® J oy s W N

s s s s s s s D D DWW W W W W W W W W NNNNNNNDNNN R R R R R R e R P e
H O W o < o 0 W N O W Jdo W N R O VW Do s W NP O LV ®Jd o0 W N R O ©

Semantic Web 0 (0) 1
10S Press

Using Berlin SPARQL Benchmark to
Evaluate Relational Database Virtual

SPARQL Endpoints

Milos Chaloupka ®”, and Martin Necasky ?

2 Faculty of Mathematics and Physics, Charles University, Czech Republic
E-mails: chaloupka@ksi.mff.cuni.cz, necasky @ksi.mff.cuni.cz

Abstract. The RDF is a well documented and popular format for publishing structured data on the web. It enables consuming
data without the knowledge of how the data is internally stored. There are already several native RDF storage solutions that
provide SPARQL endpoint. However, they are not widely adopted. It is still more common to store data in relational databases.

There are already several implementations of virtual SPARQL endpoints over a relational database. However, their consistent
evaluation is missing. On the other hand, for the native RDF storages there is a state of the art benchmark. In this paper, we show
how this well defined benchmark can be used to evaluate virtual SPARQL endpoints.

Keywords: RDB2RDF, R2RML, BSBM, SPARQL

1. Introduction

The RDF [1, 2] is a well documented and popular
format for publishing structured data on the web. It en-
ables consuming data without the knowledge of how
the data is internally stored. Moreover, it supports the
evolution of schemas without requiring changes in ser-
vices which consume the data. One of the features is
the ability to provide a web service which can be then
used by consumers to query the data using SPARQL
language [3], so called SPARQL endpoint.

There are already several native RDF storage solu-
tions that provide SPARQL endpoint. However, they
are not widely adopted. It is still more common to
store data in relational databases. For example, the top
4 database engines in the ranking of database engines'
are primarily relational. There is no database engine
with native RDF support in top 30 engines.

There is a difference between how data is usually
stored and how it should be ideally published. There
has been various attempts to close this gap and a W3C

*Corresponding author. E-mail: chaloupka @ksi.mff.cuni.cz.
I'See https://db-engines.com/en/ranking, visited February 2020

Working Group has been established? several years
ago. The group has produced several standards [4, 5]
which specify the transformation of relational data to
RDF representation.

However, the transformation of relational data may
not be always an ideal solution. Especially, when
a SPARQL endpoint is needed then it is needed to load
the transformed data into some RDF storage. In that
case, it would be ideal to build a virtual SPARQL end-
point directly over a relational database. In that case,
the RDF data is not materialized before querying. This
is achieved by transforming a given SPARQL query to
a corresponding relational query and then transforming
the relational result to its RDF equivalent. This allows
customers to treat the underlying relational database as
if it was a native RDF storage without the need to store
the dataset in two systems and synchronise between
them.

There are already several implementations of virtual
SPARQL endpoints over a relational database. How-
ever, their consistent evaluation is missing. There is

2See https://www.w3.0rg/2001/sw/rdb2rdf/, visited March 2020

1570-0844/0-1900/$35.00 © 0 — IOS Press and the authors. All rights reserved

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

mailto:chaloupka@ksi.mff.cuni.cz
mailto:necasky@ksi.mff.cuni.cz
mailto:chaloupka@ksi.mff.cuni.cz
https://db-engines.com/en/ranking
https://www.w3.org/2001/sw/rdb2rdf/

® J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

2 M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints

a state of the art benchmark for the native RDF stor-
ages. In this paper, we show how this well defined
benchmark can be used to evaluate virtual SPARQL
endpoints.

1.1. Contribution

In this paper, we use a state of the art SPARQL
benchmark (Berlin SPARQL Benchmark [6]) to evalu-
ate existing approaches to a virtual SPARQL endpoint
over a relational database. In particular, the paper has
the following contributions:

1. We define aspects that are used to evaluate a vir-
tual SPARQL endpoint solution.

2. We define the mapping from a relational database
to an RDF dataset for Berlin SPARQL Bench-
mark and identify the limitations of such map-
ping.

3. We identify the gaps of Berlin SPARQL Bench-
mark framework and provide what is needed to
use the framework to evaluate a virtual SPARQL
endpoint solution.

4. We evaluate existing virtual SPARQL endpoint
solutions.

5. We provide all required information, scripts and
tools to repeat the evaluation again.

In section 2, we describe the Berlin SPARQL
Benchmark. In section 3, we explain how a mapping
from a relational database to an RDF dataset can be
defined, also describing the specific mapping. In sec-
tion 4, we describe the existing virtual SPARQL end-
point solutions and how we have selected them. In sec-
tion 5 we list related work to virtual SPARQL endpoint
benchmarks. In section 6, the performed evaluation is
described and the evaluation results are provided.

2. Berlin SPARQL Benchmark

The Berlin SPARQL Benchmark (BSBM) [6] is the
state of the art benchmark for SPARQL endpoints.
The benchmark defines an RDF dataset and SPARQL
queries to be executed. Moreover, it defines a seman-
tically identical relational dataset and provides a tool
to generate data and a test driver to run the benchmark
over a SPARQL endpoint. The latest version of the
benchmark is thoroughly described in [7].

BSBM is built around an e-commerce use case - of-
fering a set of products by various vendors and dif-
ferent customers that wrote a review about the prod-

dataFromProducerl41ll:Product1435443

rdf:type bsbm:Product;

rdf:type bsbm-inst:ProductTypel342;

rdfs:label "Canon Ixus 20010";

rdfs:comment

"Mit ihrer hochwertigen Verarbeitung, innovativen

Technologie und faszinierenden Erscheinung

verkdrpern Digital IXUS Modelle die hohe Kunst

des Canon Design.";

bsbm:producer bsbm-inst:Producer001411;
bsbm:productFeature bsbm-inst:ProductFeature3432;
bsbm:productFeature

bsbm-inst:ProductFeaturel03433;
bsbm:productFeature

bsbm-inst:ProductFeature990433;
bsbm:productPropertyTextuall "New this year.";
bsbm:productPropertyTextual2

"Special Lens with special focus.";
bsbm:productPropertyNumericl "1820"""xsd:Integer;
bsbm:productPropertyNumeric2 "140"""xsd:Integer;
bsbm:productPropertyNumeric3 "17"""xsd:Integer;
dc:publisher dataFromProducerl4ll:Producerl4ll;
dc:date "2008-02-13"""xsd:date.

Fig. 1. Sample RDF representation of a product

ProductFeature (nr, label, comment, publisher,
publishDate)

ProductType (nr, label, comment, parent, publisher,
publishDate)

Producer (nr, label, comment, homepage, country,
publisher, publishDate)

Product (nr, label, comment, producer, propertyNuml,
propertyNum2, propertyNum3, propertyNum4,
propertyNumb, propertyNum6, propertyTexl,
propertyTex2, propertyTex3, propertyTex4,
propertyTex5, propertyTex6, publisher,
publishDate)

ProductTypeProduct (product, productType)

ProductFeatureProduct (product, productFeature)

Vendor (nr, label, comment, homepage, country,
publisher, publishDate)

Offer (nr, product, producer, vendor, price,
validFrom, validTo, deliveryDays, offerWebpage,
publisher, publishDate)

Person (nr, name, mbox_shalsum, country, publisher,
publishDate)

Review (nr, product, producer, person, reviewDate,
title, text, language, ratingl, rating2, rating3,
rating4, publisher, publishDate)

Fig. 2. Relational dataset for BSBM

ucts. The products are categorized using their types
and features. In the RDF representation, there are
8 classes: Product, Product Type, Product Feature, Pro-
ducer, Vendor, Offer, Person and a Review. On Fig-
ure 1 there is a sample representation of a single prod-
uct. In the relational representation, there are 8§ ta-
bles representing the classes and two additional tables.
One table contains the relationships between products
and product types and the other one between products
and product features. All tables are listed with their
columns in Figure 2.

=W N e

@ J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© 0 d o U W N

s s s s s s s D D DWW W W W W W W W W NNNNNNNDNNN R R R R R R e R P e
H O W © < o 0 W N FE O VW Jdo W N R O VW Do s W N R O WV ®Jd o W NP O

M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints 3

The dataset can be scaled using one variable: the
count of products. According to the number of prod-
ucts, the count of other entities is defined. As the prod-
uct count increases, the total amount of triples in-
creases almost in a linear fashion. For example, million
of triples is in the dataset with 2785 products.

As soon as the RDF dataset is available using
a SPARQL endpoint, it is possible to run the bench-
mark using a provided test driver. The test driver sup-
ports specifying custom queries, but it is also possible
to use a predefined use case. The Explore use case il-
lustrates queries executed when a consumer is navigat-
ing in an e-commerce system and searching for a prod-
uct. This use case is usually used to benchmark the
performance of a SPARQL endpoints. The Explore use
case consists of 12 queries (defined in [7]):

1. Find products for a given set of generic features.
2. Retrieve basic information about a specific prod-
uct for display purposes.
3. Find products for a given more specific set of fea-
tures.
4. Find products matching two different sets of fea-
tures.
5. Find products that are similar to a given product.
6. Find products having a label that contains a spe-
cific string.
7. Retrieve in-depth information about a specific
product including offers and reviews.
8. Give me recent German reviews for a specific
product.
9. Get information about a reviewer.
10. Get offers for a given product which fulfill spe-
cific requirements.
11. Get all information about an offer.
12. Export information about an offer into another
schemata.

The complete Explore use case query mix is the fol-
lowing sequence of 25 queries: 1, 2,2,3,2,2,4,2, 2,
57,7,517,7,8,9,9,8,9,9, 10, 10, 11 and 12. The
query 6 is no longer used in the query mix. The queries
contain parameters assigned randomly during an ex-
ecution. So, although query 2 is present in the query
mix six times, it retrieves information about different
products. The query mix is designed to focus on some
queries more than others to match a real e-commerce
use case.

3. Mapping from relational database to RDF
dataset

To present a relational database as an RDF dataset,
one needs to define a mapping. The mapping can be
either created automatically or defined by a user. The
latter usually provides a precise way to declare how the
RDF representations should look like while the auto-
matic approach provides a fast way to get some RDF
data. Several tools provided the ability to transform
arelational query to an RDF dataset even before a stan-
dard for mapping existed [8]. For example, the state of
the art tool D2RQ [9, 10] used their proprietary map-
ping language, and the tool provided even the ability
to create a virtual SPARQL endpoint. Later, the W3C
RDB2RDF Working Group created two standards: Di-
rect Mapping [4] and R2RML [5].

The Direct Mapping is the standard for automati-
cally defined mapping. It works in a way that every ta-
ble definition is transformed to an RDF class. Every
row in the table represents an RDF resource which is
an instance of the corresponding class. An RDF triple
is generated for each cell. The primary key of the table
is used to generate the subject of the triple. The pred-
icate is generated according to the column name, and
the object is usually a literal created from the value in
the cell. An IRI valued object is created if and only if
the column has a foreign key constraint.

Automatically created mapping can be used to gen-
erate an RDF dataset if there are no requirements on
the representation. That is useful especially when the
RDF data are then immediately processed using tools
supporting SPARQL. Therefore the transformation to
a final RDF form is done with these tools. If we want to
publish the RDF data directly, it is more convenient if
the mapping can be customized in the mapping. When
a user wants to create a virtual SPARQL endpoint over
a relational database, it is essential to map the rela-
tional data directly to the final RDF form.

3.1. R2ZRML

The R2RML [5] is a language to express user-
defined mappings. The standard defines a set of map-
ping options and standardizes how a relational dataset
should be transformed using an R2ZRML mapping.

The R2RML mapping declares how the whole RDF
dataset can be generated from a relational database.
It defines which relational queries should be executed
- so called logical tables. The logical table can be either
the name of a relational table or any user-defined SQL

W O d oy U W NP

[T N N N N N Ot O O O O R O O O N S N R S
H O W 9 o U W NP O W W Jdo U W N R O WV o Jo U s W NP O VW W Jdo U s W NP O

® J oy s W N

| ¥

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4 M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints

TriplesMap

¢

LogicalTable
1

SubjectMap

*

*

PredicateMap PredicateObjectMap
¢
*
ObjectMap |(«——
*
] RefObjectMap

Fig. 3. An overview of R2ZRML triples map [5]

SELECT statement. After executing a relational query,
the corresponding mapping declares a set of rules to
generate RDF triples based on every returned row in
the result.

Triples generated from a single result row share the
same subject defined by subject map and the gener-
ated triples are based on individual predicate object
maps. An individual generated triple is based on the
predicate-object map. It defines how to generate the
predicate (using the predicate map) and the object (us-
ing the object map). The generated RDF term can be
defined either as a constant, a column value or a tem-
plate. The template prescribes how to merge one or
more column values into a text value. That is essential
to generate IRIs. For literal RDF terms, it is possible to
declare their data type or language. However, both the
data type and language cannot be generated using the
underlying SQL query. They are constant for all terms
generated from the particular mapping. If no data type
and language is declared and the value is generated
from column values then the data type is automatically
chosen according to the type of the relational column.

There is also an alternative way to generate IRIs as
objects. It is possible to define the value as a reference
to a different triples map. In that case, the object IRI
is generated using the referenced triples map subject.
However, the referenced triples map subject is based
on a different logical table. Therefore, for this partic-
ular mapping it is needed to execute relational queries
for the logical tables of both triples map and using the
defined join (as part of the ref object map) and to pair
their rows together and allows to generate all parts of
the RDF triple.

The whole triples map schema is shown on Figure
3. To generate the complete RDF dataset from a re-

foreach (tm :
{

// Generate triples using PredicateObjectMap
query = getQuery (tm.logicalTable)

mapping.triplesmaps)

foreach
foreach
foreach
foreach
{

s = generateRDFTerm(row, tm.subjectMap)
p = generateRDFTerm(row, pm)

o = generateRDFTerm(row, om)

yield return RDFTriple(s, p, o)

}

row : execute(query))

pom : tm.predicateObjectMaps)
pm : tm.predicateMaps)

om : tm.objectMaps)

// Generate triples using RefObjectMap
foreach(pom : tm.predicateObjectMaps)
foreach(rom : pom.refObjectMaps)

{

query = getQuery (tm.logicalTable, rom)

foreach (row :
foreach (pm :
{

s
p
o

execute (query))
tm.predicateMaps)

generateRDFTerm (row, tm.subjectMap)

generateRDFTerm (row, pm)

generateRDFTerm (row,

rom.parentTriplesMap.subjectMap)
yield return RDFTriple(s, p, o)

138

Fig. 4. Generating RDF triples using RZRML

lational database, it is needed to follow the rules for
all triples map. A simplified way of using R2RML
mapping to generate an RDF dataset from a relational
database is shown on Figure 4. It does not cover all
possibilities of the R2ZRML standards, but it provides
the main idea of generating triples using an R2ZRML
mapping.

The usage of an RZRML mapping to create a vir-
tual SPARQL endpoint does not have any standard-
ized approach. The only requirement is that the vir-
tual SPARQL endpoint has to be transparent for users.
That means that a user should not be able to distinguish
between a virtual SPARQL endpoint over a relational
database and a SPARQL endpoint over an RDF dataset
generated from the same relational database.

3.2. Mapping for Berlin SPARQL Benchmark

Although the BSBM toolset offers the capability
to generate both relational and RDF dataset, there is
not defined any mapping between these two datasets.
Therefore, before any evaluation it is needed to de-
fine the corresponding R2ZRML mapping. We have re-
stricted us to create an RZRML mapping without using
user-defined SQL statements as logical tables. It allows
the tools to perform any available optimizations as it
has complete information from the relational schema

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

® J oy s W N

s s s s s s s D D DWW W W W W W W W W NNNNNNNDNNN R R R R R R e R P e
H O W o < o 0 W N O W Jdo W N R O VW Do s W NP O LV ®Jd o0 W N R O ©

M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints 5

about keys and indexes. This restriction is specific to
virtual SPARQL endpoints. There is no need for a sim-
ilar restriction when a whole RDF dataset is generated
from a relational database.

The first issue is that using the R2ZRML standard it is
not possible to declare the RDF type and language of
a literal other than a constant. However, as shown on
Figure 2 there is a table Review with columns text
and language. These two columns should be com-
bined to create a literal. This is not supported in the
R2RML standard as the language for any literal has to
be specified as a constant in the mapping file. There is
a possible workaround - one can create a triples map
for every language possible and as a logical table there
can be a SQL query filtering the rows by language.
That would break the restriction we set on us. More-
over, that would be hard to maintain as it would require
a specific mapping for every possible language. There-
fore, we have decided to dismiss this functionality and
treat all languages as "en".

The other issue is related to another limitation of
R2RML. Using the ref object map, it allows to ref-
erence a TriplesMap for object values using a de-
fined join condition. However, the join condition is ex-
pressed as a set of columns that should be used for join-
ing the corresponding logical tables. This corresponds
to the concept of foreign join conditions in relational
databases. It usually represents relationships with car-
dinality 1:1 or 1:N. To represent cardinality M:N, an
extra table can be used - a table that contains keys to
both corresponding tables. For this relationship, there
is no specific support in RZRML. It can be modeled by
a specific triples map for the relationships table.

However, this approach works under a condition,
that the relationships table contains all information
needed to construct subject values. Only object values
can be defined as a reference to another triples map.
Subject values are constructed only using a logical ta-
ble. Based on our restriction, that means that subject
values can be constructed using only the columns in
the relationship tables.

This condition is not met in the BSBM dataset. For
example, a product instance (see Figure 1) is gener-
ated using three tables. The table Product is used
to generate most of the properties. The subject is gen-
erated using the columns publisher and nr. How-
ever, the column publisher is only in this table
and not in the other ones containing data for prod-
uct instances: table Product TypeProduct which
contains the relationship with product types and a ta-
ble ProductFeatureProduct which contains the

relationship with product features. To solve this is-
sue we decided to modify the BSBM tooling, so the
publisher column is not a part of IRIs. As an
example, a triple from Figure 1 is modified to have
a subject bsbm-inst :Product1435443 and the
object for predicate dc:publisher is modified to
bsbm-inst:Producer1411. The only difference
is that the namespaces are not prefixed by publishers
and the global bsbm—-inst is used.

One of our key aimed contributions is to make the
evaluation repeatable. Therefore, all changes made to
the BSBM benchmark are published in a github repos-
itory.> There is also the final mapping file in the same
repository.*

4. Evaluated virtual endpoints

To identify the tools for the evaluation, we have used
Google Scholar’ to find mentions of virtual SPARQL
endpoints in last three years.

There are various approaches to the SPARQL vir-
tual endpoint implementations. One of the first tools is
the D2RQ Platform [9, 10]. However, this tool has not
been updated for several years.® It was initially created
before the W3C standards were introduced and there-
fore the tool does not support the RZRML mapping.
The tool transforms a given SPARQL query into multi-
ple relational queries and then processes the results in
memory. This causes memory and performance issues.
Because the tool has not been updated for several years
and it does not have a support of RZRML standard, we
have decided not to include it in our evaluation.

There was an unrelated research focused on SPARQL
to SQL translation by Chebotko [11, 12]. This ap-
proach was focused to use only a single relational
query but it required to have a specific relational
schema - a single table with three columns: one for
subject, one for predicate and one for object. The
Chebotko’s approach was later used to create Ultra-
wrap [13]. It prepares an "R2RML view", a single sub-
query which returns all triples according according to
the R2RML file. That is a union of multiple select
statements, one for every predicate object mapping.

3It can be found in our fork of the BSBM repository: https:
//github.com/mchaloupka/bsbm-r2rml, visited February 2020

4The file can be accessed on https:/github.com/mchaloupka/
bsbm-r2rml/blob/develop/src/main/dist/rdb2rdf/mapping.ttl, visited
February 2020

5See https://scholar.google.com/, visited November 2019

6See http://d2rq.org/, visited March 2020

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/mchaloupka/bsbm-r2rml
https://github.com/mchaloupka/bsbm-r2rml
https://github.com/mchaloupka/bsbm-r2rml/blob/develop/src/main/dist/rdb2rdf/mapping.ttl
https://github.com/mchaloupka/bsbm-r2rml/blob/develop/src/main/dist/rdb2rdf/mapping.ttl
https://scholar.google.com/
http://d2rq.org/

© 0 d o U W N

s s s s s s s D D DWW W W W W W W W W NNNNNNNDNNN R R R R R R e R P e
H O W © < o 0 W N FE O VW Jdo W N R O VW Do s W N R O WV ®Jd o W NP O

6 M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints

The Ultrawrap solution has been commercialized and
the author did not wanted to make it available for re-
search purposes. Therefore, we were not able to eval-
uate this tool.

4.1. Morph

The Morph translation algorithm [14] is also based
on Chebotko’s approach. They redefine the approach
so it does not require to have the data prepared in
an "R2RML view" as it is done in Ultrawrap. The
main idea is that for every basic graph pattern it adds
a subquery. The subquery is similar to the mentioned
"R2RML view" but it is optimized. The view is based
only on the mappings that may not be immediately fil-
tered out. For example, if the basic graph pattern de-
fines the predicate of matching triples the generated
subquery will not use the mappings that produce a dif-
ferent predicate. After that, various optimization of the
relational are applied.

4.2. Ontop

Lately, the Ontop framework has added support to
provide virtual SPARQL endpoint [15-17]. The query
translation algorithm uses the data ontology to gen-
erate relational queries. The ontology is based on the
mapping and the schema of the underlying relational
database. Moreover, the tool uses several SQL opti-
mization methods to further optimize the queries. The
tool has been adopted in various academic and indus-
trial use cases.’

4.3. SparqlMap

Previously mentioned solutions Ultrawrap, Morph
and Ontop use a simple SPARQL variable represen-
tation in SPARQL queries (described in [18]). That
means that a SPARQL variable value is represented in
the result of a relational query using a single column.
There may be additional columns to provide type or
language but the actual value is stored in a single col-
umn. The authors of SparqlMap [19] have chosen a dif-
ferent approach. For the variable representation, they
represent a variable using multiple columns - one for
string, one for boolean, one for numeric and one for
date time values. Moreover, they use one or more addi-
tional columns to represent IRI values. As evaluated in

7See https://ontop-vkg.org/research/#projects, visited March
2020

[18], this approach gives the ability to correctly handle
various corner cases in the SPARQL to SQL transfor-
mation but for a performance cost.

4.4. EVI

The EVI solution [20] has a goal to produce SPARQL
queries that are as close to manually written relational
queries as possible. The main concept is based on
value binders - another output of the transformation of
a given SPARQL query. The value binders represent
how the SPARQL result for a given SPARQL query
should be reconstructed from the relational result of
the corresponding relational query. A simple variant
of that approach was already used in the D2RQ solu-
tion but it was processed in memory. The EVI solu-
tion processes in memory only single rows from rela-
tional results as every SPARQL query is transformed
to a single relational query. However, the value binders
are used even during the transformation algorithm -
as a SPARQL variable can be potentially represented
by any columns, the transformation algorithm is using
them to understand the variables at any point of the
transformation.

5. Related work

As mentioned in section 4, one of the pioneering
transformation solutions is the D2RQ Platform. The
tool was later compared against native RDF storages
using the Berlin SPARQL Benchmark [21] and using
a real world scenario [22].

There are various surveys about approaches for
transformation of relational database into RDF [23—
25]. However, these surveys are focused mainly on the
supported features and how the tools internally work.

We have not found any benchmark of the available
solutions, except the ones that were published together
with them. The Ultrawrap solution was compared to
native RDF storages [13]. The Morph and SparqlMap
solution was compared to the D2RQ solution [14, 19].
The Ontop solution was compared to native RDF stor-
ages [16]. The EVI solution was compared to the On-
top solution and to a native RDF storage [20].

However, we have not identified any work that com-
pares these solutions against each other. Moreover, the
solutions does not even use a unified approach to eval-
uation. Although, some of them use the BSBM bench-
mark, the details of how the benchmark was used is
not described. As mentioned in section 3.2, the BSBM

W O d oy U W NP

[T N N N N N Ot O O O O R O O O N S N R S
H O W 9 o U W NP O W W Jdo U W N R O WV o Jo U s W NP O VW W Jdo U s W NP O

https://ontop-vkg.org/research/#projects

® J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49
50
51

M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints 7

tooling cannot be used as it is so they had to modify
the benchmark somehow.

6. Evaluation

In this paper, the evaluation is focused only on the
aspects which can be evaluated using the described
BSBM tooling. We do not cover support, soundness
or performance for SPARQL queries and parts of
R2RML standard that are not part of the BSBM query
mix.

The evaluation consists of the following aspects:

— Usability - What does it take to deploy, configure
and run the virtual SPARQL endpoint.

— Completeness - Support for the selected use case.

— Soundness - For the supported queries, verify that
they provide correct results.

— Performance - How long does it take to execute
the selected use case.

The following subsections describe the details of
evaluating the individual aspects and the evaluation re-
sults.

6.1. Usability

The usability evaluation evaluates how hard it is to
get the tool running.

For every tool, we needed to get a virtual SPARQL
endpoint running using an R2RML file. Ideally, it
should be clear from the provided documentation how
to run the tool and it should not involve multiple steps.
Moreover, it should be correctly documented. It is an
advantage, if there is a living community around the
tool, so if an issue is raised, there is someone able to
help.

We assign a point for every satisfied aspect. The as-
pects were evaluated as follows:

— Quick start guide - an available quick start guide
- at least a short documentation describing how to
start the tool should be available.

— Documentation - a complete documentation as it
would be expected from a mature product, de-
scribing various use cases, referencing other re-
quired tools and standards.

— Active community - as all tools are available on
GitHub,? we give this point if at least 100 users
are watching the repository.

8See https://github.com/, visited March 2020

— Easy to try - following the provided user guide, it
should not require any technical skills to execute
a sample query.

— Easy to use - an extra point for the tool, if it is not
only easy to evaluate a sample query but it also
quickly provides the SPARQL endpoint given the
connection string and the R2ZRML mapping. Ide-
ally, there should be a single command to start the
endpoint.

The Morph solution is available as open source.’

There is a guide which shows how to run a single
SPARQL query. For each query execution, it is needed
to prepare a file containing the following information:

Database connection

Path of the R2RML file

Output path for the results file

Path of a file containing the SPARQL query

With such a file it is possible to execute a Morph
tool to execute the SPARQL query over a relational
database.

We have not found out how to create a running
SPARQL endpoint. There is no comprehensive docu-
mentation, but according to the code it seems to be an
unsupported feature. There is almost no community,
the tool seems to be maintained by a single person (F.
Priyatna) but according to the issue tracking, it seems
that there are few active users.

The SparqlMap solution is also available as open
source.'? There is a documentation explaining how to
run a SPARQL endpoint. The SPARQL endpoint can
be started by a single command with several parame-
ters specifying path to the R2ZRML mapping and the
access to the database. It worked without any signifi-
cant issues except the fact that the SPARQL endpoint
runs on a slightly different address than what is docu-
mented.'!

The community situation is similar to the Morph
community. The tool seems to be maintained by a sin-
gle person (J. Unbehauen). According to the issue
tracking, it seems that there are few active users.

9See https://github.com/oeg-upm/morph-rdb, visited February
2020

10See https://github.com/tomatophantastico/sparqlmap, visited
February 2020

""The documentation declares that the endpoint to be accessible
on localhost:8080/sparqgl but the endpoint is accessible on
http://localhost:8090/api/RO0OT/sparqgl.

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/
https://github.com/oeg-upm/morph-rdb
https://github.com/tomatophantastico/sparqlmap

® J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

8 M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints

The Ontop solution is available as open source.'?

There is also a portal'® where the tool is documented.

The tool originally required a proprietary mapping
format. They provided a Protege'* plugin to do the
conversion. The endpoint was actually an extension
to Sesame Workbench.!> A user had to define a new
Sesame repository as a virtual RDF store and provide
a path to the files which contains the mapping.

However, starting from version 3'® they support
R2RML directly and also provide CLI tool to perform
the mapping format conversions. It also provides the
ability to start an endpoint with any additional tools.
Moreover, a docker container is provided.'”

The Ontop solution has the most living commu-
nity from the evaluated tools. There are several people
(mainly from a research group at the Free University of
Bozen Bolzano) contributing to the project. According
to the issue tracking, it seems that there are several ac-
tive users. Moreover, the repository has a bigger traffic
than other solutions so it seems that there is the biggest
development.

Even the EVI solution is available as open source.
It is available as a library, but there is an additional
repository which provides the virtual SPARQL end-
point. The SPARQL endpoint can be started by run-
ning a single command with several parameters spec-
ifying for example the path to the RZRML mapping
and the access to the database. It is also possible to use
a configuration file to provide these values.

There is no community around this tool. The tool
is developed and maintained by a single person (M.
Chaloupka) and there are almost no issues from other
users.

The summary of the points given to individual tools
is shown in the table 1. The Ontop solution has re-
ceived more points than any other solution.

18

6.2. Completeness

The completeness evaluation measures whether the
tool is able to execute the Berlin SPARQL Bench-
mark queries as described in section 2. For the ex-

12See https://github.com/ontop/ontop, visited February 2020

13See https://ontop-vkg.org/, visited February 2020

14See https://protege.stanford.edu/, visited February 2020

15See https://rdf4].org/, visited February 2020

16See https://github.com/ontop/ontop/releases/tag/ontop-3.0.0,
visited February 2020

17See https://hub.docker.com/r/ontop/ontop-endpoint, visited
February 2020

18See https://mchaloupka.github.io/EVT/, visited February 2020

Table 1

The usability evaluation results

Morph | SparqlMap | Ontop | EVI

Quick start guide v v v v
Documentation X 4 v X
Active community X X v X
Easy to try v v v v
Easy to use X v v v
Total 2 4 5 3

ecuted queries, we do not consider whether the re-
turned results are correct, only whether the tool is
able to process the mapping, receive a query using an
HTTP-based SPARQL endpoint, connect to a database
and return some results. Moreover, in terms of com-
pleteness we care also which ones of the main rela-
tional database engines are supported by the tool. For
the evaluation, we consider Oracle,!®* MS SQL? and
MySQL?! database engines. They were selected based
on their ranking.??

For completeness, we decided to give points in
a way that reflects the ability to execute the BSBM
queries using an HTTP-based SPARQL endpoint on a
selected relational database. For every supported query
from the selected BSBM use case we give 1 point
for every suppported relational database engine and
1 more point if the solution provides an HTTP-based
SPARQL endpoint out of the box. So, for example, if
a solution provides an HTTP-based SPARQL endpoint
and supports 4 queries on 2 database engines we will
give the solution 12 points.

As already mentioned, we have not found a way of
how to start an HTTP-based SPARQL endpoint us-
ing the Morph solution. Therefore the BSBM tooling
was not able to access it. However, we were able to
try the queries manually. The solution supports vari-
ous database engines (including MS SQL, Oracle and
MySQL). We were able to execute a simple SELECT
query with WHERE clause containing only one basic
graph pattern. However, all the queries in the selected
BSBM use case failed to execute. We reported this is-
sue.?

19See https://www.oracle.com/database/, visited February 2020

205ee https://www.microsoft.com/en-us/sql-server/
sql-server-2019, visited February 2020

21See https://www.mysql.com/, visited February 2020

22See https://db-engines.com/en/ranking_trend/relational+dbms,
visited February 2020

23See https://github.com/oeg-upm/morph-rdb/issues/34, reported
June 2018, in February 2020 the issue is still opened

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/ontop/ontop
https://ontop-vkg.org/
https://protege.stanford.edu/
https://rdf4j.org/
https://github.com/ontop/ontop/releases/tag/ontop-3.0.0
https://hub.docker.com/r/ontop/ontop-endpoint
https://mchaloupka.github.io/EVI/
https://www.oracle.com/database/
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.mysql.com/
https://db-engines.com/en/ranking_trend/relational+dbms
https://github.com/oeg-upm/morph-rdb/issues/34

® J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints 9

Table 2
Completeness evaluation results
Morph | SparqMap | Ontop | EVI
HTTP endpoint X v 4 v
RDBS support 3 3 3 1
Supported queries 0 0 12 12
Points 0 0 48 24

The SparqlMap solution supports various database
engines (including MS SQL, Oracle and MySQL).
However, we encountered a similar issue as with the
Morph solution. We were able to execute a simple
query but we were not able to execute any complex
query that is used in the BSBM use case. We reported
this issue.?

The Ontop solution supports various database en-
gines (including MS SQL, Oracle and MySQL). We
were able to execute all twelve queries from the se-
lected use case.

The EVI solution supports only one database engine
right now - MS SQL. However, using this set up we
were able to execute all queries from the selected use
case.

The summary of the completeness evaluation is
shown in Table 2. According to this table, the only two
solutions usable for the BSBM benchmark use case are
Ontop and EVI. The Ontop solution provides a wider
range of database engines supported, so from the com-
pleteness perspective Ontop gets the best results.

6.3. Soundness

The soundness evaluation measures correctness of
the results of particular queries from the BSBM use
case. As described in the completeness evaluation, the
Morph and SparqlMap solutions are not able to ex-
ecute any of the SPARQL queries from the selected
BSBM use case. Therefore, the soundness is evaluated
only for Ontop and EVI.

To evaluate the queries we not only checked the re-
sults but we also checked the relational queries used.
To avoid the situation when the result would be correct
only by coincidence. Moreover, in case that the results
are not correct we wanted to understand what exactly
is the issue. and to understand why the results are not
correct. We have done that using a profiling tool which
is a part of MS SQL. We have found that both tools
generate very different queries.

24See https://github.com/tomatophantastico/sparqlmap/issues/35,
reported May 2018, in February 2020 the issue is still opened

We have identified one issue using the Ontop solu-
tion. The Query 11 is processed by Ontop almost cor-
rectly. Simply said, the query takes an object X and re-
trieves all triples in the form {X, _,_} or {_,_,X}.
The Ontop solution transforms the input SPARQL
query to an union which should cover all possibilities.
In the used mapping there are some triples where the
object is an IRI directly generated from a column value
(representing web pages). The problem is, that Ontop
seems to lose the information that the object should
be an IRI and not a string. Therefore, the Ontop so-
lution does not consider these values when evaluating
the Query 11.

The Ontop solution represents a SPARQL variable
in arelational query using three columns to identify the
type, language and the actual value of the variable. We
have described it in the paper [18]. The main issue of
this approach is that a relational column is typed (for
all result rows the type is the same) while a SPARQL
variable is not typed (every result can have the vari-
able mapped to a value with a different type). Ontop
used to solve this by using always a string column.
As a consequence, it means that the native relational
sorting does not work correctly - for example, 10 is
treated as smaller than 5 as even numbers are treated
as strings. This issue would happen in the query 10,
but we have found that the Ontop has fixed this issue.
They use DECIMAL to represent the numeric value. It
is possible that in some corner cases, the approach will
not be correct but using the BSBM queries we have not
found any issue.

We have also observed that the Ontop solution
does not always use a single relational query which
corresponds completely to the SPARQL query. The
DESCRIBE clause is performed as several relational
queries - first to retrieve a list of objects to be described
and the following ones to retrieve the object descrip-
tions. Moreover, it seems that the Ontop preloads the
list of RDF classes that are present in the dataset. As
some of the classes are defined in the database, it has
to load some data into memory. This approach have its
advantages and disadvantages. On one hand, it is able
to optimize SPARQL queries as it is able to produce
optimized queries as it knows which classes exist and
it is not needed to query it every time. On the other
hand, if the database data changes often the preloaded
set of classes will not be up to date and therefore the
queries may not be handled correctly. However, this is
not included in our evaluation results as in our evalua-
tion we do not focus on a scenario when the database
changes over time.

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/tomatophantastico/sparqlmap/issues/35

® J oy s W N

SO s s D s s DWW W W W W W WwWw W NN NN R R R R e R R R e e
4 o0 A W N P O LV ® Jd o0 e WD PR O LW ®Jo O W NP O W Joe U s W N R O ©

48
49
50
51

10 M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints

Table 3
Soundness evaluation results
Ontop | EVI
Query 1 v v
Query 2 v v
Query 3 v v
Query 4 v v
Query 5 v v
Query 6 v v
Query 7 v v
Query 8 v v
Query 9 v v
Query 10 v v
Query 11 X v
Query 12 v v
Correct queries 11 12

To summarize the soundness evaluation, we de-
cided to give 1 point per every correct query. As men-
tioned above, using the BSBM queries, we have found
that one case is not handled correctly by the Ontop so-
lution. We list our findings in Table 3.

6.4. Performance

The BSBM test driver measures the performance
of a provided SPARQL endpoint. The performance is
measured in the terms of how many query mixes per
hour are executed. However, the benchmark can be ad-
justed using two main arguments: how big the dataset
is and how many clients runs the queries at the same
time. The usable scale depends on the used machine.
We have used an Ubuntu Linux virtual machine hosted
in Azure. The used machine size is D4sv3 which pro-
vides 4 virtual CPUs and 16GB of RAM with storage
of 120GB. Based on the performance of that machine,
we have selected the arguments as all combinations of
the following:

— The generated BSBM dataset with the product
count of 10, 100, 1000, 10000, 100000, 200000,
500000 or 1000000

— The BSBM test driver client count of 1, 2, 4, 8,
16 or 32

To simplify the execution and to make the measure-
ment repeatable, we provided the whole benchmark as
a script® that can be easily executed again.

23See https://github.com/mchaloupka/r2rml-benchmark, visited
February 2020

As we already mentioned in section 3.2, we have
slightly updated the BSBM benchmark. Originally, the
BSBM benchmark is not able to generate other than
MySQL dataset for a relational database. We have
added a support for a MS SQL dataset in the exactly
same way as MySQL is done. Moreover, we have
added the ability to generate multiple datasets at once,
so it is possible to generate MySQL and MS SQL
datasets at the same time with the same data.

The query execution speeds for 1 client used are
shown on Figure 5. For smaller datasets, the EVI so-
lutions offers significantly better performance. As the
dataset grows the difference is smaller and for the
largest dataset the performance is almost the same.
There is an interesting difference between the On-
top on MS SQL and MySQL. For smaller datasets
the MySQL variant is faster, which changes for larger
datasets where the MySQL variant is slower.

The execution speed with 8 clients seems to be al-
most twice as fast as the speed when only 1 client is
used. The biggest difference seems to be for a dataset
with 10000 products where the count of total query
mixes per hour is more than three times larger than
with only 1 client. If the client count is further in-
creased, there is no significant change as shown on
Figure 7. So, it seems that having as many processor
cores as clients provides the biggest benefits. At the
same time, it looks like the virtual endpoint implemen-
tations do not use multiple cores anyhow to serve a sin-
gle client. This is especially obvious for small datasets
where the majority of execution time is used by the
transformation.

As mentioned, we have executed the tests also using
more than 1 client. Having more clients provide big-
ger speed especially on smaller datasets. As the dataset
grows, the difference is smaller as the ability of the
used relational database to execute queries quickly in
parallel is lower. The query execution speeds when us-
ing 8 clients are shown on Figure 6.

For larger datasets, the execution time depends on
the speed of the underlying layer. On Figure 8 there is
included a comparison with the speed of the manually
created relational queries retrieving the same results.
The used relational queries are a part of the BSBM test
driver. They are semantically the same as the corre-
sponding SPARQL queries. However, we do not con-
sider them written in the most optimal way possible.
We did not want to modify the queries, to stick to the
BSBM framework as much as possible. Interestingly,
the MySQL relational database tends to be signifi-
cantly (almost four times) faster for smaller datasets

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/mchaloupka/r2rml-benchmark

© 0 d o U W N

s s s s s s s D D DWW W W W W W W W W NNNNNNNDNNN R R R R R R e R P e
H O W © < o 0 W N FE O VW Jdo W N R O VW Do s W N R O WV ®Jd o W NP O

TotalQmph

TotalQmph

M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints

Dataset scale 10 100 | 1000 | 10000 | 100000 | 200000 | 500000 | 1000000
EVI - MS SQL 9653 | 8866 | 7164 | 3363 1412 928 652 481
Ontop - MS SQL | 3109 | 3073 | 2233 | 1654 701 713 507 461
Ontop - MySQL | 3162 | 3476 | 2666 | 2406 1028 1039 466 334
T T T T T T I I
10,000 |- —=— EVI-MSSQL ||
—a— Ontop - MS SQL
8,000 | —e— Ontop - MySQL | |
6,000 - 8
4,000 8
2,000 - =
O [.
| | | | | | | |
10 100 1000 10000 100000 200000 500000 1000000
Dataset scale
Fig. 5. Query mixes per hour using 1 client
Dataset scale 10 100 1000 | 10000 | 100000 | 200000 | 500000 | 1000000
EVI - MS SQL 21466 | 22347 | 18776 | 10048 | 2467 1495 851 634
Ontop - MS SQL | 7230 | 7268 5449 | 3635 1305 1242 773 656
Ontop - MySQL 7432 | 7900 | 6412 | 5322 2090 1952 795 618
T T T T T T I I
—a— EVI-MS SQL
9 —— Ontop - MS SQL
0,000 |- —e— Ontop - MySQL | |
15,000 |- =
10,000 |- 8
5,000 - 8
O [.
| | | | | | |

10

100

1000

10000

100000

Dataset scale

200000

Fig. 6. Query mixes per hour using 8 clients

|
500000 1000000

W O d oy U W NP

[T N N N N N Ot O O O O R O O O N S N R S
H O W 9 o U W NP O W W Jdo U W N R O WV o Jo U s W NP O VW W Jdo U s W NP O

© 0 d o U W N

s s s s s s s D D DWW W W W W W W W W NNNNNNNDNNN R R R R R R e R P e
H O W © < o 0 W N FE O VW Jdo W N R O VW Do s W N R O WV ®Jd o W NP O

M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints

Dataset scale 1 2 4 8 16 32

EVI - MS SQL 3363 | 6723 | 9321 | 10048 | 10388 | 10377
Ontop - MS SQL | 1654 | 2658 | 3778 | 3635 3634 3701
Ontop - MySQL | 2406 | 4027 | 5354 | 5322 5240 | 4903

—a— EVI-MS SQL

10,0001 _, Ontop - MS SQL
—e— Ontop - MySQL
8,000 -
=
o
£
S 6,000 |
8 ° °
= e
4,000 |- . .
2,000 -
! ! ! ! ! !
1 2 4 8 16 32
Dataset scale
Fig. 7. Query mixes per hour using multiple clients with dataset scale of 10000
Dataset scale 10 100 1000 | 10000 | 100000 | 200000 | 500000 | 1000000
EVI - MS SQL 9653 8866 7164 3363 1412 928 652 481
Ontop - MS SQL | 3109 3073 2233 1654 701 713 507 461
Ontop - MySQL 3162 3476 2666 | 2406 1028 1039 466 334
MS SQL 73358 51803 | 29312 | 7030 1803 1084 626 529
MySQL 217927 | 150838 | 30872 | 4749 401 259 102 51
Virtuoso 15714 14878 | 13302 | 12582 2522 595 X X
F T T T T T I I]
i —a— EVI-MS SQL | |
105 F —a— Ontop - MS SQL | |
g —e— Ontop - MySQL | |
i —a— MS SQL i
= 104 L — MYSQL B
s B . E
g F —o— Virtuoso E
=4 L 1
S L i
= 103 | E
102

10 100

1000

10000

100000

Dataset scale

200000

Fig. 8. Query mixes per hour using 1 client with other solutions

|
500000 1000000

W O d oy U W NP

[T N N N N N Ot O O O O R O O O N S N R S
H O W 9 o U W NP O W W Jdo U W N R O WV o Jo U s W NP O VW W Jdo U s W NP O

® J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints 13

Table 4
Performance evaluation results
Scale EVI Ontop - MS SQL | Ontop - MySQL
10 100% 32% 32%
100 100% 35% 39%
1000 100% 31% 37%
10000 100% 49% 71%
100000 100% 50% 73%
200000 89% 69% 100%
500000 100% 78% 71%
1000000 | 100% 96% 69%
Average 99% 55% 62%

and MS SQL seems to be significantly (more then ten
times) faster for larger datasets.

The comparison with the speed of the manually cre-
ated relational queries also shows that the cost of the
transformation from SPARQL to SQL query and then
back from relational result to SPARQL result is signifi-
cant especially for small queries. As the dataset grows,
the performance depends more on the underlying rela-
tional database so the transformation cost is minimal.
Interestingly, for larger dataset the virtual endpoint
may be actually faster than the manually created rela-
tional queries in BSBM because the virtual endpoint
solutions generate more optimized relational queries.
This was visible when using MySQL database.

For reference, on Figure 8 there is also a compari-
son with a native RDF storage - the Virtuoso Universal
Server.?® We have selected it as it is a well performing
native RDF storage when benchmarked using BSBM
[26]. For smaller datasets, the Virtuoso solution is sig-
nificantly faster than any virtual SPARQL endpoint. As
the dataset grows, loading the dataset into Virtuoso and
querying took more and more time. For the dataset size
of 200 000 products, the Virtuoso solution was actu-
ally slower than the virtual SPARQL endpoints. More-
over, the Virtuoso solution was not able to handle big-
ger datasets at all using the selected hardware.

To summarize the performance evaluation, we de-
cided to use the execution speed using 1 client. For
every tested dataset scale, we give 100% score to the
fastest solution. The other solutions gets their score ac-
cordingly to the ratio between the execution speed and
the speed of the fastest solution. The result is shown in
Table 4.

26See https://virtuoso.openlinksw.com/, visited March 2020

Table 5

Individual evaluation results overview

Aspect Morph | SparqlMap | Ontop | EVI
Usability 2 4 5 3
Completeness 0 0 48 24
Soundness 0 0 11 12
Performance 0% 0% 62% 99%
Table 6
Overall evaluation results
Aspect Morph | SparqlMap | Ontop EVI
Usability 40% 80% 100% 60%
Completeness 0% 0% 100% 50%
Soundness 0% 0% 92% 100%
Performance 0% 0% 62% 99%
Average 10% 20% 88% 7%
6.5. Summary

From the usability and completeness perspective,
the Ontop solution is a clear winner. It underlines the
fact that the Ontop solution seems to be the most ma-
ture and used solution from all selected solutions. The
Morph and SparqlMap solutions were identified as not
suitable for the BSBM use case.

From the soundness perspective, the EVI solution
was slightly better than Ontop. We have identified an
issue in handling one of the used SPARQL queries.
However, the difference is small.

The performance evaluation has identified that the
query transformation overhead is bigger in the Ontop
solution compared to the EVI solution. As the dataset
grows, this overhead is less significant because the per-
formance is mainly limited by the performance of the
underlying relational database.

For every aspect, we have assigned a score to indi-
vidual solutions. An overview of achieved scores in in-
dividual evaluations is shown in Table 5. In Table 6,
the achieved score is shown as relative to the maximum
score that could have been achieved by a tool.

We believe that the importance of individual aspects
depends on the exact use case. Therefore, we have de-
cided to put the same weight on all aspects - the over-
all score is calculated as the average of individual rel-
ative results. The Ontop solution has achieved the best
overall score.

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://virtuoso.openlinksw.com/

® J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

14 M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints

7. Conclusion

In this paper, we have described the evaluation
of virtual SPARQL endpoints using Berlin SPARQL
Benchmark tools. We have shown, how the tools can
be used to evaluate virtual SPARQL endpoint solu-
tions and what are the gaps of the benchmark from that
perspective. We have provided patches for these gaps.
Moreover, we have provided scripting to orchestrate
the benchmark.

According to the evaluation, it seems that there is
still a place for improvements for the virtual endpoint
solutions. For the BSBM use case, there are two usable
solutions right now: Ontop and EVI. The EVI solution
provides a better performance, although for very large
datasets the Ontop solution performs similarly. On the
other hand, the EVI solution is limited to the usage of
MS SQL database only. Therefore, if another database
engine is used then Ontop is the only usable choice.

The Ontop solution has been identified as a mature
and used solution. There is a complete documentation
provided. Moreover, if that is not enough it will be
possible to ask for help as there is a living commu-
nity around the tool. The EVI solution provides a better
performance but from all other perspectives the Ontop
solution is better.

Regarding the performance, there is still a room for
improvements. When using a native RDF storage, the
performance will be significantly better if the dataset
will be small enough for the selected hardware. How-
ever, it requires the data to be migrated from the re-
lational database to the RDF storage. Moreover, it has
to be done whenever data is changed. Therefore, this
approach cannot be used if the dataset changes often.

Based on this paper, it should be possible to evalu-
ate virtual SPARQL endpoints consistently in the fu-
ture. We have published not only the approach to run
the evaluation but also all additional files and tools re-
quired. The evaluation should be performed when any
of the solutions will be improved or when a new solu-
tion will be created.

Moreover, we have identified limitations of the
R2RML mapping language using BSBM use case. It
simulates usage in an e-commerce solution. Based on
this, we believe that these limitations should be ad-
dressed in the future as they may affect real world sce-
narios.

Acknowledgments. This work was supported by
the Czech Science Foundation (GAR), grant number
19-01641S.

References

[1] RDF Working Group, Resource Description Framework, W3C
Recommendation, W3C, 2014, https://www.w3.org/RDF/.

[2] M. Lanthaler, D. Wood and R. Cyganiak, RDF 1.1
Concepts and Abstract Syntax, W3C Recommen-
dation, W3C, 2014, http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/.

[31 S. Harris and A. Seaborne, SPARQL 1.1 Query
Language, W3C Recommendation, W3C, 2013,
http://www.w3.0rg/TR/2013/REC-sparqll1-query-
20130321/

[4] E. Prud’hommeaux, M. Arenas, A. Bertails and J. Se-
queda, A Direct Mapping of Relational Data to RDF, W3C
Recommendation, W3C, 2012, http://www.w3.org/TR/2012/
REC-rdb-direct-mapping-20120927/.

[5] S. Das, R. Cyganiak and S. Sundara, RZRML: RDB to RDF
Mapping Language, W3C Recommendation, W3C, 2012, http:
/Iwww.w3.0rg/TR/2012/REC-12rml-20120927/.

[6] C. Bizer and A. Schultz, The Berlin SPARQL Benchmark.,
Int. J. Semantic Web Inf. Syst. 5(2) (2009), 1-24. http://dblp.
uni-trier.de/db/journals/ijswis/ijswisS.html#BizerS09.

[7] C.Bizer and A. Schultz, Berlin SPARQL Benchmark (BSBM),
2011, Accessed: January 2020. http://wifo5-03.informatik.
uni-mannheim.de/bizer/berlinsparqlbenchmark/.

[8] S.S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T.T. Jr, S. Auer,
J. Sequeda and A. Ezzat, A Survey of Current Approaches for
Mapping of Relational Databases to RDF., Technical Report,
W3C RDB2RDF Incubator Group, 2009, http://www.w3.
org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf.
http://www.w3.0rg/2005/Incubator/rdb2rdf/RDB2RDF_
SurveyReport.pdf.

[9] C. Bizer and A. Seaborne, D2RQTreating non-RDF databases
as virtual RDF graphs, World Wide Web Internet and Web In-
formation Systems (2005).

[10] R. Cyganiak, D2RQ. Accessing Relational Databases as Vir-
tual RDF Graphs., Accessed: January 2020.

[117 A. Chebotko, S. Lu and F. Fotouhi, Semantics Preserv-
ing SPARQL-to-SQL Translation, Data Knowl. Eng. 68(10)
(2009), 973-1000. doi:10.1016/j.datak.2009.04.001.

[12] A. Chebotko, S. Lu, HM. Jamil and F. Foutouhi, Seman-
tics Preserving SPARQL-to-SQL Query Translation for Op-
tional Graph Patterns, Technical Report, Wayne State Univer-
sity, 2006.

[13] J. Sequeda and D.P. Miranker, Ultrawrap: SPARQL Execu-
tion on Relational Data, Web Semantics: Science, Services and
Agents on the World Wide Web 22(0) (2013).

[14] F. Priyatna, O. Corcho and J. Sequeda, Formalisation and Ex-
periences of R2ZRML-based SPARQL to SQL Query Trans-
lation Using Morph, in: Proceedings of the 23rd Interna-
tional Conference on World Wide Web, WWW ’14, ACM, New
York, NY, USA, 2014, pp. 479—490. ISBN 978-1-4503-2744-
2. doi:10.1145/2566486.2567981.

[15] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov,
D. Lanti, M. Rezk, M. Rodriguez-Muro and G. Xiao, Ontop:
Answering SPARQL queries over relational databases, Seman-
tic Web 8 (2016). doi:10.3233/SW-160217.

[16] M. Rodriguez-Muro, M. Rezk, J. Hardi, M. Slusnys, T. Bagosi
and D. Calvanese, Evaluating SPARQL-to-SQL Translation
in ontop, in: Proc. of the 2nd Int. Workshop on OWL Rea-

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.w3.org/RDF/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://dblp.uni-trier.de/db/journals/ijswis/ijswis5.html#BizerS09
http://dblp.uni-trier.de/db/journals/ijswis/ijswis5.html#BizerS09
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf

® J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

[17]

[18]

[19]

[20]

[21]

[22]

M. Chaloupka et al. / Using BSBM to Evaluate RDB Virtual SPARQL Endpoints 15

soner Evaluation (ORE 2013), CEUR Workshop Proceedings,
http://ceur-ws.org/, Vol. 1015, 2013, pp. 94-100.

M. Rodriguez-Muro and M. Rezk, Efficient SPARQL-to-SQL
with R2ZRML mappings, Web Semantics: Science, Services and
Agents on the World Wide Web 33(1) (2015).

M. Chaloupka and M. Necasky, A Survey of Approaches
to Representing SPARQL Variables in SQL Queries, in: On
the Move to Meaningful Internet Systems. OTM 2017 Confer-
ences, H. Panetto, C. Debruyne, W. Gaaloul, M. Papazoglou,
A. Paschke, C.A. Ardagna and R. Meersman, eds, Springer
International Publishing, Cham, 2017, pp. 300-317. ISBN
978-3-319-69459-7.

J. Unbehauen, C. Stadler and S. Auer, Accessing Rela-
tional Data on the Web with SparqlMap, in: JIST, 2012.
http://svn.aksw.org/papers/2012/SPARQLComponent/JIST_
SparqlMap/public.pdf.

M. Chaloupka and M. Neasky, Efficient SPARQL to SQL
Translation with User Defined Mapping, in: Knowledge En-
gineering and Semantic Web: 7th International Conference,
KESW 2016, Prague, Czech Republic, September 21-23, 2016,
Proceedings, Springer International Publishing, Cham, 2016,
pp. 215-229. ISBN 978-3-319-45880-9.

C. Bizer and A. Schultz, Benchmarking the performance of
storage systems that expose SPARQL endpoints, in: In Pro-
ceedings of the ISWC Workshop on Scalable Semantic Web
Knowledgebase, 2008.

A.J.G. Gray, N. Gray and I. Ounis, Can RDB2RDF Tools Fea-
sibily Expose Large Science Archives for Data Integration?,

(23]

[24]

[25]

[26]

in: The Semantic Web: Research and Applications, L. Aroyo,
P. Traverso, F. Ciravegna, P. Cimiano, T. Heath, E. Hyvo-
nen, R. Mizoguchi, E. Oren, M. Sabou and E. Simperl, eds,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 491—
505. ISBN 978-3-642-02121-3.

D.-E. Spanos, P. Stavrou and N. Mitrou, Bringing Relational
Databases into the Semantic Web: A Survey, Semant. Web 3(2)
(2012), 169209-.

M.A.G. Hazber, R. Li, B. Li, Y. Zhao and K.M.A. Alalayah,
A Survey: Transformation for Integrating Relational Database
with Semantic Web, in: Proceedings of the 2019 3rd Interna-
tional Conference on Management Engineering, Software En-
gineering and Service Sciences, ICMSS 2019, Association for
Computing Machinery, New York, NY, USA, 2019, pp. 6673—.
ISBN 9781450361897. doi:10.1145/3312662.3312692.

F. Michel, J. Montagnat and C. Faron Zucker, A survey of
RDB to RDF translation approaches and tools, Research Re-
port, 13S, 2014, ISRN I3S/RR 2013-04-FR 24 pages. https:
//hal.archives-ouvertes.fr/hal-00903568.

P. Boncz, O. Erling and M.-D. Pham, Advances in Large-
Scale RDF Data Management, in: Linked Open Data — Creat-
ing Knowledge Out of Interlinked Data: Results of the LOD2
Project, S. Auer, V. Bryl and S. Tramp, eds, Springer Interna-
tional Publishing, Cham, 2014, pp. 21-44. ISBN 978-3-319-
09846-3. https://doi.org/10.1007/978-3-319-09846-3_2.

=W N e

©w 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://svn.aksw.org/papers/2012/SPARQLComponent/JIST_SparqlMap/public.pdf
http://svn.aksw.org/papers/2012/SPARQLComponent/JIST_SparqlMap/public.pdf
https://hal.archives-ouvertes.fr/hal-00903568
https://hal.archives-ouvertes.fr/hal-00903568
https://doi.org/10.1007/978-3-319-09846-3_2

	Introduction
	Contribution

	Berlin SPARQL Benchmark
	Mapping from relational database to RDF dataset
	R2RML
	Mapping for Berlin SPARQL Benchmark

	Evaluated virtual endpoints
	Morph
	Ontop
	SparqlMap
	EVI

	Related work
	Evaluation
	Usability
	Completeness
	Soundness
	Performance
	Summary

	Conclusion
	References

