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Abstract. Zero-shot learning (ZSL) which aims to deal with new classes that have never appeared in the training data (i.e.,
unseen classes) has attracted massive research interests recently. Transferring of deep features learned from training classes (i.e.,
seen classes) are often used, but most current methods are black-box models without any explanations, especially to people
without artificial intelligence expertise. In this paper, we focus on explainable ZSL, and present a knowledge graph (KG) based
framework that can explain the feature transferring in ZSL in a human understandable manner. The framework has two modules:
an attentive ZSL learner and an explanation generator. The former utilizes an Attentive Graph Convolutional Network (AGCN)
to match inter-class relationship with the transferability of deep features (i.e., map class knowledge from WordNet into classifier)
and learn unseen classifiers so as to predict the samples of unseen classes, with impressive (important) seen classifiers detected,
while the latter generates human-understandable explanations of the transferability with class knowledge that are enriched by
external KGs, including a domain-specific Attribute Graph and DBpedia. We evaluate our method on two benchmarks for animal
recognition. Augmented by class knowledge from KGs, our framework makes high quality explanations for ZSL transferability,
and at the same time improves the recognition accuracy.

Keywords: Zero-shot Learning, Knowledge Graph, Explainable Al, Knowledge-based Learning, Graph Convolutional Network

1. Introduction Zero-shot learning (ZSL) is widely introduced in

image recognition task (e.g., [2]). It predicts the im-

Recently, object recognition by deep learning which
learns features from abundant samples has gained a
lot of successes. For example, it even outperforms hu-
man beings on the ImageNet ILSVRC challenges [1].
However, it still suffers from challenges from data col-
lection: when a new class emerges, hundreds of sam-
ples are needed for training while their labels are usu-
ally hard to acquire. This makes the recognition model
less competitive. Therefore, the interest in zero-shot
learning is growing rapidly. It focuses on developing
deep learning models for those emerging classes with-
out training samples.

ages of new classes (i.e., unseen classes) that do not
exist in the training set by transferring features learned
from the training classes (i.e., seen classes). The inspi-
ration is that human can recognize new objects through
the class knowledge (e.g., description) itself, even with
no labeled samples . For example, considering the an-
imal class “Serval”, even though a human being might
have never seen samples in the past, s/he would still be
able to recognize it based on the description: “Serval,
a kind of animal with a Car-like face and a Cheetah-
like body” (see Figure 1). With previous recognition
experience of Cat and Cheetah, s/he can easily reason
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about the specific appearance of Serval and identify it
correctly.

The general principle of most ZSL algorithms is
to represent such class knowledge and utilize inter-
class relationship to transfer model parameters such as
neural network features from seen classes to unseen
classes. Some works (e.g., [3, 4]) leverage the embed-
ding of class names learned from text corpus for trans-
ferring e.g., CNN features, while others (e.g., [5, 6])
prefer to more complex knowledge like class hierar-
chy and class attributes. These methods aim at lean-
ing and prediction for unseen classes ([3-8]), but are
black-box models: the transferability of features is un-
interpretable. This not only limits human’s trust on the
prediction, but also disables the human-machine inter-
action which is important in machine learning model
developing, configuration and debugging.

There have been few works that explain ZSL with
human understandable knowledge. As far as we know,
the only work that is close to ours is by Selvaraju et
al. [9]. They first learned the mapping between class
attributes and neuron importance, and then transferred
neurons (i.e., features) from seen classes to unseen
classes, where attributes of classes were used to justify
the prediction of unseen classes (cf. more in Section 2).
Such work indicates that it’s feasible to explain ZSL by
class knowledge such as class attributes. However, this
work focuses on explaining the neuron importance, but
ignores the feature transferability which is the core of
ZSL. Moreover, its method is ad-hoc, only working
for predefined class attributes, while our explanation
method supports not only attributes but also general
common sense knowledge in different formats, coming
from external KGs like DBpedia.

In this paper, we propose a KG based framework to
explain the feature transferability in ZSL. It first adopts
a KG named WordNet and an Attentive Graph Con-
volutional Neural Network (AGCN) to model inter-
class relationship for ZSL, which is also known as
an Attentive ZSL Learner (AZSL). Namely, a match-
ing between the inter-class relationship and the trans-
ferability of CNN features from seen classes to un-
seen classes is learned. It then uses an explanation
generator to extract rich class knowledge from both
domain-specific Attribute Graph and general external
KGs (e.g., DBpedia) as common sense evidences for
ZSL explanation. For example, considering the ZSL
case in Figure 1, the attribute knowledge of sharp ear
and the DBpedia knowledge of felidae ancestor can
explain the positive feature transferability from Cat
and Cheetah to Serval. Finally, we propose several

p
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Fig. 1. An example of recognizing Serval (unseen class) with two
seen classes (Cat and Cheetah). We focus on explainable ZSL,
which captures domain-specific attributes and general common
sense, such as sharp ear, face appearance, long leg, spotted coat and
felidae ancestor, as evidences to make explanations that can be un-
derstood by humans without artificial intelligence expertise.

templates to generate human understandable explana-
tions.

Briefly, our work contributes in the following as-
pects:

— A KG-based explanation framework for zero shot
learning is proposed. It is among the first to ex-
plain the transferability of neural network fea-
tures in ZSL.

— Anovel ZSL algorithm called AZSL is built upon
WordNet and AGCN. It models the inter-class
relationship and the transferability of CNN fea-
tures from seen classes to unseen classes, which
not only shows improvements over the state-of-
the-art baselines, but also enables explaining the
transferability of CNN features in ZSL.

— An explanation generator is developed. It can
generate ZSL explanations with class semantics
from not only domain-specific Attribute Graph
but also general KGs like DBpedia.

— A set of templates are designed to re-organize the
transferability explanations and generate human-
consumable natural language descriptions for
ZSL explanation.

— Lastly, extensive experiments are conducted to
evaluate the generated explanation and the ZSL
learner, using two image classification bench-
marks. The explanation achieves high quality ac-
cording to the analysis on different metrics and
human assessment.

The structure of this paper is as follows. In Section
2, we review the related work. In Section 3, we set up
the background of our work. In Section 4, we introduce
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the details of our KG-based explanation framework,
including the attentive ZSL learner in Section 4.2 and
the explanation generator in Section 4.3. In Section 5,
we display the experiments and the evaluation. Finally
we conclude the paper and present the future work.

2. Related Work
2.1. Zero-shot learning

Zero-shot learning (ZSL) has received a lot of at-
tention in machine learning community. Some work
by Larochelle et al. [10] has shown the ability to pre-
dict new (unseen) classes of digits that were omitted
from the training set, with the features from training
(seen) classes being transferred. In computer vision,
techniques for utilizing the knowledge of classes to re-
alize the transfer of deep features from seen classes to
unseen classes have been investigated [2, 3, 5, 10, 11].

Early algorithms focus on utilizing class attributes
to model the semantic relationship of classes [6, 12—
14]. For instance, Lampert et al. [6] annotated each
class with an attribute representation and proposed
two methods for attribute-based classification, where
the features can be transferred between seen and un-
seen classes via attribute sharing. Recent methods pre-
fer to utilize class embeddings trained with class text
description to explore the class semantics and rela-
tionship [3, 4, 15, 16]. For example, Frome et al. [3]
presented a visual-semantic embedding model, which
leverages textual data to model the semantic rela-
tionships between classes, and linearly maps image
features into the semantic embedding space for fea-
ture transferring. However, the state-of-the-art perfor-
mance in ZSL image recognition is achieved by those
who utilize KGs for class relationship [5, 17, 18]. For
example, Wang et al. [5] proposed a GCN-based trans-
fer method and used WordNet to model the relation-
ship of hierarchical classes. In our paper, we combine
class embeddings and class hierarchy to constitute the
knowledge of classes, and utilize Attentive GCN to en-
code this class knowledge for feature learning in ZSL.

There are also some ZSL methods for dealing with
the sample shortage challenge in other domains, es-
pecially in natural language processing (NLP) tasks
including text classification [19, 20], entity linking
[21, 22], relation extraction [23] and others [24]. These
methods also work on introducing high-level resources
about labels as label knowledge to build the relation-
ship of seen and unseen labels. Moreover, the sample

features of NLP data are closer to label knowledge due
to the same symbolic representation, which is benefi-
cial for feature transferring in NLP domain. While the
feature transfer learning in our work is more challeng-
ing considering the gap of visual and symbol field.

2.2. Explainable Artificial Intelligence

Explainable artificial intelligence (Al), which aims
to produce interpretable models or predictions, is
becoming more and more popular nowadays [25—
28]. Such methods enable human beings to under-
stand, trust and effectively manage the Al systems
and their decisions. Some of the explanation works
design white-box and inherently interpretable models
like rule-based systems [29], while others try to justify
the prediction of a black-box model by for example
approximating its behaviour locally with simple inter-
pretable linear models [30], or quantifying the contri-
bution of each single input variable [31].

Most explanations target at humans with Al exper-
tise. However, there is also a great need for common
people without Al expertise such as medical doctors
to understand the decisions made by Al-based systems
[32]. Most of these works utilize natural language cor-
puses to generate human readable explanations. Stud-
ies like Biran et al. [33] introduced linguistic expres-
sions from Wikipedia articles to explain stock price
prediction to common people. Li et al. [34] proposed to
generate attributes and captions of images as explana-
tions to indicate whether the system really understand
the image content when answering a visual question.

There are also a few works devoting to enrich the
explanation with knowledge graphs (KGs), by utiliz-
ing human understandable background and common
sense knowledge in these KGs, as well as their un-
derlying semantics that can be inferred by reasoning
[35, 36]. Tiddi et al. [36] presented a framework which
exploited Link Data as background knowledge to gen-
erate explanations for data clusters. Chen et al. [37] uti-
lized Semantic Web techniques to extract human un-
derstandable evidences from local domain ontologies
and external KGs like DBpedia to explain the results
of flight delay forecasting.

Another related research direction is utilizing the at-
tention mechanism to make explanations [38, 39]. For
example, Yang et al. [38] utilized attention layers to il-
lustrate that the model selected qualitatively informa-
tive words and sentences in document classification.
Our work utilizes such attention techniques for ZSL,
but goes beyond the attention. It includes a general
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framework to incorporate semantics from KGs, and
generates human-centric explanations for the core of
ZSL — deep feature transfer.

2.3. Transfer Learning Explanation

ZSL is often regarded as a branch of transfer learn-
ing which aims at utilizing samples, features or model
parameters learned from one domain to guide the
learning in another domain [40, 41]. ZSL algorithms
usually transfer features learned deep neural networks
from seen classes (domains with labeled training sam-
ples) to predict testing samples of unseen classes (do-
mains without labeled training samples).

Some works have been proposed to augment trans-
fer learning as well as ZSL with KGs [37, 42-44].
For example, in [44], prior knowledge about the pre-
diction task and domains were expressed by ontolo-
gies, and further utilized to analyze the transferability
of features and samples for augmentation. For another
example, Zhang et al. [42] proposed a transfer learn-
ing based algorithms for long-tail relation extraction,
which incorporated the data features from data-rich re-
lations for tackling the prediction of data-poor rela-
tions. Knowledge of the relation, which comes from
from a KG, was investigated to enhance the feature
learning for data-poor relations, using KG embeddings
and relation hierarchy. In summary, these works indi-
cate the feasibility of studying transfer learning tasks
and domains by external knowledge from KGs. In our
ZSL study, we not only utilize KGs for performance
improvement (i.e., the attentive ZSL learner based on
KG and AGCN), but also for human understandable
explanations.

Recent studies on transfer learning explanation fo-
cus on the analysis of feature transferability [37, 45—
47]. For example, Liu et al. [46] assumed that the fea-
ture is transferable from a source domain to a target do-
main if the source and target domains have some simi-
lar feature structures. For another example, Chen et al.
[37] extracted knowledge (ontology axioms and DB-
pedia facts) that co-exist in the source and target do-
main to explain the transferability of features learned
by deep neural network. These works indicate that the
transferability of features is highly correlated with the
knowledge of the source and target domain. Our work
in this paper also prefers to extract domain knowledge
for feature transferability explanation. Different from
the above works, it on one hand develops a general
framework that can generate explanations from differ-
ent knowledge from multiple KGs such as the domain-

specific Attribute Graph and DBpedia. On the other
hand, it focuses KG-based ZSL — an important and
popular transfer learning branch whose current solu-
tions are all black-box models without explanations.
Few works have been found to explain ZSL with
KGs. The only work we know is Selvaraju et al. [9]. It
first learned a mapping between class attributes and the
importance of individual neurons, and then predicted
unseen neuron importances by semantically compos-
ing those of seen classes to optimize unseen classi-
fiers. The inverse mapping of transferred neuron im-
portances (i.e., attributes of classes) were taken as ex-
planations to validate the decisions made by classi-
fiers. In this work, the authors focused on explaining
the prediction of unseen classes, however, ignored the
feature transferability in ZSL. Contrastingly, the ex-
plainable ZSL proposed in our work pays attentions
to the transferability of features, which is more appro-
priate to explaining the nature of ZSL. At the same
time, the explanations we generate contains not only
domain-specific attributes but also general common
sense knowledge, which is more expressive and flexi-
ble compared with the ad-hoc class attributes in [9].

3. Preliminaries
3.1. Zero-shot Learning

In zero-shot learning, the training set is denoted as
Dy = {(x,1;)}Y,, where N is the number of train-
ing samples, x; represents the i-th training image and
/i is its label. While the testing set is described as
D, = {(%;, i,) I ., and its labels have no overlap with
the labels in D;,. We regard the labels in D;, as seen
classes, denoted as S, and the labels in D,, as unseen
classes, denoted as U. Each class involves an unique
classifier f for predicting whether a sample is of the
class or not. ZSL aims to learn classifiers for unseen
classes and predict the labels for testing samples in
D,. by transferring features (sample representations)
learned from D;,.

3.2. Class Knowledge

In our study, we introduce three kinds of Knowledge
Graphs (KGs) to depict the class knowledge, which
describes the semantic relationship between classes.
They are used for feature transfer in ZSL as well as
generating its explanations. We briefly introduce the
three KGs below.
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Seabirds are birds that are adapted to life within the
marine environment. Most species nest in colonies,
and feed both at the ocean's surface and below it.
Seabirds can be highly pelagic, coastal, orin some
cases spend along time away from the sea. They
also have provided food to hunters, guided
fishermen to fishing stocks and led sailors to land.

dbr:Grey-headed_albatross ]
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Fig. 2. An example of our two introduced KG resources for animal class Seabird. [Left] the domain-specific Attribute Graph with corresponding
entity Seabird; [Right] the general DBpedia with aligned entity dbr:Seabird.

WordNet [48] is a lexical knowledge base for En-
glish where nouns, verbs, adjectives and adverbs are
organized into sets of synonyms, each representing a
lexicalized entity. Semantic relations (hypernym, hy-
ponymy, meronymy, etc.) are used to link these enti-
ties. We utilize such a KG to build a hierarchical struc-
ture of classes, by aligning each class with an entity in
WordNet. In this structure, the edge that connects two
class nodes represents the “subClassOf” relationship.

Attribute Graph is a domain-specific knowledge
graph we created by collecting attribute annotations
that describe the visual characteristics of objects. The
knowledge about one class from such a special KG is
in the form of key-value, where key represents the at-
tribute item of object and value is the corresponding at-
tribute value. We organize these key-value knowledge
in the format of triple (o, a, v), where o represents a
visual object class, a and v represent key and value re-
spectively. Taking Seabird as an example, as Figure 2
[Left] shows, we can describe its attribute annotation
“grey wing color” by the triple (Seabird, wing_color,
grey). According to studies in computer vision [12, 49—
52], such attributes of many data sets are now avail-
able, while in a specific real world application, they
can come from domain knowledge or experts.

DBpedia [53] is a general knowledge graph that
includes common sense and background knowledge
about classes. With knowledge from Wikipedia en-
cyclopedia, DBpedia is a large scale KG consisting
of 4.58 million entities and 3 billion facts. The ob-
ject classes in ZSL can be matched to entities of DB-
pedia. For example, the class Seabird in Figure 2
[Right] can be matched to the entity dbr:Seabird. Dif-
ferent from Attribute Graph, DBpedia contains general
knowledge, such as the background description from
property dbo:abstract and the common sense relation
from hypernym entities.

=== ====--- AtftentiveZSLLearner ... ..
4
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Fig. 3. Our proposed KG-based explainable ZSL framework.
4. Methodology
4.1. Framework Overview

In this paper, we present a KG-based framework to
explain the feature transferability in ZSL in a human
understandable manner, including an Attentive ZSL
learner (AZSL) and an explanation generator (EG), as
illustrated in Figure 3. AZSL first models the hierarchy
relationship of seen classes, unseen classes as well as
their ancestor and descendent classes using WordNet,
and then maps this class knowledge into the deep fea-
tures learned by CNNs, which pursue class discrimi-
nation and are core components of a classifier. Instead
of simple linear mapping, we utilize a GCN to en-
code the inter-class relationship and non-linearly map
features of seen classes to unseen classes. Consider-
ing the different contributions of features from differ-
ent seen classes, we extend the GCN with an addi-
tional attention layer to learn attention weights of seen
classes. Those weights provide an elementary illustra-
tion of the relationship between seen and unseen clas-
sifiers (i.e., the transferability of deep features). Based
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Fig. 4. An overview of our attentive ZSL learner. At training stage, AZSL maps class knowledge into classifiers with GCN and an additional
attention layer; At testing stage, AZSL predicts classifiers for unseen classes and conduct nearest searching to classify the samples of them.

on this, EG then matches both seen and unseen classes
with entities of external KGs, from which richer class
knowledge, such as entity attributes, relations, prop-
erties and textual descriptions, are extracted as evi-
dences, to make a further illustration of the inter-class
relationship and explain the transferability of features.
It also generates natural language explanations with
these evidences using some hand-crafted templates.

4.2. Attentive ZSL Learner

AZSL matches inter-class relationship with the
transferability of deep features to learn classifiers of
unseen classes via an Attentive Graph Convolutional
Network (AGCN). As Figure 4 shows, AZSL includes:
(i) learning a discriminative classifier for each class
(Figure 4 [Right]); (ii) encoding class knowledge into
classifiers (Figure 4 [Left]); (iii) predicting classifiers
for unseen classes.

4.2.1. CNN Classifier

Consider Convolutional Neural Network (CNN), a
frequently used model for feature extraction in ob-
ject recognition, which predicts label /; for image x;.
This deep networks contain some layers for feature
learning, where the significant features of images are
extracted to make predictions. Especially the output
features of the second to the last layer pursue class
discrimination when trained with samples of different
classes. We take these features as classifier to represent
the deep features for each class.

Given a class c, the classifier f, is learned by training
CNN with its samples {x{|i € n}, as shown in Figure 4
[Right]. In our model, we pre-train classifiers for seen
classes with samples from D;,, and use them to train
the mapping of class knowledge in next section. After
doing this, we predict classifiers for unseen classes to
recognize the samples from D,,.

4.2.2. Mapping Class Knowledge into Classifier

We utilize Graph Convolutional Network (GCN) to
encode the graph-structured inter-class relationship.

Graph Convolutional Network works on captur-
ing the dependence of graph-structured data via infor-
mation propagation between the nodes in the graph. In
each layer, convolutional operator learns a node’s rep-
resentation by aggregating features from its surround-
ing nodes defined in the graph, and propagates them to
the next layer. Mathematically, we describe the propa-
gation of each layer as:

H*YD = (D~ 2AD 2 HOWW) (1)

The input of #-th layer H) € RM™*" is a series of
hidden features of nodes, where M is the number of
nodes, h is the dimension of feature representation
for each nodes. And H(+1) is the updated features of
nodes, as the output. The convolutional operator is sup-
ported by the eigendecomposition of adjacency matrix
A and degree matrix D of the graph with M nodes.
A = A+ 1, is A with added self-connections, 1) is the
identity matrix, and D is the diagonal matrix such that
D; = > A;j. WO represents a layer-specific train-
able weight matrix, and o (-) is an activation function
like LeakyReL.U with negative input slope 0.2 (More
details are in [54]).

In our ZSL context, the input of first layer (H())
is the initial representations of class nodes. Motivated
by [3, 4], we choose pre-trained word embeddings of
class names as the initial features. These embeddings,
learned from a large scale corpus ([55]), are semanti-
cally meaningful representations of the classes. There-
fore, given classes from seen set S and their initial rep-
resentations e |s|, we learn a GCN model, denoted as
Mgen. The output of the last layer of Mgy is the
predicted classifiers ﬁ‘ s|- With ground-truth classi-
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Fig. 5. Illustrating for generating natural language explanation from external Attribute Graph and DBpedia.

fiers fi.|s|, we use mean square error as loss function
to train the parameters of Mgcy:

IS

£ I Ji
|S|Z mse(fir f) )

fi = Maen(er)

4.2.3. Predicting Unseen Classifier

Based on the feature propagation in Mgy, the clas-
sifier of an unseen class can be learned by propagating
features from its surrounding seen classifiers, in this
way, the deep features are transferred from seen classes
to unseen classes. Therefore, we predict classifier for
unseen class u with its class embedding e, as

loss =

fu = Maen(ed) 3)

Moreover, we find that different surrounding classes
have different influence towards the learning of a
specific class’s classifier in the feature transferring.
Hence, we utilize the attention mechanism — stack-
ing an attention layer after GCN and retraining to
model different contributions of different surrounding
classes.

For a certain class i, we assign different attention
weights to its surrounding classes by computing the
similarity of the classifier of i and its surroundings, be-
cause when a surrounding contributes more to i in the
transferring, their learned classifiers are more similar.
As Figure 4 [Left] shows, the contribution of a sur-
rounding class j to class i is computed as:

exp(cos(f,-, fjA) _
> ken; explcos(fi, fi)

“4)

a’,'j =

where cos(-) denotes the cosine similarity, AV; denotes
the set of surrounding classes of class i, including class

i itself. The computed attention weights are used to up-
date the mapped classifier of class i as:

= Zaij'ﬁ ©)

JEN;

We define a surrounding class of a specific class as
an impressive class if its attention weight exceeds a
threshold «, and the corresponding classifier is taken
as impressive classifier. As for each unseen class in
the set U, we get its impressive seen classifiers, each
of which is believed to be important in transferring fea-
tures towards the unseen classifier. By this means, we
elementarily make the relationship between seen and
unseen classifiers transparent, which are the base to ex-
plain the feature transferability in ZSL.

At test time, when a new image arrives, AZSL first
extracts its deep features using pre-trained CNN, and
then looks for the nearest predicted unseen classifiers.
The nearest classifiers are then mapped back to unseen
classes for scoring so that predicting label for it.

4.3. Explanation Generator

With the learned relationship between seen and un-
seen classifiers, we introduce two external knowledge
graphs, domain-specific Attribute Graph and general
DBpedia, to extract reliable evidences and generate
human understandable explanations for justifying the
transferability of features.

The explanation generating procedure is illustrated
in Figure 5. Briefly, we (i) match raw class names
with entities of external KGs; (ii) extract supported ev-
idences using different strategies for different external
KGs; and (iii) generate natural language explanations
with some templates.
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4.3.1. Domain-specific KG: Attribute Graph

Given an unseen class and its impressive seen class
set, we desire for extracting common attributes from
Attribute Graph as evidences to validate the feature
transferability between them. However, the searching
space is often large for finding common attribute set,
especially when multiple impressive seen classes exist.
To this end, we develop a rule-mining based method to
find out the common attributes by mining association
rules of classes from Attribute Graph, with an algo-
rithm named EvidenceMining. The mined rules illus-
trate the semantic association between classes, which
can validate the rationality of the learned feature trans-
ferability relationship between them. The supporting
of a rule is the common attributes shared by these
classes, which are desired evidences to explain the fea-
ture transferability from the seen classes to the unseen
classes.

Association rule mining is a widely used algorithm
in Data Mining. It was first proposed for mining the
association rules of items from a list of customer trans-
actions [56]. Each transaction consists of a set of items
purchased by a customer in a visit. An association rule
of items is like {bread = milk}, meaning that people
who purchase bread usually also purchase milk. In the
context of mining association rules of classes, a trans-
action is defined as an attribute is both owned by a set
of classes. The rule of classes means that these classes
are associated because they share a set of attributes.

Let A = {aj,a3,...,a,} and C = {c1,c2,...,cnn} be
the set of attributes and the set of classes of Attribute
Graph G respectively. Let D be a set of transactions,
where each transaction is labeled with a; and consists
of a set of classes C both having attribute a;. An asso-
ciation rule is an implication of the form {X = Y},
where X and Y are sets of classes, X C C, Y C C, and
XNY = 0. The rule {X = Y} holds in the transaction
set D when ¢% of attributes in D owned by X are also
owned by Y; here ¢% is called the confidence of the
rule. The support of the rule {X = Y} is the ratio of
attributes that are owned by both X and Y. These sup-
port attributes are common attributes of the classes in
XUY. Regarding the unseen class u and its related seen
class set S = {sy, ..., s, }, the potential association rule
of them can be predefined as

{s1} = {u}

{Sn} = {"‘}
{5150 Su} = {u}

Table 1
Example of mining association rules of classes polar bear, raccoon
and grizzly bear.
(a). Database D

Transaction Label Class Items
claws polar bear, raccoon, grizzly bear
black raccoon, grizzly bear
furry raccoon, grizzly bear, polar bear

(b). Frequent Classsets

Classset Support Attributes
{polar bear} claws, furry
{raccoon} claws, black, furry
{grizzly bear} claws, black, furry
{polar bear, grizzly bear} claws, furry
{raccoon, grizzly bear} claws, black, furry
{polar bear, raccoon} claws, furry
{polar bear, raccoon, grizzly bear} | claws, furry

(c). Rules
Rule Support Confidence
{polar bear} = {grizzly bear} 66.6% 100%
{raccoon} = {grizzly bear} 100% 100%
{polar bear, raccoon} = {grizzly bear} 66.6% 100%

, the support sets of these rules are common attributes
of the classes in these rules.

Take unseen class grizzly bear and its impressive
seen classes polar bear and raccoon as an exam-
ple. Let C = {polar bear, raccoon, grizzly bear} and
A = {claws, black, furry}. Consider the transaction
database D shown in Table 1. The sets of classes with
pre-specified minimum support (i.e., frequent class-
sets) and the rules corresponding to these classsets are
shown in Table 1. We can mine the association rule
“{polar bear,raccoon} = {grizzly bear}”, as well
as it supporting attributes: {claws, furry}, which are
common attributes shared by the three classes and can
be taken as evidences for validating the transferability
from polar bear and raccoon to grizzly bear.

Algorithm 1 illustrates the mining pseudocode of
rules and evidences. Given an unseen class and its
impressive seen classes, we first instance the prede-
fined rules and extract annotated attributes of each
class from Attribute Graph G to construct the trans-
action database as shown in Table 1(a). Then, we ap-
ply Apriori algorithm [57] to mine the frequent class-
sets with pre-specified minimum support value. Con-
straining with predefined rules and minimum confi-
dence value, we filter frequent class sets to get the as-
sociation rules, and finally count the rules’ support at-
tributes in D as evidences to output.

Thus we not only mine association rules of seen and
unseen classes with measurements e.g., support and
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Algorithm 1 Evidence Mining

Input: Attribute Graph G; Unseen class u and its im-
pressive seen class set S; Minimum support and
confidence value s,,;,, Cmin; Predefined rule set R;

Output: A: explanatory evidences for u and S;

1: C={u,s1,....8x}; % Prepare class set

2: R, = instance(R, C); % Prepare rule set for u
3. A = 0; % Init. of attribute set

4: for each class ¢ € C do

5: % Get attributes of ¢

6: A, = ExtractAttribute(G, ¢);

7: Append A, to A,

8: end for

9:

D = ConstructDataset(G, C, A); % Store Trans.
10: k=n+ 1; % Size of frequent classset

: % Get frequent class set and support value

12: F, vy = Apriori(D, k, $in);

13: % Filtering for confident rule set

14: R!,v. = Filter(F, Ry, Cpin);

15: % Count support attributes as evidences

16: A = count(D, R));

17: return A;

—_
—

confidence, but also extract common attributes from
Attribute Graph as evidences to explain the transfer-
ability between classes.

4.3.2. General KG: DBpedia

Different from Attribute Graph whose entities can
be exactly aligned with the ZSL classes by name, the
matching between DBpedia entities and ZSL classes
are more challenging due to the ambiguation. One
widely used and effective approach is lexical match-
ing, with an index on the entity’s name, label, anchor
text (description), etc. In our paper, we use the DBpe-
dia Lookup service', which is based on the index of
DBpedia Spotlight [58]. Specifically, we use raw class
names as keywords to look up the corresponding DB-
pedia entities. For example, the entity “dbr:Cheetah”
can be looked up by the name string “Cheetah” 2.

One challenge of class to entity matching is that
only a part of all the classes have entity correspon-
dences. On one hand, the corresponding entity of the
class does not exist in the KG. For example, DBpe-
dia only has an entity for Chicken but no Cock and
Hen. The latter two however have totally different vi-
sual features. On the other hand, some classes are

Thttps://github.com/DBpedia/lookup
2dbr, dbo, etc. are URI prefixes in DBpedia. Please see
http://DBpedia.org/sparql?help=nsdecl.

wrongly matched to entities. This is some degree can be
solved by filtering out those retrieved entities that are
instances of wrong types w.r.t. the domain of the ZSL
problem. For example, Red fox is incorrectly matched
with entity dbr: Fox, while the correct matching should
be dbr:Red _fox. We remove it from the match set.

Different from the fixed attribute annotations of
classes in Attribute Graph, the knowledge about classes
in DBpedia is massive and diversified. Thus, with
matched entities, we utilize SPARQL queries® to re-
trieve two kinds of evidences: 1) abstract text which
is an overall description of entity with keywords in-
cluded, and 2) structured triples which describe fine-
grained semantics of an entity, e.g., properties and re-
lations with other entities.

Two kinds of triples are extracted: (i) object triple,
denoted as (h,r,t), where h is the head entity, ¢ is the
tail entity, and r is the relation; (ii) property triple, de-
noted as (h, p,v), where h is the head entity, p is the
data property and v is the data value (literal). With
these triples, we can find some items associating both
seen and unseen entities to illustrate their common
knowledge. However, only a portion of all the triples of
an entity are useful for describing the common knowl-
edge. Thus we need a method to find out those triples
efficiently.

To this end, we develop a strategy based on heuris-
tically triple pattern for extraction. Some triple pat-
terns are designed, as shown in Table 2. Based on
these patterns, we generate corresponding SPARQL
queries to retrieve the common knowledge between
entities (classes), including shared relations and prop-
erties. Considering the example in Figure 1, Cat and
Serval share the same ancestors Felidae. This fact
can be verified by two triples (dbr:Cat, hypernym,
dbr:Felidae) and (dbr:Serval, hypernym, dbr:Felidae),
both of which are extracted according to the pat-
tern ((s,71,%) A (u,r2,1)). Note that some extracted
triples may be not accurate enough. For example,
the object entity dbc:Birds_of_Europe in the triple

(dbr:Ruddy_Turnstone, dbo:family, dbr:Birds_of_Europe)

is too general with regard to bird species in image
recognition of birds. This in some degree brings use-
less information, and is a factor that impacts the qual-
ity of explanations.

Apart from triple annotations, each entity of DBpe-
dia has a textual description with a set of sentences
(i.e., abstract text), which is annotated by the prop-

3https://www.w3.org/TR/rdf-sparql-query/
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Table 2

Triple patterns and corresponding SPARQL query items, where s, u represent entity patterns corresponding to seen and unseen entities respec-

tively, A represents the joint operator of patterns.

Triple Pattern Diagram Query Item Hlustration
r ?
(s, 7, u) O— SELE?AT?}ZXHERE s is directly related with u via a specific relation r.
s u : .
?
(u, 1, 5) S Q0 SELE?:.?'[Y\K]{HERE u is directly related with s via a specific relation r.
u s s,
(5.71.0) A (1 72, 1) r,/“% SELECT ?rq ?ry 7t WHERE s and u both connect with another entity # via respective
oL -2 O o {s?r1 7t u?ry 7t} relation r1 and ra (r1, ro may refer to the same relation).
s u
v
P/ SELECT ?p ?v WHERE s and u both have property p and share the same
(5:pv) A (. p.v) O {s?pv. u?p?v.} property value v.
s u
~t
0 P Pro ?
(s,r1,8) A (t,r2,u) (r)l/ % SEL{ESC;I‘” ';,lt,?rfr?r;vZH}ERE s and u is related via a transitional entity ¢.
s u

erty of dbo:abstract and thus can be accessed by a
SPARQL query. Through the abstract text, we can ex-
tract informative descriptions of class, especially those
about visual characteristics. Whereas, some sentences
in abstract text are general descriptions: e.g., a sen-
tence, “Dogs perform many roles for people, such as
hunting, herding, protection, assisting police and mil-
itary, companionship and, more recently, aiding hand-
icapped individuals”, describes the social background
of dbr:Dog, words and phrases in this sentence do not
mention much discriminative properties about Dog.

To utilize the knowledge in abstract text, we adopt
TextRank [59], an unsupervised automatic summariza-
tion algorithm that can extract keywords from the text.
Core descriptive words and phrases are extracted for
an entity. They provide class-specific properties thus
contributing to the extraction of informative common
properties between entities. For example, the extracted
keyword Africa in Figure 1 expresses the same living
environment of Cheetah and Serval.

4.3.3. Template-based Explanation Generator

These aforementioned common items, including at-
tributes, triples and keywords that are extracted from
Attribute Graph and DBpedia, constitute fine-grained
class knowledge that can be used as evidences to
explain the transferability between seen and unseen
classes. In order to make them more understandable
for common people without Al expertise, we feed them
into hand-crafted templates to generate natural lan-
guage explanations.

Inspired by Slot Filling, a popular method of com-
pleting information in dialogue system, we design tem-
plates with entities (classes), attributes, relations, prop-

erties and keywords as slots, and take the extracted
items as values to fill in. We totally design three dif-
ferent kinds of templates, as shown in Table 3, for the
structured triples, unstructured attributes and keywords
respectively.

Attributes are domain-specific descriptions used for
annotating visual objects. The attributes belonging to
the same attribute item describe the same aspect of
object. For example, some attributes such as head,
tail, claws, leg describe the body parts of animals,
which refers to the attribute item body, while others
like red, green, blue describe the appearance color
of objects, which refers to the attribute item color.
Considering the attributes of the same attribute item
can be expressed in similar sentences, we design tem-
plates based on different items, which are fed by at-
tributes extracted from Attribute Graph. For example,
the common attribute sharp ear of Cat and Serval,
which refers to the attribute item body, can be ex-
pressed with the sentence: “They both have sharp ear”.
Table 3 lists some of the items and their corresponding
templates. Additionally, the number of extracted com-
mon attributes varies. In order to restrict the length of
generated sentence, we randomly select 10 attributes
to describe the common knowledge between seen and
unseen classes when the number of common attributes
exceeds 10.

Structured triples follow some common formats, es-
pecially for those extracted based on identical triple
patterns. Thus we design templates as shown in the
center of Table 3 to textualize triples according to
their triple patterns, where entities, properties and re-
lations of the triples are used as values to fill the cor-
responding slots in templates. Taking triples (dbr:Cat,
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Table 3

Explanation templates for generating textual explanation. A overall illustration is first provided to summarize the explanation. s,u,t,r,p,a,adj,
etc. are slots in templates to be filled. The Left is for attributes, where we list part of all attribute items. The Center is for structured triples. The
Right is for textual keywords, in which we list all possible Part-of-Speech (POS) of keywords, including adjective (adj), noun (n) and named
noun (named n). Notably, the POS attached to attribute item (e.g., coat (adj)) means the attribute values with different POSs.

Overall Illustration: The prediction for samples of  is supported by s.

Attributes & Templates Triples & Templates Keywords & Templates
. . POS of
Attribute Item Template Triple Pattern Template Keyword Template
color, size, species, ) . . . They are both [adj] ani-
coat (adj), . They are both a. (s,r,u), (u,r,s) s(u)is rofu(s). adj mal/bird/other.
body, shape, coat They both have (s,r1,0) A (u, ra, 1), s'and u are both relevant to ¢ They both have [n]. (or they
) a (s, r1,0) A (6, ro.u) via relation rq, r2. (or s and u n are similar in [n].)
T : e e are both a member of ¢.) :
. . They both eat ' s and u share the same v of . s and u are similar in [adj+n].
Jeeding, habitat (or live in) a. (s:p.v) A (. p.v) property p. adj +n (or s and # both have [adj+n].)
" . They both be- 51,52 both belong to u. (or named n .o .
behaviour, habits have (or like) a. (s1,r1,u)A(s2,r2,u) s1.83 are both species of u.) (location) They both live in [n.location].

hypernym, dbr:Felinae) and (dbr:Serval, hypernym,
dbr:Felinae), which are extracted for dbr:Cheetah and
dbr:Serval with pattern “(s,ri,t) A (u,r2,1)”, as ex-
amples, the following textual explanation generated:
“Cat and Serval are both relevant to Felinae via rela-
tion hypernym”. Notice that the DBpedia prefixes such
as “dbr” in the triple will be removed when generating
sentences.

Keywords extracted from the abstract text are flex-
ible expressions consisting of adjectives, nouns, their
combinations and son on. One example is spotted coat.
Therefore, we utilize POS Tagging and POS Match-
ing to generate sentences with keywords. Specifically,
each extracted keyword is first labeled with an addi-
tional Part-of-Speech (POS) tag, and templates are de-
signed based on these POS tags as the right of Table
3 shows. Then, the sentence is generated by matching
POS-tagged keywords with corresponding POS slots.
For example, one sentence generated with the common
keyword spotted coat of Cheetah and Serval is “They
are similar in spotted coat.” In particular, some nouns
have specific meanings (i.e., named nouns), such as
habitats being a location nouns. Therefore, we also use
named entity recognition tools to annotate these spe-
cial nouns in sentences and design the right temples.

Moreover, to generate more readable explanations
with flexible expressions, we further enrich the word
in templates with its synonyms from WordNet [60].

5. Evaluation

We conduct experiments on image classification and
evaluate our framework in following aspects: (1) accu-
racy of our attentive ZSL learner (AZSL) in compari-
son with the state-of-the-art ZSL baselines; (2) quanti-
tative analysis of the feature transferability; (3) evalu-
ation on the textual explanations of transferability, in-
cluding human scoring, qualitative analysis and case
studies. Based on the evaluation, we also discuss the
relationship between feature transferability and ZSL
prediction performance.

5.1. Experiment Setting

5.1.1. Datasets

Two widely used image sets are adopted: Animals
with Attributes (AwA) [6] and ImageNet [61]. In AwA,
each image is annotated by attributes and each class
is associated with a set of attributes. ImageNet con-
tains over 21,000 classes but has no attributes anno-
tated. Each ImageNet class corresponds to an entity of
WordNet.

For each dataset, we split the classes into two dis-
jointed parts — seen classes and unseen classes as in
[17]. The former have training samples (images) while
the latter have no training samples but are semantically
related to the former. Specifically, in ImageNet, 398
animal classes are used as seen classes, each of which
contains around 1,000 images, while classes that are
one-hop away from the seen ones in WordNet are taken
as unseen classes. In Awa, 40 classes are used as seen
classes and 10 as unseen classes. AWA unseen classes
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Table 4
Statistics of the image sets.
Classes | Attributes Seen Unseen Total
Dataset
# # Classes #| Classes #| Images #
AwWA 50 85 40 10 30,475
ImageNet 895 0 398 497 807,307
ImageNet™| 473 0 174 299 418,925

are contained in the ImageNet unseen set and several
of the seen classes (24 out of 40) overlap with the Im-
ageNet seen set. We extract those animal classes and
build a graph with 3969 nodes for experiments. Please
see more statistics of the datasets in Table 4.

Specially, in ImageNet, the connection density be-
tween seen class nodes and unseen class nodes varies
a lot: some seen (unseen) classes whose surroundings
contain multiple (e.g., 5) unseen (seen) classes, named
as dense connection, while some seen (unseen) classes
whose surroundings contain very few (e.g., 1) unseen
(seen) classes, named as sparse connection. To evalu-
ate the impact of different connection density on the
performance, we extract a subset ImageNet™ from Im-
ageNet with all sparsely-connected classes removed,
where seen (unseen) classes connect with more than
two unseen (seen) classes. The statistics of ImageNet*
are also listed in Table 4.

5.1.2. Baselines

The following ZSL methods are used as baselines:
DAP [6] and IAP [6] which utilize the image at-
tributes to model the inter-class relationship, Devise
[3] and ConSE [4] which linearly map the image fea-
tures learned by CNNs to the word embedding space
of class labels, SYNC [7] which develops a series of
“phantom” classes as bases to connect seen and un-
seen classes in the word embedding space, GCNZ [5]
which utilizes GCN and knowledge graph to predict
CNN features of each unseen class, and DGP [18]
which proposes a dense connection scheme of knowl-
edge graph to optimize the knowledge propagation be-
tween distant nodes in shallow networks like GCN.

To demonstrate the ability of AZSL in leverag-
ing attention mechanism to optimize the learning of
GCN model Mgy proposed in Section 4.2.2, we im-
plement Mgcy with two recent models proposed in
GCNZ [5] and DGP [18], denoting as AZSL-G and
AZSL-D respectively.

5.1.3. Model Configuration

We adopt ResNet50 — a successful CNN architec-
ture for image feature learning [62]. We pre-train it
using the samples of seen classes in ImageNet. The

Table 5

Performance (%) of AZSL-G, AZSL-D and the baselines on AwA,
ImageNet and ImageNet*. T indicates the results come from the
original paper. “~” means the method can’t be applied to the dataset.

(a). AWA and ImageNet

Model AWA i Ima.geNel .
Hit@1 Hit@1 Hit@2 Hit@5
DAP 41.47 - - -
IAP 42.2F - - -
Devise 5427 5.40 8.53 14.02
Conse 45.6" 9.04 13.96 20.53
Sync 5401 13.08 20.35 30.80

GCNZ 68.72 £ 0.08 2931 £0.12 47.11 £0.13 71.63 £ 0.07
AZSL-G 69.39 £ 0.10 30.57 £ 0.09 | 48.23 + 0.10 71.32 £0.08
DGP 83.98 £ 0.09 34.47 £ 0.04 51.59 £ 0.07 74.79 £ 0.09
AZSL-D 84.80 + 0.13 34.81 £ 0.05 51.72 £ 0.07 74.54 £0.15

(b). ImageNet™

Model A ImageNet* A
Hit@1 Hit@2 Hit@5
GCNZ 23.02 43.22 73.95
AZSL-G (us) 25.67 46.84 74.99
DGP 32.67 53.60 79.37
AZSL-D (us) 33.44 54.63 79.89

output of its second to last layer, whose dimension is
2048, are adopted as the classifier. Following GCNZ
[5] and DGP [18], AZSL adopts 6 convolutional lay-
ers (AZSL-G) and 2 convolutional layers (AZSL-D)
respectively, as well as one attention layer with atten-
tion weight threshold @ = 0.01. In training AZSL, the
initial learning rate is set to 0.0002, the dropout param-
eter is set to 0.5, Lo regularization parameter A is set
to 0.005, and Adam optimizer is adopted. The initial
embedding of class nodes in graph uses the word em-
bedding model Glove [63] whose dimension is set to
300. In EvidenceMining algorithm, the minimum sup-
port and minimum confidence value are specified as
10% and 30% respectively.

In ZSL, Hits@k, which is the ratio of samples
whose top k scored labels hit the ground-truth label, is
widely used for performance measurement. We set k
to 1, 2 and 5, where k = 1 is widely believed to be
the most important [17]. As AwWA has only 10 unseen
classes, we use Hits@1 (i.e., accuracy) alone.

5.2. Evaluation of Attentive ZSL Learner

5.2.1. Performance Comparison

As shown in Table 5, the performance of KG-based
ZSL methods, including GCNZ [5], DGP [18] and our
AZSL, is much higher than that of traditional methods,
especially on ImageNet. This verifies that class seman-
tics extracted from a KG is more effective in model-
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Fig. 6. Impressive seen classifiers (IMSCs) as well as their normalized attention weights of 6 randomly selected unseen classes. 0.00 here means

a weight value below a threshold (very close to zero).

ing inter-class relationships and can dramatically im-
proves ZSL performance. This is as expected, because
the semantics of class names and attributes utilized by
traditional methods is not as rich as that of KG.

Compared with GCNZ and DGP - the state-of-the-
art ZSL methods utilizing KG semantics, our AZSL-G
and AZSL-D perform better in most of settings. This
indicates the effectiveness of our attentive GCN archi-
tecture in dealing with the ZSL problem. Considering
the main goal of AZSL is to provide human under-
standable ZSL explanations and it’s widely believed
that there is a compromise between a machine learning
model’s interpretation and accuracy [64], the perfor-
mance improvement of AZSL over GCNZ and DGP is
still very promising.

5.2.2. Performance on Dense Graph

We also compare the performance of KG-based ZSL
methods on ImageNet™, a dense graph we extract from
ImageNet. We find AZSL-G and AZSL-D both have
more significant outperformance over GCNZ and DGP
respectively. For example, on ImageNet the Hit@]1
outperformance rate of AZSL-G is 4.3%, while on
ImageNet™ it increases to 11.5%. This indicates the su-
periority of AZSL in dealing with densely connected
KG. And it also validates that taking the different con-
tributions of different seen classes into consideration
exactly improves the performance of ZSL model.

5.3. Quantitative Analysis of Transferability

In this subsection, we illustrate the feature transfer-
ability from seen classes to unseen classes with im-

pressive seen classifiers (IMSCs) learned in Section
4.2.3. Quantitatively, our AZSL also learns fairly good
IMSCs.

Figure 6 visualizes some unseen classifiers and their
corresponding IMSCs, which displays the relationship
between seen and unseen classifiers in transferring
deep features in ZSL. The presented examples of IM-
SCs in Figure 6 are mostly consistent with our com-
mon sense on visual features of the animals, for exam-
ple, in our impression, Guanaco and Llama are two an-
imals that are similar in appearance. Hence, our AZSL
is capable of learning reasonable IMSCs for unseen
classifiers and making an elementarily illustration of
the feature transferability in ZSL. We also note that the
number of IMSCs varies dramatically from one unseen
class to another. For example, Indian mongoose and
Guanaco have only one IMSC, while Finch and Crab
have 3 and 4 respectively. According to the statistics,
around 79% of unseen classes have only one IMSC,
and around 5.6% have two IMCSs.

We further evaluate the impact of IMSCs by analyz-
ing the performance drop when some IMSCs are re-
moved, as shown in Figure 7. Taking results of AZSL-
G for example, the performance decreases in all the
cases when some IMSCs are removed, in comparison
with NO removing. Specially, it drops to 0 in most
cases when all IMSCs are removed. This indicates that
these IMSCs play a key role in transferring features
from seen classes to unseen classes, and they can be
the base to generate textual explanations for feature
transferability in ZSL.
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Fig. 7. Hits@2 of AZSL-G when one IMSC is removed, all IMSCs
are removed and NO IMSCs are removed.

Regarding the learned IMSCs, they not only ele-
mentarily explain the features transferring from seen
class to unseen class, so that Al experts can under-
stand, but also can be used for generating textual ex-
planations that common people satisfy.

5.4. Evaluation of Explanations

In this subsection, we demonstrate how human be-
ings are satisfied with the generated explanations. We
also compare the impact of different external KGs, and
present some case studies.

5.4.1. Human Evaluation

For human evaluation, we invite 25 volunteers with-
out Al expertise to score the generated explanations.
Most of them are undergraduate students. We divide
unseen class set into 5 parts. Each part has 100 unseen
classes and 100 explanations. Each explanation is as-
sessed by 5 volunteers, and the final decision is made
by majority voting.

We defined two metrics — readability and rational-
ity for evaluation. “G” (Good), “M” (Median) or “B”
(Bad) are scored for each metric.

Readability: it measures whether an explanation is
natural and fluent. Good: fluent, Medium: unnatural
but still understandable, Bad: confused and incompre-
hensible.

Rationality: it measures whether an explanation
illustrates the transferability from seen to unseen
classes. Good: well illustrated, Medium: insufficient
and weakly illustrated, Bad: totally unconvincing.

Note that the two metrics are scored independently.
To help volunteers master the domain of the classifica-
tion application, we prepare some guidelines for each
metric, as well as some additional images and external
knowledge of classes (e.g., name).

Table 6
Results of human evaluation on the explanations.
Readability Rationality
Score Ratio of Score Ratio of
Explanations Explanations

G 36.58% G 73.20%

M 60.77% M 20.30%

B 2.65% B 6.50%

Table 6 presents the human evaluation result. We
can easily find that explanations for most unseen
classes obtain a highly satisfied result, especially on
the rationality, and only a very small ratio of explana-
tions get “Bad” on readability and rationality. We find
60.77% of the explanations get Median on readabil-
ity, but they do not have much impact on people’s sat-
isfaction with rationality. This indicates that the tem-
plates for explanation generation need further refine-
ment, which is among our future work.

5.4.2. Impact of Different Types of KGs

We present the generated explanations for unseen
classes Horse, Rat, Dolphin and Stork in Figure 8,
with evidences from the domain-specific Attribute
Graph and DBpedia. For example, Horse is related
with its impressive seen classes Zebra, with the atten-
tion weight of 1.0. As the upper left case of Figure
8 shows, our explanation generator extracts attribute
evidences such as hooves, longneck, chewteech, tail
from Attribute Graph, to illustrate the common char-
acters between Horse and Zebra and mine the asso-
ciation rule about them: “{zebra = horse}”, with a
support value 73.0% and a confidence value 90.0%.
On the other hand, generator also extracts common
knowledge from DBpedia: triples such as (dbr:Horse,
dct:subject, dbr:Equus) and (dbr:Zebra, dct:subject,
dbr:Equus) which describe their common ancestor,
and keywords such as night vision and ears which de-
scribe their common characteristics. With these ev-
idences, we can justify that predicting an image as
Horse is based on the feature transfer from Zebra, and
is reasonable.

To compare the impact of Attribute Graph and DB-
pedia, we generate explanations from them separately.
Taking Rat in Figure 8 as an example, we find that the
evidences from Attribute Graph are more likely to gen-
erate explanations in vision, including body appear-
ance (quadrupedal, paws), coat appearance (furry),
while evidences from DBpedia often generate more
general explanations, including not only visual de-
scriptions such as incisors, but also common-sense de-
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Horse
(Unseen Class)

IMSCs of Horse

Zebra (w: 1.0)

Image

DBpedia Entity

dbr:Horse

dbr:Zebra

Rat IMSC:s of Rat

(Unseen Class) | nfouse (w: 0.36) | Hamster(w:0.34) | Beaver (w: 0.30)

dbr:Rat bdr:Mouse

dbr:Hamster dbr:Beaver

hooves, longneck, chewteeth, tail, muscle, grazer, plains, grouped,
quadrupedal, timid

quadrupedal, ground, nocturnal, paws, small, buckteeth, hibernate, nestspot,
agility, furry

Knowledge from
ANTHTREET For rule {zebra} = {horse} : For rule {mouse, hamster, beaver} = {rat} :
sup. = 73.0%; con. = 90.0% sup. =26.8%; con. =46.9%
n (dbr:Horse, dct:subject, (dbr:Zebra, dct:subject, (dbr:Rat, hypernym, dbr:Rodents)
DBPedia Y 1 Ve
Property/ dbc:Equus) dbe:Equus) (dbr:Hamster, hypernym, dbr:Rodents)
Knowledge Rell; tioz (dbr:Horse, dct:subject, dbe: (dbr:Zebra, det:subject, (dbr:Rat, dct:subject, dbe:Invasive_mammal)
from Herbivorous_animals) dbce:Herbivorous_animals) (dbr:Mouse, dct:subject, dbe:Invasive_ mammal)
DBpedia — P —
eyyonds ungulate mammal, black-and-white striped coats, medlum-§lzed, i itk rodents, sharp SR
of ! . N long-tailed rounded ears, Lo rodent, nocturnal,
domesticated, day and night ungulates, social, large ears, L. incisors, house o
Abstract .. N L rodents, Rodentia, high building dams,
vision, balance, large ears night vision . . R pets, underground, Lo
Text incisors breeding rate four incisors
M ed o sl o Gl i e Uy Zeive, 12gy The prediction for samples of rat is supported by mouse, hamster and beaver.
are both grazer, grouped, quadrupedal, both have hooves, muscle, N
L . L They are both quadrupedal, nocturnal, small, furry, both have paws, buckteeth,
Generated longneck, chewteeth, both live in plains, and behave timid. They b L » -
. . oth live in ground, nestspot, both hibernate and behave agility. Rat and
Explanation are both species of equus, and are both a member of herbivorous ] "
P A a R ——- hamster are both relevant to rodents via relation hypernym, rat and mouse
& animals. They are both ungulate animal, and are similar in night 5 5 s
o both belong to invasive mammal. They are both have incisors.
Score vision and large ears.
Readability [G/M/B]: M Readability [G/M/B]: M
Rationality [G/M/B]: G Rationality [G/M/B]: G
Dolphin IMSCs of Dolphin Stork IMSCs of Stork
(Unseen Class) Killer whale (: 1.0) (Unseen Class) White stork (w: 0.51) Black stork (w: 0.49)
b
Image
DBpedia Entity dbr:Dolphin dbr:Killer_whale dbr:Ciconiiformes dbr:White_stork dbr:Black_stork

hairless, toughskin, flippers, swims, tail, ocean, grouped, smart,

white, black, water, wild, fish

Knowledge from fast, active
Attribute Graph For rule {killer whale} = {dolphin} : For rule {white stork, black stork} = {stork} :
sup. =48.7%; con. = 62.1% sup. = 83.3%; con. = 100.0%
DBpedia (dbr:Dolphin, dct:subject, (dbr:Killer_whale, dct:subject, e . P
Property/ | dbc:Animals_that_use_echoloc | dbc:Animals_that_use echoloca (dbr:White_stork, dbo:order, dbr‘c,l cont }formes)
N . . (dbr:Black_stork, dbo:order, dbr:Ciconiiformes)
Knowledge Relation ation) tion)
D]f}romd. Keywords | aquatic, shaped teeth, well- oceanic, apex predators, large, long-legged, large bird, long red legs, large bird, wading,
pedia of developed hearing, toothed whale, a layer of long-necked, wading, wading, family, family, Ciconiidae,
Abstract widespread, blubber under blubber, excellent hearing, birds, soaring, long, Ciconiidae, migrant, black plumage, long red
Text skin diverse diet stout bills, migratory carnivore legs, red beak
EI:!:: eg ;lcet;)o;rgobrnstzn;sllii?eii d;rlol::;::dlsbssgtpz;?ed thgl;:l:;; The prediction for samples of stork is supported by white stork and black
Generated flippers, tail, both swim, live ;n ocean, ;m T ——, ﬁm; and stork. They are both white, black, wild, both lf‘ve irf water and eat fish. White
Explanation wctive. They are both animals that use echolocation. They both stork and black stork both belong to stork biologically. They are both large
& have teeth. hearing and blubber. wadding birds, and are similar in long legs.
g .
Score

Readability [G/M/B]: M
Rationality [G/M/B]: M

Readability [G/M/B]: G
Rationality [G/M/B]: G

Fig. 8. The explanations of unseen classes: Horse, Rat, Dolphin and Stork. In each case, images of the unseen class and its impressive seen
classifiers (IMSCs), their matched DBpedia entities, the extracted attributes, triples and keywords are displayed. The association rule of seen
and unseen classes for attribute evidences mining are listed with their measurements (“sup.”: support value of the rule, “con.”: the corresponding
confidence value). “(w:*)” behind IMSCs denotes the attention weights. The textual explanation as well as the evaluation from volunteers are
also displayed. The sentences in italic are explanations generated with attributes, while those marked with underline are generated with triples
and keywords.
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scriptions such as rodents ancestor and invasive mam-
mal in biology. The rest of cases follow the same ten-
dency, which may be due to the nature of these two
KGs themselves.

We also find and compare some limitations of these
two KGs. Due to the great cost on attribute annota-
tions, the scale of Attribute Graph is limited, with only
1,399 objects classes and 588 attributes collected. A
considerable portion of classes (about 90%), especially
those from ImageNet, whose attributes extracted from
Attribute Graph have no more than 10. For example,
there is few attribute descriptions about Stork and its
IMSCs (see the bottom right of Figure 8), the cor-
responding explanation is not enough to describe the
common characters among classes. In contrast, DBpe-
dia owns abundant resources, the knowledge can be ac-
cessed as long as the classes in ZSL match the DBpe-
dia entities, which is very friendly for classes in large
scale ZSL. However, the keywords extracted from DB-
pedia’s abstract text sometimes are noisy. It can be
found in the case of Dolphin (the bottom left of Fig-
ure 8). Taking hearing as an example, although the ex-
tracted keywords of Dolphin and Killer whale — “well-
developed hearing” and ‘“excellent hearing” respec-
tively, describe the same characters about their hear-
ing, only “hearing” is extracted as common keywords
because of the different adjective prefix, causing the in-
completeness of common knowledge expression. This
also motivates us to improve the algorithm for keyword
extraction to make full use of the knowledge in abstract
text.

In summary, the evidences from Attribute Graph are
more applicable to generate explanations for specific
domain such as vision, especially when the attribute
annotations are sufficient, while the evidences from
DBpedia are more general and accessable: it can be
applied to different ZSL applications like text classi-
fication and large scale ZSL problems with a number
of classes. Meanwhile, the explanations from Attribute
Graph and DBpedia are compatible with each other,
and can be combined.

5.5. Discussion on Feature Transferability and ZSL
Prediction

In this section, we analyze the relationship between
feature transferability and ZSL prediction according
to our explanations. We take the prediction results of
AZSL-G as examples to make illustration.

Table 7

Performance (Hit@ 1 and Hit@2) of AZSL-G according to different
types of transferability.

Transferability Ratio of 'Performance (%)
Unseen Classes Hit@1 Hit@2
ancestor 49.2 % 25.06 46.79
sibling 38.1% 29.10 50.58
ancestor-sibling 1.2 % 66.05 79.52
other 11.5% 37.40 49.56

5.5.1. Successful and Failed Transfer

In ZSL, samples of unseen classes are predicted by
transferring features from seen classes. However, we
find a case where some unseen classes have no fea-
tures transferred from seen classes, and the predic-
tion results (Hits@1 and Hits@2) are both 0. We call
such a case as a failed transfer (FT). In contrast, the
case where some unseen classes have effective features
transferred from seen classes is named as a success-
ful transfer (SF). For example, the Hit@1 and Hit@2
accuracy of unseen class Eared seal are both 0 and
its feature transferring is failed, while another unseen
class Frog transferring features from seen class Tree
frog and Tailed frog own performance on Hit@1 with
61.70 and Hit@2 with 79.62, is a successful case.

Those explanations that are scored “Good” on ra-
tionality well illustrate the feature transferability from
seen classes to unseen classes, and are regarded as
good explanations, while others are not. We find that
48% of the unseen classes are SF with good explana-
tions, while 39% are SF without good explanations.
The shortage of good explanations may be due to (i)
the noise of extracted knowledge from the KG, and (ii)
incorrect matching between classes and DBpedia enti-
ties as mentioned in Section 4.3.2. The former can be
solved by developing more advanced methods to ex-
tract knowledge, while the later can be improved by
traditional ontology alignment systems and modern se-
mantic embedding methods. We also find around 3%
of the unseen classes are FT with good explanations.
This may be because the learned unseen classifiers are
not accurate enough (learning to very low Hit@1 and
Hit@?2) although features are transferred, or the fea-
ture extraction in CNN needs to be refined. This in-
dicates that on the one hand, the class knowledge can
be further enhanced, on the other hand, the encoded
class knowledge can be utilized to improved the CNN
module. The rest (10%) of unseen classes are FT with-
out good explanations. Maybe it’s because some seen
classes are missing in the ZSL datasets, resulting in no
features can be transferred to these unseen classes.
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5.5.2. Different Types of Transferability

We find that the feature transfer from seen classes to
unseen classes have different types. For example, some
features are transferred between two sibling classes,
and some others are transferred from one class to its
children. Given a successful transfer between a seen
class and an unseen class, we divide it into several
types: (i) ancestor which refers the case where the seen
class is the ancestor of the unseen classes or vice versa
(e.g., the unseen class Stork is the ancestor of one of
the seen classes White stork in Figure 8); (ii) sibling
which refers the case where the seen class and the un-
seen class are siblings (e.g., the unseen class Horse
and the seen class Zebra in Figure 8 are both chil-
dren of Equus); (iii) ancestor-sibling, which refers the
case where the relationship between seen and unseen
classes includes both ancestor and sibling; (iv) oth-
ers which refers the cases where there are no ances-
tor or sibling relationship between the seen and unseen
classes.

We count all successful transfer predictions of un-
seen classes in ImageNet according to the different
types of transferability. As Table 7 shows, 49.2% of
unseen classes learn their classifiers by transferring
features from ancestor-neighbor seen classes and own
performance on Hit@ 1 with 25.06, while 38.1% trans-
fer features from sibling-neighbor seen classes and
own performance on Hit@1 with 29.10. Nearly 90%
of unseen classes focus on these two kinds of fea-
ture transfer, it’s because the inter-class relationship
our model input focuses on the hierarchical structure
of classes. We also find that the predictions of classes
with sibling neighbors are superior to those with an-
cestor neighbors, probably because of the appear-
ance divergence between samples of ancestor classes
and descendant classes, while the samples of sibling
classes are more similar in appearance. The most no-
table is that the combination of the two types achieves
the highest prediction results. This motivates us that
the performance may be improved if we introduce
more sibling-type feature transfer, such as inputting
more sibling-neighbor seen classes, especially together
with ancestor neighbors.

6. Conclusion and Outlook

In this study, we investigate explainable ZSL with
(1) anew ZSL learner that utilizes inter-class relation-
ships extracted from the KG as well as an Attentive
Graph Convolutional Network, and (2) an explanation

generator that can make human understandable expla-
nations with external KGs to justify the feature trans-
ferability in ZSL. The study is evaluated with two im-
age sets. We not only achieve higher overall ZSL ac-
curacy than the state-of-the-art baselines, but also gen-
erate high quality explanations that can make the fea-
ture transfer procedure and ZSL prediction more inter-
pretable. With the explanations, we also investigate the
relationship between feature transferability and ZSL
performance, which has the potential of further im-
proving the performance of ZSL algorithms.

In the future, we will further improve the explana-
tion quality and ZSL accuracy by utilizing richer se-
mantics from KGs. We may also apply the method in
other domains like KG construction and natural lan-
guage processing.
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