o J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Semantic Web 1 (0) 1-5
10S Press

Gravsearch: transpiling SPARQL to query

humanities data

Tobias Schweizer *® and Benjamin Geer ¢

2 Data and Service Center for the Humanities, Universitdt Basel, Bernoullistrasse 32, 4056 Basel, Switzerland

® E-mail: t.schweizer@unibas.ch
¢ E-mail: benjaminlewis.geer @unibas.ch

Editors: First Editor, University or Company name, Country; Second Editor, University or Company name, Country
Solicited reviews: First Solicited Reviewer, University or Company name, Country; Second Solicited Reviewer, University or Company name,

Country

Open reviews: First Open Reviewer, University or Company name, Country; Second Open Reviewer, University or Company name, Country

Abstract. It has become common for humanities data to be stored as RDF, but available technologies for querying RDF data, such
as SPARQL endpoints, have drawbacks that make them unsuitable for many applications. Gravsearch (Virtual Graph Search),
a SPARQL transpiler developed as part of a web-based API, is designed to support complex searches that are desirable in
humanities research, while avoiding these disadvantages. It does this by introducing server software that mediates between the
client and the triplestore, transforming an input SPARQL query into one or more queries executed by the triplestore. This design
suggests a practical way to go beyond some limitations of the ways that RDF data has generally been made available.

Keywords: SPARQL, humanities, querying, qualitative data, API

1. Introduction

Gravsearch is a SPARQL transpiler facilitating the
query of humanities data stored as RDF. The storage
and publication of humanities data as RDF has become
common, but there is a lack of appropriate technolo-
gies for searching this data for items and relationships
that are of interest to humanities researchers. SPARQL
endpoints are one option, but they present a number
of drawbacks. Dealing with humanities-focused data
structures in SPARQL can be cumbersome, and there
is no support for permissions or for versioning of data.
Queries that may return huge results also pose scalabil-
ity problems. A technical solution to these problems is
proposed here. Gravsearch aims to provide the power
and flexibility of a SPARQL endpoint, while provid-
ing better support for humanities data, and integrating
well into a developer-friendly web-based API. Its ba-
sic design is of broad relevance, because it suggests
a practical way to go beyond some limitations of the

ways that humanities data has generally been made
searchable.

While a SPARQL endpoint accepts queries that are
processed directly by an RDF triplestore, a Gravsearch
query is a virtual SPARQL query, ie. it is pro-
cessed by a server application, which translates it
into one or more SPARQL queries to be processed
by the triplestore. Therefore, it can offer better sup-
port for humanities-focused data structures, such as
text markup and calendar-independent historical dates.
More generally, a Gravsearch query can use data
structures that are simpler than the ones used in the
triplestore, thus improving ease of use. A virtual query
also allows the application to filter results accord-
ing to user permissions, enforce the paging of res-
ults to improve scalability, take into account the ver-
sioning of data in the triplestore, and return responses
in a form that is more convenient for web applica-
tion development. The input SPARQL is independ-
ent of the triplestore implementation used, and the

1570-0844/0-1900/$35.00 (© 0 — IOS Press and the authors. All rights reserved

=W N

©w o g o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

mailto:t.schweizer@unibas.ch
mailto:benjaminlewis.geer@unibas.ch

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

2 T. Schweizer and B. Geer / Gravsearch: transpiling SPARQL to query humanities data

transpiler backend generates vendor-specific SPARQL
as needed, taking into account the triplestore’s im-
plementation of inference, full-text searches, and the
like. Instead of simply returning a set of triples, a
Gravsearch query can produce a JSON-LD response
whose structure facilitates web application develop-
ment.

Gravsearch has been developed as part of Knora
(Knowledge Organization, Representation, and An-
notation), an application developed by the Data and
Service Center for the Humanities (DaSCH) [1] to en-
sure the long-term availability and reusability of re-
search data in the humanities. Knora is based on an
RDF triplestore and a base ontology that can be fur-
ther extended by project-specific ontologies. Knora
provides a web-based API that allows data to be quer-
ied and updated, and supports the creation of virtual re-
search environments that can work with heterogeneous
research data from different disciplines.!

1.1. Problem definition

Knora required a search language that distinguishes
between data as it is stored and data as it is returned
to client applications. For example, in humanities re-
search, it is useful to search for dates independently of
the calendar in which they are written in source ma-
terials. Knora makes this possible by storing dates as
Julian Day Numbers (JDNs), a calendar-independent
astronomical representation. Clients should be able to
submit search requests for, say, texts published within
a date range in the Gregorian calendar. Knora should
then find texts with dates within the corresponding
JDN range, and return results showing those dates in
the relevant calendars. The client should not have to
send or receive JDNss itself, or to submit the complex
SPARQL that must be generated to search for these
date ranges in the triplestore.

Another example concerns text with markup, which
Knora stores as RDF data. A humanities researcher
might wish to search a large number of texts for, say,
paragraph tags that contain a particular word. Knora
could optimise this search by using a full-text search
index. This also involves rather complex SPARQL,
which is partly specific to the type of indexing soft-
ware being used. The client should not have to deal
with these details.

"For more information on Knora, see https://www.knora.org. A
list of projects implemented, planned, or under development using
Knora can be found at https://dasch.swiss/projects/.

SPARQL lacks other features required in this con-
text. Knora must restrict access to data according to
user permissions. It also implements a system for ver-
sioning data in the triplestore, such that the most re-
cent version is returned by default, but the version his-
tory of resources can be requested. To improve scalab-
ility, Knora should enforce the paging of search results,
rather than leaving this up to the client as in SPARQL.

1.2. Related work

One way of making RDF data publicly available and
queryable is by means of a SPARQL endpoint. Two
prominent examples are DBpedia [2] and Europeana
[3]. While SPARQL endpoints offer great flexibility
and allow for complex queries, their drawbacks have
been criticised. In a widely cited blog post [4], Dave
Rogers argues that SPARQL endpoints are an inher-
ently poor design that cannot possibly scale, and that
RESTful APIs should be used instead. For example,
a SPARQL endpoint allows a client to request all the
data in the repository; this could easily place unreason-
able demands on the server, particularly if many such
requests are submitted concurrently.

GraphQL [5] is a newer development and — despite
its name — not restricted to graph databases. It is meant
to be a query language that integrates different API en-
dpoints. Instead of making several requests to different
APIs and processing the results individually, GraphQL
is intended to allow the client to make a single request
that defines the structure of the expected response. Hy-
perGraphQL [6], an extension to GraphQL, makes it
possible to query SPARQL endpoints using GraphQL
queries, by converting them to SPARQL. Its intended
advantages include the reduction of complexity on the
client side and a more controlled way of accessing
a SPARQL endpoint, avoiding some of the problems
discussed in Rogers’s blog post [7]. However, Hyper-
GraphQL is designed to communicate directly with a
SPARQL endpoint, and thus shares some of the limit-
ations of SPARQL endpoints.

From our perspective, SPARQL endpoints and Hy-
perGraphQL both have limitations that make them un-
suitable for Knora and for humanities data in general.
They assume that the data structures in the triplestore
are the same as the ones to be returned to the client.
They are also based on the assumption that everything
in the triplestore should be accessible to the client, and
thus offer no way to restrict query results according to
the client’s permissions. They do not enforce the pa-
ging of results, but leave this to the client. And they

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://dasch.swiss/projects/

® J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

T. Schweizer and B. Geer / Gravsearch: transpiling SPARQL to query humanities data 3

provide no way to work with data that has a version
history (so that ordinary queries return only the latest
version of each item). These requirements led us to de-
velop a different approach.

2. A hybrid between a SPARQL endpoint and a
web API

One option would be to create a domain-specific
language, but it was simpler to use SPARQL, lever-
aging its standardisation and library support, while in-
tegrating it into Knora’s web API. Gravsearch there-
fore accepts as input a subset of standard SPARQL
query syntax, and it requires queries to follow certain
additional rules.

Gravsearch is thus a hybrid between a SPARQL en-
dpoint and a web API, aimed at combining the advant-
ages of both. To enable query results to be processed
in a generic way by the application, Gravsearch ac-
cepts only SPARQL CONSTRUCT queries, which re-
turn sets of triples. The Knora API server processes the
input query, translating it into one or more SPARQL
queries that are executed by the triplestore, then pro-
cesses and transforms the triples returned by the
triplestore to construct the response. This extra layer
of processing enables Gravsearch to avoid the disad-
vantages of SPARQL endpoints and to provide addi-
tional humanities-focused features. Results are filtered
according to the user’s permissions, the versioning of
data in the triplestore is taken into account (only the
most recent version of the data is returned), and scalab-
ility is improved by returning results in pages of lim-
ited size.

Although SELECT queries are not supported, if tab-
ular output is desired, (e.g. for statistical analysis), the
results of a CONSTRUCT query can be converted into
a table by combining results pages and converting the
RDF output to tabular form. This could be done either
in the client or on the server.

The source code of the Gravsearch implementation
is available on GitHub?, and the design documentation
can be consulted online?.

2.1. Ontology schemas

A design goal of Gravsearch is to enable queries
to work with data structures that are simpler than the

2https://github.com/dhlab-basel/Knora
3https://docs.knora.org

ones actually used in the triplestore. To make this pos-
sible, Knora implements ontology schemas. Each on-
tology schema provides a different view on ontologies
and data that exist in the triplestore. The term internal
schema refers to the structures that are actually in the
triplestore, and external schema refers to a view that
transforms these structures in some way for use in a
web APL

In the internal schema, the smallest unit of research
data is a Knora Value, which is an RDF entity that
has an IRI. If a client wishes to update a value via the
Knora API, it needs to know the value’s IRI. However,
a Knora value also contains information that is repres-
ented in a way that is not convenient for clients to ma-
nipulate (e.g. dates are stored as JDNs, as mentioned
above). Therefore, Knora provides an external schema
called the complex schema, in which each value has an
IRI, but its contents are represented in more convenient
form (e.g. calendar dates are used instead of JDNs).

For clients that need a read-only view of the data,
Knora provides a simple external schema, in which
Knora values are represented as literal datatypes such
as xsd:string, and the metadata attached to each
value is hidden. An advantage of the simple schema
is that it facilitates the use of standard ontologies such
as Dublin Core,* in which values are represented as
datatypes without their own metadata. For example,
if a property is defined in Knora as a subproperty of
dcterms:title, its object in Knora will internally
be a Knora TextValue with attached metadata, but
a Gravsearch query in the simple schema can treat it as
a literal, in keeping with its definition in dcterms.

Additional external schemas could be added in fu-
ture. Only the internal schema is used in the triplestore;
Knora converts data and ontology entities between in-
ternal and external schemas during request processing.
Gravsearch queries can thus be written in either of
Knora’s external schemas, and results can also be re-
turned in either of these schemas.

2.2. Permissions

In Knora, each resource and each value has user
and group permissions attached to it. Internally, per-
missions are represented as string literals in a com-
pact format that optimises query performance. For ex-
ample, a Knora value could contain this triple:

“https://www.dublincore.org/schemas/rdfs/

=W N

©w 0 g o U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/dhlab-basel/Knora
https://docs.knora.org
https://www.dublincore.org/schemas/rdfs/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4 T. Schweizer and B. Geer / Gravsearch: transpiling SPARQL to query humanities data

<http://rdfh.ch/0001/R5qJ60PZPV>
knora-base:hasPermissions
"V http://rdfh.ch/groups/00FF/reviewer"

This means that the value can be viewed by mem-
bers of the specified group. With a SPARQL endpoint,
there would be no way to prevent other users from
querying the value. Therefore, the application must fil-
ter query results according to user permissions.

To determine whether a particular user can view the
value, Knora must compute the intersection of the set
of groups that the user belongs to and the set of groups
that have view permission on the value. If not, Knora
removes the value (and the resource that contains it)
from the results of the Gravsearch query.

2.3. Versioning

Internally, a resource is connected only to the cur-
rent version of each of its values. Each value ver-
sion is connected to the previous version via the prop-
erty previousVersion, so that the versions form
a linked list. When a client requests a single resource
with its values via the Knora API, the client can specify
a version timestamp. Knora then generates a SPARQL
query that traverses the linked list to retrieve the values
that the resource had at the specified time.

In ordinary use, Gravsearch should query only cur-
rent data. This is easily achieved, because the only
way to obtain a value in Gravsearch is to follow the
connection between the resource and the value, which
is always the current version. Knora’s external onto-
logy schemas do not expose the version history data
structure at all (e.g. they do not provide the property
previousVersion). Therefore, the client cannot
accidentally query a past version of a value, which
would be possible with a SPARQL endpoint.

As a future development, it may also be feasible to
provide a timestamp with a Gravsearch query, to obtain
results that existed at the specified time.

2.4. Gravsearch syntax and semantics

Syntactically, a Gravsearch query is a SPARQL
CONSTRUCT query. Thus it supports arbitrarily com-
plex search criteria. One could, for example, search
for persons whose works have been published by
a publisher that is located in a particular city. A
CONSTRUCT query also allows the client to specify,
for each resource that matches the search criteria,
which values of the resource should be returned in the
search results.

Results are returned by default as a JSON-LD array,
with one element per search result. Each search result
contains the ‘main’ or top-level resource that matched
the query. If the query requests other resources that
are connected to the main resource, these are nested as
JSON-LD objects within the main resource. To make
this possible, a Gravsearch query must specify (in the
CONSTRUCT clause) which variable refers to the main
resource. The resulting tree structure is generally more
useful to web application clients than the flat set of
RDF statements returned by SPARQL endpoints.

Gravsearch uses the SPARQL constructs ORDER
BY and OFFSET to enable the client to step through
pages of search results. (These constructs are not
meaningful in a standard SPARQL CONSTRUCT query,
which by definition returns an unordered set of triples.)
The client can use ORDER BY with one or more vari-
ables to determine the order in which results will be
returned, and OFF SET to specify which page of results
should be returned. The number of results per page is
configurable in the application’s settings, and cannot
be controlled by the client.

2.5. Processing and execution of a Gravsearch query

Knora processes each Gravsearch query, convert-
ing it to one or more SPARQL queries that are
actually executed by the triplestore. The generated
SPARQL is considerably more complex than the
provided Gravsearch query, and deals with data struc-
tures in the internal schema. In our current imple-
mentation, each Gravsearch query is converted to two
SPARQL queries to improve performance. First, a
SELECT query is generated, to identify a page of
matching resources. Then a CONSTRUCT query is gen-
erated, to retrieve the requested values of those re-
sources. The API server is free to use a SPARQL
design that best suits the performance characteristics
of the triplestore; clients and users need not know how
to do this.

2.5.1. Type checking and inference

SPARQL does not provide type checking; if a
SPARQL query uses a property with an object that is
not compatible with the property definition, the query
will simply return no results.

However, Gravsearch needs know the types of the
entities used in a query so it can generate the correct
SPARQL. Specifically, it needs to know type of the
subject and object of each statement, and the type that
is expected as the object of each predicate.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

® J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

T. Schweizer and B. Geer / Gravsearch: transpiling SPARQL to query humanities data 5

To get this information, Gravsearch implements
type inference, based on the types that are actually
used in the query, as well as information from on-
tologies in the triplestore. Knora requires each re-
search project to provide one or more ontologies de-
fining the OWL classes and properties used in its data.
These ontologies must be derived from the Knora
base ontology, which provides common data structures
such as the low-level value types that Knora supports.
Gravsearch has access to these ontologies, and uses
them to infer the types of entities designated by vari-
ables and IRIs in the input query.

Appendix A shows an input query in the simple
schema. It searches for books that have a particular
publisher (identified by IRI), and returns them along
with the family names of all the persons that have some
connection with those books (e.g. as author or editor).

In this example, the definition of the property
hasPublisher specifies that its object must be a
Publisher, allowing Gravsearch to infer the type
of the resource identified by the specified IRI. Sim-
ilarly, the definition of hasFamilyName specifies
that its subject must be a Person and its object must
be a Knora TextValue; this allows the types of
?person and ?familyName to be inferred. Once
the type of ?person is known, the object type of
?1inkProp can then be inferred.

Unlike a SPARQL endpoint, if Gravsearch cannot
determine the type of an entity, or finds that an entity
has been used inconsistently (i.e. with two different
types), it returns an error message rather than an empty
response.

3. Use case from the Bernoulli-Euler Online
project

One project that is using Gravsearch is Bernoulli-
Euler Online (BEOL),? a digital edition project fo-
cusing on 17th- and 18th-century primary sources in
mathematics. BEOL integrates written sources relat-
ing to members of the Bernoulli dynasty and Leon-
hard Euler into a web application based on Knora,
with data stored in an RDF triplestore. The BEOL
web site provides a user interface that enables users to
search and view these texts in a variety of ways. It of-
fers a menu of common queries that internally gener-
ate Gravsearch using templates, and the user can also

Shttps://beol.dasch.swiss/.

build a custom query using a graphical search inter-
face, which also generates Gravsearch internally.

3.1. Example 1: finding correspondence between two
mathematicians

Most of the texts that are currently integrated in the
BEOL platform are letters exchanged between math-
ematicians. On the project’s landing page, we would
like to present the letters arranged by their authors
and recipients. With Gravsearch, it is not necessary to
make a custom API operation for this kind of query
in Knora. Instead, a Gravsearch template can be used,
with variables for the correspondents.

Appendix B shows a template for a Gravsearch
query that finds all the letters exchanged between
two persons. Each person is represented as a resource
in the triplestore. It would be possible to use the
IRIs of these resources to identify mathematicians,
but since these IRIs are not yet stable during devel-
opment, it iS more convenient to use the property
beol:hasIAFIdentifier, whose value is an In-
tegrated Authority File (IAF) identifier (maintained by
the German National Library), a number that uniquely
identifies that person. This example thus illustrates
searching for resources that have links to other re-
sources that have certain properties. The user chooses
the names of two mathematicians from a menu in a
web browser, and the user interface then processes the
template, substituting the IAF identifiers of those two
mathematicians for the placeholders ${iafl} and
${iaf2}. The result of processing the template is a
Gravsearch query, which the user interface submits to
the Knora API server. This query specifies that the au-
thor and recipient of each matching letter must have
one of those two IAF identifiers. The results are sorted
by date. The page number ${offset} is initially set to
0; as the user scrolls, the page number is incremented
and the query is run again to load more results.

This query is simple enough to be written in the
simple schema. For example, this allows the ob-
ject of beol:hasIAFIdentifier to be treated
as a string literal. Internally, this is an object prop-
erty. Its object is an entity belonging to the class
knora-base:TextValue, and has predicates and
objects of its own. This extra level of complexity is
hidden from the client in the simple schema. After we
substitute the IAF identifiers of Leonhard Euler and
Christian Goldbach for the placeholders in the tem-
plate, the input query contains:

=W N

©w 0 g o U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://beol.dasch.swiss/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

6 T. Schweizer and B. Geer / Gravsearch:

?author beol:hasIAFIdentifier
?authorIAF

FILTER (?authorIAF =
" (DE-588)118531379" ||
?authorIAF = " (DE-588)118696149")

Gravsearch transforms these two lines to the follow-
ing SPARQL:

?author beol:hasIAFIdentifier ?7authorIAF
?authorIAF knora-base:isDeleted false
?authorIAF knora-base:valueHasString
?authorIAF___valueHasString
FILTER(?authorIAF__valueHasString =
" (DE-588)118531379"""xsd:string ||
?authorIAF___valueHasString =
" (DE-588)118696149"""xsd:string)

Since values in Knora can be marked as deleted, the
generated query uses knora-base:isDeleted
false to exclude deleted values. It then uses the gen-
erated variable 2authorIAF___valueHasString
to match the content of the TextValue.

3.2. Example 2: a user interface for creating queries

Users can also create custom queries that are not
based on a predefined template. For this purpose, a
user-interface widget generates Gravsearch, without
requiring the user to write any code (Appendix D).

For example, a user can create a query to search
for all letters written since 1 January 1700 CE (the
user specifies the Gregorian calendar) by Johann I
Bernoulli, that mention Leonhard Euler but not Daniel
I Bernoulli, and that contain the word Geometria. The
user can choose to order the results by date. The
web-based user interface generates a Gravsearch query
based on the search criteria (Appendix C).

In generating SPARQL to perform the requested
search, the Knora API server converts the date com-
parison to one that uses a JDN. In Knora, every date
is stored as a date range with a particular precision
(year, month, or day), whose start and end points are
JDN . In the example, the input SPARQL requests a
date greater than a date literal in the Gregorian calen-
dar:

FILTER (?date >=
"GREGORIAN:1700-1-1"""knora—-api:Date)

The Gravsearch transpiler converts this to a JDN
comparison. The Gregorian date 1 January 1700 is
converted to the JDN 2341973. In the generated
SPARQL, a matching date’s end point must be greater
than or equal to that JDN:

transpiling SPARQL to query humanities data

?date knora-base:valueHasEndJDN
?date_ _valueHasEndJDN

FILTER (?date__valueHasEndJDN >=
"2341973"""xsd:integer)

To specify that the text of the letter must con-
tain the word Geometria, the input SPARQL uses the
function knora-api :match, which is provided by
Gravsearch:

FILTER knora-api:match (?text,
"Geometria")

The transpiler converts this function to triplestore-
specific SPARQL that performs the query using a full-
text search index. For example, with the GraphDB
triplestore using the Lucene full-text indexer, the gen-
erated query contains:

?text knora-base:valueHasString
?text__valueHasString

?text___valueHasString
lucene:fullTextSearchIndex
"Geometria"""xsd:string

3.3. Example 3: Searching for text markup

Here were are looking for a letter containing the
word Richtigkeit in text that is marked up as a para-
graph.

Knora stores text markup as ‘standoff markup’: each
markup tag is represented as an entity in the triplestore,
with start and end positions referring to a substring in
the text. This makes it possible for queries to com-
bine criteria referring to text markup with criteria refer-
ring to other entities in the triplestore, including links
within text markup that point to RDF resources outside
the text.

To search for text markup, the input query must
be written in the complex schema. The input query
uses the matchInStandoff function provided by
Gravsearch:

?text knora-api:valueAsString
?textStr

?text knora-api:textValueHasStandoff
?standoffParagraphTag

?standoffParagraphTag a
standoff:StandoffParagraphTag

FILTER knora-api:matchInStandoff (
?textStr,
?standoffParagraphTag,
"Richtigkeit")

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

® J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

T. Schweizer and B. Geer / Gravsearch: transpiling SPARQL to query humanities data 7

Gravsearch translates this FILTER into two opera-
tions:

1. An optimisation that searches in the full-text
search index to find all texts containing this
word.

2. A regular expression match that determines
whether, in each text, the word is located within
a substring that is marked up as a paragraph.

The resulting generated SPARQL looks like this®:

?textStr lucene:fullTextSearchIndex
"Richtigkeit"""xsd:string

?standoffTag
knora-base:standoffTagHasStart
?standoffTag__start

?standoffTag
knora-base:standoffTagHasEnd
?standoffTag__end

BIND (substr (?textStr,
?standoffTag__start + 1,
?standoffTag__end -

?standoffTag__start)

AS ?standoffTag__markedUp)

FILTER (regex (?standoffTag__markedUp,
"Richtigkeit", "i"))

4. Conclusion

This article has described a way for RDF-based hu-
manities data repositories to provide powerful SPARQL
search capabilities with additional humanities-focused
features, and with the safety, convenience, scalability,
and efficiency of a web API. This approach involves
a virtual SPARQL query that is processed by an API
server rather than sent directly to a triplestore. This al-
lows the API server to support data structures that are
relevant to humanities research, as well as to enforce
permissions, require search results to be paged, take
into account the versioning of data, and better optimise
the underlying SPARQL queries. Moreover, this ap-
proach allows us to store data in a form that is suitable
for long-term preservation, while serving it in a form
that is suitable for web application development. Thus
it contributes to two common goals in digital human-
ities: making data accessible and interoperable while
also ensuring its longevity.

6Knora uses O-based indexes in standoff markup, but SPARQL
uses 1-based indexes: https://www.w3.org/TR/xpath-functions/
#func-substring.

Acknowledgements

This work was supported by the Swiss National Sci-
ence Foundation (166072) and the Swiss Data and Ser-
vice Center for the Humanities.

=W N

©w 0 g o U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.w3.org/TR/xpath-functions/#func-substring
https://www.w3.org/TR/xpath-functions/#func-substring

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

8 T. Schweizer and B. Geer / Gravsearch: transpiling SPARQL to query humanities data

Appendix A. A simple Gravsearch query

PREFIX example: <http://example.org/ontology/0001/example/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v24#>

CONSTRUCT {

?book knora-api:isMainResource true

?book ?linkProp ?person

?person example:hasFamilyName ?familyName

} WHERE {

?book a example:Book ;
example:hasPublisher <http://rdfh.ch/0001/B31Qa6tSymIqg7> ;
?linkProp ?person

?person example:hasFamilyName ?familyName

}
OFFSET O

Listing 1: A Gravsearch template

Appendix B. A Gravsearch template

PREFIX beol: <http://beol.dasch.swiss/ontology/0801/beol/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora—-api/simple/v24#>

CONSTRUCT

?letter knora-api:isMainResource true
?letter beol:creationDate ?date
?letter beol:hasAuthor ?author
?letter beol:hasRecipient ?recipient
WHERE {

?letter a beol:letter

?letter beol:creationDate ?date

—

?letter beol:hasAuthor ?author
?author beol:hasIAFIdentifier ?authorIAF
FILTER (?authorIAF = "${iafl}" || 2authorIAF = "S${iaf2}")

?letter beol:hasRecipient ?recipient

?recipient beol:hasIAFIdentifier ?recipientIAF

FILTER (?recipientIAF = "${iafl}" || ?recipientIAF = "${iaf2}")
}
ORDER BY ?date
OFFSET ${offset}

Listing 2: A Gravsearch template

Appendix C. A user-generated query

PREFIX beol: <http://beol.dasch.swiss/ontology/0801/beol/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
?letter knora-api:isMainResource true
?letter beol:creationDate ?date

} WHERE {

Sw N

o J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

® J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

51

T. Schweizer and B. Geer / Gravsearch: transpiling SPARQL to query humanities data

?letter a beol:letter

?letter beol
FILTER (?date

?letter beol
?letter beol

:creationDate ?date

>= "GREGORIAN:1700-1-1"""knora-api:Date)

:hasAuthor <http://rdfh.ch/biblio/Johann_I_Bernoulli>
:mentionsPerson <http://rdfh.ch/biblio/Leonhard_Euler>

FILTER NOT EXISTS {
?letter beol:mentionsPerson <http://rdfh.ch/biblio/Daniel_I_Bernoulli>

?letter beol

thasText ?text

FILTER knora-api:match(?text, "Geometria")

}

ORDER BY ?date

OFFSET ${offset}

Listing 3: A user-generated query

Appendix D. GUI widget

Figure 1. Advanced Search Widget

Extended search

Ontology
The BEOL ontology ~

Resource Type

Letter v

Property Comparison Operator Date

Date of creation ~ sort criterion since

~ 1 Jan 1700 CE (Gregorian) A

Property Comparison Operator Resource

Author v is ~ Johann | Bernoulli

Property Comparison Operator Resource

Mentioned person ~ is ~ Leonhard Euler

Property Comparison Operator Resource

Mentioned person ~ is not ~ Daniel (1) Bernoulli

Property Comparison Operator Words

Text ~ [] sort criterion contains the word(s) ~ Geometria
X

Appendix E. Searching for text markup

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

10 T. Schweizer and B. Geer / Gravsearch: transpiling SPARQL to query humanities data

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX standoff: <http://api.knora.org/ontology/standoff/v2#>
PREFIX beol: <http://beol.dasch.swiss/ontology/0801/beol/v2#>

CONSTRUCT {
?letter knora-api:isMainResource true
?letter beol:hasText ?text
} WHERE {
?letter a beol:letter
?letter beol:hasText ?text
?text knora-api:valueAsString ?textStr
?text knora-api:textValueHasStandoff ?standoffParagraphTag
?standoffParagraphTag a standoff:StandoffParagraphTag
FILTER knora-api:matchInStandoff (?textStr, ?standoffParagraphTag, "Richtigkeit")

Listing 4: A user-generated query

References

[1] L. Rosenthaler, P. Fornaro and C. Clivaz, DASCH: Data and Service Center for the Humanities, Digital Scholarship in the Humanities 30

(2015), 143-i49. doi:10.1093/1lc/fqv051.
[2] DBpedia, Virtuoso SPARQL Query Editor. http://dbpedia.org/sparql.
[3] Europeana, Virtuoso SPARQL Query Editor. http://sparql.europeana.eu/.

[4] D. Rogers, The Enduring Myth of the SPARQL Endpoint. https://daverog.wordpress.com/2013/06/04/

the-enduring-myth-of-the-sparql-endpoint/.
[5] GraphQL, GraphQL. https://www.howtographql.com/.
[6] HyperGraphQL, HyperGraphQL. http://hypergraphql.org/.

[7]1 S. Klarman, Querying DBpedia with GraphQL. https://medium.com/@sklarman/querying-linked-data- with- graphql-959e28aa8013.

Sw N

o 3 o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://dbpedia.org/sparql
http://sparql.europeana.eu/
https://daverog.wordpress.com/2013/06/04/the-enduring-myth-of-the-sparql-endpoint/
https://daverog.wordpress.com/2013/06/04/the-enduring-myth-of-the-sparql-endpoint/
https://www.howtographql.com/
http://hypergraphql.org/
https://medium.com/@sklarman/querying-linked-data-with-graphql-959e28aa8013

	Introduction
	Problem definition
	Related work

	A hybrid between a SPARQL endpoint and a web API
	Ontology schemas
	Permissions
	Versioning
	Gravsearch syntax and semantics
	Processing and execution of a Gravsearch query
	Type checking and inference

	Use case from the Bernoulli-Euler Online project
	Example 1: finding correspondence between two mathematicians
	Example 2: a user interface for creating queries
	Example 3: Searching for text markup

	Conclusion
	Acknowledgements
	Appendix A. A simple Gravsearch query
	Appendix B. A Gravsearch template
	Appendix C. A user-generated query
	Appendix D. GUI widget
	Appendix E. Searching for text markup
	References

