Obesity Testis Obesity Pituitary Gland Pituitary Gland
3 Hyperinsulinism Glomerulonephritis Pituitary Gland Pituitary Gland Spinal Cord Obesity

4 Diaphragm Graves Disease Retina Spinal Cord Obesity Anemia

5 Tonsil Graft vs Host Disease Graft vs Host Disease Testis Coronary Vessels Coronary Vessels

6 Gills Astrocytoma Astrocytoma Retina Hypothalamus Retina
7 Shigella flexneri Uremia Pulmonary Artery Coronary Vessels Graft vs Host Disease Hypothalamus

8 Bursa of Fabricius Diabetic Angiopathies Crohn Disease Pulmonary Alveoli Chimera Glomerulonephritis

9 Toxoplasmosis Pseudomonas Infections Glomerulonephritis Ovarian Follicle Parkinson Disease

10 Teratoma Parkinson Disease Parkinson Disease Celiac Disease Cystic Fibrosis

Table 5
Curcumin- Effectiveness of Path-Sampling Technique

(a) Quality of Graph-Sampling

(b) Path-Sampling

Fig. 5. Quality of Sampling versus the Manjal System for the MeSH
Curcumin. Spearman’s Rho Values compare Top-5, Top-10, Top-15
and Top-20 Produced by Manjal and by the Proposed Sampling
Techniques.

the lgPW metric. Finally, these results also suggest that
these techniques can converge in few iterations; for ex-
ample, path-sampling just needs to sample a small per-

centage of paths to reach a high accuracy, less than 1%
of all the paths in the layered graph.

6.3. Effectiveness of the Ranking Techniques to
Predict Novel Discoveries

We have also studied the quality of our proposed ap-
proach for the MeSH terms gingko, aloe and tacromilus;
because there are no reported results for these three
substances for the Manjal system, we consider as
ground truths, associations with diseases that have
been published by diverse specialized websites or
databases.

6.3.1. Effectiveness of Ranking Techniques for
Gingko

First, we report the results for gingko; ground
truths correspond to rankings published by the Mayo
Clinic public website13. The layered Discovery Graph
for gingko is composed of 1,906,962 nodes and
31,909,304 edges, i.e., this graph is more dense than
the curcumin layered Discovery Graph. Table 6 shows
the ground truth considered in this experiment, while
Table 7 presents the top-10 MeSH terms ranked by the
exact implementation of the lgWP ranking technique.
We can observe that: i) one out of the two diseases for
which there is a strong scientific evidence of the use of
gingko is ranked between the top-10 terms; ii) two dis-
eases for which there is an unclear scientific evidence
are identified; and iii) three diseases where gingko is
used based on tradition or theory, are also discovered.
We note that our ranking technique was able to highly

13http://www.mayoclinic.com/health/gingko-biloba/NS_patient-
gingko/DSECTION=evidence
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NIH Ranking Evidence

Intermittent Claudication A
Alzheimer Disease A

Brain Diseases B
Hemorrhoids C

Memory Disorders C
Altitude Sickness C

Asthma C
Cardiovascular Diseases C

Chemotherapy C
Venous Insufficiency C

Cocaine-Related Disorders C
Deafness C

Depressive Disorder C
Diabetic Neuropathies C

Diabetes Mellitus C
Hypertension C
Neoplasms T
Carcinoma T

Colorectal Neoplasms T
Arthritis T

Table 6
Ground Truths for Gingko - A: strong scientific evidence;
B: good scientific evidence; C: unclear scientific evidence;
T: uses based on tradition or theory; NR: no reported.

k lgWP Evidence

1 Carcinoma T
2 Diabetes Mellitus C
3 Neosplasms T
4 Leukemia NR
5 Hypertension C
6 Breast Neoplasms NR
7 Alzheimer Disease A
8 Liver Neoplasms NR
9 Arthritis T
10 Adenocarcinoma NR

Table 7
Effectiveness of lgWP for Gingko. Top-5 MeSH terms Ranked
by lgWP using exact solution are compared to Ground Truths for
Gingko.

rank Alzheimer Disease for which there seems to be a
strong scientific evidence of the usage of gingko.

In addition, Table 8 reports on visited nodes and
execution time of 5 iterations of the sampling tech-
niques. The exact solution ran in 536 secs., while
one iteration of the graph-sampling techniques con-
sumed around 161 secs. and the path-sampling con-
sumed around 55% of the time consumed by the exact
solution; the number of visited nodes by one iteration
is at most one order of magnitude less than the num-
ber of nodes in the whole layered graph. It is impor-
tant to notice that although path-sampling just visited
a small number of paths, the majority of the runtime
was consumed loading the graph in main memory.

Additionally, we could observe that the precision
is 60% in each iteration, but something important to
highlight is that after iteration “i=2”, the MeSH term
Alzheimer Disease is among the top-10 terms discov-
ered by the graph-sampling technique; however, in the
rest of the iterations, the quality of the ranking does
not increase. We hypothesize that this is because the
gingko layered Discovery Graph is very dense and
there are many different ways to reach important nodes
from the terms in the first layer. Furthermore, path-
sampling was able to rank Alzheimer Disease as fourth
after sampling 30 paths; four of the MeSH terms in
Table 8, were identified in this iteration.

6.3.2. Effectiveness of Ranking Techniques for Aloe
Vera

Similarly, we ran the ranking techniques for aloe
vera; ground truths correspond to rankings published
by the Mayo Clinic public website 14. We executed
path-sampling for 10 and 60 paths, graph-sampling for
1 and 2 iterations, and the exact ranking; Table 9 re-
ports on the precision with respect to the ground truths.
We observed that the exact ranking techniques could
reach a precision of up to 33%. The majority of the
terms discovered by these techniques correspond to
terms whose evidence is based on tradition or theory;
thus, the discoveries may help to support the verac-
ity of these traditions. Finally, we compared the top-
5 terms identified by the sampling techniques with re-
spect to the top-5 terms identified by the exact tech-
nique; both techniques were able to reach up to 60%
of precision with respect to the exact ranking of lgWP,
while the number of visited nodes is up to five orders
of magnitude less than the exact solution.

6.3.3. Effectiveness of Ranking Techniques for
Tacrolimus

Finally, we studied the term tacrolimus; ground
truths for this drug were taken from medical publica-
tions, and the RDF dataset LinkedCT (circa Septem-
ber 2010). Tacrolimus is an immunosuppressive drug
which is usually used after liver, kidney and bone
transplants to avoid immune system reactions; also it is
used to prevent Graft-vs-Host Disease in patients after
bone marrow transplantation [59], and to treat Crohn’s
disease15. Furthermore, tacrolimus may have the po-
tential to be used in the treatment of Alzheimer’s dis-
ease [61], and there are evidences of the development

14http://www.mayoclinic.com/health/aloe-vera/NS_patient-
aloe/DSECTION=evidence

15http://www.nlm.nih.gov/medlineplus/druginfo/meds/a601117.html
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Technique % Visited Nodes % Execution Time

Exact 1,906,962 536.00

Graph-Sampling
Iterations Iterations

i=1 i=2 i=3 i=4 i=5 i=1 i=2 i=3 i=4 i=5
10.87% 22.81% 34.95% 47.01% 60.66% 30.03% 59.38% 89.55% 118.28% 148.32%

Path-Sampling
Iterations Iterations

i=10 i=20 i=30 i=40 i=50 i=10 i=20 i=30 i=40 i=50
0.002% 0.004% 0.007% 0.01% 0.01% 55.59% 55.97% 56.34% 56.52% 57.27%

Table 8
Efficiency of lgWP for Gingko. Sampling Techniques are compared
to Exact Solution.

Precision

Exact 30%

Graph-Sampling
Iterations

Path-Sampling
# Paths

i=1 i=2 i=10 i=60
20% 26% 33% 20%

Table 9
Effectiveness for Aloe. Precision of the Ranking Techniques

of Diabetes Mellitus in the first 2 months after renal
transplants [48].

In our experiments, we can observe that the exact
lgWP ranking technique ranked among 2,228 terms:
Leukemia as second, Diabetes Mellitus as third, Kid-
ney Failure as 15th, Graft-vs-Host Disease as 22th
and Alzheimer Disease as 31st. Although the layered
graph for tacrolimus is very large and is composed of
592,211,756 paths, path-sampling was able to rank:
Leukemia as the top-1, Diabetes Mellitus as second,
Alzheimer Disease as 12th and Graft vs Host Dis-
ease as 16th, by just sampling 30 paths. Additionally,
graph-sampling ranked among 88 terms: Leukemia as
the top-1, Graft-vs-Host Disease as fourth, Kidney
Failure as seventh, Autoimmune Disease as 14th and
Crohn’s disease as 30th, in just one iteration. The num-
ber of nodes visited by graph-sampling was 85,087
during iteration 1, while path-sampling only generated
60 paths. Table 10 summarizes these results.

Additionally, we queried the LinkedCT dataset16 and
retrieved the clinical trials and the diseases for which
the effects of tacrolimus were studied. LinkedCT is an
RDF dataset of the Cloud of Linked Data, which main-
tains the trials published by the ClinicalTrials.gov web
site and their corresponding links to DBpedia, Drug-
Bank, Diseasome, DailyMed, GeoNames, PubMed,

16http://linkedct.org/index.html

etc. First, we ran a SPARQL query against LinkedCT to
output the diseases (condition_name) associated with
a clinical trial whose drug (intervention) is tacrolimus;
the answer is comprised of 70 diseases. Then, we com-
pared the top-15 terms identified by our ranking tech-
niques with respect to these 70 diseases, and computed
the percentage of the discovered terms, i.e., the preci-
sion of the discovered terms with respect to the dis-
eases retrieved from LinkedCT; Table 11 reports these
values. We can see that among the top-15 terms iden-
tified by our ranking techniques, at least 40% corre-
spond to associations already published in LinkedCT;
for up to 75% of the rest of the top-15 terms, there is
a bibliographical evidence of the relationship between
the corresponding term and tacrolimus.

Second, we retrieved the references of the condi-
tion names in DBpedia or Diseasome that are associ-
ated with a clinical trial whose drug (intervention) is
tacrolimus; we obtained 6 diseases. These references
were created by using the linking technique proposed
by Hassanzadeh et al. in [20]. We notice that our tech-
nique is able to detect all least 50% of the links found
by the Hassanzadeh’s approach for tacrolimus. Addi-
tionally, we could identify 9 more links that this tech-
nique was unable to find. This indicates that our pro-
posed ranking techniques provide a possible solution
to the problem of discovery meaningful links or val-
idating existing links between data in the Cloud of
Linked Data. Finally, we report on the number of vis-
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Baseline Exact lgWP Graph-Sampling Path-Sampling

Leukemia Leukemia (2nd) Leukemia (2nd) Leukemia (1st)
Diabetes Mellitus Diabetes Mellitus (3rd) Diabetes Mellitus (9th) Diabetes Mellitus (2nd)

Autoimmune Disease Autoimmune Disease (18th) Autoimmune Disease (14th) Autoimmune Disease (14th)
Liver Transplant Liver Disease (35th) Liver Disease (18th) _

Kidney Transplant Kidney Disease (20th) Kidney Disease (3rd) Kidney Disease (9th)
Bone Marrow Transplant Bone Marrow Disease (399th) _ _

Graft-vs-Host Disease Graft-vs-Host Disease (22th) Graft-vs-Host Disease (1st) Graft-vs-Host Disease (15th)
Crohn’s Disease Crohn’s Disease (70th) Crohn’s Disease (20th) Crohn’s Disease (27th)

Alzheimer’s Disease Alzheimer’s Disease (31st) Alzheimer’s Disease (44th) _

Table 10
Effectiveness for Tacrolimus. Ranking Techniques are compared to Baseline of Scientific Publications

Technique Precision w.r.t. Precision w.r.t. #Visited Nodes
LinkedCT Data LinkedCT Dereferences

Exact 40% 50% 5,569,784

Graph-Sampling
Iterations Iterations Iterations

i=1 i=2 i=1 i=2 i=1 i=2
40% 66% 75% 75% 0.83% 1.80%

Path-Sampling
Iterations Iterations Iterations

i=30 i=60 i=30 i=60 i=30 i=60
73% 53% 50% 75% 0.002% 0.005%

Table 11
Tacrolimus-Efficiency and Effectiveness of the Ranking Techniques

ited nodes; as in previous experiments, we observe that
the sampling techniques visited up to 4 orders of mag-
nitude less nodes than the exact solution, providing an
efficient solution to the problem of estimating novel
associations between drugs and diseases.

6.3.4. Discussion
In these three experiments we can observe the ef-

fectiveness of the ranking metric lgWP; in many cases
high scores are assigned to associations reported by
different sources, i.e., scientific publications, special-
ized web sites, RDF datasets or linked datasets. How-
ever, it can also be observed that a large number
of publications directly related to the studied drugs
or substances, can be irrelevant. Our techniques do
not only discover novel potential associations between
terms, but they also contribute to filter irrelevant con-
cepts, and provide a solution for searching relevant
publications or sources of scientific data that corrobo-
rate existing associations between drugs and diseases.

6.4. Effectiveness of the Ranking Techniques on
Bibliographic Data

Additionally, we consider DBLP bibliographic data,
and ran the exact ranking and the sampling techniques
to discover associations between a given author and the
most relevant conferences where this author has pub-
lished at least one paper. We ran 3 sets of 30 queries
and compared the ranking produced by the exact solu-
tion and the rankings produced by the sampling tech-
niques; layered Discovery Graphs were comprised of
5 layers with at most 876,110 nodes, 4,166,626 edges,
and 28,690 paths. Author’s names with high, medium
and low selectivity were considered; a highly selective
name corresponds to an author with less than 10 pub-
lications, and a low selective name is associated with
more than 300 publications.

The top-5 conferences associated with each author
were computed by using the exact ranking and the
approximation produced by graph-sampling and path-
sampling during 6 iterations; a conference is among
the most important conferences of a given author, if
the conference has had several editions and the au-
thor has published several papers in the conference. Ta-
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Fig. 6. DBLP- Spearman’s rho of Graph-Sampling and Path-Sam-
pling (Average;Standard Deviation)

ble 12 reports the average precision and standard de-
viation of the approximate top-5 conferences with re-
spect to the exact top-5. We can observe that graph-
sampling is able to identify almost 65% of the top-
5 conferences after iteration 3, and path-sampling by
just producing 250 paths, is able to reach a precision
of up to 82%; precision increases with the number of
samplings reaching up to 98%. Additionally, we mea-
sured Spearman’s rho of the top-5 terms produced by
the sampling techniques with regards to the top-5 pro-
duced by the exact solution; Figure 6 shows the aver-
age Spearman’s rho and the standard deviation. We can
observe that the orderings given by the sampling tech-
niques are close to the ones given by the exact solu-
tion, e.g., after producing 8,000 paths, path-sampling
produced a top-5 list whose order is almost the same
to the one given by the exact solution.

Furthermore, Figures 7(a) and 7(b) report the ex-
ecution time of graph-sampling and path-sampling;
these values include the time to load the graph and
the execution time. We can observe that both graph-
sampling and path-sampling, are able to reach a preci-
sion up to 98%, and produce a ranking relatively close
to the exact ranking after the second iteration of these
two algorithms; the execution time of the exact tech-
nique is one order of magnitude greater than the time
of two iterations. These results suggest that the pro-
posed discovery techniques provide an effective and
efficient solution to the problem of identifying associ-
ations between terms also in the bibliographic domain.

6.4.1. Discussion
In this experiment we can observe that even the bib-

liographic data is not annotated with controlled vocab-
ularies as MeSH, the authority-flow based metric is
able to capture the topology of graph that represents

the relationships between concepts, and provide mean-
ingful rankings. As in previous experiments, only a
reduced number of associations are possibly relevant;
thus, the effectiveness of sampling techniques that only
visit the terms that point to these relevant nodes are
required. As shown in Table 12 and Figure 7(b), our
sampling techniques seem to achieve this requirement
and efficiently and effectively identify the top-k terms.

7. Conclusions and Future Work

In this paper we have presented an authority-flow
based ranking metric that considers the topology of
the data connections as well as the semantic annota-
tions of the data, to identify potential novel annota-
tions. Biological objects (e.g., genes or proteins) or
clinical trials are annotated with controlled vocabulary
terms from ontologies such as GO, MeSH, SNOMED;
many of these datasets have been made available in
the Cloud of Linked Data, and their intra- and inter-
datasets links induce graphs that capture meaningful
knowledge. Thus, techniques that consider the topol-
ogy of these links may be useful to explain existing
phenomena, identify anomalies and potentially lead to
a new discovery. This hypothesis was corroborated in
this paper with two types of datasets, one comprised
of scientific publications and their annotations, and an-
other composed of bibliographic data; target concepts
that were part of dense sub-graphs correspond to rele-
vant concepts reported in specialized sources of data.

To identify the nodes that may be part of these dense
sub-graphs, we propose an authority-flow ranking met-
ric which ranks target objects in terms of the authority
transferred from their parents. We could observe that
this ranking technique is able to discriminate among a
large number of potential relevant concepts, those that
have been shown as relevant by Literature-based ap-
proaches as Manjal, or reported in scientific websites,
datasets or publications. We also could see that from
a large number of possible relevant concepts, a very
small number is actually relevant. So, approximate
techniques able to efficiently guide the search into the
space of these relevant concepts are required; based on
our experimental results, we could say that our pro-
posed approximate ranking techniques meet this re-
quirement and are able to efficiently traverse this space
and identify the potential relevant concepts reported
by other techniques or specialized sources of data. In
some cases, the provided approximation is even better
than the one found when the exact computation of the



Vidal, Rivera, Ibáñez, Raschid, Rodriguez, Ruckhaus / 21

Graph-Sampling

Selectivity i=1 i=2 i=3 i=4 i=5 i=6

high (39;40) (48;38) (63;35) (81;25) (82;25) (87;19)
medium (34;29) (56;33) (68;30) (72;28) (87;19) (89;15)

low (64;35) (66;36) (75;31) (80;29) (80;28) (81;28)

Path Sampling

Selectivity i=250 i=500 i=1,000 i=2,000 i=4,000 i=8,000

high (43;38) (66;33) (79;30) (87;19) (91:13) (96:8)
medium (66;32) (75;28) (83;23) (92;12) (98;5) (98;4)

low (82;26) (90;25) (94;20) (95;18) (95;18) (95;18)

Table 12
DBLP- Precision of Graph-Sampling and Path-Sampling DBLP(Average;Standard Deviation)
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Fig. 7. DBLP- Execution Time Exact Ranking versus Sampling Techniques (Time secs.)

ranking metric lgWP was performed. Additionally, the
experimental results suggest that the approximate tech-
niques can converge in few iterations; in many cases,
just a sample that corresponds to less than 1% of all
population is needed to reach high levels of accuracy.
Although we could observe that these techniques are
very efficient in terms of the number of visited nodes,
the same savings are not observed in the execution
time. The cause of this undesirable behavior is that the
time to transfer data from the database to main mem-
ory is the dominant contribution to the execution time
of a discovery request. So, these techniques should be
extended to retrieve from the database only the con-
cepts that contribute to the computation of the rele-
vant target objects. Also, the semantics encoded in the
controlled vocabularies used to annotate the objects,
may play an important role in the discovery process.
Thus, score functions able to capture relatedness be-
tween annotations should be also considered; these se-
mantic functions could reduce even more the search
space and increase the effectiveness of the techniques.
We note that in our experimental evaluation the im-

pact of the semantics encoded in the ontologies was
not reported; we just focused on showing the effects of
the topology of the links. Nevertheless, we also con-
ducted preliminary experiments considering the taxo-
nomic score function defined in Section 4.1; the accu-
racy of the discoveries was increased in cases where
the current techniques performed poorly.

In the future, we plan to apply these techniques
to inter-links between several datasets in the Cloud
of Linked Data, as well as define semantic similarity
measures to reflect the semantics encoded in the on-
tologies used to annotate the biological concepts and
support an Open World Assumption reasoning process.
Further, the sampling techniques should be also en-
hanced with the capability to reduce not only the tra-
versed nodes, but also to retrieve only the relevant ob-
jects from the dataset. So, these sampling techniques
will be incorporated to existing semantic management
approaches to only retrieve the elements that will be
part of the sub-graph that includes the potential novel
concepts. Finally, our current approach implements a
blocking query execution engine, where results are
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produced only after all the data is received from the
sources. This decision impacts on both execution time
and quality of the answer. In the future we plan to de-
velop adaptive and dynamic approaches able to adapt
the ranking process to unexpected data transfers and
discontinuous data arrivals.
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