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Abstract. Storage and analysis of video surveillance data is a significant challenge, requiring video interpretation and event
detection in the relevant context. To perform this task, the low-level features including shape, texture, and color information are
extracted and represented in symbolic forms. In this work, a methodology is proposed, which extracts the salient features and
properties using machine learning techniques and represent this information as Linked Data using a domain ontology that is
explicitly tailored for detection of certain activities. An ontology is also developed to include concepts and properties which may
be applicable in the domain of surveillance and its applications. The proposed approach is validated with actual implementation
and is thus evaluated by recognizing suspicious activity in an open parking space. The suspicious activity detection is formalized
through inference rules and SPARQL queries. Eventually, Semantic Web Technology has proven to be a remarkable toolchain
to interpret videos, thus opening novel possibilities for video scene representation, and detection of complex events, without
any human involvement. The proposed novel approach can thus have representation of frame-level information of a video in
structured representation and perform event detection while reducing storage and enhancing semantically-aided retrieval of video
data.

Keywords: Smart City, Data Integration, Data Modeling, Surveillance Video, Ontology, Video Semantics, Video Dataset, Object
Tracking

1. Introduction

As surveillance systems are getting affordable,
large-scale deployment of such systems are preva-
lent these days including in parking spaces. Thus,
smart parking is becoming an integral part of smart
city initiatives, deployment of surveillance systems in
such places are resulting in the generation of massive

*Corresponding author. E-mail: ashish@iiitnr.edu.in.

surveillance video data. While, the most crucial task
of surveillance systems is to identify unusual activi-
ties and events, the detection of these anomalous be-
havior poses a major challenge in the video data sci-
ence research. Video data is considered as unstructured
data: it is not quantitative but consist of information
spread over highly correlated frames. It requires a con-
crete model to analyze and extract meaningful infor-
mation. According to a survey [1], the video data being
communicated on the global IP network per month is
worth 5 million years of watch time. The survey esti-
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mates that video traffic will rise to 82% of total global
data traffic by 2021 from 73% in 2016 and surveil-
lance video traffic will increase by seven times of its
current amount by 2021. These figures look imposing
when we consider the fact that a majority of surveil-
lance data is not shared over the Internet. Surveil-
lance cameras are capturing an untold amount of video
data that is merely stored in archives, remains unana-
lyzed and finally overwritten after a certain duration.
Such waste has prompted an urgent requirement to de-
velop technologies that are not only efficient in stor-
age, retrieval, and processing of video data but are also
able to draw meaningful information from the content.
However, fetching meaningful knowledge from video
data or automatic recognition of events happening in
a video poses several technical and domain-specific
challenges.

As humans can understand based on cognition,
knowledge and experience, information present in a
video needs to be extracted, transformed, and linked
with domain knowledge to acquire interpretation ca-
pabilities through software agents [2]. This requires
strong reasoning and analytical support to be able to
detect an event, especially of anomalous nature and
bridge the semantic gap between machine interpreta-
tion and human perception. Low-level features (such
as shape, size, color, etc.) extracted using video pro-
cessing are not enough to generate the information re-
quired for video scene understanding. Those complex
events that are rare are hard to train using supervised
machine learning due to lack of sufficient training ex-
amples and massive computational capability require-
ments. Formulating an event requires domain and con-
text knowledge, however, most of the present tech-
niques lack the ability to bridge the semantic gap be-
tween low-level and high-level features, do not sup-
port data integration as well. In such scenarios, ma-
chine learning algorithms may not be applicable due
to the limited number of training examples and lack of
formalism [3].

Semantic Web Technology, is, therefore leveraged
to fill this gap by creating domain ontology, which is
effective in representing high-level semantics present
in the video. Semantic Web Technologies [4] facili-
tate data integration along with rule-based reasoning
using Semantic Web Rule Language (SWRL) [5] and
SPARQL, achieving widespread interoperability in a
predefined domain by using same ontology. Ontol-
ogy supports Description Logics (DL), which can be
used to perform spatial and temporal reasoning [6].
The semantic information present in the video is rep-

resented in Resource Description Framework (RDF)
[4] format, which is machine-readable triplet and de-
scribes the relational information in "subject-object-
predicate" form. RDF statements are constructed us-
ing concepts defined in vocabularies written in Web
Ontology Language (OWL) ontologies.

Our approach extracts the frame-level parame-
ters using machine learning techniques to generate a
higher-level semantics for detecting unusual and sus-
picious events from the surveillance video data. An
ontology is developed which represents the object(s)
and interactions between the object(s) present in video
frame. The relationships between the objects in an im-
age are generated by creating SWRL-based rules, and
events are formulated using SPARQL queries. Our re-
view of existing literature suggests that our approach,
representing frame-level information of a video in
the structured machine-interpretable format, while en-
abling event detection by means of Semantic Web
Technology is not yet explored, and is thus proposed
in this paper. The key contribution of our work are as
follows:

– Frame level representation of video scene in RDF,
which saves a lot of storage space, facilitates rea-
soning and efficient information retrieval.

– Deriving relationships between the objects in an
image using SWRL, i. e., reasoning over video.

– Activity detection using SPARQL: once all the in-
formation is represented in RDF graphs, activity /
events can be recognised and retrieved by formu-
lating SPARQL queries.

– Opens up new opportunities for video data anal-
ysis research, where training examples are fewer
or resources are computationally costly.

– Accuracy (relationship detection) is very good
and performance is high.

– A video dataset, which consists of six different
trimmed localized activities in smart parking sce-
narios, totaling 92 videos.

– A novel approach for object tracking is also pro-
posed here, based on SWRL and Description
Logics.

The results obtained using the proposed approach are
promising, as the proposed methodology efficiently
represents the frame-level information in RDF, then
performs SWRL reasoning to extract spatio-temporal
relationships between objects. The represented seman-
tic information is retrieved to identify various scenar-
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ios and use-cases (demonstrated by recognizing suspi-
cious events in smart parking scenarios).

The remainder of this paper is organized as fol-
lows: Section 2 presents the related work. Section 3
demonstrates the proposed approach for representing
the events in the smart parking domain. Section 4
shows the results of the proposed work, describing pa-
rameters for evaluation, and outlines current issues and
limitations. Conclusions about the contribution of the
work are drawn in Section 5 while Section 6 covers
future work prospects.

2. Related Work

In this section, we first review previous work on the
extraction of high-level semantic information present
in the video. We then briefly summarize the existing
work on utilizing ontology-based approaches.

2.1. Non semantic approaches

The non-semantic approach predominantly includes
machine learning and feature based methodologies.
You et al. [7] proposed a semantic framework for
video genre classification based on the Hidden Markov
Model (HMM) and Gaussian mixture model. The
framework utilized the visual features by generating
a semantic feature computation approach along with
analysis on the relationship between such features and
video semantics. The approach was complex and de-
pended highly on the way the video features are com-
puted. Si et al. [8] proposed an unsupervised learn-
ing approach for event detection by using the prede-
fined set of atomic actions and relations (a combina-
tion of atomic actions) like touch, bend, sit, etc. These
successive events were modeled in the learned gram-
mar and made context-sensitive. The learned grammar
could be used to improve the noisy bottom-up detec-
tion of atomic actions. It was also proposed to be used
to infer the semantics of the scene. Zhu et al. [9] ana-
lyzed that low-level features alone, often are less sig-
nificant for naive users, preferred to recognize using
high-level semantic information (concepts). The shot
was segmented using a color histogram. The identifi-
cation of textual data in the video was performed in
two ways; the first one involved the extraction of em-
bedded text in the video like scores and another was
the detection of text, which was already present in the
scene. Text regions are recognized using edge detec-
tion techniques. Camera motion was identified using

the mutual relationship between motion vectors in the
P frame. Furthermore, the audio level was used to de-
tect events with high noise, such as whistling, etc. Data
were transformed to fit for association rule mining in
item-set and temporal distance between two item-set,
i.e., the video event was calculated. A deep hierarchi-
cal context model for event recognition was proposed
by Wang et al. [10] which is effective in low image
resolution and intra-class variation. The model could
simultaneously learn and integrate context at all three
levels, thus utilizes the context information efficiently.
Context features (neighborhood of the event) used in
the model to generate mid-level representations, and
then combine the context information for recognizing
events. The approach was evaluated on benchmarks
dataset (VIRAT 1.0 ground dataset and UT-Interaction
dataset), performed excellently.

Patterns determined through the machine-learning
techniques applied to various feature descriptors of the
video are very crucial for event analysis. Xie et al.
[11] proposed a method for event detection, defined
event by their dissimilarity among the discovered pat-
terns, event description, event-modeling components,
and current event mining systems. They have defined
an event identification framework by identifying five
W’s and 1H (when, what, who, where, why, how).
Also, they have classified metadata as intrinsic and ex-
trinsic which contains event-related information. The
segmentation involved identifying the part of the video
where it happened (time, space, and duration), recog-
nition involved identification of one or more W’s de-
scribed earlier, verification required test of the specific
property, annotation, and adding labels to the data.
The task of discovery is about finding the event with-
out having prior knowledge of semantics. Hamid et al.
[12] proposed an unsupervised activity analysis using
n-grams suffix trees to mine motion patterns at dif-
ferent temporal scales. Activities were represented in
the form of suffix trees. The class of the action was
identified by mapping it to the problem of finding a
maximal clique in a graph. The event is detected au-
tomatically by extracting the interaction of a person
with the object using the Gaussian Mixture Model. An
anomaly was detected if an activity does not appear in
any of the sub-sequence. Baradel et al. [13] proposed
a method for human activity detection from RGB data,
without relying on pose information. They have de-
fined a glimpse as a group of interest points relevant
to classified activities. Due to the high correlation of
events, visual point tracking is required, resulting in
the collection of glimpses. However, the tracks whose
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location is not continuous in the spatial and temporal
domain can lead to a change in semantic information,
being a significant challenge. This problem is solved
by selecting a local as well as distributed representa-
tion of glimpse points based on the sequential atten-
tion model and tracking the set of glimpse points by
integrating them in final recognition. Liao et al. [14]
proposed a novel framework for analyzing the surveil-
lance video and recognizing the event. In the first step,
an object was detected using Convolution Neural Net-
work (CNN), then the owners of the objects were iden-
tified and monitored in real-time. If any object was
moved, it was verified whether the person who moved
the object was the owner or not. In case the person who
moved was not the owner, the scene is further analyzed
to differentiate between the stealing and moving away.
They have also proposed a dataset consisting of such
scenarios to evaluate the proposed approach. The ap-
proach was compared with the state of the art results
on existing benchmarks dataset related to luggage de-
tection and management.

Snoek et al. [15] listed the issues and challenges in
concept-based video retrieval. They have also empha-
sized the semantic-gap, thus come up with concept-
based video search by primarily focusing on meth-
ods of information retrieval, machine learning, hu-
man computer interaction and computer vision. Also,
they have explored the task of concept detection by
fusing the feature and information from classifiers to
model the relations along with tools and techniques for
benchmarking as performed in the NIST TRECVID
benchmark.
Cheng et al. [16] conducted a study by using TRECVID
2015 dataset to understand the importance of features
that are more relevant for video hyper-linking like
meta-data, subtitle, content-based features including
(audio and visual) along with the context of the video.
However, the major improvements in search quality re-
sulted from textual features rather than content-based
features.
Shen et al. [17] proposed a method for event detec-
tion by using a subspace selection technique that can
identify various classes, also preserve intramodal ge-
ometry of samples within a class. The approach was
divided into two major tasks; the first one involved
the extraction of video features from the video seg-
ments while in second task Modality Mixture Projec-
tions (MMP) were used to generate the signature of
video. The MMP is a dimensionality reduction tech-
nique based on linear discriminant analysis which pre-
serves the geometric projections. The approach was

demonstrated on soccer video and TRECVID news
dataset. Chen et. al. [18] presented an approach to gen-
erate captions of the video scene for video understand-
ing. They have isolated two significant challenges for
the task of video captioning (broad domain and mul-
timodal information) as compared to video indexing
and retrieval. Thus, they have divided the task of cap-
tioning in two tasks; the first task was the latent topic
generation and the second one was topic-guided cap-
tion generation. The topic generation task predicts the
topic of the video based on an unsupervised learning
method built using video contents and captions in the
video. This reduces the overall complexity by narrow-
ing the topics and cover the various modalities by top-
ics. They have also proposed a topic-guided ensem-
ble framework by correlated the two tasks to generate
more precise video captions. But their approach cannot
be employed for video event detection, however useful
for video understanding.

Deep learning can effectively model human cogni-
tion and behavior, thus lead to bridge the semantic
gap between machine-level interpretation and human
understanding. However, it requires massive labeled
data and computationally expensive, often suffers due
to lack of training data. Caruccio et al. [19] pro-
posed a layered knowledge representation framework
for automatic video detection consisting of environ-
ment layer (including capturing devices like camera
and sensors), frame layer (analyzes frame sequences),
elements of context representations, general context
descriptors and action representations. The activity
was detected in the framework by forming logic based
visual representations of the scenarios while combin-
ing a set of small actions. The approach was complex
and very specific to the use-case. It could not com-
pletely represent the information present in a scene.
Gan et al. [20] proposed a CNN based approach named
Deep Event Network (DevNet) for Event detection.
DevNet took key frames of the video as input and
construct a saliency map by pack-passing, which was
used to find the key frames. Events were formulated
as a semantic abstraction of video rather than just con-
cepts. Event of "Town-hall-meeting" was formulated
by combining objects, a scene, actions, and acoustics.
The objects may include person, podium, scene of a
conference room while actions include talking, meet-
ing and speech, clapping as acoustic concepts. DevNet
localized key shreds of evidence and detected high-
level events as well. The approach was evaluated for
event detection and evidence recounting on TRECVID
2014 and MEDTest dataset and achieved promising
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results. He et al. [21] proposed a multi-modal fusion
model, which exploits spatial-temporal modeling for
human activity recognition. The model named StNet
(Spatial-temporal Network) based on ResNet for en-
hanced modeling of spatial and temporal characteris-
tics leading to video understanding. Multi-modal in-
formation contained in the video was integrated us-
ing a temporal Xception network (iTXN). The other
framework, such as Inception, Resnet-V2, ResNeXt
and SENet, could also be used instead of ResNet based
architecture. The results are promising due to the ex-
ploitation of multi-modal information. Furthermore, a
model for spatio-temporal representation based on the
residual network named pseudo-3D residual network
(P3D) is proposed by Qui et al. [22]. As 3D Con-
vNet development from scratch requires a significant
amount of computations. Various types of bottleneck
building blocks were constructed in a residual simu-
lating 3x3x3 convolutions from 1x3x3 convolutional
filters equivalent to 2D-CNN and 3x1x1 convolution
for creating temporal dimension on particular feature
maps with time. A novel architecture named Pseudo-
3D Residual Net (P3D ResNet) based on ResNet but
having the different placement of blocks, having a phi-
losophy that by increasing structural variation on the
deeper layer will make the network more robust. P3D
ResNet demonstrated to perform better by 5.3% and
1.8% on the classification of Sports-1M video dataset
than 3D CNN and 2D CNN.

2.2. Semantic Approaches

Features extracted from multimedia contents are
represented in symbolic or numerical form. The knowl-
edge inferred from these features, is represented in
terms of concepts, properties, sub-concepts, and their
respective relationships can be individually identified
and described. This knowledge can be interlinked with
the known concepts for data integration and thus facil-
itates multi-modal analysis. Ram et. al. [23] proposed
the Video Event Representation Language (VERL), a
formal language for describing an ontology of events
using objects and state. They described an event as a
change of state of an object. Events in a state may lead
to other state, but the scope of the ontology was lim-
ited and cannot be applied to other domains and con-
cepts. Moreover, it does not follow OWL-DL syntax.
Juan et al. [24] presented an ontology which can rep-
resent high-level semantic features and knowledge us-
ing a hierarchical framework for video event and an-
notations. However, the ontology is not integrated with

other standards like MPEG7 and does not include do-
main related concepts. Bermejo et al. [25] discussed
an ontology-based approach which detects complex
events and abnormal situation by integrating the sensor
data (e.g. acceleration, speed, distance, lane change,
etc.). The integrated information was used to aid de-
cision support system for traffic management. Fan et
al. [26] proposed to incorporate concept ontology for
hierarchical video classification. More specific seman-
tics were represented in the deeper layers of the hier-
archy. Concept ontology provided contextual and log-
ical relationships. As a single ontology may not meet
all requirements, multiple concept ontologies for video
concept organization were needed. The specific se-
mantics were represented in deeper layers of the hi-
erarchy. Duong et al.[27] proposed an ontology-based
approach to describe the content and allow sharing
with a consensus-based algorithm for reconciliation
of conflicts. The visual features were extracted using
MPEG7 visual descriptors, which were then used to
generate video-level summary. It was, however, not
suitable for representing the frame-level information.
Elleuch et al. [28] proposed a fuzzy ontology to en-
hance concept detection by using context information
about concepts based on visual modality. The context
modeling was performed in three steps, i.e., seman-
tic knowledge representation, semantic concept cat-
egorization, and refinement. A context ontology was
constructed first to model the relationships between
concepts and then a deductive engine was built on
fuzzy rules and optimized based on genetic algorithms.
Grassie et al. [29] proposed a semantic model which
enables annotation to create structured knowledge at
multiple levels of granularity and complexity. Ontolo-
gies were built to support linking to LOD cloud at data
level. The high level interpretation of the video was
limited to brief textual comments and tags explaining
the whole video. In most of the cases, videos were not
labeled or annotated to encode all relevant information
with tags, as their interpretation were often confusing.
One use case was used to demonstrate the applicabil-
ity of semantic representation and linking it to DBpe-
dia [30] resource by using annotation tools. Patricio
et al. [31] proposed a framework to construct a sym-
bolic model which exploited contextual information
and tracking data in a scene. Knowledge representa-
tion and reasoning was performed using OWL and DL.
An ontology was developed based on the DL, which
defined the concepts, roles, and relations, giving the
basic idea of the domain. The framework consisted
of a general tracking layer which generated trajec-



6 A.S. Patel et al. / Video Representation and Suspicious Event Detection using Semantic Technologies

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tory and context layer representing context and knowl-
edge extracted from the scene. Domain ontologies had
to be created manually or semi-automatically need-
ing considerable effort and domain knowledge. Xu et
al. [32] proposed a video structure description ontol-
ogy, which parsed the video into text information us-
ing spatial and temporal segmentation, feature extrac-
tion, object recognition, and semantic web technolo-
gies. The extracted video content was represented in
RDF using domain-specific ontology created for traf-
fic domain surveillance videos. However, the data min-
ing and inference rule generation for various events
are still unexplored. Vallet et. al. [33] proposed a con-
tent retrieval method using ontological knowledge (a
semantic distance of the concepts) considering user
preferences. Ontologies provided a formal framework
for representing semantic definition and facilitated the
generation of new knowledge-base through inference
rules. The model was deficient, in that it only captured
long-term preferences, without considering short term
preferences. Naphade et al. [34] constructed 834 se-
mantic concepts based on the properties of multime-
dia content, but many terms were not suitable for auto-
mated tagging. LSCOM produced an ontology consist-
ing 1000 concepts of broadcast news domain. Apart
from ontology design, binary relations to hold higher
relations (rule) by relating target concepts and also in-
cludes explicit rules were created. Hauptmann et al.
[35] proposed high-level semantics by providing de-
scriptors of visual content and experimentally demon-
strated that video retrieval improves by increasing the
number of semantic concepts, used concepts from Me-
diaMill and LSCOM to evaluate TRECVID 2005 col-
lection. Video retrieval efficiency was shown to be pro-
portional to the relevance of concepts. Mutual informa-
tion was used to determine the helpfulness of concepts.
Mahmood et al. [36] proposed a method to extract the
semantic content from the sports video. They high-
lighted the variety aspect of the data, which consisted
of semi-structured and unstructured format. The pro-
posed model was based on speech processing, Natural
Language Processing (NLP), and Semantic Web Tech-
nologies to predict the best combination of players for
next ′n′ minutes. Text from the video was extracted
and then converted to RDF using semantic web tech-
nologies and NLP. Best performance for the next few
minutes was identified based on factors like weather
and their past performance in a match but no details
were provided on methodology and evaluation of the
proposed approach. Tani et al. [37] proposed a rule
based approach using SWRL for event detection, but

handled only spatial events like walking and running.
They could not detect temporal events which happened
over the course of time. Additionally, the proposed
methodology could not represent frame-level interac-
tions between the objects.

According to Sikos [38], video contents are chal-
lenging to parse due to lack of semantics in soft-
ware systems. Most of the annotation formats provide
metadata about the title, creator, time, comments, and
lyrics in XML format. However, this information is
not machine interpretable, making it unsuitable for ac-
cess, sharing and reuse. Existing vocabularies such as
Dublin Core and Schema.org only provide de-facto
standard for annotating video objects, while semantic
interoperability requires explicit descriptors to repre-
sent information, should be unique and defined in en-
tity. Sikos [6] proposed a DL based knowledge repre-
sentation, which can be used for multimedia analysis,
event detection, and interpretation of high-level me-
dia descriptors. High-level video-semantics requires
comprehensive reasoning along with suitable ontolo-
gies. Most of the existing ontology do not supports
all constructs of DL which could efficiently model
complex reasoning using atomic concepts by imply-
ing assertion, conjunction, disjunction, etc. and fol-
low SROIQ DL like role restrictions, concepts, etc.
Sikos [39] demonstrated that ontologies for represent-
ing video events require spatial and temporal features
including specific motion events in video scenes.

Smart parking is an integral part of smart city ini-
tiative. Denizens of the city face massive problem in
finding a proper parking space. As surveillance sys-
tems are getting affordable, large-scale deployment of
such systems in parking spaces is resulting in gener-
ation of massive surveillance video data. This data is
beneficial in order to analyze the trajectory, driver be-
havior of the vehicles along with safety and security of
the car [40]. Most of the work done in literature is fo-
cused towards assisting a driver to the parking system,
i.e., identifying the nearest appropriate parking loca-
tion. However, parking lot itself needs to be monitored
to ensure the safety and security of the vehicle when
parked inside the parking lot [41][42]. In this paper,
we demonstrate the applicability of our methodology
by identifying unusual activities to ensure safety of the
parked vehicle.

3. Proposed Work

In this paper, we propose a method to detect suspi-
cious events occurring inside the parking lot to mon-
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Fig. 1. Workflow and Framework of the Approach

itor the safety of parked vehicles. The description
logic expressivity of this ontology is ALHI+(D). Infer-
ence rules are created to perform the reasoning over
the video data. We then formulate the SPARQL and
DL queries to extract high-level semantic information.
This formulation further requires the extraction of low-
level features and representation using video ontology
to create high-level semantics, matching human-level
perception. The overall workflow is shown in Figure 1.
The workflow contains three processing layers: Video
Preprocessing Layer, Semantic Processing Layer and
Semantic Extraction Layer. The video preprocessing
layer performs the feature extraction through a series
of steps involving low-level features extraction, motion
information, spatial features, and contextual informa-
tion. These features are then passed onto the semantic
processing layer. The semantic processing layer then
generates the structured semantic information by pro-
cessing the video which is represented in machine-
readable format after performing ontology engineer-
ing, data integration, concept identification, and rule-
based reasoning. Finally, the semantic extraction layer
transforms the processed semantic information for var-
ious use-cases.

3.1. Definitions

A set of terms are defined which are found in litera-
ture and used in a standard context:

– Scene - A sequence of video frames having same
background and objects.

– Activity [43] - Something which captures user at-
tention, consists of interaction between multiple
objects, can be usual or abnormal.

– Events [23] -Activity which captures user atten-
tion, requires modeling of temporal and multi-
modal characteristics. It involves an understand-
ing of object behaviors and recognition of motion
patterns.

– Sub-event - A uniquely identifiable activity (such
as someone sitting on the car) of a complex event
(such as a person damaging the car).

– Suspicious Activity-An activity that is rare and
potentially dangerous and may lead to unfavor-
able consequences [43].

– Ontology [4] - An ontology is a machine-readable
semantic description of data. It also documents
a particular domain to develop a common under-
standing of concepts.

– Concepts - A concept can be an object property
or data property or a class defined in the ontology.

3.2. Events and Concepts

Concepts and sub-events are formulated to repre-
sent the information present in a video scene. Events
that need to be detected are characterized by combin-
ing sub-events, properties, and relations among them.
Frame-level information is used to construct the sub-
events having a temporal attribute, which in turn is
used to identify complex events. The scene is repre-
sented by developing an ontology that represents an
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object along with its position in every frame. For each
frame, a date and timestamp attribute is associated with
every identified object.

3.3. Feature Extraction and Selection

Low-level features are extracted using edge detec-
tion, color detection, hough line detection, contour de-
tection. Since a frame consists of multiple objects,
the properties of these objects such as length, width,
dominant color, type, location, and time-stamp in a
video are also considered as low-level features. We
used YOLO [44] for extracting type and location of
the object. It returns a bounding box of the object with
which the size and location of the object can also be
calculated. Mid-level features consist of class hierar-
chy of the objects and relationships between the ob-
jects. Since not every feature is relevant to every event
scenario, the low-level features are further picked on
the basis of ontology and domain. A detailed work-
flow is shown in Figure 2 wherein part (a), depicts
the extraction of low-level features, ontology develop-
ment, and frame representation, while part (b) shows
the generation of relationship and detection of an ac-
tivity. The constructed ontology represents the spatio-
temporal relations between objects in a video scene.
The features of a frame are represented using ontol-
ogy as data properties. In contrast to data properties,
the object properties are referred to as mid-level fea-
tures. As shown in Figure 2 (a), each object of the
frame is represented as an individual. In Fig. 2 (b), the
mid-level features, i.e., the relations between the ob-
jects present in same frame and temporal frames are
inferred using SWRL rules between the individuals.
Relation between objects isInTheVicinityOf is shown
using same color line. The green-colored connecting
line shows the existence of overlaps relation between
Car-1 and Car-2. The isInTheVicinityOf relation ex-
ists between Person-1 and Person-2 shown by blue-
colored connecting lines while the same relation be-
tween Person-1 and Car-1 is shown through orange-
colored connecting lines. In final step, abnormal events
are formulated by reasoning over the behavior (reason
for suspicion) and using SPARQL from RDF database.

3.4. Parking Lot Ontology

We develop an ontology that includes the concepts
and parameters of the parking domain. The extracted
data from the video is represented in the RDF format

using proposed domain ontology. The ontology1 fol-
lows OWL 2 DL constructs. OWL 2 adds new func-
tionality with respect to OWL 1 . Some of the new
features are syntactic (e.g., disjoint union of classes)
while others offer new expressibility, including richer
datatypes, data ranges, qualified cardinality restric-
tions, asymmetric, reflexive, and disjoint properties
along with enhanced annotation capabilities. The pel-
let incremental reasoner is used to test the consis-
tency of the proposed ontology. The ontology con-
tains classes to represent frame level information in a
video scene. Figure 3 shows an ontograph of the video
frames represented in RDF format using constructed
ontology. The proposed work is carried out in protege
tool [45].

The top four boxes in Figure 3 represents the classes
(thing, scene, frame, and object) followed by differ-
ent boxes representing individuals of the class object.
The relationships between classes, subclasses, individ-
uals, and object properties are represented using re-
spective colored arcs. Each individual represents one
unique object in a frame number. Individual name Per-
son 1-1 is first object (type person) of first frame of a
video scene. Green-colored arcs represent the hasIn-
dividual relationship between class and the individual.
Arcs with blue color represent the hasSubclass rela-
tionship between a class and a subclass. Red-colored
arc represents object property isInTheVicinityOf be-
tween two individuals. Black-colored arcs represent
object property sameObject between two individuals.
However, owl:sameAs essentially means that two in-
dividual have same properties and instance, but in this
case data properties and object properties of the indi-
vidual are different, also the object belong to different
frame. Therefore, sameObject is defined in our ontol-
ogy to be used instead of owl:sameAs.

The data properties used are

– ObjectLocationLT - Coordinate of the center of
the object along x axis.

– ObjectLocationYC - Coordinate of the center of
the object along y axis.

– ObjectType - Type of the object like car, person.
– ObjectWidth - Width of the object.
– ObjectLength - Length of the object.
– hasTime - Date Time Stamp upto milliseconds of

a video frame.

1https://github.com/aspdr/Video-Representation-and-
Suspicious-Event-Detection-using-Semantic-Technologies/blob/
master/smart-parking-sparql.owl

https://github.com/aspdr/Video-Representation-and-Suspicious-Event-Detection-using-Semantic-Technologies/blob/master/smart-parking-sparql.owl
https://github.com/aspdr/Video-Representation-and-Suspicious-Event-Detection-using-Semantic-Technologies/blob/master/smart-parking-sparql.owl
https://github.com/aspdr/Video-Representation-and-Suspicious-Event-Detection-using-Semantic-Technologies/blob/master/smart-parking-sparql.owl
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(a) Feature Extraction, Ontology development and Frame Representation

(b) Relationship generation and Activity detection

Fig. 2. Detailed Workflow of the Proposed Approach

– hasSceneNumber - Scene number of the video.
– Frame-Number - Frame number of the scene.
– vicinityDuration - Duration for which two objects

are in vicinity.

The object properties used are

– isInTheVicinityOf - This relation holds between
two objects when they are nearby.

– sameObject - holds when two objects are same in
different frame.

– moving - holds when object is moving.

– notMoving - holds when object in not moving.
– overlaps - holds when two objects overlaps.

3.5. Rule-based Reasoning for Event Detection

We perform reasoning and scene interpretation us-
ing inference rules. Based on domain knowledge, the
rules are formulated using DL to detect suspicious ac-
tivity near a parked car in a parking lot using SWRL
[5]. The rules are described with car as a reference,
modified accordingly for other type of vehicles. SWRL
supports new inferences based on the reasoning over
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Fig. 3. Video information extracted and represented in RDF using
Ontology

existing classes, objects, and data properties. SWRL
is expressed in the form of an implication between
an antecedent (body) and consequent (head). The in-
tended meaning can be read as: whenever the condi-
tions specified in the antecedent hold, then the condi-
tions specified in the consequent must also hold. All
the statements on the left side of the implication oper-
ator (⇒) are known as antecedent (body) and on the
right side are known as consequent. Antecedent con-
sists of statements connected through conjunction op-
erator (∧). Antecedent can also include built-in’s for
e.g. swrlb:add(), swrlb:subtract() etc., for mathemati-
cal operation. Variables used in the rules are described
in Table 1. The threshold values for yaTh, ysTh, xaTh

and xsTh are obtained using several independent ex-
periments and were found to be most suitable for the
task. In this work, yaTh, ysTh, xaTh and xsTh were set
to 100, 170, 215 and 100 respectively.

3.5.1. isInTheVicinityOf

Rule 1 sets the object property isInTheVicinityOf

between two individuals if they are nearby each other.

Table 1
Description of the variables

Variable Name Description

o1, o2 Refers to an individual of type object

v1, v2 Refers to frame number of o1 and o2

x1, x2 Refers to the horizontal pixel of o1 and o2

y1, y2 Refers to the vertical pixel o1 and o2

t1, t2 Refers to the type of objects o1 and o2

xs, ys Value after subtracting threshold from x1 and
y1

xa, ya Refers to the threshold added to x1 and y1

yaTh, ysTh Threshold values for calculating ya and ys

xaTh, xsTh Threshold values for calculating xa and xs

w1, w2 Refers to width of o1 and o2

l1, l2 Refers to length of o1 and o2

ws, ls Width and length of o1 subtracted from o2

Rule 1

Object (?o1) ∧ Object(?o2) ∧ Frame-number
(?o1,?v1) ∧ Frame-number (?o2,?v2) ∧
swrlb:equal (?v1,?v2) ∧ objectLocationLT
(?o1,?x1) ∧ objectLocationLT (?o2,?x2) ∧
swrlb:subtract (?xs,?x1,xsTh) ∧ swrlb:add
(?xa,?x1,xaTh) ∧ swrlb:lessThan (?x2,?xa)
∧ swrlb:greaterThan (?x2,?xs) ∧ object-
LocationYC (?o2,?y2) ∧ objectLocationYC
(?o1,?y1) ∧ swrlb:add (?ya,?y1,yaTh)
∧ swrlb:subtract (?ys,?y1,ysTh) ∧
swrlb:greaterThan (?y2,?ys)∧ swrlb:lessThan
(?y2,?ya) ∧ objectType (?o1,?t1) ∧ objectType
(?o2,?t2) ∧ swrlb:notEqual (?t1,?t2) ⇒
isInTheVicinityOf (?o1,?o2).

– Object (?o1) - Represents a variable o1 which is
of type Object(Class in the ontology, it can be of
type individual, class, data property or an object
property).

– Frame-number (?o1,?v1) - Evaluates to true
whenever the data property value (Frame-Number)
of object o1 is stored in variable v1.

– swrlb:equal (?v1,?v2), swrlb:notEqual (?v1,?v2)
- SWRL built-in function to compare values if
they are equal or unequal.

– swrlb:add(?v1,?v2,?v3), swrlb:subtract(?v1,?v2,
?v3) - SWRL built-in function to perform mathe-
matical operation and store the result in v1.
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– swrlb:greaterThan (?y2,?ys), swrlb:lessThan (?y2,
?ys)- Compares to values y2 and ys and returns
true when y2 satisfies the condition.

– objectLocationYC (?o1,?y1), objectLocationLT
(?o1,?x1) - sets the y coordinate and x coordinate
of object o1 in variable y1 and x1.

– ObjectType (?o1,?t1) - Sets the class of the object
o1 in t1.

– isInTheVicinityOf (?o1,?o2) - Sets the isInThe-
VicinityOf property between object o1 and o2,
states objects are in vicinity of each other when
antecedent on left side of the above rule evaluates
to true.

3.5.2. sameObject
Rule 2 sets the object property sameObject. Two ob-

jects are said to be sameObject when objects present
in subsequent frames have the same shape, size, same
dominant color, and are locationally nearby. However,
they have been identified to be two different individ-
uals belonging to the same object class (e.g. two per-
sons or two cars).

Rule 2

Object (?o1) ∧ Object (?o2) ∧ Frame-
number (?o2, ?v2) ∧ Frame-number (?o1, ?v)
∧ swrlb:add (?v3, ?v, 1) ∧ swrlb:equal(?v3,
?v2) ∧ objectLocationLT(?o1, ?x1) ∧ ob-
jectLocationLT (?o2, ?x2) ∧ swrlb:subtract
(?xs, ?x1, xsTh) ∧ swrlb:add (?xa, ?x1,
xaTh) ∧ swrlb:greaterThan (?x2, ?xs) ∧
swrlb:lessThan (?x2, ?xa) ∧ objectType (?o1,
?t) ∧ objectType (?o2, ?t2) ∧ swrlb:equal
(?t, ?t2) ∧ objectLocationYC (?o1, ?y1)
∧ objectLocationYC (?o2,?y2) ∧ swrlb:add
(?ya, ?y1, yaTh) ∧ swrlb:subtract (?ys, ?y1,
ysTh) ∧ swrlb:greaterThan (?y2, ?ys) ∧
swrlb:lessThan (?y2, ?ya)⇒ sameObject(?o1,
?o2)

– sameObject (?o1,?o2) - Sets the sameObject re-
lation between object o1 and o2, states that both
object are same when antecedent on left side of
the above rule evaluates to true.

– Rest of the antecedents used, are already defined
earlier in Section 3.5.1.

3.5.3. moving
Rule 3 sets the object property moving when ob-

ject present in subsequent frames have the same shape,

size, same dominant color, and are locationally nearby,

but is continuously changing over the certain number

of frames. However, they have been identified to be

two different individuals belonging to the same object

class (e.g. two persons or two cars).

Rule 3

Object (?o1) ∧ Object (?o2) ∧ Frame-
number (?o2,?v2) ∧ Frame-number (?o1,?v)
∧ swrlb:add (?v3, ?v, 1) ∧ swrlb:equal
(?v3,?v2) ∧ objectLocationLT (?o1,?x1) ∧
objectLocationLT (?o2,?x2) ∧ swrlb:subtract
(?xs,?x1,xsTh) ∧ swrlb:add (?xa, ?x1,
xaTh) ∧ swrlb:greaterThan (?x2, ?xs)
∧ swrlb:lessThan (?x2,?xa) ∧ object-
Type (?o1,?t) ∧ objectType (?o2,?t2) ∧
swrlb:equal (?t,?t2) ∧ objectLocationYC
(?o1,?y1) ∧ objectLocationYC (?o2,?y2) ∧
swrlb:add (?ya,?y1,yaTh) ∧ swrlb:subtract
(?ys,?y1,ysTh) ∧ swrlb:greaterThan (?y2,?ys)
∧ swrlb:lessThan (?y2,?ya) ∧ swrlb:notEqual
(?y1,?y2) ∧ swrlb:notEqual (?x1,?x2) ⇒
moving(?o1,?o2)

– moving (?o1,?o2) - Sets the moving relation be-

tween object o1 and o2, states that both object are

moving when antecedent on left side of the above

rule evaluates to true.

– Rest of the antecedents used, are already defined

earlier in Section 3.5.1.

3.5.4. notMoving

Rule 4 sets the object property notMoving when ob-

ject present in subsequent frames have the same shape,

size, same dominant color, and are locationally same,

but location is fixed over certain frames. However, they

have been identified to be two different individuals be-

longing to the same object class (e.g. two persons or

two cars).



12 A.S. Patel et al. / Video Representation and Suspicious Event Detection using Semantic Technologies

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Rule 4

Object (?o1) ∧Object (?o2) ∧ Frame-
number (?o2,?v2) ∧ Frame-number (?o1,
?v) ∧ swrlb:add (?v3,?v,1) ∧ swrlb:equal
(?v3, ?v2) ∧ objectLocationLT (?o1,
?x1) ∧ objectLocationLT (?o2,?x2) ∧
swrlb:subtract(?xs,?x1,xsTh) ∧ swrlb:add
(?xa,?x1,xaTh) ∧ swrlb:greaterThan (?x2,?xs)
∧ swrlb:lessThan (?x2, ?xa) ∧ object-
Type (?o1,?t) ∧ objectType (?o2,?t2) ∧
swrlb:equal (?t,?t2) ∧ objectLocationYC
(?o1,?y1) ∧ objectLocationYC (?o2,?y2) ∧
swrlb:add (?ya, ?y1, yaTh) ∧ swrlb:subtract
(?ys,?y1,ysTh) ∧ swrlb:greaterThan (?y2,?ys)
∧ swrlb:lessThan (?y2,?ya) ∧ swrlb:Equa
l(?y1,?y2) ∧swrlb:Equal (?x1,?x2) ⇒ not-
Moving (?o1,?o2)

– notMoving (?o1, ?o2) - Sets the notMoving rela-
tion between object o1 and o2, states that both ob-
ject are notMoving when antecedent on left side
of the above rule evaluates to true.

– Rest of the antecedents used, are already defined
earlier in Section 3.5.1.

3.5.5. overlaps
Rule 5 sets the object property overlaps when the

boundaries (bounding box of object) of the two differ-
ent object are overlapping in current frame.

Rule 5

Object (?o1) ∧ Object(?o2) ∧ Frame-
number (?o2, ?v2) ∧ Frame-number(?o1,
?v1) ∧ ObjectWidth (?o1,?w1) ∧ Ob-
jectWidth (?o2,?w2)∧ ObjectLength (?o1,?l1)
∧ ObjectLength (?o2,?l2) ∧ objectLo-
cationLT (?o1,?x1) ∧ objectLocationLT
(?o2,?x2) ∧ swrlb:add(?wa,?w2,?x1) ∧
swrlb:subtract (?ws,?x1,?w2) ∧ swrlb:add
(?la,?l2,?y2) ∧ swrlb:subtract (?ls,?y2,?y2)
∧ swrlb:equal (?v1,?v2) ∧ swrlb:greaterThan
(?x1,?ws) ∧ swrlb:lessThan(?x1,?ws) ∧
swrlb:greaterThan(?y1,?ls) ∧ swrlb:lessThan
(?y1,?ls)⇒ overlaps(?o1,?o2)

– ObjectWidth (?o1,?w1) - Evaluates to true when-
ever the data property value (ObjetWidth) of ob-
ject o1 is not null.

– ObjectLength (?o1,?l1) - Evaluates to true when
data property value (ObjetLength) of object o1 is
not null.

– overlaps (?o1,?o2) - Sets the overlaps relation be-
tween object o1 and o2, states that both object
are overlaps when antecedent on left side of the
above rule evaluates to true.

– Rest of the antecedents used, are already defined
earlier in Section 3.5.1.

3.6. Suspicious Activity Detection around a parkied
car using SPARQL query

SPARQL query is used to identify suspicious activi-
ties. It queries the RDF data using existing object prop-
erties and data properties. It can match against graph
patterns and has a rich set of operators and functions
on numbers, strings, date/time, and terms. A SPARQL
query is triggered to extract meaningful information
about occurrence of the event with time. A SPARQL
query is created on the basis of logical description used
to define an event. The queries are described with car
as a reference, modified accordingly for other type of
vehicles. For example, the activity of loitering around
a parked car can be suspected by identifying the pres-
ence of a person in the vicinity of a car for more
than certain duration. Figure 4 provides the complete
SPARQL query created to identify loitering around the
vehicle.

In the first part of the query given in Figure 4, pre-
fixes are defined. Prefix owl defines the schema of the
OWL-DL construct. The rdfs define the resource de-
scription format schema, xsd defines the XML schema.
The time defines the time ontology. The date defines
the schema of date type and built-inâĂŹs. The select
statement in the query returns four distinct instances of
type object at two specified intervals. Instances inst1,
inst3 are returned at time instant t1, and instances
inst2, inst4 are returned at time instant t2, such that
inst1 isInTheVicinityOf inst3 and inst2 isInTheVicin-
ityOf inst4 as shown in lines 9 and 10 of Figure 4.
inst1 is sameObject with inst2, and inst3 is sameOb-
ject with inst4 as shown in lines 8 and 11 in Figure
4. The relation isInTheVicinityOf describes the spatial
relationship while the relation sameObject establishes
the temporal relationship over different frames, result-
ing in representation and retrieval of spatio-temporal
information present in the video scene.

Similarly, other activities such as âĂIJa person
touching the carâĂİ, âĂIJa person looking inside the
carâĂİ etc., have also been defined with a suitable log-
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ical description and their respective SPARQL queries
are created. There are seven unusual or abnormal ac-
tivities identified for this study. These are: âĂŞ

– General Loitering
– Person walking around the car
– Person touching the car
– Person looking inside the car
– Person attempting to damage the car
– Group of people passing nearby car
– Trying to open the door of the car

The above activities are formulated to test the appli-
cability of the proposed approach and identified using
SPARQL queries. Similarly, many more activities can
be identified by defining more object properties, rela-
tions, and reasoning over those object properties.

3.7. Object Tracking

Object property sameObject established between
two objects (one object of the current frame another of
the subsequent frame) by comparing it with the all the
objects in next frame. This sameObject property is ex-
tended over entire scene by applying transitive prop-
erty on all the objects. If an object is same in first and
second frame, and same in second, third frame, then
the object is also same is first and third frame using
transitive property as shown in Figure 5. The tracking
results are listed in Table 5 as relation sameObject.

4. Results and Discussion

Low-level features are extracted from each frame
of the video. The extracted features are then popu-
lated using the ontology for scene interpretation. Re-
lations between the objects are inferred using SWRL
rules. The temporal relations are represented by com-
paring the information present in current frame with
the next frame, and then the transitivity of object prop-
erties is applied to identify relationships over the en-
tire scene thereby, reducing the computation and mak-
ing the framework very agile and scalable as compared
to other machine learning and video processing tech-
niques. An activity dataset2 that contains six unusual
activities, with a total of 92 videos is created. Details of
the activity dataset is shown in Table 2. A person trying

2https://github.com/aspdr/Video-Representation-and-
Suspicious-Event-Detection-using-Semantic-Technologies/tree/
master/Trimmed%20Activity%20Dataset

SPARQL Query

1 . PREFIX owl : < h t t p : / /
www. w3 . org / 2 0 0 2 / 0 7 / owl#>

2 . PREFIX r d f s : < h t t p : / / www.
w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>

3 . PREFIX xsd : < h t t p : / / www. w3 .
org / 2 0 0 1 / XMLSchema#>

4 . PREFIX t ime : < h t t p : / / www. w3 .
org / 2 0 0 6 / t ime #>

5 . PREFIX d a t e : < h t t p s : / / www. w3 .
org / TR / owl−t ime /# >

6 . PREFIX owlpark : < h t t p : / / www.
semant icweb . o rg /
myontology #>

7 . SELECT d i s t i n c t ? i n s t 1 ? i n s t 2
? i n s t 3 ? i n s t 4 ? t 1 ? t 2

8 . where {SELECT ? i n s t 1 ? i n s t 2 {
? i n s t 1 owlpark : sameObjec t
? i n s t 2 . }

9 . ? i n s t 1 owlpark :
i s I n T h e V i c i n i t y O f ? i n s t 3 .

1 0 . ? i n s t 2 owlpark :
i s I n T h e V i c i n i t y O f ? i n s t 4 .

1 1 . ? i n s t 3 owlpark :
sameObjec t ? i n s t 4 .

1 2 . ? i n s t 1 owlpark : hasTime ? t 1 .
1 3 . ? i n s t 2 owlpark : hasTime ? t 2 .
1 4 . FILTER
1 5 . ( ? t 1 = "2018−07−06T03 : 0 0 : 0 0 "

xsd : da teTime &&
1 6 . ? t 2 ="2018−07−06T03 : 0 0 : 0 3 . 6 "

xsd : da teTime ) }

Fig. 4. SPARQL Query for moving around the Car

to open the car door or a person touching the car may
not be suspicious in case the person is the owner or a
genuine driver of the car. Therefore, a level of atten-
tion is assigned to each activity and classified as low,
medium and high, as shown in Table 2. Experiments
are performed for the activities listed in Table 2. The
proposed approach is also applied to the crowd scene
sequence dataset of the University of Florida (PNNL2)
[47]. This dataset consists of a crowd movement near a
parked car in an open parking space as shown in Figure
12 along with objects with respective bounding boxes.

https://github.com/aspdr/Video-Representation-and-Suspicious-Event-Detection-using-Semantic-Technologies/tree/master/Trimmed%20Activity%20Dataset
https://github.com/aspdr/Video-Representation-and-Suspicious-Event-Detection-using-Semantic-Technologies/tree/master/Trimmed%20Activity%20Dataset
https://github.com/aspdr/Video-Representation-and-Suspicious-Event-Detection-using-Semantic-Technologies/tree/master/Trimmed%20Activity%20Dataset
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Fig. 5. Object Tracking using transitive property

Table 2
Description of Activity Dataset

Activity Description
Video
Count

Suspicious
Alertness
Level

Person walking around the
car (Figure. 6)[46] [43]

10 Yes High

Person touching the car
(Figure. 7)

15 Potentially Low

Person looking inside the
car (Fig. 8)

24 Yes High

Person attempting to dam-
age the car (Figure. 9)

17 Yes High

Group of people passing
nearby car (Figure. 10)

11 Yes Low

Trying to open the door of
the car (Figure. 11)

15 Potentially High

Fig. 6. Person walking around the car (Loitering)

Fig. 7. Person touching the car

Fig. 8. Person looking inside the car

Performance and accuracy measures of various steps
are given in Tables 3, 4, 5, and 6 .

4.1. Performance

The performance of the presented approach is tested
on three different types of systems as shown in Ta-
ble 3. The table lists execution time for processing ten
frames in three environments. The first two systems are
normal specification PCâĂŹs with easy to find system
configuration. The third system is workstation with a
relatively higher computing power consisting of Intel
Xeon CPU, 64 GB RAM, and Nvidia 1080Ti GPU
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Fig. 9. Person attempting to damage the car

Fig. 10. A group passing by parking lot

with 11 GB of dedicated graphics memory. Total exe-
cution time consists of two components, i.e., time for
extraction of low-level features and time for inference
rule generation. The results demonstrate that the low-
level feature extraction is highly dependent on pres-
ence of GPU as in the absence of GPU, the perfor-
mance of the system is substantially low. However, it
is observed that the time taken for generation of infer-
ence and reasoning does not depend on the presence of
GPU. The inference and reasoning part performs rea-
sonably well even with 8 GB of RAM and Intel i7 pro-
cessor. This is a prominent finding of this work which
promises a possibility of implementing event detection

Fig. 11. Person trying to open the door of the car.

Fig. 12. Person walking around the vehicle in PNNL2 dataset [47].

using smart devices present on the edge of the surveil-
lance systems with pre-trained deep-net models (to re-
duce the extraction of low-level features) and meaning-
ful knowledge inference through semantic technolo-
gies. The presented framework is computationally ef-
ficient, and can be easily deployed in any of the listed
system configurations.

The presented framework is computationally effi-
cient, and can be easily deployed in any of the listed
system configurations. There is no notable difference
between the time taken by each rule as the time com-
plexity depends on the number of atoms used in rules
[2] shown in Table 4. Inference time for the relation
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Table 3
Execution time of the framework in different environments

CPU
Memory (GB) Time taken to perform (seconds)

System GPU
Low-Level
Features

Inference &
Reasoning

Intel I7 8 1 240 1.65

Intel I7 16 0 360 1.3

Intel Xeon 64 11 0.39 1.06

Table 4
Relation wise execution time for different environment

CPU
RAM
(GB)

GPU
(GB)

Relation
Inference
Time
(secs)

Variables

Intel
I7

8 1 sameObject 1.384 10

isInTheVicinityOf 1.318 10

overlaps 1.306 8

notMoving 1.252 8

moving 1.246 8

Intel
I7

16 1 sameObject 1.187 10

isInTheVicinityOf 1.128 10

overlaps 1.135 8

moving 1.147 8

notMoving 1.151 8

Intel
Xeon

64 11 sameObject 0.987 10

isInTheVicinityOf 0.920 10

overlaps 0.971 8

moving 0.987 8

notMoving 0.957 8

sameOb ject is highest as it has most number of atomic
antecedents. It is also evident from the table that in-
ference time is least in the server which is having the
most powerful CPU.

4.2. Accuracy

The proposed work is evaluated by measuring the
accuracy of the inferred relations and activities. Accu-
racy of SPARQL query directly depends on inferred
relationship as it extracts presence of relationship in
the temporal domain. We measured the accuracy of in-
ferred relations, on open parking dataset [47] and the
accuracy of activities on our dataset shown in Table 2.

4.2.1. Relationship Inference
The accuracy of the inferred relations is measured

by calculating precision and recall of relations by
forming a confusion matrix shown in Table 5. The ma-

Table 5
Accuracy of inferring the relations in a video scene

Relation
Total Rela-
tions

Precision
(%)

Recall
(%)

overlaps 2436 97.63 98.59

isInTheVicinityOf 380 98.12 99.43

sameObject 60475 81.72 97.45

moving 5429 98.36 99.37

notMoving 1896 96.03 98.71

trix is calculated by considering relations among 7325
objects of open parking dataset [47]. Each frame has
14 objects on an average, and the number of frames per
second (fps) of the video is 15. In total 70616 relations
(overlaps, isInTheVicinityOf, sameObject, moving and
notMoving) exists between the objects, of which the
inferred sameObject relation has more number of false
positives because of close objects and object occlu-
sion. Thus, proposed framework performs quite well
in inferring the complex spatio-temporal relations and
interactions between the objects.

4.2.2. Activity Detection
Activity recognition is performed by executing

SPARQL queries tailored explicitly for a particular ac-
tivity as listed in Table 2. The number of true alarm,
false alarm and missed alarm are recorded to calculate
the accuracy of the approach. The results are shown in
Table 5.

– True Alarm âĂŞ The number of correct recog-
nition, when system identified it and it also hap-
pened.

– False Alarm - The activity does not happen in
real but system recognized it as occurred. These
are the negative examples in the dataset.

– Misses - The activity which goes unrecognized
by the system, but occurred.

As per Table 6, the following observation can be made
for respective activities:

– Loitering - There are few misses due to the move-
ment of person behind the car, due to which it be-
comes an occluded object.

– Person looking inside the car - Misses occur due
to occlusion of the person behind another car and
false alarms are reported because the person is not
actually looking inside the car but just standing in
front and looking at something else.

– Person attempting to damage the car - Few
misses are observed because the person attempts
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Table 6
Accuracy of the various activities by the framework

Activity Descrip-
tion

Total
True
Alarm

False
Alarm

Misses
True
Alarm
(%)

Person walking
around the car

10 8 0 2 80

Person touching
the car

17 13 2 2 76.67

Person looking
inside the car

26 20 2 4 76.92

Person attempt-
ing to damage the
car

17 15 0 2 88.23

Group of people
passing nearby
car

11 6 0 5 54.55

Trying to open
the door of the car

15 12 0 3 80

to damage the car, but took lesser time than ex-
pected.

– Group of people passing nearby car - Misses are
observed because group was moving at a signifi-
cant distance from the parked car.

– Trying to open the door of the car - At times,
misses are observed as the time taken is less than
the time assigned for the activity.

4.2.3. Activity: General loitering
The proposed methodology is utilized to identify the

abnormal activity of loitering which is identified as one
of the most common suspicious behaviors in the liter-
ature [43]. Loitering is defined as a person who enters
the scene and remains within the scene for more than a
certain duration. For reference, the duration of 60 sec-
onds was mentioned in PETS2007[48]. The SPARQL
query is formulated for defining loitering activity. It is
said to be loitering when an individual is of type per-
son and present in scene for more than t seconds. The
âĂŸtâĂŹ here is kept 20 seconds. Our methodology
performs significantly better in detecting loitering ac-
tivity as compared to the previous approach [49] in lit-
erature as shown in Table 7. The performance of the
approach is compared with the versatile loitering [49]
on PETS 2006 and PETS 2016 datasets. Following se-
quences of PETS2006 [50] and PETS2016 [51] dataset
are used:

– PETS2006-S1-T1-C - This is a left luggage sce-
nario listed in PETS2006, in which a person loi-
ters before leaving the unattended luggage. The

Fig. 13. Sequence S1-T1-C containing movement of a person with
luggage in PETS2006 dataset

activity predominantly occurs between duration
of 40 to 80 seconds. Thus, the sequence from 40
seconds onwards is used to classify the activity.
The snapshot of the sequence is shown in Figure
13 and results are shown in Table 7.

– PETS2006 - S2-T3-C - This is a left luggage sce-
nario listed in PETS2006, in which two persons
enters the video scene from front of each other.
The first person carries the suitcase, making it
unattended in the ground, loiters, then leave af-
terwards. The activity predominantly occurs be-
tween duration of 40 to 80 seconds. Thus, the se-
quence from 40 seconds onwards is used to clas-
sify the activity. The snapshot of the sequence is
shown in Figure 14 and results are shown in Table
7.

– PETS2006 - S3-T7-A - This is also a left lug-
gage scenario listed in PETS2006, in which a per-
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Fig. 14. Sequence S2-T3-C containing the movement of a person
with luggage in PETS2006 dataset

son is waiting for a train. While waiting, the per-
son keeps his suitcase in the ground and picks it
up again after some time, making it unattended
for a certain duration. The person loiters before
picking up the unattended luggage. The activ-
ity occurs between a duration of 20 to 60 sec-
onds. Thus, the sequence from 20 seconds on-
wards is used to classify the activity, containing
at least 20 seconds of loitering. The snapshot of
the sequence is shown in Figure 15 and results are
shown in Table 7.

– PETS2016 - 03_06 - This sequence is labeled
as something is wrong scenario in PETS2016
dataset. It is part of the ARENA multi-camera
dataset containing various activities around the
parked vehicle in a parking lot. The sequence
contains suspicious behavior of the loitering of a
person near a truck. The total length of the se-

Fig. 15. Sequence S3-T7-A containing the movement of a person
with luggage in PETS2006 dataset

quence is 78 seconds. It involves the movement of
a person near the truck. For this study data from
two cameras, TRK_RGB_1 and TRK_RGB_2
are processed. The TRK_RGB_1 captures the
initial movement of the loiter as normal, while
TRK_RGB_2 captures the loitering activity which
occurs for more than 20 seconds. Our approach
performs better than the existing approach in de-
tecting this activity, as listed in Table 7. The snap-
shot of the sequence is also shown in Figure 16
and Figure 17.

– PETS2016 - 14_05 - This sequence is also
part of PETS2006 ARENA dataset and 100
seconds long. It is labeled as a criminal sce-
nario as one person is loitering and other per-
son steals. We have only processed and classi-
fied the video containing loitering activity cap-
tured in TRK_RGB_3 clip in the latter part of the
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Fig. 16. Sequence 03_06 TRK_RGB_1 containing the movement of
person near parked truck in PETS2016 dataset

video clip. Our approach successfully detected
the activity of loitering but the existing approach
identified it a normal activity in Table 7, demon-
strating the robustness of our proposed approach
and framework. The snapshot of the sequence is
shown in Figure 18.

4.2.4. Activity: Person walking around the the vehicle
Suspicious activity of moving around the vehicle

is evaluated on sequence of PETS2014 Arena dataset
[52] containing the series of multiple camera record-
ings for understanding human behavior around the ve-
hicle with the intention pro-actively identifying the
potential threats. Therefore, we have evaluated accu-
racy of our framework on the various sequences of
PETS2014 dataset. If the relationship isInTheVicini-
tyOf holds between truck and person for 20 seconds
then it is classified as suspicious activity of moving
around the vehicle. Furthermore, the sequences are bi-

Fig. 17. Sequence 03_06 TRK_RGB_2 containing loitering in
PETS2016 dataset

furcated to generate multiple scenarios for evaluating
the robustness of the proposed approach:

– PETS2014 - 06_01 - The sequence (ENV_RGB_3)
consists of security personnel moving around the
truck and labeled in something is wrong scenario
in the dataset. The total length of the sequence is
3 minutes 16 seconds, which involves the move-
ment of a security guard around the truck. The
sequence is further divided into three sub-parts
as listed in Table 8 and the presence of a person
is detected as suspicious behavior (something is
wrong as labeled in the dataset) in all the subse-
quences. The snapshot of the sequence is shown
in Figure 19.

– PETS2014 - 06_04 - The sequence (ENV_RGB_3)
consist of two security personnel moving around
the truck and labeled as something is wrong sce-
nario in the dataset. The total length of the se-
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Fig. 18. Sequence 14_05 TRK_RGB_2 containing loitering in
PETS2016 dataset

quence is 100 seconds, involves movement of se-
curity guard around the truck. For sometime, the
security guards are not captured as they are on
the other side of the truck. The duration was set
to 20 seconds. The sequence is further divided in
two sub parts as listed in Table 8 and the activity
is successfully identified in both of the sequences
using our SPARQL query. The snapshot of the
sequence is shown in Figure 20.

– PETS2014 - 10_03 ENV_RGB_3 - The se-
quence (ENV_RGB_3) consists of a person walk-
ing around the parked vehicle. For some-time per-
son is not captured as he is behind the truck. Later
on, come back towards the back of the truck and
then walks away from the front. The scene also
contains few other people also walking through
the pathway. The scenario is labeled as something
is wrong scenario in the dataset. The total length
of the sequence is 78 seconds. The sequence is

Table 7
Comparison of the Loitering detection with the existing approach

Dataset Sequence
Name

Time
frame
(secs)

Actual Approach
[49]

Ours

PETS
2006

S1-T1-
C-3

41-80 Loiter Loiter Loiter

S2-T3-
C-3

41-80 Loiter Loiter Loiter

S3-T7-
A-3

21-60 Loiter Loiter Loiter

PETS
2016

03_06
TRK
RGB_2

11-50 Loiter No Loiter Loiter

03_06
TRK
RGB_1

11-50 No
Loiter

No Loiter No
Loiter

14_05
TRK
RGB_2

11-50 Loiter No Loiter Loiter

further divided into two subparts, as listed in Ta-
ble 8. The snapshot of the sequence is shown in
Figure 21.

– PETS2014 - 10_04 ENV_RGB_3 - The se-
quence (ENV_RGB_3) consists of a person walk-
ing around the parked vehicle. The person enters
from the back of the truck, then takes a round
from the front and goes on the other side of the
truck. The person when on the other side of the
truck is not captured, leading to not detection of
the activity. The scene also contains two other
person walking through the pathway and a car
passing by. The scenario is labeled as something
is wrong scenario in the dataset. The total length
of the sequence is 78 seconds. The sequence is
further divided into two subparts, as listed in Ta-
ble 8. The snapshot of the sequence is shown in
Figure 22.

– PETS2014 - 10_05 ENV_RGB_3 - The se-
quence (ENV_RGB_3) consist of a person walk-
ing around the parked vehicle. The person enters
the scene from the front of the vehicle, then stops
near the door of the vehicle and again turns back-
ward and walks towards another side of the vehi-
cle. The person could not be captured in the sec-
ond half of the clip as he is behind the truck (in
invisible region of the camera). The total length
of the sequence is 60 seconds, which involves the
movement of a security guard around the truck.
The sequence is further divided into three sub-
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Fig. 19. Sequence 06_01 ENV_RGB_3 containing movement of
person around the vehicle in PETS2004 dataset

parts, as listed in Table 8. The snapshot of the
sequence is shown in Figure 23.

The performance of the proposed approach is shown
in Table 8 demonstrating the effectiveness to detect
potential criminal scenario of unintentional movement
around the parked vehicle on PETS 2014 dataset.
However, in few scenario the activity could not be de-
tected as the object (person) got occluded behind the
bigger object (truck). Results demonstrate the accu-
racy of the proposed approach and create an excep-
tional foundation to categorize an event as suspicious
or normal on top of which further decisions can be
made. The proposed work can also be readily applied
to several such scenarios for activity detection and
scene representation.

Fig. 20. Sequence 06_04 ENV_RGB_3 containing the movement of
person around the vehicle in PETS2004 dataset

5. Conclusion

In this paper, a novel approach of event detection
and video analytics is presented, by creating a frame-
work for event detection, and video understanding with
high-level semantics. Firstly, frame-level features are
extracted from the video. Secondly, an ontology is de-
veloped, which can represent the frame-level informa-
tion of the use-case video data, i.e., parking lot footage.
Selected frame-level information is mapped to data
properties of the developed ontology. Relationships
between objects in a video footage are identified using
ad-hoc SWRL rules, including rules for object track-
ing. A labeled dataset of suspicious activities is cre-
ated to test the applicability of the proposed approach.
This dataset can be highly useful beyond the scope of
this article, to aid developers in providing solutions
to parking-related challenges, as there is no compa-
rable preexisting dataset, to the best of our knowl-
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Fig. 21. Sequence 10_03 ENV_RGB_3 containing the movement of
person around the vehicle in PETS2004 dataset

edge. As a use case, six suspicious events are identified
in surveillance footage of a parking lot, thus filling a
well-known semantic gap between low-level features
of a video and high-level (hidden) semantics. Further-
more, the approach is also validated on the PETS2006,
PETS2014 and PETS2016 datasets. Our approach can
help in representing most of the spatial and temporal
information present in the video, which could be use-
ful for object tracking and generating high-level se-
mantic information. Our work demonstrated the po-
tential in leveraging semantic web technology for ac-
tivity detection, especially useful in scenarios featur-
ing lack of training data and limited computing re-
sources. The proposed approach also covers extracting
and representing salient information present in video
frames in machine-readable and machine-interpretable
format, which improves ease of retrieval, processing,
and storage.

Fig. 22. Sequence 10_04 ENV_RGB_3 containing the movement of
person around the vehicle in PETS2004 dataset

6. Future Work

Video representation and event detection opens up
a plethora of use-cases, and are applicable to various
domains. In the future, an extensive comparison shall
be done with other machine learning approaches. One
of the vital requirements for smart city initiatives lies
in the applicability of low-power edge devices hav-
ing limited computing resources. Therefore, the ability
of edge/fog computing devices to handle such work-
loads, deriving from the effectiveness of the current
approach, will also be investigated. Most of the activi-
ties which can be categorized as alarming, also include
some common activities like walking, running, stand-
ing, touching, sitting, opening the door, etc. These are
sub-activities that do not require interactions among
multiple objects in the time domain but focus only on
a few objects. By detecting these sub-activities, more
complex (and atypical) activities can be derived. Ob-
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Fig. 23. Sequence 10_05 ENV_RGB_3 containing movement of
person around the vehicle in PETS2004 dataset

ject tracking is one of the most challenging problems
in the field of computer vision. The object tracking
approach presented in this paper will be further ex-
plored to benchmark tracking and evaluate results. An-
other integral part of this approach is ontology engi-
neering, which requires substantial manpower, skilled
in domain-specific concepts. Although a significant
amount of work in literature is available with regard
to automatic concept detection from the perspective
of ontology construction, most work still remains te-
dious, error-prone, and time-consuming. A video on-
tology may work well enough to represent all the in-
teractions between objects, both spatially and tempo-
rally. An ontology thus built, can actually be used to
represent a complete video in a RDF graph, for ease of
storage, access, and retrieval. Therefore, methods and
data-driven techniques to generate ontologies automat-
ically will also be investigated.

Table 8
Performance of framework in identifying potentially criminal activ-
ity of moving around the vehicle on PETS2014 dataset

Sequence Time
frame
(secs)

Actual Outcome Observation

06_01
ENV
RGB_3

1-50 Suspicious Suspicious Detected in all clips
51-
100

Suspicious Suspicious

101-
150

Suspicious Suspicious

06_04
ENV
RGB_3

0-50 Suspicious Suspicious Person is not visible
in second clip51-

100
Suspicious Normal

10_03
ENV
RGB_3

1-40 Suspicious Normal Person not captured
in the first clip41-

78
Suspicious Suspicious

10_04
ENV
RGB_3

1-40 Suspicious Normal Person not captured
in the second clip41-

79
Suspicious Suspicious

10_05
ENV
RGB_3

1-40 Suspicious Suspicious Person not captured
in the second clip41-

59
Suspicious Normal
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