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Abstract. Recently, a wide range of Web applications utilize vast RDF knowledge bases (e.g. DBPedia, Uniprot, and Probase),
and use the SPARQL query language. The continuous growth of these knowledge bases led to the investigation of new paradigms
and technologies for storing, accessing, and querying RDF data. In practice, modern big data systems like Apache Spark can
handle large data repositories. However, their application in the Semantic Web context is still limited. One possible reason is that
such frameworks are not tailored for dealing with graph data models like RDF. In this paper, we present a systematic evaluation of
the performance of SparkSQL engine for processing SPARQL queries. We configured the experiments using three relevant RDF
relational schemas, and two different storage backends, namely, Hive, and HDFS. In addition, we show the impact of using three
different RDF-based partitioning techniques with our relational scenario. Moreover, we discuss the results of our experiments
showing interesting insights about the impact of different configuration combinations.

Keywords: Large RDF Graphs, SPARQL, Apache Spark, Spark-SQL, RDF Relational Schema, RDF Partitioning

1. Introduction

The Linked Data initiative is fostering the adop-
tion of semantic technologies like never before [1, 2].
Vast Resource Description Framework (RDF) datasets
(e.g. DBPedia, Uniprot, and Probase) are now publicly
available, and the challenges of storing, managing, and
querying large RDF datasets are getting popular.

In this regards, the scalability of native triplestores
like Apache Jena, RDF4J, and RDF-3X is bound
by a centralized architecture. Thus, the Semantic
Web community is investigating how to leverage big
data processing frameworks like Apache Spark [3]
to achieve better performance when processing large
RDF datasets [4, 5].

In fact, despite big data frameworks are not tailored
to perform native RDF processing, they were success-
fully used to build engines for large-scale relational

*Corresponding author. E-mail: firstname.lastname@ut.ee.

data processing and several approaches exist for repre-
senting the RDF data as relations [6–8].

To the best of our knowledge, a systematic analysis
of the performance of Big Data frameworks when an-
swering SPARQL Protocol and RDF Query Language
(SPARQL) queries is still missing. Our research work
focuses on filling this gap. In particular, we focus on
Apache Spark that, with the Spark SQL engine, is the
de-facto standards for processing large datasets.

In the first phase of our work [9], we presented
a systematic analysis of the performance of Spark-
SQL on a centralized single-machine. In particular,
we measured the execution time required to answer
SPARQL queries. In our evaluation we considered:
(i) alternative relational schemas for RDF, i.e., Single
Statement Tables (ST), Vertical Tables (VT), and Prop-
erty Tables (PT); (ii) various storage backends, i.e.,
PostgreSQL, Hive, and HDFS, and (iii) and differ-
ent data formats (e.g. CSV, Avro, Parquet, ORC).

In this paper, we present the second phase of our
investigation. Our experiments include larger dataset
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than before, in a distributed environment in presence of
data partitioning. In particular, we evaluate the impact
of three different RDF-based partitioning techniques
(i.e., Subject-based, Predicate-based, and Horizontal
partitioning) on our relational data. An additional con-
tributions of the current paper is a deeper and prescrip-
tive analysis of Spark SQL performance. Hence, in-
spired by the work in [10], we analyze the experiments
results in detail and provide a framework for deciding
the best configurations combinations of schema, par-
titioning, and storage for seeking better performance.
In particular, this paper applies existing techniques for
ranking experimental results, and discusses their pros
and cons alongside with their limitations. Last but not
least, the paper shows how to combine ranking criteria
(i.e. relational schemas, partitioning techniques, and
storage backends) to better investigate the trade-offs
that occur across these experimental dimensions.

The remainder of the paper is organized as follows:
Section 2 presents an overview of the required knowl-
edge to understand the content of the paper. Section 3
describes the benchmarking scenario of our study. Sec-
tion 4 describes the experimental setup of our bench-
mark. While, section 5 presents the analysis methodol-
ogy followed to analyze the results. Section 6 discusses
these results and various insights regarding them. We
discuss the related work in Section 7, before we con-
clude the paper in Section 8.

2. Background

In this section, we present the necessary background
to understand the content of the paper. We assume that
the reader is familiar with RDF data model and the
SPARQL query language.

2.1. Spark & Spark-SQL

Apache Spark [3] is an in-memory distributed com-
puting framework for large scale data processing.
At the Spark’s core there are Resilient Distributed
Datasets (RDDs, i.e., immutable distributed collection
of data elements.

Spark supports different storage backends for read-
ing and writing data. Those that are relevant for our
performance evaluation are Apache Hive, i.e., a data
warehouse built on top of Apache Hadoop for pro-
viding data query and analysis [11]; the Hadoop Dis-
tributed File System (HDFS). In particular, HDFS
supports the following file formats: (i) Comma Sepa-
rated Values (CSV), which is a readable and easy to de-

bug file format; (ii) Parquet1, which stores the data in
a nested data structure and a flat columnar format that
supports compression; (iii) Avro2, which contains data
serialized in a compact binary format and schema in
JSON format. (iv) Optimized Row Columnar (ORC 3),
which provides a highly efficient way to store and pro-
cess Hive data.

Last but not least, DataFrames are a convenient
programming abstraction that adds to the flexibil-
ity of RDDs a specific named schema with typed
columns like in relational databases. Spark-SQL [12]
is a high-level library for processing DataFrames in
a relational manner. In particular, it allows querying
DataFrames using an SQL-like language, and it relies
on the Catalyst query optimizer4.

2.2. Relational RDF Schemas

Although triplestores can be used to efficiently store
and manage RDF data [13] , some research works sug-
gest how to manage RDF data in relational stores [14].

In the following, we present three relational schemas
that are suitable for representing RDF data. For each
schema we give an example of data using Listing 1,
and we provide the respective SQL translation of the
SPARQL query in Listing 2.

: J o u r n a l 1 r d f : t y p e : J o u r n a l ;
dc : t i t l e " J o u r n a l 1 ( 1 9 4 0 ) " ;
d c t e r m s : i s s u e d "1940" .

: A r t i c l e 1 r d f : t y p e : A r t i c l e ;
dc : t i t l e " r i c h e r d w e l l i n g s c r a p p e d " ;
d c t e r m s : i s s u e d "2019" ;
: j o u r n a l : J o u r n a l 1 .

Listing 1: RDF example in N-Triples. Prefixes are
omitted.

SELECT ? y r
WHERE { ? j o u r n a l r d f : t y p e bench : J o u r n a l .

? j o u r n a l dc : t i t l e " J o u r n a l 1 ( 1 9 4 0 ) "
? j o u r n a l d c t e r m s : i s s u e d ? y r . }

Listing 2: SPARQL Example against RDF graph in
Listing 1.1. Prefixes are omitted.

Single Statement Table Schema requires to store
RDF triples in a single table with three columns that
represent the three components of the RDF triple, i.e.,
subject, predicate, and object. ST schema is widely

1https://parquet.apache.org/
2https://avro.apache.org/
3https://orc.apache.org/
4https://databricks.com/glossary/catalyst-optimizer

https://parquet.apache.org/
https://avro.apache.org/
https://orc.apache.org/
https://databricks.com/glossary/catalyst-optimizer
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adopted [15, 16]. For instance, the major open-source
triplestores, i.e., Apache Jena, RDF4J and Virtuoso,
use the ST schema for storing RDF data. Figure 1
shows the ST schema representation of the sample in
Listing 1, and the associated SQL translation for the
SPARQL query in Listing 2.
Vertically Partitioned Tables Schema requires to
store RDF triples into tables of two columns (subject,
object) for each unique property in the RDF dataset.
VT schema was proposed to speed up the queries over
RDF triple stores [15]. Figure 2 shows the VT repre-
sentation of the sample RDF graph shown in Listing 1,
and the associated SQL translation for the SPARQL
query in Listing 2.
Property Tables Schema requires to cluster multi-
ple RDF properties as n-ary table columns for the
same subject to group entities that are similar in struc-
ture. PT schema works perfectly with highly structured
data, but not with the poorly structured datasets [14],
due to the high number of null values that it might
incur. Moreover, due to its sparse tables representa-
tion, PT suffers from high storage overheads when a
large number of predicates is present in the RDF data
model [7]. Figure 3 shows the relational flattened prop-
erty tables of the RDF graph in Listing 1 and the asso-
ciated SQL translation for the SPARQL query in List-
ing 2.

It is worth mentioning that there are other variants
of the relational schemas mentioned above. In particu-
lar, the Wide Property Tables (WPT) schema [17] and
Extended Vertical Partitioning (ExtVP) [18]. The for-
mer uses a unified table for the entire properties in the
RDF graph; the latter is inspired by the Semi-Join re-
ductions of the possible VP tables join correlations that
can occur among the SPARQL query triple patterns.
However, we opt to use the most three common RDF
relational schemas (i.e. ST, VT, and PT).

2.3. RDF Data Partitioning

Last but not least, RDF data partitioning is another
critical choice in our scenario. We have selected three
partitioning techniques for RDF data that are suitable
for our experiments on SparkSQL (cf. Figure 4).
Horizontal-Based Partitioning (HP) requires to par-
tition the data evenly on the number of machines in
the cluster. In particular, it divides the relational tables,
i.e., in n equivalent chunks where n is number of ma-
chines in the cluster.

Subject-Based Partitioning (SBP) requires to dis-
tribute triples to the various partitions according to the
hash value computed for the subjects. As a result, all
the triples that have the same subject are assumed to
reside on the same partition. In our scenario, we ap-
plied spark partitioning using the subject as a key with
our different relational schema tables/Dataframes.
Predicate-Based Partitioning (PBP) requires, similar
to the SBP, to distribute triples to the various partitions
based on the hash value computed for the predicate.
As a result, all the triples that have the same predicate
are assumed to reside on the same partition. In our sce-
nario, we applied Spark partitioning using the predi-
cate as a key with our different relational schema ta-
bles/Dataframes.

Also for partitioning techniques, it is worth men-
tioning that other approaches exist in the literature [7,
10]. However, The partitioning techniques presented
above are suitable to work within the Spark-SQL
framework. Indeed, techniques like Hierarchical Par-
titioning rely one the URIs structure, or are based on
the k-way multi-level RDF partitioning strategy [19].
These approaches may require some re-design to fit
with our relational-based data processing scenario.
Thus, we have selected them among the seven pure
RDF-based partitioning techniques discussed in [10].

3. Benchmark Datasets & Queries

According to Jim Gray [20], a domain-specific
benchmark must be Relevant, Portable, Scalable,
and Simple. In our evaluation, we used SP2Bench
(SPARQL Performance Benchmark) [21] because it
meets these criteria. In fact, it is also one of the most
popular RDF benchmarks.

SP2Bench is Simple, as it is centered around the
Computer Science DBLP scenario which is easy for
researchers to understand. It is Scalable, because it
comprises a data generator that enables the creation of
arbitrarily large DBLP-like documents (in Notation-
3 format). It is Portable w.r.t. our scenario, as it pro-
vides a set of SPARQL queries with their translations
into SQL for each of the relational schemas we se-
lected. These queries have different complexities, and
a high diversity of features [22]. Thus, SP2Bench is
also a Relevant benchmark. Moreover, it has a reason-
able low score of Structuredness, making it closer to
the structure of real-world RDF datasets [22].

Since the design of ST and VT schemas is inde-
pendent from the meaning of RDF, we have reused a
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Fig. 1. Single Statement Table Schema and an associated SQL query sample. Prefixes are omitted.

Fig. 2. Vertical Partitioned Tables Schema and an associated SQL query sample. Prefixes Omitted.

Fig. 3. Property Tables Schema and an associated SQL query sample. Prefixes are omitted.

Fig. 4. RDF partitioning techniques, (a) Horizontal Partitioning, (b) Subject-based Partitioning, (c) Predicate-based partitioning
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similar PT schema inspired by the relational schema
proposed by Schmidt et al. [14]. In their experiments,
the SP2Bench RDF dataset contains nine different re-
lational entities namely, Journal, Article, Book, Per-
son, InProceeding, Proceeding, InCollecion, PhDThe-
sis, MasterThesis, and WWW documents. This schema
is inspired by the original DBLP schema5 that is gen-
erated by SP2Bench generator.

3.1. Queries

SP2Bench queries6 cover a variety of SPARQL op-
erators as well as various RDF access patterns. In our
experiments, to be compliant with the Spark-SQL, we
use the SQL translation of these SPARQL queries,
which are provided for relational schemas translation,
i.e., ST, VT, and PT7. We have evaluated all of these
11 queries of type SELECT, except Q9 which is not
applicable (NA) for the PT relational schema.

To give an indication of the query complexity, we
looked at the following query features, i.e., number of
joins, number of filters, and the number of projected
variables. Table 1 summarizes these complexity mea-
sures for SP2Bench queries in SPARQL, and for the
SQL-translations that are related to each RDF rela-
tional schema. For instance, we use the number of vari-
able projections in the SQL statements as an indicator
for the performance comparison between the data for-
mats of the storage backends in terms of being row-
oriented (e.g., Avro) or columnar-oriented (e.g., Par-
quet or ORC).

4. Experimental Setup

In this section, we describe our experimental envi-
ronment, i.e., (i) we discuss how we configured our ex-
perimental hardware and software components; (ii) we
describe how we prepared, partitioned, and stored the
datasets, and (iii) we present the details of the experi-
ment design.
Hardware and Software Configurations. Our exper-
iments have been executed on a bare metal cluster of
four machines with a CentOS-Linux V7 OS, running
on a 32-AMD cores per node processors, and 128 GB
of memory per node, alongside with a high speed 2

5DBLP-like RDF data produced by the SP2Bench http://dbis.
informatik.uni-freiburg.de/forschung/projekte/SP2B/

6http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/
queries.php

7http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/
translations.html

TB SSD drive as the data drive on each node. We used
Spark V2.4 to fully support Spark-SQL capabilities.
We used Hive V3.2.1. In particular, our Spark cluster
is consisted of one master node and three worker ma-
chines, while Yarn is used as the resource manager,
which in total uses 330 GB and 84 virtual processing
cores.
Benchmark Datasets. Three datasets were gener-
ated using SP2Bench 100M, 250M, 500M triples in
Notation3(.n3) format. We have tested our ex-
periments on these datasets to check the linearity of
our results conformance. For the sake conciseness, we
show in the paper only results related to 100M and
500M datasets. Nevertheless, all the results, including
those for the intermediary dataset of 250M, are avail-
able in our GitHub repository8.
Data Partitioning. In Section 2, we describe the parti-
tioning techniques we selected, i.e., HP, SBP, and PBP.
Partitioning impacts data distribution and, thus, Spark-
SQL performance is affected, specially reading from
data backends and data-joining operations. Therefore,
when partitioning is required, the goal is to minimize
data shuffling. One should select the technique that
best suits the workload, i.e., the queries to run. Our
mentioned partitioning techniques were originally de-
signed for RDF partitioning. Hence, we defined their
equivalent version for tabular RDF representation.

In Spark-SQL, Join operations are equi-joins, i.e.,
they require the join key to be the partitioning key. That
means that data must be on the same node. Thus, we
prepared the data in two phases. First, we use custom
Spark partitioners for creating DataFrames that fulfil a
certain partitioning technique. Depending on the par-
titioning techniques of choice ( i.e. SBP, PBP, or HP),
we used as partitioning keys respectively subject or
predicate, or we used the horizontal approach. Then,
we persisted the DataFrames on HDFS. We fixed the
data partition block size on HDFS as the default block
size on Spark (128MB). HDFS manages also the repli-
cation of these partitioned blocks according to a con-
figurable replication factor(RF) (i.e. we used the de-
fault RF = 3).
Data Storage. In our experiments, we use two storage
backends, i.e., HDFS and Hive (see Section 2). Addi-
tionally, for HDFS we used multiples file formats.

We used Spark to convert the data from the N3 for-
mat generated by SP2Bench. into Avro, Parquet, and

8https://datasystemsgrouput.github.io/
SPARKSQLRDFBenchmarking/Results

http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/translations.html
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/translations.html
https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/Results
https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/Results
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SPARQL ST-SQL VT-SQL PT-SQL

#Joins Filters #Proj #Joins #Sel #Joins #Sel #Joins #Sel

Q1 3 0 1 8 6 5 2 2 2

Q2 8 0 10 28 9 19 0 9 5

Q3 1 1 1 5 2 3 2 2 2

Q4 7 1 2 19 16 11 3 8 3

Q5 5 1 2 16 11 9 3 7 3

Q6 8 3 2 26 13 15 4 6 3

Q7 12 2 1 26 15 16 5 2 1

Q8 10 2 1 23 13 13 7 9 4

Q9 3 0 1 11 4 5 3 n/a n/a

Q10 0 0 2 3 1 2 2 5 2

Q11 0 0 1 2 1 1 0 2 0
Table 1

SP2Bench Queries Complexity Analysis, number of joins, and number of projections/selections for SPARQL query and our three considered
RDF relational schemes (ST, VT, and PT).

Single 
Statement

Table
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CSV
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CSV

Avro

ORC

Parquet

HIVE

Vertical
Table

SBP PBP(i) HP

CSV
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(ii) SBP

CSV
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Parquet
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(iii) PBP

CSV

Avro

ORC

Parquet

HIVE
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ORC
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Fig. 5. Experiments Architecture.

ORC. We used Spark for this conversion because of its
ability to efficiently handle large files in memory. This
feature is required when converting graph data. More-
over, Spark supports reading and writing different file
formats from and into HDFS.

We used the same approach to load the data into the
tables of the Apache Hive data warehouse using three
created databases, one for each dataset size(100M,
250M, and 500M). Loading the data of the CSV files
into the Hive data warehouse has been done in a little
bit different way. In particular, to store data into Hive
tables, it is a must to enable the support for Hive in the
Spark session configuration using the enableHiveSup-
port function. Moreover, it is also important to give the
Hive metastore URI using the Thrift URI protocol, also
specified in the SparkSession configuration in addition
to the warehouse location.

Experiments Design. We evaluated all the SP2Bench
queries for all the combinations of schemas, backend-
s/formats and partitioning techniques. For each config-
uration, we run the experiment five times (excluding
the first cold-start run time, to avoid the warm-up bias,
and computed an average of the other four run times).
Figure 5 summarizes the experiments configurations,
guiding the reader through the naming process in our
further analysis results and plots, i.e.,

{Schema}.{Partitioning_Technique}.{Storage_Backend}

For instance, (a.ii.4) corresponds to Single ST
schema, SBP partitioning, and Parquet backend.

We used the Spark.time function by passing the
spark.sql(query) query execution function as a param-
eter. The output of this function is the running time of
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evaluating the SQL query into the Spark environment
using the SparkSession interface.

5. Analysis Methodology

Fig. 6. Analysis Methodology

In this section, we describe the methodology that
we follow for analyzing our results. We structured our
analysis according to Figure 69, which tries to quan-
tify the cost of decision making starting from different
levels of analysis.

We advocate the need of a decision-making frame-
work for making sense of performance of big data sys-
tems. This gets more crucial, especially when the so-
lution space includes several different variables and
unknown trade-offs, which is the standard case for
big-data frameworks performance benchmarking, e.g.
Spark in our scenario.

Before explaining how we structure each level of
analysis, it is worth noticing that, the predictive anal-
ysis level is out of the scope of this work. Predictive
analysis typically leverage statistical models in order
to answer questions about the future. In our research,
we focus on systematically applying a post-hoc evalu-
ation of the performance.

5.1. Descriptive Analysis

On the top level, descriptive analysis allows to an-
swer factual questions. We extrapolate fine-grain in-
sights, e.g., what is happening in the query evalua-
tion level. In particular, we use descriptive analysis to
identify which queries are long running, medium run-
ning, or short running according to their average run-
ning times. In this phase of analysis, we will also be
able to observe general performance dimensions. For
each query, we can observe which schema, partition-
ing technique, and storage backend are performing the

9https://www.gartner.com/en/newsroom/press-releases/
2014-10-21-gartner-says-advanced-analytics-is-a-top-business-priority

best or the worst. However in this level of analysis, we
are unable to decide which configuration combination
(i.e. schema, partitioning, and storage backend) shows
the best performance. Moreover, some of the descrip-
tive results are contradicting in this level of analysis.
For instance, we will show that in some queries the VT
schema is the best performing choice. Whereas, for the
same query with another partitioning technique, the PT
schema performs better.

5.2. Diagnostic Analysis

Right below the descriptive analysis, there is di-
agnostic analysis allows answering why questions. In
this level, we combine factual knowledge from the ob-
served data with knowledge about the world to make
sense of the results. We can enrich the descriptive
analyses mentioned above with contextual informa-
tion about the query complexity and the configuration.
However, we are unable to investigate the trade-offs
in terms of the dimensions affecting the performance.
Thus, we advocate the need of better indicators that
help investigating the impact of each dimension across
all the queries.

5.3. Prescriptive Analysis

Last but not least, at bottom level there is prescrip-
tive analysis which allows providing actionable in-
sights for the analyst to decide. In practice, this means
systematically investigating the impact of each dimen-
sion of the experiment, i.e. schema, partitioning, and
storage, while discussing the trade-offs across these
different dimensions to the extent of identifying an op-
timal solution.

In this regards, ranking criteria, e.g. the one pro-
posed in [10] for partitioning, help giving a high-
level view of the performance of a certain dimension
across queries. Thus, we have extended the proposed
ranking techniques to schemas and storage. The fol-
lowing equation shows a generalized ranking formula
for ranking our relational schemas, partitioning tech-
niques, and storage backends.

RS D =

t∑
r=1

OD(r) ∗ (t − r)
b(t − 1)

, 0 < RS D 6 1 (1)

In Equation 1, RS D defines the Rank Score (RS ) of
the ranked dimension D (relational schema, partition-
ing technique, and storage backend). Such that, t rep-
resents the total number of the ranked dimension.

https://www.gartner.com/en/newsroom/press-releases/2014-10-21-gartner-says-advanced-analytics-is-a-top-business-priority
https://www.gartner.com/en/newsroom/press-releases/2014-10-21-gartner-says-advanced-analytics-is-a-top-business-priority
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Using Equation 1 for ranking the relational schemas
poses t = 3, as we have three different schemas in our
paper. It will be the same (i.e. t = 3) while applying the
equation for ranking partitioning techniques, as they
are also three. Whereas, while applying the equation
for ranking the storage backends we pose t = 5, as we
have five different backends/file formats. While b in the
formula, represents the total number of query execu-
tions, as we have 11 query executions in our SP2Bench
benchmark (i.e. b = 11). Finally, OD(r) denotes the
total number of occurrences of a particular dimension
D to come in the rank r.

Applying the ranking criteria independently for each
dimension supports a better explanations of the results.
Nevertheless, we observed that, we are still unable to
identify which configuration combination is the best
performing, since the trade-offs between those dimen-
sions are still not investigated. Therefore, we advocate
for combining rankings towards for choosing the best
performing configuration combination. To this extent,
we tested three alternative techniques that aim at com-
bining the ranking dimensions into one unified ranking
criterion.

– The Average (AVG) criterion aims at combining
the three dimensions rankings (Rf, Rp and Rs) by
averaging them (Cf. equation 2). Such that, Rf,
Rp, and Rs are the rankings of storage backend,
partitioning, and storage backends respectively.

AVG =
1

3
(R f + Rp + Rs) (2)

– The Weighted Average (WAvg) criterion extends
the Average assigning weights to each individual
rank according to its impact in the experiments,
i.e., we have 5 different storage backends, 3 par-
titioning techniques, and 3 relational schemas).
(Cf. equation 3).

WAvg =
1

3
(R f ∗ 5 + Rp ∗ 3 + Rs ∗ 3) (3)

– The Ranking Triangle Area (Rta) criterion
leverages on a geometric interpretation of the
trade-off of our experiments three dimensions. It
looks at the triangle subsumed by each ranking
criterion (R f , Rp, and Rs). The trade-offs ranking
dimensions are presented by the triangle sides.
The criterion aims at maximizing the area of this
triangle. In other words, the bigger the area of this
triangle, the better the performance of the three
ranking dimensions all together. The ideal case is
represented by the red triangle in Figure 7 which

has the maximum ranking score of 1 (as, 0 < RSD
<=1 cf. equation 1) in all the vertices.

0.00

0.25

0.50

0.75

1.00

Schema (Rs)

Partitioning (Rp)Storage Format (Rf)

Fig. 7. Triangle Area (Rta) combined Ranking criterion

6. Experimental Results

In this section, we discuss the results of our ex-
periments at the different levels of our analysis. We
present the insights which each analysis criterion un-
veiled about the performance of the Spark-SQL query
engine, using various relational RDF storage schema,
alongside with many partitioning techniques, and on
top of various storage backends.

6.1. Descriptive and Diagnostic Analysis

We start by discussing the descriptive analysis by
showing the average query runtimes figures for the
benchmark queries. We further follow these descrip-
tive results with respective diagnosis analysis for an-
swering the ’why’ question for those results.

6.1.1. Query Performance Analysis
Figures 8 and 9 show the average execution times

for running the SP2Bench queries for the 100M and
500M datasets, respectively. We can immediately ob-
serve that queries Q1, Q3, Q10, and Q11 are the least
impactful queries (have the lowest running times).
Thus, we call these queries short-running queries. On
the other hand, queries Q2, Q4, and Q8 have the
longest runtimes. The remaining queries Q5, Q6, Q7,
and Q9 are medium-running queries. In the following,
we focus our analysis on the longest running queries,
as they may hide interesting insights about the ap-
proach limitations.

Query Q2 shows a low average execution time when
using the ST schema or the VT schema. However, for
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the PT schema, it has much higher runtimes (at some
cases 2X of runtime). This observation is confirmed
in the 100M, 250M, and 500M datasets, and despite
the partitioning technique of choice. Therefore, we can
conclude that PT schema for Query Q2 is not the best
option to choose. The previous observation is only
valid with neglecting the bad performance of the CSV
and Avro in the ST schema. However, it gives a clear
answer of the impact of storage impact on our obser-
vations. Query Q4 has the highest latency for all the
relational schema, for our different partitioning tech-
niques, and for the different storage backends. Query
Q8 immediately follows, as the second longest running
query for the different partitioning techniques, and for
the different storage backends. Interestingly, Q8 shows
a significant enhancement when using the PT schema.
We can observe that in the 100M dataset Figures 8, and
it is even clearer by scaling up to 250M (i.e. figures
are kept in the github repository), and 500M dataset,
Figures 9.

Finally, we can also notice that, the ST relational
schema has the worst impact on the majority of the
queries. While, VT schema is mostly the best perform-
ing one, directly followed by the PT schema. Regard-
ing the storage backends, we generally observe that the
columnar file formats of HDFS (ORC, and Parquet)
are the best performing, followed by Hive. Whereas,
the row-oriented Avro and the CSV textual file for-
mat of HDFS are mostly the worst performing back-
ends. Regarding to the partitioning impact, the SBP ap-
proach tends to considerably outperform its other op-
ponents. Particularly, it directly outperforms HP, leav-
ing the PBP technique in the worst rank. The partition-
ing impact observations are shown clearer in the next
section ranking figures.

However, we cannot straightforwardly state that the
VT schema is outperforming the PT schema. As it has
been shown in Q8, the PT schema is obviously out-
performing the VT schema. Similarly, we cannot state
that Avro file format is always the worst or the sec-
ond worst performing storage backend (however it is
in the majority of queries), as Avro has been the best
performing storage backend several times.

6.1.2. Results Diagnostic Analysis
Moving to the diagnostic analysis, we try to explain

the previous observations by analyzing the query com-
plexity (cf. Table 1) and using our knowledge about
Spark and the experimental dimensions, i.e. relational
schema, partitioning techniques, storage backends. We
try to provide diagnostic analysis concerning these di-

mensions rather than investigating each single query
result.

Regarding the relational schema comparison, we
could observe that the ST schema is mostly the worst
performing schema. Indeed, the ST schema is the one
that requires the maximum number of self-joins (cf
Table 1, ST-SQL column). Moreover, ST schema sin-
gle table is the largest table even after partitioning.
Whereas, VT is mostly the best performing schema,
specially when we scale up to higher datasets. The rea-
son behind this is that VT tables tend to be smaller
than other relational schema tables. Thus, Spark query
joins have smaller intermediate results in the shuffle
operations. In addition, VT tends to be more and more
efficient with queries with small number of joins (i.e.
BGB triple patterns). While, the PT schema is yet a
strong competitor to the VT schema, since it is the
schema that requires the minimum number of joins
while translating SPARQL into SQL. Indeed, PT in the
single machine experiments achieved the highest ranks
in the majority of query executions [9]. However, scal-
ing up the experiment sizes, PT schema starts to in-
cur larger intermediate results with higher shuffling
costs that degrade its performance. Moreover, parti-
tioning PT schema over Predicate (PBP) or Horizon-
tally (HP) gives a negative effect on the PT schema
performance, especially with SP2Bench query set that
is highly ’subject’-oriented. We specify this with the
reasoning about the impact of partitioning in our ex-
periments.

Regarding the partitioning techniques comparison,
in general, the Subject-based partitioning approach
tends to considerably outperform its other partitioning
opponents. Particularly, it directly outperforms the HP
approach, leaving the PBP technique in the last/worst
rank. The reason behind this is that most of the queries
in SP2Bench are on shape of ’Star’ or ’Snowflake’
which are mostly oriented to the RDF subject as the
joining key. Indeed, partitioning by subject allocates
the triples with the same subject on the same machine
reducing data shuffling to the minimum, and maximiz-
ing the level of parallelism by all workers. Whereas,
this is not satisfied in the Horizontal-based approach,
as it randomly splits the tables and only cares about
distributing them in a balanced way as much as possi-
ble regardless grouping of the rows of the same subject
on the same machine. Finally, the predicate-based ap-
proach presents the highest degree of shuffling while
joins are run by Spark-SQL in most of the SP2Bench.

Therefore, Predicate-based technique are not recom-
mended when evaluating ’subject’-oriented queries.
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Moreover, Predicate-based partitioning is the most un-
balanced load partitioning technique with the high-
est data skewness [18]. Since our SP2Bench RDF
dataset has some predicates with few triples/table en-
tries (i.e. subClassOf ), while others have the most por-
tions of the RDF graph (i.e. creator,type, and home-
page). Hence, this unbalanced nature leads to strag-
glers and inefficient join implementations in Spark-
SQL.

Last but not least, let us consider the storage back-
ends comparison. What we observed is that, colum-
nar file formats of HDFS storage backend are outper-
forming the others. In particular, ORC is the best per-
forming storage format followed by Parquet. While
Hive directly follows them. Whereas, Avro and CSV
file formats of HDFS are the worst-performing back-
ends. Interestingly, we can observe that Avro outper-
forms the other storage formats in the PBP partition-
ing technique. The reason behind these results is that,
most of the SP2Bench queries are with a small num-
ber of projections as shown in Table 1. Thus, columnar
file storage backends perform better since they have
to scan only a subset of the columns with filtering out
unnecessary columns for the query [23]. Hive is con-
sistently following them. On the other side, the textual
uncompressed CSV and the row-oriented Avro file for-
mats are shown to have the lowest performing storage
options, respectively.

6.2. Prescriptive Analysis

In the following, we attempt to make the perfor-
mance analysis prescriptive, i.e., we aim at identifying
what are the optimal configuration combinations to use
for SP2Bench, as our RDF benchmarking scenario.

To this extent, we use alternative ranking criteria
(see Section 5, cf. Equation 1). We start by showing
separate ranking analysis results for the experiment di-
mensions. Then, we discuss the results of combined
ranking criteria. We finally discuss which ranking cri-
terion is the most relevant to choose the optimal per-
forming configurations, along side with showing a ta-
ble of the best and the worst configuration combina-
tions for the queries.

Notably, we keep all the intermediate ranking result-
s/tables from which we calculated these final scores of
the relational schemas, partitioning techniques as well

as the storage backends comparison in our mentioned
gitHub repository of this project, and its web-page10 .

6.2.1. Relational-Schemas Ranking Analysis
Figure 10 shows how many times a particular rela-

tional schema achieves the highest or the lowest rank-
ing scores, respectively, considering the results of all
experiments. Specifically, schema ranking scores for
the 100M datasets (Figures 10 (a), (c), and (e)), and
500M triples dataset (Figures 10 (b), (d), and ( f ))
for different storage backends respectively, and for our
three partitioning techniques (HP, S BP, and PBP).
For these graphs, we indicate a particular relational
schema outperforms others when it has a higher rank-
ing score, i.e., the higher ranking score, the better per-
formance.

For the 100M dataset figures, we observe that the
ST schema is always the worst performing one with
100% when HP and SBP are chosen as partitioning
techniques. However, for the PBP partitioning, the ST
schema has the second highest scores after the VT
schema with 60%. On the other side, the VT schema
has the highest ranking scores by 100% in the rank-
ing scores of the relational schemas. The PT schema
is falling between the VT schema and the ST schema
by more than 73%. Scaling up to the 250M, and 500M
triples dataset, our observations are confirmed.

6.2.2. Partitioning Techniques Ranking Analysis
Figure 11 shows our different partitioning tech-

niques (i.e. Horizontal, Subject-based, and Predicate-
based Partitioning) ranking scores for the 100M (Fig-
ures 11 (a), (c), and (e)), 500M (Figures 11 (b), (d),
and ( f )) triples datasets for different relational schema
ST, VT, and PT respectively. Also for these graphs
the higher rank score the better it is. Thus, we in-
dicate a particular partitioning technique outperforms
other techniques when it achieves higher ranking score
amongst them. Notably, when a partitioning technique
score column is missing, this indicates that its rank
score is zero (i.e. it always comes at the last rank [3rd

rank in our case]).
In the 100M dataset figures, the Subject-based parti-

tioning is the best performing approach. Indeed, it has
the highest ranking scores with more than 93% of the
ranking times. Whereas, Predicate-based partitioning
performs as the worst technique with roughly the same
ratio (i.e. 93%). On the other hand, the performance
of Horizontal partitioning lies somewhere between the

10https://datasystemsgrouput.github.io/
SPARKSQLRDFBenchmarking/

https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/
https://datasystemsgrouput.github.io/SPARKSQLRDFBenchmarking/
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Fig. 10. Relational Schemas Ranking Scores for 100M and 500M Triples datasets (Reading Key: the higher is the better).
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(e) 100M_PT Schema Partitioning Techniques Ranking Scores
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Fig. 11. Partitioning Techniques Ranking Scores for 100M and 500M Triples datasets (Reading Key: the higher is the better).
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other two techniques. However, HP outperforms the
SBP having a higher rank with the PT schema and for
Avro file format.

Considering the 500M triples dataset, we still ob-
serve the same pattern of performance. That is, the
Subject-based still outperforms the other techniques
with more than 73% of the ranking times. The Predicate-
based partitioning is still performing the worst in the
majority of ranking times with more than 46%. How-
ever, it outperformed the other techniques achieving
the highest rank by three times with the ST schema
and for CSV file format, and with the VT schema for
CSV and Avro file formats.

6.2.3. Storage Backends Ranking Analysis
Last but not least, we investigate how different stor-

age backends impact the performance in our experi-
ments.

Figure 12 shows how many times a particular stor-
age backend achieves the best or the lowest perfor-
mance. The figure presents the results of all experi-
ments, for different relational schema ST, VT, and PT
respectively, and for our three partitioning techniques
(HP, S B, and PB). Specifically, ranking scores for
the 100M datasets are on the left, i.e., sub-figures 11
(a), (c), and (e)); ranking scores for the 500M triples
dataset are on the right, i.e., sub-figures 11 (b), (d), and
( f )).

The reading key is still the higher the rank the bet-
ter it is. Thus, we indicate a particular storage back-
end outperforms others when it achieves higher rank-
ing score amongst them. Similarly, when a storage for-
mat score column is missing, this indicates its rank
score is zero (i.e. it always comes at the last rank [5th

rank in our case]).
For both the 100M and 500M triples datasets with

the ST relational schema and HP and SB partitioning
techniques, we observe that HDFS ORC is the best
performing backend with 100%. Hive is immediately
following, and then Parquet by 100% of these rank-
ing cases. On the other hand, HDFS CSV and Avro
file formats are respectively the worst performing on
HDFS with 100% of the mentioned cases. The 500M
ST schema dataset scores in the PBP has the same pre-
vious ranking results for the storage backends. How-
ever, for the 100M ST schema, and in the PBP parti-
tioning technique, Avro is the second best-performing
storage format coming after ORC.

While for 100M and 500M triples datasets with the
VT relational schema and HP and SBP partitioning
techniques, we can still observe that ORC and Par-

quet are sharing the best performing backend rank with
50% for each of them. Hive directly follows them in
the third best rank with 100%. HDFS CSV and Avro
file formats respectively keep performing the worst,
having the lowest rank scores with 100% of these men-
tioned cases. However, for the PBP partitioning in
100M with the VT schema, Avro is the best performing
backend, followed by CSV. For the 500M with the VT
schema, and for PBP technique, ORC and Parquet re-
spectively still in the best ranks, but Avro, interestingly,
outperforms Hive and CSV.

Looking at the results of the 100M and 500M triples
datasets with the PT schema and for HP and SBP, we
can find that, the HDFS ORC and Parquet are still shar-
ing the best performing backend with 50% for each of
them in this ranking group, immediately followed by
Hive as in the third best rank with 100%. CSV and Avro
are respectively the worst performing storage formats
with 100% of this mentioned ranking group. However,
for the PBP partitioning of both the 100M and 500M
datasets, Avro is significantly shown to be the best per-
forming backend followed by ORC with 100% of the
cases.

6.2.4. Combined Ranking Analysis
Table 2 shows all our possible different configura-

tion combinations as shown from Figure 5. For in-
stance the (a.i.1) representing the ST schema, Hori-
zontally partitioned, and stored in Avro storage back-
end. From the table, we can see that we have different
45 possible configuration combinations. The next three
columns Rf, Rp, and Rs include ranking score values
which are calculated for storage formats, partitioning
techniques, and relational schemas, respectively. The
colored cells indicate the top 3 best-performing con-
figurations for each column.

Looking at Table 2, we observe that ranking over
one of the dimensions and ignoring the others ends
up with selecting different configuration. For instance,
ranking over R f , i.e., storage backend/format; Rp,
i.e., partitioning technique, or Rs, i.e.,the relational
schema, end up selecting different combinations of
Schema, Partitioning and Storage backends.

Since focusing on one raking at time leads to con-
tradicting results, as shown in Table 3, we opt for a
combined ranking criterion. In Section 5, we presented
three i.e., Rta, WAvg and AVG, that are shown in Ta-
ble 4.

In particular, we use Table 4 to assess each crite-
rion by checking its ranking results (i.e., top results/-
configurations) against the actual queries results with
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Fig. 12. Storage Backends Ranking Scores for 100M and 500M Triples datasets (Reading Key: the higher is the better).
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100M Rf Rp Rs Rta WAvg AVG 500M Rf Rp Rs Rta WAvg AVG
a.i.1 0.27 0.45 0.23 0.10 1.13 0.32 a.i.1 0.41 0.68 0.14 0.14 1.50 0.41
a.i.2 0.00 0.23 0.09 0.01 0.32 0.11 a.i.2 0.00 0.05 0.14 0.00 0.19 0.06
a.i.3 0.82 0.32 0.27 0.19 1.96 0.47 a.i.3 0.77 0.18 0.23 0.12 1.69 0.39
a.i.4 0.64 0.55 0.32 0.24 1.94 0.50 a.i.4 0.59 0.41 0.27 0.17 1.66 0.42
a.i.5 0.77 0.55 0.36 0.30 2.19 0.56 a.i.5 0.73 0.36 0.27 0.19 1.85 0.45
a.ii.1 0.25 0.86 0.18 0.14 1.46 0.43 a.ii.1 0.30 0.55 0.14 0.09 1.19 0.33
a.ii.2 0.00 0.68 0.09 0.02 0.77 0.26 a.ii.2 0.00 0.64 0.14 0.03 0.78 0.26
a.ii.3 0.93 0.95 0.36 0.52 2.86 0.75 a.ii.3 1.00 0.73 0.36 0.45 2.76 0.70
a.ii.4 0.66 0.95 0.27 0.35 2.32 0.63 a.ii.4 0.59 0.59 0.18 0.19 1.75 0.45
a.ii.5 0.68 0.95 0.36 0.41 2.44 0.66 a.ii.5 0.61 0.64 0.32 0.26 1.98 0.52
a.iii.1 0.59 0.18 0.32 0.12 1.48 0.36 a.iii.1 0.32 0.27 0.23 0.07 1.03 0.27
a.iii.2 0.05 0.59 0.18 0.05 0.85 0.27 a.iii.2 0.00 0.82 0.18 0.05 1.00 0.33
a.iii.3 0.98 0.23 0.55 0.30 2.41 0.59 a.iii.3 0.95 0.59 0.45 0.42 2.62 0.66
a.iii.4 0.45 0.00 0.41 0.06 1.16 0.29 a.iii.4 0.59 0.50 0.41 0.25 1.89 0.50
a.iii.5 0.43 0.00 0.45 0.06 1.17 0.29 a.iii.5 0.64 0.50 0.55 0.32 2.12 0.56
b.i.1 0.30 0.36 0.73 0.20 1.59 0.46 b.i.1 0.27 0.18 0.86 0.15 1.49 0.44
b.i.2 0.23 0.55 0.77 0.24 1.70 0.52 b.i.2 0.07 0.36 0.82 0.13 1.30 0.42
b.i.3 0.77 0.59 0.68 0.46 2.55 0.68 b.i.3 0.80 0.32 0.73 0.36 2.38 0.62
b.i.4 0.70 0.59 0.68 0.43 2.44 0.66 b.i.4 0.82 0.18 0.82 0.32 2.37 0.61
b.i.5 0.52 0.55 0.64 0.32 2.06 0.57 b.i.5 0.55 0.55 0.86 0.42 2.33 0.65
b.ii.1 0.39 0.86 0.73 0.42 2.24 0.66 b.ii.1 0.32 0.59 0.82 0.31 1.94 0.58
b.ii.2 0.20 0.59 0.77 0.24 1.69 0.52 b.ii.2 0.07 0.55 0.82 0.18 1.49 0.48
b.ii.3 0.57 0.73 0.68 0.43 2.36 0.66 b.ii.3 0.80 0.59 0.73 0.50 2.65 0.71
b.ii.4 0.75 0.77 0.73 0.56 2.75 0.75 b.ii.4 0.75 0.77 0.77 0.58 2.79 0.76
b.ii.5 0.61 0.91 0.68 0.53 2.61 0.73 b.ii.5 0.57 0.91 0.77 0.55 2.63 0.75
b.iii.1 0.73 0.27 0.86 0.35 2.35 0.62 b.iii.1 0.64 0.73 0.95 0.59 2.75 0.77
b.iii.2 0.57 0.41 0.91 0.38 2.27 0.63 b.iii.2 0.09 0.59 0.95 0.23 1.69 0.54
b.iii.3 0.39 0.18 0.77 0.17 1.60 0.45 b.iii.3 0.80 0.59 0.91 0.58 2.83 0.77
b.iii.4 0.57 0.14 0.86 0.23 1.95 0.52 b.iii.4 0.75 0.55 0.95 0.55 2.75 0.75
b.iii.5 0.25 0.05 0.82 0.09 1.29 0.37 b.iii.5 0.23 0.05 0.82 0.08 1.25 0.37
c.i.1 0.42 0.78 0.55 0.33 2.02 0.58 c.i.1 0.39 0.56 0.50 0.23 1.70 0.48
c.i.2 0.14 0.50 0.64 0.16 1.37 0.43 c.i.2 0.19 0.50 0.55 0.16 1.37 0.41
c.i.3 0.67 0.56 0.55 0.35 2.22 0.59 c.i.3 0.78 0.50 0.55 0.36 2.35 0.61
c.i.4 0.83 0.56 0.50 0.39 2.44 0.63 c.i.4 0.67 0.39 0.41 0.23 1.91 0.49
c.i.5 0.44 0.56 0.50 0.25 1.80 0.50 c.i.5 0.47 0.44 0.36 0.18 1.59 0.43
c.ii.1 0.28 0.61 0.59 0.23 1.66 0.49 c.ii.1 0.31 0.89 0.55 0.31 1.95 0.58
c.ii.2 0.14 0.94 0.64 0.27 1.82 0.57 c.ii.2 0.14 0.89 0.55 0.23 1.67 0.53
c.ii.3 0.86 0.83 0.45 0.49 2.72 0.71 c.ii.3 0.78 0.94 0.41 0.48 2.65 0.71
c.ii.4 0.75 0.83 0.50 0.47 2.58 0.69 c.ii.4 0.81 0.94 0.55 0.57 2.84 0.77
c.ii.5 0.47 0.83 0.45 0.33 2.07 0.59 c.ii.5 0.47 0.89 0.41 0.33 2.09 0.59
c.iii.1 0.86 0.11 0.32 0.14 1.87 0.43 c.iii.1 0.75 0.06 0.32 0.10 1.63 0.38
c.iii.2 0.50 0.06 0.41 0.09 1.30 0.32 c.iii.2 0.14 0.11 0.36 0.04 0.70 0.20
c.iii.3 0.56 0.11 0.18 0.06 1.22 0.28 c.iii.3 0.72 0.06 0.14 0.05 1.40 0.31
c.iii.4 0.28 0.11 0.23 0.04 0.80 0.21 c.iii.4 0.44 0.17 0.14 0.05 1.05 0.25

c.iii.5 0.31 0.11 0.23 0.04 0.85 0.22 c.iii.5 0.44 0.17 0.14 0.05 1.05 0.25
Table 2

Configuration Ranking Criteria for 100M, and 500M triples datasets
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100M 500M
1st 2nd 3rd 1st 2nd 3rd

Rf a.iii.3 a.ii.3 c.ii.3 a.ii.3 a.iii.3 b.i.4

Rp a.ii.3 a.ii.4 a.ii.3 c.ii.3 c.ii.4 b.ii.5

Rs b.iii.2 b.iii.1 b.iii.4 b.iii.1 b.iii.2 b.iii.4
Table 3

Non-overlapping top 3 best-performing configuration combinations
for the Rf, Rp, and Rs ranking criteria

these configurations. To achieve that, we pick up the
top three configurations (coloured in Table 2) with
the highest rank score of the different ranking criteria
columns (i.e. R f , Rp, Rs, Rta, Avg, and WAvg). Af-
terwards, we list the ranking of these configurations
for each query (Q1,...Q11) by calculating the perfor-
mance rank position of this configuration in this query.
For example, the configuration combination (a.iii.3)
has the 29th performance rank position for Q1, 20th for
Q2,..etc.

The coloured cells in Table 4 indicate the top 15 out
of 45 ranking positions for the selected top configura-
tions for the queries. In addition, we have calculated
the average of the number of times a specific config-
uration combination to be in the top 15 ranking posi-
tions for each criteria. For instance, the R f ranking cri-
teria with the first top selected configuration (a.iii.3)
occurred only once to be 11th ranking position (i.e. in
the first 15 actual query ranking positions) only for one
query (Q11). While, the second selected configuration
(a.ii.3) achieves that goal (to be in the first 15 ranks) by
4 times for queries Q2, Q4, Q9, and Q10 respectively.
While, the (c.ii.3) configuration achieves that goal by
5 times for queries Q3, Q4, Q5, Q6, Q8. Therefore, the
average of the R f criterion to be relevant for choosing
the best configuration is 3 (i.e we neglect the fractions)
as shown in the table. The rest of ranking criteria, and
combined ranking techniques are calculated in a simi-
lar way.

The next step is to calculate the accuracy of each
criteria using the formula in equation 4 in order to see
which ranking criteria should be used to determine the
best configuration combination to choose.

Acc(cr) =
3∑

i=1

N(i)
33
, cri ∈ {R f ,Rp,Rs, ...} (4)

In the formula 4, i indicates certain configuration
and N(i) is the number of times a certain configuration
occurred to be in a query ranking position less than
the 15 rank, for each ranking criteria (cr). Applying
this formula for each criteria, we observed that, for the

100M, results are as follows, 30%, 33%, 39%, 64%,
55% and 64% for Rf, Rp, Rs, AVG, WAvg and Rta
ranking criteria, accordingly. While for 500M, the re-
sults of applying formula 4 are 48%, 55%, 55%, 64%,
67%, 76% for Rf, Rp, Rs, AVG, WAvg and Rta, ac-
cordingly.

From the 100M and 500M results, it appears that
the triangle area (Rta) criterion is the most accurate
for measuring the performance of configurations in
our SP2Bench query workloads scenario. The average
(AVG) and the weighted average (WAvg) follow right
after. Notably, we used the 100M triples dataset ta-
ble to describe how ranking calculations are done. We
omit tables of the other datasets for sake of concise-
ness. However, data and analysis can be found in the
repository web page.

Finally, Table 5 summarizes the experiments analy-
sis, highlighting the best and worst combinations
of schema, partitioning techniques, and storage back-
ends for each query in the SP2Bench workload.

7. Related Work

Several related experimental evaluation and com-
parisons of the relational-based evaluation of SPARQL
queries over RDF databases have been presented in
the literature [8, 14]. For example, Schmidt et.al. [14]
performed an experimental comparison between ex-
isting RDF storage approaches using the SP2Bench
performance suite, and the pure relational models of
RDF data implementations namely, Single Triples re-
lation, Flattened Tables of clustered properties rela-
tion, and Vertical partitioning Relations. In particular,
they compared the native RDF scenario using Seasme
SPARQL engine (known currently as RDF4j11) that is
relied on a native RDF store using SP2Bench dataset,
with a pure translation of the same SP2Bench sce-
nario into pure relational database technologies. An-
other experimental comparison of the single triples ta-
ble and vertically partitioned relational schemes was
conducted by Alexaki et. al. [24] in which the addi-
tional costs of predicate table unions in the vertical
partitioned tables scenario are clearly shown. This ex-
periment was also similar to the ones performed by
Abadi et.al. [15], followed by Sidirourgos et.al. [25]
who used the Barton library catalog data scenario12

to evaluate a similar comparison between the Single
Triples schema and the Vertical schema. On another

11https://rdf4j.eclipse.org/
12http://simile.mit.edu/rdf-test-data/barton

https://rdf4j.eclipse.org/
http://simile.mit.edu/rdf-test-data/barton
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Rf Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 ranking<15 AVG
a.iii.3 29 20 32 26 27 30 18 41 20 22 11 1
a.ii.3 26 14 18 1 17 25 17 17 5 9 16 4
c.ii.3 15 15 1 9 5 1 31 3 31 27 26 5

3

Rp Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 ranking<15 AVG
a.ii.3 26 14 18 1 17 25 17 17 5 9 16 4
a.ii.5 27 24 26 2 13 27 16 24 7 14 19 4
a.ii.4 23 23 24 4 24 26 19 23 8 13 21 3

4

Rs Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 ranking<15 AVG
b.iii.2 5 22 29 32 18 19 11 19 25 17 15 2
b.iii.1 18 17 17 41 9 18 12 30 14 12 9 5
b.iii.4 12 6 23 44 23 22 14 36 4 7 10 6

4

AVG Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 ranking<15 AVG
b.ii.4 9 10 12 27 2 7 6 18 1 8 2 9
a.ii.3 26 14 18 1 17 25 17 17 5 9 16 4
b.ii.5 16 2 10 28 14 14 7 16 2 6 4 8

7

WAvg Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 ranking<15 AVG
a.ii.3 26 14 18 1 17 25 17 17 5 9 16 4
b.ii.4 9 10 12 27 2 7 6 18 1 8 2 9
c.ii.3 15 15 1 9 5 1 31 3 31 27 26 5

6

Rta Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 ranking<15 AVG
b.ii.4 9 10 12 27 2 7 6 18 1 8 2 9
b.ii.5 16 2 10 28 14 14 7 16 2 6 4 8
a.ii.3 26 14 18 1 17 25 17 17 5 9 16 4

7

Table 4
100M Triples Dataset Ranking Criteria Comparison

100M 500M
BEST WORST BEST WORST

Q1 c.i.2 c.iii.4 c.ii.2 a.i.2

Q2 b.ii.3 a.i.2 b.iii.4 a.i.2

Q3 c.ii.3 a.i.2 c.ii.3 a.i.2

Q4 a.ii.3 b.iii.3 a.ii.3 a.i.2

Q5 c.i.5 a.i.2 b.iii.3 a.i.2

Q6 c.ii.3 a.iii.2 c.ii.3 a.i.2

Q7 b.ii.1 a.i.2 b.ii.4 a.i.2

Q8 c.iii.4 a.iii.5 c.iii.4 a.i.2

Q9 b.ii.4 a.i.2 b.iii.4 a.i.2

Q10 b.iii.3 c.iii.4 b.iii.3 c.iii.2

Q11 b.i.3, b.ii.4 c.iii.4 b.i.3, b.ii.5 c.iii.2
Table 5

Best and Worst Configurations for Running SP2Bench Queries

side, Owens et.al [26] performed benchmarking exper-
iments for comparing different RDF stores (eg. Alle-

grograph13, BigOWLIM14) using different RDF bench-
marks (e.g., LUBM15) and RDBMS benchmarks (e.g.,
The Transaction Processing Performing Council fam-
ily (TPC-C) benchmark)16. This work is focused on a
pure detailed RDF stores comparison using SPARQL
beyond any relational schemes implementations or
comparisons. To the best of our knowledge, our bench-
marking study [9] (that we are extending here in
this paper but in a distributed deployment), was the
first that considers evaluating and comparing various
relational-based schemes for processing RDF queries
on top of the big data processing framework, Spark,
and evaluating different backend storage techniques.

13https://franz.com/agraph/allegrograph3.3/
14http://www.proxml.be/products/bigowlim.html
15http://swat.cse.lehigh.edu/projects/lubm/
16http://www.tpc.org/tpcc/

https://franz.com/agraph/allegrograph3.3/
http://www.proxml.be/products/bigowlim.html
http://swat.cse.lehigh.edu/projects/lubm/
http://www.tpc.org/tpcc/
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A parallel and recent similar research to this work
was conducted by Victor Anthony et al.[27]. Authors
there performed similar experiments to evaluate also
the performance of Spark-SQL engine querying four
relational-based RDF schemes, namely a single Triples
Table (TT), Vertical Partitioned Table (VP), Domain-
dependant schema (DDS), and (differently from our
paper) the Wide Property Tables schema (WPT). They
have shown that the WPT relational schema is superior
to the other relational opponent approaches. They have
only evaluated the Hive with Parquet storage back-
end, while as we have mentioned in this paper, we
are evaluating other storage alternative backends of
Spark. Moreover, partitioning in that paper is made by
Spark, partitioning on the Subject only, while in this
paper, we evaluate three different partitioning strate-
gies logically and physically (i.e. done also by Spark),
namely, Subject-based, Predicate-based, and, Horizon-
tal partitioning. In addition, this work evaluates only
the micro-benchmarking level of Spark-SQL system.

8. Conclusion

Apache Spark is a prominent big data framework
that offers a high-level SQL interface, Spark-SQL, op-
timized by means of the Catalyst query optimizer. In
this paper, we perform a systematic evaluation for the
performance of the Spark-SQL query engine for an-
swering SPARQL queries over different relational en-
coding for RDF datasets on a distributed setup. In
particular, we studied the performance of Spark-SQL
using two different storage backends, namely, Hive
and HDFS. For HDFS we compared four different
data formats, namely, CSV, ORC, Avro, and Parquet.
We used SP2Bench to generate our experimental RDF
datasets. We translated the benchmark queries into
SQL, storing the RDF data using Spark’s DataFrame
abstraction. To this extent, we evaluated three differ-
ent approaches for RDF relational storage, i.e., Sin-
gle Triples Table schema, Vertically Partitioned Ta-
bles schema, and Property Tables schema. We show
also the impact of partitioning the mentioned rela-
tional schemas with three different partitioning tech-
niques, namely Horizontal-based, Subject-based, and
Predicate-based partitioning, which applied on our five
mentioned storage formats.

As a future extension of this work, we aim to con-
duct our benchmarking study with other benchmarking
such as benchmarks of WatDiv,and the state-of the-art
LDBC with different types of query shapes and com-
plexities.
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