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Abstract. Symbolic Systems in Artificial Intelligence which are based on formal logic and deductive reasoning
are fundamentally different from Artificial Intelligence systems based on artificial neural networks, such as deep
learning approaches. The difference is not only in their inner workings and general approach, but also with respect
to capabilities. Neural-symbolic Integration, as a field of study, aims to bridge between the two paradigms. In
this paper, we will discuss neural-symbolic integration in its relation to the Semantic Web field, with a focus on
promises and possible benefits for both, and report on some current research on the topic.

Approaches in Artificial Intelligence (AI) based on
machine learning, and in particular those employ-
ing artificial neural networks, differ fundamentally
from approaches that leverage knowledge bases
to perform logical deduction and reasoning.1 The
former are connectionist or subsymbolic AI sys-
tems able to solve complex tasks over unstruc-
tured data using supervised or unsupervised learn-
ing, including problems which cannot reasonably
be hand-coded by humans. Subsymbolic meth-
ods are generally robust against noise in train-
ing or input data and have recently, in the wake
of deep learning, been shown to exceed human
performance in tasks involving video, audio, and

1We focus herein on deductive reasoning. Logical induc-

tive and abductive reasoning have also been looked at in
the Semantic Web context, e.g. [22,14], but to keep the dis-
cussion concise, we have not included them in this treatise.

text processing. The latter are symbolic systems
that thrive under the presence of large amounts
of structured data, including for agent planning,
constraint solving, data management, integration
and querying, and other traditional application ar-
eas of knowledge-based systems and formal seman-
tics. Classical rule-based systems, ontologies, and
knowledge graphs that power search and informa-
tion retrieval across the Web are also types of sym-
bolic AI systems.

Symbolic and subsymbolic systems are rather
complementary to each other. For example, the
key strengths of subsymbolic systems are weak-
nesses of symbolic ones, and vice versa. Symbolic
systems are brittle, i.e., susceptible to data noise
or minor flaws in the logial encoding of a prob-
lem, which stands in contrast to the robustness
of connectionist approaches. But subsymbolic sys-
tems are generally black boxes in the sense that
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the systems cannot be inspected in ways that pro-
vide insight into their decisions (despite some re-
cent progress on this in the wake of the explainable
AI effort) while symbolic knowledge bases can in
principle be inspected to interpret how a decision
follows from input. Most importantly, symbolic
and subsymbolic systems contrast in the types of
problems and data they excel at. Scene recogni-
tion from images appears to be a problem which
in general lies outside the capabilities of symbolic
systems, for example, while complex planning sce-
narios appear to be outside the scope of current
deep learning approaches.2

On a more technical level, symbolic and sub-
symbolic systems differ fundamentally in how they
represent data, information, or knowledge. Sym-
bolic systems typically utilize structured represen-
tation languages, e.g. stemming from formal logic
and the subfield of AI known as knowledge repre-
sentation and reasoning. Trainable artificial neu-
ral networks, on the other hand, typically use rep-
resentations based on high-dimensional Euclidean
space, i.e. real-valued vectors, matrices, etc., and
it is by no means obvious how reconciliations be-
tween these representation forms can be designed.3

The complementary nature of these methods
has drawn a divide in the rich field of AI. The di-
vide is technical in nature, as symbol manipulation
as captured by logical, deductive reasoning, which
lies at the core of symbolic approaches, cannot be
sufficiently performed using current subsymbolic
systems. Moreover, the training to study subsym-
bolic systems (involving probability theory, statis-
tics, linear algebra, and optimization) differs from
symbolic systems (involving logic and proposi-
tional calculus, set and recursion theory, and ad-
vanced computability reasoning) so strongly that
AI researchers tend to find a side of the divide
based on their intellectual interests and back-
ground. The divide is also cultural in nature, one of
mindsets and prior believes, that in the past could
sometimes split the academic AI research commu-
nity by provoking (heated) fundamental discus-

2The topic is being investigated, of course, and some re-
cent progress is made. E.g., [1] reports on an application of
deep learning to planning, and explicitly frames it as work

towards bridging the “subsymbolic-symbolic boundary.”
3It is possible to establish a formal, mathematical bridge

in some cases, as e.g. laid out in [31], but so far with limited

applicability [3].

sions. The divide is even geographical, where the
European Union holds a much higher prevalence of
researchers working on symbolic approaches than
in the United States.

Neural-Symbolic Integration [2,4,28,16],4 as a
field of research, addresses fundamental problems
related to building a technical bridge between the
symbolic and subsymbolic sides of the divide. The
promises from a successful bridging of the divide
are plenty. In the abstract, one could hope for best-
of-both-worlds systems, which combine the trans-
parency and reasoning-ability of symbolic systems
with the robustness and learning-capabilities of
subsymbolic ones. As such, integrated symbolic-
subsymbolic systems may be able to address the
knowledge acquisition bottleneck faced by sym-
bolic systems, learn to perform advanced logi-
cal or symbolic reasoning tasks even in the pres-
ence of noisy or uncertain facts, and even yield
self-explanatory subsymbolic models. This is the
promise of added value of neural-symbolic integra-
tion research for Computer Science. And also more
fundamentally, a bridging may shed insights into
how natural (human) neural networks can per-
form tasks as witnessed by homo sapiens pursuing
mathematics, formal logic, and other pursuits that
we, introspectively, see as symbolic in nature; this
is a basic research problem for Cognitive Science
as a discipline.

In the following, we will first lay out, in more
detail, promises and possible benefits of neural-
symbolic integration research for the Semantic
Web. Then we will look at potential benefits of
Semantic Web and neural-symbolic integration re-
search for deep learning. Finally, we will also pro-
vide brief pointers to some current research going
on in relation to this theme.

1. Benefits of Neural-Symbolic Integration for
the Semantic Web

One of the issues that plagues the Semantic Web
(as well as many other fields in Computer Sci-
ence and its applications) is the knowledge acqui-
sition bottleneck. It refers to the difficult issue of
encoding or otherwise storing knowledge, as struc-
tured information, for use in Computer Science

4See also http://www.neural-symbolic.org/

http://www.neural-symbolic.org/
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applications. The manual encoding of such infor-
mation, e.g. from human experts’ knowledge, is a
very slow and time-consuming, thus costly, process
involving both topic experts and knowledge engi-
neers. At the same time, automated methods are
a far cry from producing artifacts (e.g., from text-
books, technical documentations, and other writ-
ten sources) which would be of sufficient quality
for use in intelligent systems applications based
on logical inference, such as expert systems, or for
data curation and integration.

The underpinnings of key Semantic Web stan-
dards, such as RDF [9] and OWL [29], are
explicitly logical, which reflects that Semantic
Web applications often rely on high data (and
schema/ontology) quality, similar to knowledge
bases used primarily for deductive reasoning. The
knowledge acquisition bottleneck in the Seman-
tic Web field is very noticeable, e.g., given that
the creation of ontologies as well as the creation
of high-quality knowledge graphs involves high
amounts of human export labour and is corre-
spondingly expensive.

The promise of integrated neural-symbolic sys-
tems is that they would be capable of both learn-
ing and (deductive) reasoning, and thus that they
would be able to acquire, through machine learn-
ing, knowledge which is of sufficiently high quality
to perform deductive reasoning. This anticipated
capability directly addresses the knowledge acqui-
sition bottleneck. There is, thus, a promise in this
line of work that integrated neural-symbolic sys-
tems will lead to

– better methods for automated ontology con-
struction,

– better methods for ontology population (and,
thus, knowledge graph construction),

– better methods for ontology alignment,
– better methods for assessing the quality of

knowledge graph content,

and similar major lines of research central to the
Semantic Web field.

At the same time, integrated neural-symbolic
systems carry the promise of being able to per-
form deductive reasoning – after training – using a
(highly parallel) artificial neural network architec-
ture. Consequently, reasoning using such systems
can be expected to be extremely fast. This con-
trasts with traditional deductive reasoning meth-
ods, which are usually designed to be provably

sound and complete but suffer from long algo-
rithm runtimes. While there has been significant
progress on developing highly efficient deductive
reasoning engines for Semantic Web content, this
remains an issue given ever-increasing availability
of data. In fact, the underlying problem is fun-
damental, as sound and complete reasoning over
Semantic Web data necessarily suffers from high
computational complexity [30].

Integrated neural-symbolic systems would per-
form reasoning after training, and presumably this
form of reasoning would not be provably sound
and complete, but would trade correctness guar-
antees with higher runtime efficiency, in the spirit
of approximate reasoning – see e.g. [32] for an ex-
hibition of the underlying rationale. As such, in-
tegrated neural-symbolic systems carry a promise
to elevate deductive Semantic Web reasoning to
much larger amounts of data.

With integrated neural-symbolic systems capa-
ble of approximate deductive reasoning, this would
furthermore open up possible investigations into
combining deductive and inductive reasoning, as
well as common-sense reasoning based e.g. on nat-
ural language, within a single (artificial neural net-
work based) system.

Side products of such approaches would also be,
e.g., entity encodings in formats suitable for ar-
tificial neural networks, such as vector or matrix
representations. These in turn could be utilized to
assess entity similarity with potential applications
in data integration. Such encodings could further-
more be used as a sort of compression for data
transfer and storage.

2. Benefits of Semantic Web technologies and
Neural-Symbolic Integration for Deep
Learning

Semantic Web Technologies are designed for en-
abling better and more efficient data sharing, dis-
covery, integration and reuse. These data man-
agement core capabilities of Semantic Web Tech-
nologies are designed to ease the data curation
and preparation burden for the training of deep
learning systems. Semantic Web data, provided in
large amounts and freely available on the Web [51],
furthermore provides a rich resource for training
data, and deductive reasoning methods over such
data can further extend it.



4 Hitzler, Bianchi, Ebrahimi, Sarker / Neural-Symbolic Integration and the Semantic Web

Integrated neural-symbolic systems will further-
more make it possible to utilize background knowl-
edge, given as knowledge graphs or ontologies, as
part of deep learning applications. Promises of
this include the leveraging of background knowl-
edge and deductive reasoning aspects for improved
trainability, but also for interpreting trained deep
learning systems by means of background knowl-
edge. The former aspect attempts to reinforce the
usefulness of deep learning models through injec-
tion of knowledge and has been successfully used
in task-oriented conversational AI systems [23] and
question answering [44]. The latter aspect touches
on the Explainable AI theme currently being dis-
cussed, which aims at addressing the black-box
nature of deep learning systems by making them
more transparent, understandable, verifiable, and
trustworthy. Most of the current work on this topic
attempts to explain system behavior by means of
input or output features; however explanations by
way of background knowledge carry the promise
of being much closer to human conceptualizations,
and thus more useful in applications.

Integrated neural-symbolic systems which in-
corporate deductive reasoning capabilities could
furthermore naturally combine these with in-
ferences based on statistics or similarities, in-
cluding natural-language common-sense reason-
ing as demonstrated by some deep learning ap-
proaches. Such combinations should naturally lead
to stronger deep learning systems.

Neural-symbolic systems have already been
used on linked datasets like Freebase and DBpe-
dia for different tasks like link prediction [62] and
noise tolerant RDFS reasoning [41]. The links be-
tween linked datasets could further allow neural-
symbolic systems to both integrate and reason
over information coming from different sources.
The advantage of this is twofold: firstly, the com-
bined information can be used to extend the
amount of training data for neural-symbolic sys-
tems; secondly, a neural-symbolic system can be
used to learn to reason over a single knowledge
graph and then links can be used as entry points
to reason over a different one. This could be useful
in contexts in which it is costly to learn to reason
over a large dataset; one could thus use neural-
symbolic methods over a smaller one (or a part of
the large one) and then use the learned capabilities
over the large one.

Recent years have also seen some progress in
zero/few-shot relation learning over knowlegdge
graphs, utilizing deep learning [12]. Zero/few-shot
relation learning refers to the ability of the deep
learning model to infer new relations of pairs of
entities where that relation has not been seen or
has only occurred a few times before in the train-
ing set [7]. This generalization capability is still
quite limited and fundamentally different from the
efforts that have been done under transfer learn-
ing and the domain adaptation paradigm in other
machine learning tasks.

3. Selection of Recent Related Work

Deductive Semantic Web Reasoning using Deep
Learning

Deductive reasoning over RDF(S) and OWL
data has become a part of the standard toolbox for
knowledge graphs, and the use of neural-symbolic
systems for this purpose has begun to be investi-
gated.

[41] has proposed a noise-tolerant algorithm
for deep-learning-based reasoning designed specifi-
cally for RDF(S) knowledge graphs. They have in-
troduced a layered graph model representation of
RDF graphs based on their predicates, in the form
of 3D adjacency matrices where each layer lay-
out forms a graph word. Each input graph and its
corresponding entailments then have been repre-
sented as a sequence of graph words and have been
fed to a neural machine translation model. Their
results show noise-tolerant capabilities of their
deep model, compared to their symbolic counter-
part. However evaluation and training are done on
a dataset that uses only one ontology for the infer-
ence, i.e., there is no learning of the general logical
deduction calculus, and consequently no transfer
thereof to new data.

[33] applies Recursive Reasoning Networks
(RNN) to OWL RL reasoning where recursive up-
date layers are used to update the individual em-
beddings using the relations and class member-
ships in the knowledge base. Their results show
the potential of neural-symbolic methods to at-
tain accuracy similar to symbolic methods. How-
ever, as for the above mentioned [41], re-training
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is required for new ontologies to learn the embed-
dings for the new vocabularies in the ontology, i.e.,
the approach does not natively support transfer to
new data.

[20] addresses the transferability issue by adapt-
ing end-to-end memory networks for emulating de-
ductive RDFS reasoning. Transfer was achieved
primarily by utilizing a preprocessing step consist-
ing of a normalization. It was demonstrated that
the resulting approach can perform reasoning over
previously unseen RDFS knowledge graphs.

Knowledge Graph Embeddings

With the recent revival of interest in artifi-
cial neural networks, neural link prediction models
have been applied extensively for the completion
of knowledge graphs, understood in the sense of
link-prediction.5 These methods [6,66,39,47,50,62,
10,69,63,64] heavily rely on the subsymbolic rep-
resentations, called embeddings, of entities and re-
lations learned through maximization of a scoring
objective function over valid factual triples. Thus,
the current success of such deep models hinges pri-
marily on the power of those subsymbolic contin-
uous real-valued representations in encoding the
similarity/relatedness of entities and relations. For
example, TransE [6] for a knowledge base triple s,
p, o learns an embedding function by minimizing
the distance based on the respective vector repre-
sentations d(s + p, o) where d is a distance func-
tion. These methods have been often tested over
link prediction tasks.

The use of additional information, such has
text, can increase the quality of the representa-
tion [65,68,67]. Moreover, embedded representa-
tions of knowledge graphs can be extended by con-
sidering the logical axioms that appear in a knowl-
edge base, for example, complex logical formulas
can be aggregated using fuzzy logic [27].

A recent trend in knowledge graph embedding
concerns approaches that use hyperbolic geometry
in place of euclidean geometry [46,54]; hyperbolic
geometry generally appears to be more suited to

5Traditionally, ”completion” in the context of RDF(S)
referred only to materialization of logical consequences;

more recently, the term has also been used to refer to the
adding of new relationships (graph edges) based on statis-
tical or NLP methods.

represent hierarchical structures like terminologies
and ontologies.

Node2vec [24] is instead a widely adopted ap-
proach that combines random walks and natu-
ral language techniques [43] to efficiently generate
vector representations of networks nodes that has
also been used to support knowledge graph embed-
dings [48]. In the same line of works, RDF2Vec [52]
embeds RDF-based entities in a vector space by
applying word embedding techniques [43] over a
virtual document that contains lexicalized rdf-
graph walks; thus the generated representations
are based on token-token co-occurrences.

While most knowledge graph embedding ap-
proaches rely on a single encoding of triples, there
is a recent line of work that tries to leverage the in-
formation that can be found in longer paths using
recurrent neural networks [15,70]

Also recently, a number of works have been done
on the problem of generalizing neural networks to
work on arbitrarily structured graphs [17,34] open-
ing promising directions for future research on rea-
soning on structured data.

Explainable Deep Learning

While deep learning is highly successful [36] and
even surpasses human capabilities [59,60] in many
fields, it also lacks transparency or interpretabil-
ity [26,40] of how a decision is being produced
from these systems. In safety-critical applications,
e.g., in medical, legal or military contexts, this is
deemed insufficient. Consequently, researchers are
investigating how to produce explanations for the
behavior of deep learning systems [25].

Explanations [72,71,55] produced from deep
learning systems are mostly statistical and helpful
to understand how it produces the output, and the
additional use of domain information helps to en-
hance [19] the explanation. [49] used an ontology-
based deep learning model which predicts human
behaviour via Restrictricted Boltzman Machines
[61] and produces explanations of the output us-
ing domain ontologies. In the domain of transfer
learning to explain which features are beneficial
and which are not for the transfer, [11] used do-
main knowledge to enhance the explanation.

[73] shows the use of semantic annotations to
label objects in the hidden layers of popular CNN
architectures. Labels ranging from colors, materi-
als, textures, parts, objects and scenes help to get
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a better understanding of hidden parts of the deep
network. Although the labels are not semantically
structured, this shows that background knowledge
can help to improve explainability.

[57] provides a feasibility study on how domain
ontologies together with description logic based
concept induction [37,56] can be used to explain
input output behaviour of trained deep neural net-
works.

Although the explanation produced solely using
statistical techniques is beneficial, it is far from
being a trustable explanation [40,35]. The main
limitation of statistical methods is that it does
not take domain knowledge or general background
knowledge into account when making the output.
A combined effort to use statistical techniques
with semantic web technologies should be helpful
to provide trustable explanations. An overview of
using knowledge graphs to enhance explanation,
and possible limitations of this, is described in [35].

Other Systems for Deductive Reasoning using
Deep Learning

The Neural Theorem Prover (NTP) [53] is an
extension of the Prolog language in which strict
atom unification is replaced with similarity of
atoms in an embedded space; while originally NTP
suffered from scalability issues, due to the com-
plexity of the approach, there is evidence that
proof-path selection strategies can reduce the com-
plexity impact [45].

DeepProbLog [42] is a programming language
that combines a probabilistic logic with neural net-
works, thus offering a framework that combines
the strengths from both approaches.

Logic Tensor Networks [58] (LTNs) combine
deep neural networks and first order fuzzy logic.
Elements of the logic language are embedded in
a vector space (e.g., constants are represented as
vectors while predicates are neural tensor net-
works [62] that have been used on simple reason-
ing tasks [62,8]). LTNs can be trained over both
facts and rules and after training they can be used
to make novel logical inferences over data. LTNs
have been applied to semantic image interpreta-
tion tasks [18] but they have also been shown to
have some computational limitations [5].

PossibleWorldNet [21] is a variant of Tree Neu-
ral Networks (TreeNN) which has been success-
fully used for conducting entailment over proposi-

tional logic formulas. To evaluate whether A en-
tails B, the PossibleWorldNet generates a set of
“possible worlds,” and then evaluates A and B
in each of those worlds. Their results show the
clear advantage of using this model compared to
sequence-to-sequence models which would capture
the structure implicitly.

Neural multi-hop reasoners [70,15] deal with
more complex reasoning on large knowledge bases
where multi-hop inference is required. They com-
bine the rich multi-hop inference of the symbolic
logical reasoning paradigm with the generaliza-
tion capabilities of attention-based recurrent neu-
ral networks.

4. Conclusion

In the wake of deep learning, neural-symbolic
approaches are receiving renewed attention. We
have laid out promises of neural-symoblic inte-
gration research for the Semantic Web field, and
vice versa. It appears to be reasonable to expect
that the corresponding lines of research will re-
ceive growing attention in forthcoming years. E.g.,
several articles in this issue point into similar di-
rections [13,35,38].
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C. Callison-Burch, J. Su, D. Pighin, and Y. Marton,
editors, Proceedings of the 2015 Conference on Empir-

ical Methods in Natural Language Processing, EMNLP

2015, Lisbon, Portugal, September 17-21, 2015, pages
1499–1509. The Association for Computational Lin-

guistics, 2015.

[64] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and
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