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Abstract. The need for recursive queries in the Semantic Web setting is becoming more and more apparent with the emergence
of datasets where different pieces of information are connected by complicated patterns. This was acknowledged by the W3C
committee by the inclusion of property paths in the SPARQL standard. However, as more data becomes available, it is becoming
clear that property paths alone are not enough to capture all recursive queries that the users are interested in. In this paper we
propose a general purpose recursion operator to be added to SPARQL, formalize its syntax and develop algorithms for evaluating
it in practical scenarios. We also show how to implement it as a plug-in on top of existing systems and test its performance on
several real world datasets.
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1. Introduction

The Resource Description Framework (RDF) has
emerged as the standard for describing Semantic Web
data and SPARQL as the main language for querying
RDF [1]. After the initial proposal of SPARQL, and
with more data becoming available in the RDF for-
mat, users found use cases that asked for more com-
plex querying features that allow exploring the struc-
ture of the data in more detail. In particular queries that
are inherently recursive, such as traversing paths of ar-
bitrary length, have lately been in demand. This was
acknowledged by the W3C committee with the inclu-
sion of property paths in the latest SPARQL 1.1. stan-
dard [2], allowing queries to navigate paths connecting
two objects in an RDF graph.

However, in terms of expressive power, several au-
thors have noted that property paths fall short when
trying to express a number of important properties re-
lated to navigating RDF documents (cf. [3–9]), and
that a more powerful form of recursion needs to be
added to SPARQL to address this issue. Consequently,
this realization has brought forward a good number of
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extensions of property paths that offer more expressive
recursive functionalities (see e.g. [3, 7, 10–14]), but to
the best of our knowledge no attempt to add a general
recursion operator to the language has been made.

To illustrate the need for such an operator we con-
sider the case of tracking provenance of Wikipedia ar-
ticles presented by Missier and Chen in [15]. They
use the PROV standard [16] to store information about
how a certain article was edited, whom was it edited
by and what this change resulted in. Although they
store the data in a graph database, all PROV data is
easily representable as RDF using the PROV-O ontol-
ogy [17]. The most common type of information in
this RDF graph tells us when an article A1 is a revision
of an article A2. This fact is represented by adding a
triple of the form (A1, prov:wasRevisionOf, A2) to
the database. These revisions are associated to user’s
edits with the predicate prov:wasGeneratedBy and
the edits can specify that they used a particular arti-
cle with a prov:used link. Finally, there is a triple
(E, prov:wasAssociatedWith, U) if the edit E was
made by the user U. A snapshot of the data, showing
provenance of articles about Edinburgh, is depicted in
Figure 1.
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Fig. 1. RDF database of Wikipedia traces. The abbreviation wAssocWith is used instead of wasAssociatedWith and the prov:prefix is
omitted from all the properties in this graph.

A natural query to ask in this context is the history
of revisions that were made by the same user: that is all
pairs of articles (A, A′) such that A is linked to A′ by a
path of wasRevisionOf links and where all of the
revisions along the way were made by the same user.
For instance, in the graph of Figure 1 we have that the
article 145 "Edinburgh" is a revision of the article 72
"Edinburgh" and all the intermediate edits were made
by User1. Such queries abound in any version control
system (note that the PROV traces of Wikipedia ar-
ticles are the same as tracking program development
in SVN or Git) and can be used to detect which user
introduced errors or bugs, when the data is reliable,
or to find the latest stable version of the data. Since
these queries can not be expressed with property paths
[4, 12, 13], nor by using standard SPARQL function-
alities (as provenance traces can contain links of arbi-
trary length), the need for a general purpose recursive
operator seems like a natural addition to the language.

One possible reason why recursion was not previ-
ously considered as an integral operator of SPARQL
could be the fact that in order to compute recursive
queries we need to apply the query to the result of
a previous computation. However, typical SPARQL
queries do not have this capability as their inputs are
RDF graphs but their outputs are mappings. This hin-
ders the possibility of a fixed point recursion as the
result of a SPARQL query cannot be subsequently
queried. One can avoid this by using CONSTRUCT
queries, which output RDF graphs as well, and indeed
[18] has proposed a way of defining a fixed point like
extension for SPARQL based on this idea.

In this paper we extend the recursion operator of
[18] to function over a more widely used fragment of
SPARQL and study how this operator can be imple-

mented in an efficient and non-intrusive way on top of
existing SPARQL engines. We begin by showing what
the general form of recursion looks like and how to
evaluate it. We then argue that any implementation of
this general form of recursion is unlikely to perform
well on real world data, so we restrict it to the so called
linear recursion, which is well known in the relational
context [19, 20]. We then demonstrate that even this
restricted class of queries can express most use cases
for recursion found in practice. Next, we develop an
elegant algorithm for evaluating this class of recursive
queries and show how it can be implemented on top of
an existing SPARQL system. For our implementation
we use Apache Jena (version 3.7.0) framework [21]
and we implement recursive queries as an add-on to
the ARQ SPARQL query engine. We use Jena TDB
(version 1), which allows us not to worry about queries
whose intermediate results do not fit into main mem-
ory, thus resulting in a highly reliable system. Lastly,
we test how this implementation performs on YAGO
and LMBD using several natural queries over these
datasets. We also test our implementation using the
GMark Benchmark to compare it against the property
paths implementation of Jena and Virtuoso.1

Related work. As mentioned previously the most
common type of recursion implemented in SPARQL
systems are property paths. This is not surprising as
property paths are a part of the latest language standard
and there are now various systems supporting them ei-
ther in a full capacity[22, 23], or with some limitations
that ensure they can be efficiently evaluated, most no-
table amongst them being Virtuoso [24]. The systems

1The implementation, test data and complete formulation of all
the queries can be found at https://alanezz.github.io/RecSPARQL/.

https://alanezz.github.io/RecSPARQL/
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that support full property paths are capable of return-
ing all pairs of nodes connected by a property path
specified by the query, while Virtuoso needs a starting
point in order to execute the query. We would like to
note that recursive queries we introduce are capable of
expressing the transitive closure of any binary opera-
tor [18] and can thus be used to express property paths
and any of their extensions [3, 7, 10, 14]. Regarding at-
tempts to implement a full-fledged recursion as a part
of SPARQL, there have been none as far as we are
aware. There were some attempts to use SQL recur-
sion to implement property paths [25], or to allow re-
cursion as a programming language construct [26, 27],
however none of them view recursion as a part of the
language, but as an outside add-on.

Remark. A previous version of this article was pre-
sented at the International Semantic Web Conference
in 2015 [28]. This extended version features a detailed
discussion on possible extensions to the semantics (in
order to support, say, BIND operations or some form of
negation), complete proofs form most results (except
those that are simple applications of other theorems al-
ready in the literature), improved experiments and a
thorough comparison of the runtime of our approach
with respect to property paths. Looking forward, we
also include a section where we discuss the advan-
tages, disadvantages and possible uses of our language
and approach.

2. Preliminaries

RDF Graphs and Datasets. RDF graphs can be seen
as edge-labeled graphs where edge labels can be nodes
themselves, and an RDF dataset is a collection of RDF
graphs. Formally, let I be an infinite set of IRIs2. An
RDF triple is a tuple (s, p, o) from I × I × I, where
s is called the subject, p the predicate, and o the ob-
ject. An RDF graph is a finite set of RDF triples, and
an RDF dataset is a set {G0, 〈u1,G1〉, . . . , 〈un,Gn〉},
where G0, . . . ,Gn are RDF graphs and u1, . . . , un are
distinct IRIs. The graph G0 is called the default graph,
and G1, . . . ,Gn are called named graphs with names
u1, . . . , un, respectively. For a dataset D and IRI u we
define grD(u) = G if 〈u,G〉 ∈ D and grD(u) = ∅ oth-
erwise. We also use G and D to denote the sets of all
RDF graphs and datasets, correspondingly.

2For clarity of presentation we do not include literals nor blank
nodes in our definitions.

Given two datasets D and D′ with default graphs
G0 and G′0, we define the union D ∪ D′ as the dataset
with the default graph G0 ∪ G′0 and grD∪D′(u) =
grD(u)∪grD′(u) for any IRI u. Unions of datasets with-
out default graphs is defined in the same way, i.e., as if
the default graph was empty.

SPARQL Syntax and Semantics. SPARQL is the
standard pattern-matching language for querying RDF
datasets. We will use de usual syntax based on graph
patterns and the usual semantics based on mappings.
Both topics can be found in [2].

We recall the usage of the GRAPH operator: let g
be an IRI or a variable and P be a pattern. The ex-
pression (GRAPH g P) allows us to determine which
graph from the dataset we will be matching the pattern
P to. If we use an IRI in place of g the pattern will be
matched against the named graph with the correspond-
ing name (if such a graph exists in the dataset), and in
the case that g is a variable, P will be matched against
all the graphs in the dataset.

The fragment of SPARQL graph patterns, as well
as its generalisation to SELECT queries, has drawn
most of the attention in the Semantic Web commu-
nity. However, as the results of such queries need not
be RDF graphs, we shall use the CONSTRUCT opera-
tor in order to obtain a base for recursion. A SPARQL
CONSTRUCT query, or c-query for short, is an expres-
sion

CONSTRUCT H DS WHERE P,

where H is a set of triples from (I ∪ V) × (I ∪ V) ×
(I ∪ V), called a template3, DS is a set of expressions
of the form FROM NAMED u1, . . . , FROM NAMED un,
with each ui ∈ I and i > 0, that is called a dataset
clause4, and P is a graph pattern.

The idea behind the CONSTRUCT operator is that
the mappings matched to the pattern P over the graphs
u1, . . . , un are used to construct an RDF graph accord-
ing to the template H. Since all the patterns in the tem-
plate are triples we will end up with an RDF graph
as desired. Before giving the formal semantics of the
operators we illustrate how they work by means of an
example.

Example 2.1. Let G and G1 be the graphs in Fig-
ure 1 and Figure 2(a), respectively. Suppose we want
to query both graphs to obtain a new graph where each

3We leave the study of blanks in templates as future work.
4For readability we assume the default graph as given.
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Fig. 2. Graphs used for Example 2.1. The prefixes foaf: and
prov: are omitted.

article is linked to the email of a user who modified it.
Assuming we have a dataset with default graph G and
that the IRI identifying G1 is http://db.ing.puc.cl/mail,
this would be achieved by the following SPARQL
CONSTRUCT query q:

CONSTRUCT {
?article prov:wasAttributedTo ?mail

}
FROM NAMED <http://db.puc.cl/mail>
WHERE {

?article prov:wasGeneratedBy
?comment .
?comment prov:wasAssociatedWith
?usr .
GRAPH <http://db.puc.cl/mail>
{

?usr foaf:mbox ?mail
}

}

We call ans(q,D) the result of evaluating q over D.
In this case, it is depicted in Figure 2(b). The con-
struct FROM NAMED is used to specify that the dataset
needs to include the graph G1 associated with the IRI
http://db.ing.puc.cl/mail.

3. Adding Recursion to SPARQL

The most basic example of a recursive query in the
RDF context is that of reachability: given a resource
x, compute all the resources that are reachable from x
via a path of arbitrary length. These type of queries,
amongst others, motivated the inclusion of property
paths into the SPARQL 1.1 standard [2].

However, as several authors subsequently pointed
out, property paths fall short when trying to express
queries that involve more complex ways of navigat-
ing RDF documents (cf. [3, 6, 10, 29]) and as a re-
sult several extensions have been brought forward to
combat this problem [3, 7, 11, 12, 14, 30]. Almost all
of these extensions are also based on the idea of com-
puting paths between nodes in a recursive way, and
thus share a number of practical problems with prop-
erty paths. Most importantly, these queries need to be
implemented using algorithms that are not standard in
SPARQL databases, as they are based on automata-
theoretic techniques, or clever ways of doing Breadth-
first search over a graph structure of RDF documents.

3.1. A Fixed Point Based Recursive Operator

We have decided to implement a different approach:
a much more widespread recursive operator that al-
lows us compute the fixed point of a wide range of
SPARQL queries. This is based on the recursive op-
erator that was added to SQL when considering sim-
ilar challenges. We cannot define this type of oper-
ator for SPARQL SELECT queries, since these re-
turns mappings and thus no query can be applied to
the result of a previous query, but we can do it for
CONSTRUCT queries, since these return RDF graphs.
Following [18], we now define the language of Recur-
sive Queries. Before proceeding with the formal def-
inition we illustrate the idea behind such queries by
means of an example.

Example 3.1. Recall graph G from Figure 1. In the In-
troduction we made a case for the need of a query that
could compute all pairs of articles (A, A′) such that A
is linked to A′ by a path of wasRevisionOf links and
where all of the revisions along the way were made by
the same user. We can compute this with the recursive
query of the Figure 3.

Let us explain how this query works. The second
line specifies that a temporary graph named:

http://db.ing.puc.cl/temp
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PREFIX prov: <http://www.w3.org/ns/prov#>
WITH RECURSIVE http://db.ing.puc.cl/temp AS {

CONSTRUCT {?x ?u ?y}
FROM NAMED <http://db.ing.puc.cl/temp>
WHERE {
{ ?x prov:wasRevisionOf ?y .

?x prov:wasGeneratedBy ?w .
?w prov:used ?y .
?w prov:wasAssociatedWith ?u }

UNION {
GRAPH <http://db.ing.puc.cl/temp> { ?x ?u ?z } .
GRAPH <http://db.ing.puc.cl/temp> { ?z ?u ?y } }

}
}
SELECT ?x ?y
FROM <http://db.ing.puc.cl/temp>
WHERE ?x ?u ?y

Fig. 3. Example of a recursive query.

will be constructed according to the query below
which consists of a UNION of two subpatterns. The
first pattern does not use the temporary graph and it
simply extracts all triples (A,U, B) such that A was a
revision of B and U is the user generating this revi-
sion. All these triples should be added to the temporary
graph.

Then comes the recursive part: if (A,U, B) and
(B,U,C) are triples in the temporary graph, then we
also add (A,U,C) to the temporary graph.

We continue iterating until a fixed point is reached,
and finally we obtain a graph that contains all the
triples (A,U, A′) such that A is linked to A′ via a path
of revisions of arbitrary length but always generated by
the same user U. Finally, the SELECT query extracts
all such pairs of articles from the constructed graph.

As hinted in the example, the following is the syntax
for recursive queries:

Definition 3.1 (Syntax of recursive queries). A recur-
sive SPARQL query, or just recursive query, is either a
SPARQL query or an expression of the form

WITH RECURSIVE t AS {q1} q2, (1)

where t is an IRI from I, q1 is a c-query, and q2 is
a recursive query. The set of all recursive queries is
denoted rec-SPARQL.

Note that in this definition q1 is allowed to use the
temporary graph t, which leads to recursive iterations.

Furthermore, the query q2 could be recursive itself,
which allows us to compose recursive definitions.

As usual with this type of queries, semantics is given
via a fixed point iteration.

Definition 3.2 (Semantics of recursive queries). Let q
be a recursive query of the form (1) and D an RDF
dataset. If q is a non recursive query then ans(q,D)
is defined as usual. Otherwise the answer ans(q,D) is
equal to ans(q2,DLFP), where DLFP is the least fixed
point of the sequence D0,D1, . . . with D0 = D and

Di+1 = D ∪ {〈t, ans(q1,Di)〉}, for i > 0.

In other words, D1 is the union of D with a tempo-
rary graph t that corresponds to the evaluation of q1
over D, D2 is the union of D with a temporary graph
t that corresponds to the evaluation of q1 over D1, and
so on until Di+1 = Di. Note that the temporary graph
is completely rewritten after each iteration. This defini-
tion suggests the pseudocode of Algorithm 1 for com-
puting the answers of a recursive query q of the form
(1) over a dataset D5.

Obviously this definition only makes sense as long
as such fixed point exists. Unfortunately, we show in
the following section that there are queries for which
this operator indeed does not have a fixed point. Thus,

5For readability we assume that t is not a named graph in D. If
this is not the case then the pseudocode needs to be modified to meet
the definition above
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Algorithm 1 Computing the answer for recursive c-
queries of the form (1)
Input: Query Q of the form (1), dataset D
Output: Evaluation ans(Q,D) of Q over D

1: Set Gtemp = ∅ named after the IRI t
2: loop
3: Set GTemp = ans(q1,D ∪ {〈t,GTemp〉})
4: if ans(q1,D ∪ {〈t,GTemp〉}) = GTemp then
5: break
6: end if
7: end loop
8: return ans(q2,D ∪ {〈t,GTemp〉})

we need to restrict the language that can be applied to
such inner queries6. We also discuss other possibilities
to allow us using any operator we want.

3.2. Ensuring fixed point of queries

We know that a fixed point exists for recursive
queries as long as they are monotone. This can be ob-
tained from the Knaster-Tarski theorem [31]. A query
Q is said to be monotone if for all pair of datasets D1,
D2 where D1 ⊆ D2 it holds that Q(D1) ⊆ Q(D2).
However, what happens if queries are not monotone?
Let us illustrate the problem with two of the most typi-
cal non-monotonic operators: explicit negation and in-
vention of new values.

Adding negation. The problem with negation is that
one can use it to alternate the presence of some triples
in each iteration of the recursion, and therefore come
up with recursive queries where the fixed point does
not exists.

Example 3.2. Consider the following query that con-
tains a NOT EXISTS clause.

PREFIX ex: <http://example.org>
WITH RECURSIVE http://db.puc.cl/temp
AS {

CONSTRUCT {?x ?y "a"}
FROM NAMED <http://db.puc.cl/temp>
WHERE {

{ ?x ?y ?z }
GRAPH <http://db.puc.cl/temp> {

6it should be noted that the recursive SQL operator has the same
problem, and indeed the SQL standard restricts which SQL features
can appear inside a recursive operator.

FILTER NOT EXISTS
{ ?x ?y "a" }

}
}

}
SELECT *
FROM NAMED <http://db.puc.cl/temp>
WHERE { ?x ?y ?z }

Also consider the following instance for the default
graph:

ex:s1 ex:p1 "b" .
ex:s2 ex:p2 "b" .

In the first iteration, the graph <temp> will have the
triples:

ex:s1 ex:p1 "a" .
ex:s2 ex:p2 "a" .

But in the next iteration the graph <temp> will
be empty because of the NOT EXISTS clause. The
<temp> graph will be alternating between an empty
graph and a graph with the triples mentioned above.
Thus, the fixed point does not exist for this query.

Similar examples can be obtained with other SPARQL
operators that can simulate negation, such as MINUS
or even arbitrary OPTIONAL [32, 33]. This is why we
disallow the usage of all these operators inside our re-
cursive clauses. Of course, one can simply choose to
allow them, at the risk allowing users to write queries
that enter an infinite loop.

Creating values. The BIND clause allows us to gen-
erate new values that were not in the domain of
the database before executing a recursive query. This
means that, even if no negation is present, one can use
BIND to generate completely new values for the tem-
poral graph t in each iteration. Once again, this im-
plies that a fixed point may not exists, but this time not
because there is a loop but because we keep inserting
completely new triples to the database.

Example 3.3. Consider the following query that
makes use of the BIND clause.

PREFIX ex: <http://example.org>
WITH RECURSIVE http://db.puc.cl/temp
AS {
CONSTRUCT {?x ex:number ?b}
FROM NAMED <http://db.puc.cl/temp>
WHERE {
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{ ?x ex:type ex:person .
?x ex:age ?a .
BIND (?a AS ?b) }

UNION {
GRAPH <http://db.puc.cl/temp> {

?x ex:number ?aux .
BIND(?aux + 1 AS ?b)

}
}

}
}
SELECT *
FROM NAMED <http://db.puc.cl/temp>
WHERE { ?x ?y ?z }

The base graph stores the age for all the people in the
database. In each iteration, we will increase by one all
the objects in our graph and then we will store triples
with those new values. As we mentioned, in each it-
eration the query will try to insert new triples into the
database.

Besides the BIND operator, we can also simulate the
creation of new values by means of blanks in the con-
struct templates, or even with blanks inside queries or
subqueries. Once again, systems can allow the usage
of these operators at their own risk.

Using stable model semantics. A possible solution to
support BIND and Negation is to extend the semantics
by borrowing the notion of stable models from logic
programs (see e.g. [34]). The idea of a stable model is
the following: consider a program P and a set of literals
D. P can contain a set of rules, where each rule has lit-
erals that are in D and such literals may be negated. A
stable model is a set of literals S ∈ D appearing in the
program that has to be equals to a set called Deductive
Closure of PS . PS is a program obtained from delet-
ing the rules with negation in P in a certain way ac-
cording to the variables in S . We can say that a Stable
Model is an answer for the program P. Adding BIND
supposes additional complications. The natural analog
for BIND operators in programs is a function. But when
programs combine variables and functions, the notion
of stable models becomes more involved, because one
now needs to replace each rule with k variables for |D|k
rules, where |D| is the number of elements in the set
D, and compute a relation for each function, storing all
the inputs with their respective outputs.

Thus, coming up with a reasonable implementation
under these semantics is definitely out of the scope of
this paper. However, we do remark that such an exten-

sion to the semantics of recursive SPARQL queries is
an interesting topic for future work.

Queries we support. We know that negation may
lead to infinite loops, and any process that creates
new values may also go infinite. So what types of
queries we support? In this paper, and for our ex-
periments, the fragment of SPARQL we support are
Group Graph Patterns without negation (including
NOT EXISTS), filters nor blanks, and with further com-
bination through UNION or VALUES clauses (but not
with BIND). At this point, we have a few points to dis-
cuss.

First, we remark that one could support much more
SPARQL queries. For example, we have not dealt with
operators such as subqueries, federation or aggrega-
tion, and there are various restrictions we can do to
BIND clauses that could allow for fixed points. The in-
tention of this paper is to argue in favor of the usage of
a recursive operator within SPARQL, but we believe
that the question of what exactly should be allowed in
inner queries is a question better to be addressed with
more involvement from the community. Nevertheless,
the fragment we study here is a good fragment capa-
ble of expressing a wide range of queries. However,
we do note that our fragment is as expressive as Group
Graph Patterns with well-designed optionals [3]. This
is because for CONSTRUCT queries, the fragment we
consider has been shown to contain queries defined by
union of well designed graph patterns [18]).

As another option for supporting more SPARQL
queries inside the recursion, in Section 4.2 we will
show an alternative way for computing a recursive
query that limits the number of iterations that the re-
cursive algorithm can perform. Such way of evaluat-
ing a recursive query works regardless of the existence
of a fixed point, and therefore we can allow for full
SPARQL as long as we limit the number of iteration of
queries.

3.3. Complexity Analysis

Since recursive queries can use either the SELECT
or the CONSTRUCT result form, there are two decision
problems we need to analyze. For SELECT queries,
we define the problem SELECTQUERYANSWERING,
that receives as an input a recursive query Q using
the SELECT result form, a tuple ā of IRIs from I
and a dataset D, and asks whether ā is in ans(Q,D).
For CONSTRUCT queries, the problem CONSTRUCT-
QUERYANSWERING receives a recursive query Q us-
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ing the CONSTRUCT result form, a triple (s, p, o) over
I × I × I and a dataset D, and asks whether this triple
is in ans(Q,D).

Proposition 3.1. The problem SELECTQUERYAN-
SWERING is PSPACE-complete and CONSTRUCT-
QUERYANSWERING is NP-complete. The complex-
ity of SELECTQUERYANSWERING drops to Πp

2 if one
only consider SELECT queries given by unions of
well-designed graph patterns.

Proof. It was proved in [18] that the problem CON-
STRUCTQUERYANSWERING is NP-complete for non
recursive c-queries, and Pérez et al. show in [35] that
the problem SELECTQUERYANSWERING if PSPACE-
complete for non-recursive SPARQL queries, and Πp

2

for non-recursive SPARQL queries given by unions of
well-designed graph patterns. This immediately gives
us hardness for all three problems when recursion is
allowed.

To see that the upper bound is maintained, note that
for each nested query, the temporal graph can have at
most |D|3 triples. Since we are computing the least
fixed point, this means that in every iteration we add
at least one triple, and thus the number of iterations is
polynomial. This in turn implies that the answer can
be found by composing a polynomial number of NP
problems, to construct the temporal graph correspond-
ing to the fixed point, followed by the problem of an-
swering the outer query over this fixed point database,
which is in PSPACE for SELECTQUERYANSWER-
ING, in Πp

2 for SELECTQUERYANSWERING assuming
queries given by unions of well designed patterns and
in NP for CONSTRUCTQUERYANSWERING. First two
classes are closed under composition with NP, and the
last NP bound can be obtained by just guessing all
meaningful queries, triples to be added and witnesses
for the outer query at the same time.

Thus, at least from the point of view of computa-
tional complexity, our class of recursive queries are
not more complex than standard select queries [35] or
construct queries [18]. We also note that the complex-
ity of similar recursive queries in most data models is
typically complete for exponential time; what lowers
our complexity is the fact that our temporary graphs
are RDF graphs themselves, instead of arbitrary sets of
mappings or relations.

For databases it is also common to study the
data complexity of the query answering problem,
that is, the same decision problems as above but

considering the input query to be fixed. We denote
this problems as SELECTQUERYANSWERING(Q) and
CONSTRUCTQUERYANSWERING(Q), for select and
result queries, respectively. The following shows that
the problem remains in polynomial time for data com-
plexity, albeit in a higher class than for non recursive
queries.

Proposition 3.2. SELECTQUERYANSWERING(Q) and
CONSTRUCTQUERYANSWERING(Q) are PTIME-
complete. They remain PTIME-hard even for queries
without negation or optional matching.

Proof. Following the same idea as in the proof of
Proposition 3.1, we see that the number of iterations
needed to construct the fixed point database is polyno-
mial. But, if queries are fixed, the problem of evalu-
ating SELECT and CONSTRUCT queries is always in
NLOGSPACE (see again [35] and [18]). The PTIME
upper bound then follows by composing a polynomial
number of NLOGSPACE algorithms.

We prove the lower bound by a reduction from the
path systems problem, which is a well known PTIME-
complete problem (c.f. [36]). The problem is as fol-
lows. Consider a a set of nodes V and a unary relation
C(x) ⊆ V that indicates whether a node is coloured
or not. Let R(x, y, z) ⊆ V × V × V be a relation of
reachable elements, and the following rule for colour-
ing additional elements: if there are coloured elements
a, b such that a triples (a, b, c) is coloured, then c
should also be coloured. Finally consider a target rela-
tion T ⊆ V . The problem of path systems is to decide
if some element in T is coloured by our rule.

For our reduction we construct a database instance
and a (fixed) recursive query according to the instance
of path systems such that the result of the query is
empty if and only if T ⊆ P for the path system prob-
lem. The construction is as follows.

The database instance contains the information of
which vertex is coloured, which vertex is part of the
target relation T and the elements of the R relation:

– We define the function u which maps every vertex
to a unique URI.

– For each element v ∈ C, we add the triple
(u(v),ex:p,"C") to a named graph gr:C of the
database instance.

– For each element v ∈ T , we add the triple
(u(v),ex:p,"T") to a named graph gr:T of the
database instance.
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– For each element (x, y, z) ∈ R we add the
triple (u(x), u(y), u(z)) to the default graph of the
database instance.

Thus, the recursive query needs to compute all the
coloured elements in order to check if the target rela-
tion is covered. This can be done in the following way:

PREFIX ex: <http://example.org>
PREFIX gr: <http://example.org/graph>
WITH RECURSIVE http://db.puc.cl/temp
AS {

CONSTRUCT { ?z ex:p "C" }
FROM NAMED <http://db.puc.cl/temp>
FROM NAMED gr:C
WHERE {

{ GRAPH gr:C { ?z ex:p "C" } }
UNION {

{ ?x ?y ?z } .
GRAPH <http://db.puc.cl/temp> {

?x ex:p "C" } .
GRAPH <http://db.puc.cl/temp> {

?y ex:p "C" }
}

}
}

}
ASK
FROM NAMED <http://db.puc.cl/temp>
FROM NAMED gr:T
WHERE {

GRAPH gr:T {
?x ex:p "T"

} .
GRAPH <http://db.puc.cl/temp> {

?x ex:p "C"
}

}

It is clear that the recursive part of the query is com-
puting all the coloured nodes according to the R rela-
tion. Then in the ASK query, its result will be false iff
all the nodes of T are reachable. Note that this reduc-
tion can be immediately adapted to reflect hardness for
queries using CONSTRUCT or SELECT.

From a practical point of view, and even if theoreti-
cally the problems have the same combined complex-
ity as queries without recursion and are polynomial in
data complexity, any implementation of the Algorithm
1 is likely to run excessively slow due to a high de-
mand on computational resources (computing the tem-

porary graph over and over again) and would thus not
be useful in practice. For this reason, instead of imple-
menting full-fledged recursion, we decided to support
a fragment of recursive queries based on what is com-
monly known as linear recursive queries [19, 20]. This
restriction is common when implementing recursive
operators in other database languages, most notably in
SQL [37], but also in graph databases [29], as it offers
a wider option of evaluation algorithms while main-
taining the ability of expressing almost any recursive
query that one could come up with in practice. For in-
stance, as demonstrated in the following section, linear
recursion captures all the examples we have consid-
ered thus far and it can also define any query that uses
property paths. Furthermore, it can be implemented in
an efficient way on top of any existing SPARQL en-
gine using a simple and easy to understand algorithm.
All of this is defined in the following section.

4. Realistic Recursion in SPARQL

The concept of linear recursion has become popu-
lar in industry, as a restriction for fixed point opera-
tors in relational query languages, because it presents a
good trade-off between the expressive power of recur-
sive operators and their practical applicability. Let Q
be the query WITH RECURSIVE t AS {q1} q2, where
t is an IRI from I, q1 is a c-query, and q2 is a recursive
query. We say that Q is linear if for every dataset D,
the answer ans(Q,D) of the query corresponds to the
least fixed point of the sequence given by

D0 = D, D−1 = ∅,

Di+1 = Di ∪ {〈t, ans(q1, (D ∪ Di \ Di−1))〉}.

In other words, a recursive query is linear if, in or-
der to compute the i + 1-th iteration, we only need the
original dataset plus the tuples that were added to the
temporary graph t in the i-th iteration. Considering that
the temporary graph t might be of size comparable to
the original dataset, linear queries save us from eval-
uating the query several times over an ever increasing
dataset: instead we only need to take into account what
was added in the previous iteration, which is generally
much smaller.

Furthermore, most of the recursive extensions pro-
posed for SPARLQ are linear: from property paths
[2] to nSPARQL [3], SPARQLeR [14] or Trial [12],
as well as our example. Unfortunately it is undecid-
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able to check if a recursive query is linear [38] (under
usual complexity-theoretic assumptions), so one needs
to impose some syntactic restrictions to enforce this
condition. This is what we do next.

4.1. Linear recursive queries

Our queries are made from the union of a graph pat-
tern that does not use the temporary IRI, denoted as
pbase and a graph pattern prec that does mention the
temporary IRI. Formally, a linear recursive query is an
expression of the form

WITH RECURSIVE t AS {

CONSTRUCT H DS (2)

WHERE pbase UNION prec } qout

with H and DS a construct template and dataset
clauses as usual, with qout a linear recursive query,
with pbase and prec group graph patterns, possibly with
property paths, and where only prec is allowed to
mention the IRI t. We further require that the recur-
sive part prec mentions the temporary IRI only once.
In order to describe our algorithm, we shall abuse
the notation and speak of qbase to denote the query
CONSTRUCT H DS WHERE pbase and qrec to denote
the query CONSTRUCT H DS WHERE prec, respec-
tively.

For example, the query in example 3.1 is not linear,
because the temporary IRI is used twice in the pattern.
Nevertheless, it can be restated as the query from the
Figure 4 that uses one level of nesting. This simple yet
powerful syntax resembles the design choices taken in
most SQL commercial systems supporting recursion
(see e.g. [37]), and is also present in graph databases
[29].

Continuing with the query of Figure 4, we note
that the union in the first query can obviously be
omitted, and is there only for clarity (our implemen-
tation supports queries where either pbase or prec is
empty). The idea of this query is to first dump all
meaningful triples from the graph into a new graph
http://db.ing.puc.cl/temp1, and then use this
graph as a basis for computing the required reachabil-
ity condition, that will be dumped into a second tem-
porary graph http://db.ing.puc.cl/temp27.

7Interestingly, one can show that in this case the nesting in this
query can be avoided, and indeed an equivalent non-nested recursive
query is given in the online appendix.

Note that these queries are indeed linear, and thus
we can perform the incremental evaluation that we
have described at the beginning of the section, where
we only recompute the answers of the recursive query
over the result of the previous iteration. The separa-
tion between base and recursive query also allows us
to keep track of changes made in the temporary graph
without the need of computing the difference of two
graphs. We have decided to implement what is known
as seminaive evaluation, although several other alter-
natives have been proposed for the evaluation of these
types of queries (see [20] for a good survey). Our al-
gorithm for query evaluation is presented in Algorithm
2.

Algorithm 2 Computing the answer for linear recur-
sive c-queries of the form (2)
Input: Query Q of the form (2), dataset D
Output: Evaluation ans(Q,D) of Q over D

1: Set Gtemp = ans(qbase,D) and Gans = Gtemp
2: Set size = |Gans|
3: loop
4: Set Gtemp = ans(qrec,D ∪ {(t,Gtemp)})
5: Set Gans = Gans ∪Gtemp
6: if size = |Gans| then
7: break
8: else
9: size = |Gans|

10: end if
11: end loop
12: return ans(qout,D ∪ {〈t,Gans〉})

So what have we gained? By looking at Algorithm
2 one realizes that in each iteration we only evaluate
the query over the union of the dataset and the inter-
mediate graph Gtemp, instead of the previous algorithm
where one needed the whole graph being constructed
(in this case Gans). Furthermore, qbase is evaluated only
once, using qrec in the rest of the iterations. Consider-
ing that the temporary graph may be large, and that no
indexing scheme could be available, this often results
in a considerable speedup for query computation.

4.2. Limiting the depth of the recursion

In practice it could happen that an user may not
be interested in having all the answers for a recursive
query. Instead, the user could prefer to have only the
answers until a certain number of iterations are per-



Reutter, Soto and Vrgoč / Recursion in SPARQL 11

PREFIX prov: <http://www.w3.org/ns/prov#>
WITH RECURSIVE http://db.ing.puc.cl/temp1 AS {

CONSTRUCT { ?x ?u ?y }
FROM NAMED <http://db.ing.puc.cl/temp1>
WHERE{

{ ?x prov:wasRevisionOf ?z .
?x prov:wasGeneratedBy ?w .
?w prov:used ?z .
?w prov:wasAssociatedWith ?u }

UNION
{}}

}
WITH RECURSIVE http://db.ing.puc.cl/temp2 AS {

CONSTRUCT { ?x ?u ?y }
FROM NAMED <http://db.ing.puc.cl/temp1>
FROM NAMED <http://db.ing.puc.cl/temp2>
WHERE

{ GRAPH <http://db.ing.puc.cl/temp1> { ?x ?u ?y } }
UNION {

GRAPH <http://db.ing.puc.cl/temp1> { ?x ?u ?z }.
GRAPH <http://db.ing.puc.cl/temp2> { ?z ?u ?y } }

}
SELECT ?x ?y
FROM <http://db.ing.puc.cl/temp>
WHERE {?x ?u ?y}

Fig. 4. Example of a linear recursion.

formed. We propose the following syntax for to restrict
the depth of recursion to a user specified number k:

WITH RECURSIVE t AS {

CONSTRUCT H DS

WHERE qbase UNION qrec (3)

} MAXRECURSION k qout

Here all the keywords are the same as when defining
linear recursion, and k > 1 is a natural number. The
semantics of such queries is defined using Algorithm
2, where the loop between steps 4 and 12 is executed
precisely k − 1 times.
As we said before, this extension is also useful for han-
dling queries that include negation, or that create val-
ues by means of blanks or a BIND clause. If we fix the
number of iterations of a recursive query, we can en-
sure that those kind of queries would end regardless of
the existence of a fixed point.

5. Experimental Evaluation

In this section we will discuss how our implemen-
tation performs in practice and how it compares to
alternative approaches that are supported by existing
RDF Systems. Though our implementation has more
expressive power, we will see that the response time of
our approach is similar to the response time of existing
approaches, and also our implementation outperforms
the existing solutions in several use cases.

Technical details. Our implementation of linear
recursive queries was carried out using the Apache
Jena framework (version 3.7.0)[21] as an add-on to
the ARQ SPARQL query engine. It allows the user to
run queries either in main memory, or using disk stor-
age when needed. The disk storage was managed by
Jena TDB (version 1). As previously mentioned, since
the query evaluation algorithms we develop make use
of the same operations that already exist in current
SPARQL engines, we can use those as a basis for the
recursive extension to SPARQL we propose. In fact,
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as we show by implementing recursion on top of Jena,
this capability can be added to an existing engine in an
elegant and non-intrusive way8.

Datasets. We test our implementation using three
different datasets. The first one is Linked Movie
Database (LMDB) [39], an RDF dataset containing in-
formation about movies and actors. The second dataset
we use is a part of the YAGO ontology [40] and
consists of all the facts that hold between instances.
For the experiments the version from May 2018 was
used. The last dataset was generated using the GMark
benchmark [41], which is a benchmark designed to
test the evaluation of property paths in RDF engines.
All the experiments were run on a MacBook Pro
with an Intel Core i5 2.6 GHz processor and 8GB
of main memory. All the datasets can be found at
https://alanezz.github.io/RecSPARQL/.

5.1. Evaluating real use cases

The first thing we do is to test our implementation
against realistic use cases. As we have mentioned, we
do not aim to obtain the fastest possible algorithms
for these particular use cases (this is out of the scope
of this paper), but rather aim for an implementation
whose execution times are reasonable. For this, we
took the LMDB and the YAGO datasets, and built a
series of queries asking for relationships between en-
tities. Since YAGO also contains information about
movies, we have the advantage of being able to test
the same queries over different datasets (their ontol-
ogy differs). The specifications for each database can
be found in the Figure 5. Note that the size is the one
used by Jena TDB to store the datasets.

Graph Number of triples Size
LMDB 6147996 1.09 Gb
Yago 6215350 1.54 Gb

Fig. 5. Specifications for the LMDB and Yago datasets.

To the best of our knowledge, it is not possible to
compare the full scope of our approach against other
implementations. While it is true that our formalism
is similar to the recursive part of SQL, all of the RDF

8The implementation we use is available at https://alanezz.github.
io/RecSPARQL/.

(a) Query times on LMDB dataset

(b) Query times on YAGO dataset

QA QB QC

37349 1172 14568

(c) The number of output tuples for LMDB queries

QA QB QC QD QE

29930 85 3617 7 44

(d) The number of output tuples for Yago queries

Fig. 6. Running times and the number of output tuples for the three
datasets.

systems that we checked were either running RDF na-
tively, or running on top of a relational DBMS that did
not support the recursion with common table expres-
sions functionality, that is part of the SQL standard.
OpenLink Virtuoso does have a transitive closure op-
erator that can be used with its SQL engine, but this
operator is quite limited in the sense that it can only
compute transitivity when starting in a given IRI. Our
queries were more general than this, and thus we could
not compare them directly. For this reason, in this set
of experiments we will only discuss about the practical
applicability of the results.

Our round of experiments consists of three movie-
related queries, which will be executed both on LMDB

https://alanezz.github.io/RecSPARQL/
https://alanezz.github.io/RecSPARQL/
https://alanezz.github.io/RecSPARQL/


Reutter, Soto and Vrgoč / Recursion in SPARQL 13

and YAGO, and two additional queries that are only
run in YAGO, because LMDB does not contain this
information. All of these queries are similar to that
of Example 3.1 (precise queries are given in the ap-
pendix). The queries executed in both datasets are the
following:

– QA: the first query returns all the actors in the
database that have a finite Bacon number9, mean-
ing that they co-starred in the same movie with
Kevin Bacon, or another actor with a finite Bacon
number. A similar notion, well known in mathe-
matics, is that of an Erdős number.

– QB: the second query returns all actors with a fi-
nite Bacon number such that all the collaborations
were done in movies with the same director.

– QC: the third query tests if an actor is connected
to Kevin Bacon through movies where the direc-
tor is also an actor (not necessarily in the same
movie).

The queries executed only in the YAGO dataset
where the following:

– QD: the fourth query answers with the places
where the city Berlin is located in from a tran-
sitive point of view, starting from Germany, then
Europe and so forth.

– QE: the fifth query returns all the people who
are transitively related to someone, through the
isMarriedTo relation, living in the United
States or some place located within the United
States.

Note that QA, QD and QE are also expressible as
property paths. To fully test recursive capabilities of
our implementation we use another two queries, QB
and QC, that apply various tests along the paths com-
puting the Bacon number. Recall that the structure of
queries QB and QC is similar to the query from Exam-
ple 3.1 and cannot be expressed in SPARQL either.

The results of the evaluation can be found in Fig-
ures 6(a) and 6(b). As we can see the running times,
although high, are reasonable considering the size of
the datasets and the number of output tuples (Figures
6(c) and 6(d)). The query QE is the only query with a
small size in its output and a high time of execution.
This fact can be explained because the query is a com-

9See http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_
Bacon.

bination of 2 property paths that required to instantiate
2 recursive graphs before computing the answer.

5.2. Comparison with Property Paths using the
GMark benchmark

As mentioned previously, since to the best of our
knowledge no SPARQL engine implements general re-
cursive queries, we cannot really compare the perfor-
mance of our implementation with the existing sys-
tems. The only form of recursion mandated by the lat-
est language standard are property paths, so in this sec-
tion we show the results of comparing the execution
of property paths queries in our implementation using
our recursive language against the implementation of
property paths in popular systems.

We used the GMark benchmark [41] to measure the
running time of property paths queries using Recursive
SPARQL, and to compare such times with respect to
Apache Jena and Openlink Virtuoso.

Using the GMark benchmark, one can generate
queries and datasets to test property paths, and one of
its advantages is that the size of the datasets and the
patterns described by the queries are parameterized by
the user. The benchmark allowed us to generate 3 dif-
ferent graphs. The specifications for each graph can
be found in Figure 7. We also generated 10 SPARQL
queries that could have one or more property paths of
different complexities. The queries can be found in the
appendix. The results of evaluating such queries over
the graphs are presented in the Figure 8.

Graph Number of triples Size
Graph 1 220564 271 mb
Graph 2 447851 535 mb
Graph 3 671712 605 mb

Fig. 7. Specifications for the graphs generated by GMark.

Note first that every property path query is easily ex-
pressible using linear recursion. With this observation
in mind we must also remark that comparing the per-
formance of the recursive implementation of property
paths to the one in current systems is not fair as they
are specialized in executing one particular type of re-
cursive queries, while the recursive operator we intro-
duced is aimed at expressing a wide variety of queries
that lie beyond the scope of property paths. For this

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
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Fig. 8. Times for G1.

reason highly efficient systems like Virtuoso should
run property paths queries much faster.

Our implementation can answer all the queries. De-
spite of the higher expressive power of our language,
we are able to finish all the queries in a reason-
able time, keeping the same order of magnitude than
Apache Jena and Virtuoso and even having better run-
ning times in some of the queries.

Comparison with Virtuoso. Virtuoso cannot run
queries 2, 6, 7 and 8, because the SPARQL engine
requires an starting point for property paths queries,
which was not possible to give for such queries. We
can see that Virtuoso outperforms Jena and the Recur-
sive implementation in almost all the queries that they
can run, except for Query 1, where the running time
goes beyond 25 seconds. As we will discuss later, this
can be explained because of the semantic they use to
evaluate property paths, which makes Virtuoso to have
many duplicated answers. For the remaining queries,
we can see that the execution time is almost equals.

Comparison with Jena. Apache Jena can also answer
all queries. However, our recursive implementation is
only clearly outperformed in Query 2 and Query 6.
This is mainly because those queries have predicates
with the form:

?x <:p1|:p2>* ?z

and our system is not optimized for working with
unions of predicates. Remarkably, and even though all
of the generated queries are relatively simple, our im-
plementation reports a faster running time in half of
the queries we test. Note that Q7, Q8 and Q9 have an
answer time considerably worse in Jena than in our re-
cursive implementation, where the time goes beyond
the 25 seconds. We can only speculate that this is be-
cause the property paths has many paths of short length
and because Apache Jena cannot manage properly the
queries with two or more star triple patterns.

When we increase the size of the graph, the results
have the same behaviour. It is also more evident which
queries are easier and harder to evaluate for the exist-
ing systems. The result for the increased size of the
graph can be found in the Figures 9 and 10.

Number of outputs. As we said before, one interest-
ing thing that we note from the previous experiments
is the time that Virtuoso took to answer the query Q1
in the three dataset. We suspected that this could be
generated because Virtuoso generates many duplicate
results, thus the output should be higher with respect
to rec-SPARQL and Jena. We count the number of out-
puts for the queries ran over the first graph. The results
can be seen in Figure 11.

The first thing to note is that we avoid duplicate an-
swers in our language, mainly because of the UNION
operator used in lineal recursion, which deletes the du-
plicates answers. Also we do not consider paths of
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Fig. 9. Times for G2.

Fig. 10. Times for G3.

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
RecSPARQL 24723 3964 1455 9 169 3964 2604 126 2 906

Jena 103814 90398 89128 198 802 90398 10838 94638 89523 5373
Virtuoso 1849915 - 2267 198 804 - - - 454 6345

Fig. 11. Number of outputs for the GMark queries over the first graph.

length 0, because those results do not give us any rel-
evant information about the answer. Then we can see
that Apache Jena has always more results than us, this
is mainly because they consider paths of length 0. We

did not rewrite the queries because we wanted keep
them as close as possible to the benchmark. In Vir-
tuoso one needs an starting point for property path
queries, then this system does not consider paths of



16 Reutter, Soto and Vrgoč / Recursion in SPARQL

length 0 and for that reason in some queries they have
less outputs than Apache Jena. However, in most of
the queries they give more results than Apache Jena
and RecSPARQL, because they give many duplicate
answers. This happen mainly in the first query, which
is the simpler one. They give several duplicate answers
and it causes the answer time to be considerably worse.
The same effect happen for the 2 bigger graphs. This
results can be found in Figures 12 and 13.

5.3. Limiting the number of iterations

In section 4.2 we presented a way of limiting the
depth of the recursion. We argue that this functional-
ity should find good practical uses, because users are
often interested in running recursive queries only for
a predefined number of iterations. For instance, very
long paths between nodes are seldom of interest and in
a wast majority of use cases we will be interested in
using property paths only up to depth four or five.
It is straightforward to see that every query defined us-
ing recursion with predefined number of iterations can
be rewritten in SPARQL by explicitly specifying each
step of the recursion and joining them using the con-
catenation operator. The question then is, why is spec-
ifying the recursion depth beneficial?

One apparent reason is that it makes queries much
easier to write and understand (as a reference we in-
clude the rewritings of the query QA, QB and QC from
Subsection 5.1 using only SPARQL operators in the
online appendix). The second reason we would like to
argue for is that, when implemented using Algorithm
2, recursive queries with a predetermined number of
steps result in faster query evaluation times than eval-
uating an equivalent query with lots of joins. The in-
tuitive reason behind this is that computing qbase, al-
though expensive initially, acts as a sort of index to
iterate upon, resulting in fast evaluation times as the
number of iterations increases. On the other hand, for
even a moderately complex query using lots of joins,
the execution plan will seldom be optimal and will of-
ten resort to simply trying all the possible matchings to
the variables, thus recomputing the same information
several times.

We substantiate this claim by running two rounds
of experiments on LMDB and YAGO datasets, using
queries QA, QB and QC from Subsection 5.1 and run-
ning them for an increasing number of steps. We evalu-
ate each of the queries using Algorithm 2 and run it for
a fixed number of steps until the algorithm saturates.
Then we use a SPARQL rewriting of a recursive query

where the depth of recursion is fixed and evaluate it in
Jena and Virtuoso.

Figure 14 shows the results over LMDB and Fig-
ure 15 shows the results over YAGO. As we can see,
the initial cost is much higher if we are using recur-
sive queries, however as the number of steps increases
we can see that they show much better performance
and in fact, the queries that use only SPARQL opera-
tors time out after a small number of iterations. Note
that we did not run the second query over the Yago
dataset, because it ends in two iterations, and it would
not show any trend. We also did not run queries QD
and QE. Query QD was timing out also after two it-
erations, and query QE is composed by two property
paths, then there is not a straightforward way to trans-
form it in a query with unions.

6. Conclusions and looking ahead

As illustrated by several use cases, there is a need for
recursive functionalities in SPARQL that go beyond
the scope of property paths. To tackle this issue we pro-
pose a recursive operator to be added to the language
and show how it can be implemented efficiently on top
of existing SPARQL systems. We concentrated on lin-
ear recursive queries which have been well established
in SQL practice and cover the majority of interesting
use cases and show how to implement them as an ex-
tension to Jena framework. We then test on real world
datasets to show that, although very expressive, these
queries run in reasonable time even on a machine with
limited computational resources. Additionally, we also
include the variant of the recursion operator that runs
the recursive query for a limited number of steps and
show that the proposed implementation outperforms
equivalent queries specified using only SPARQL 1.1
operators.

Given that recursion can express many requirements
outside of the scope of SPARQL 1.1, coupled with the
fact that implementing the recursive operator on top of
existing SPARQL engines does not require to change
their core functionalities, allows us to make a strong
case for including recursion in the future iterations of
the SPARQL standard. Of course, such an expressive
recursive operator is not expected to beat specific al-
gorithms for smaller fragments such as property paths.
But nothing prevents the language to have both a syn-
tax for property paths and also for recursive queries,
with different algorithms for each operator. But, on the
other hand, systems looking for more lightweight al-
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System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
RecSPARQL 50190 8153 3188 7 345 8153 6116 308 4 2134

Jena 208437 181043 178465 409 1547 181043 16730 189628 179168 11022
Virtuoso 3624482 - 5256 409 1561 - - - 968 13002

Fig. 12. Number of outputs for the GMark queries over the second graph.

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
RecSPARQL 74967 12015 4719 17 533 12015 16040 487 4 2942

Jena 311559 270506 266777 766 2674 270506 - - - 15951
Virtuoso - - 7743 766 2716 - - - 1384 18726

Fig. 13. Number of outputs for the GMark queries over the third graph.

(a) Query QA

(b) Query QB

(c) Query QC

Fig. 14. Limiting the number of iterations for the evaluation of QA,
QB and QC over LMDB.

(a) Query QA

(b) Query QC

Fig. 15. Limiting the number of iterations for the evaluation of QA
and QC over Yago.

ternatives may prefer to eschew algorithms for prop-
erty paths and just compile everything into our recur-
sive operator.

There are several other areas where a recursive op-
erator should bring immediate impact. To begin with,
it has been shown that a wide fragment of recursive
SHACL constraints can be compiled into recursive
SPARQL queries [42], and a similar result should hold
for ShEx constraints [43]. Another interesting direc-
tion is managing ontological knowledge. Indeed, it was
shown that even a mild form of recursion is sufficient
to capture RDFS entailment regimes [3] or OWL2 QL
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entailment [44], and it stands open to which extent can
rec-SPARQL help us capture more complex ontolo-
gies, and evaluate them efficiently. Furthermore, rec-
SPARQL may also be used for other applications such
as Graph Analytics or Business Intelligence.

Looking ahead, there are several directions we plan
to explore. We believe that the connection between
recursive SPARQL and RDF shape schemas should
be pursued further, and so is the connection with
more powerful languages for ontologies. There is also
the subject of finding the best semantics for recur-
sive SPARQL queries involving non-monotonic defi-
nitions. Stable model semantics may or may not be the
best option, and even if it is, it would be interesting to
see if one can obtain a good implementation by lever-
aging techniques developed for logic programming, or
provide tools to compile recursive SPARQL queries
into a logic program. Regarding blanks and numbers,
perhaps one can also find a reasonable fragment, or
a reasonable extension to the semantics of recursive
queries, that can deal with numbers and blanks, but
that can still be evaluated under the good properties we
have showcase for linear recursion.
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Appendix. Appendix

Queries in Section 4.1

Query from Subsection 4.1 stated without nesting:

PREFIX prov: <http://www.w3.org/ns/prov#>
WITH RECURSIVE http://db.ing.puc.cl/temp AS {

CONSTRUCT {?x ?u ?y}
FROM NAMED <http://db.ing.puc.cl/temp>
WHERE{{

?x prov:wasRevisionOf ?z .
?x prov:wasGeneratedBy ?w .
?w prov:used ?z .
?w prov:wasAssociatedWith ?u}

UNION{
?x prov:wasRevisionOf ?z .
?x prov:wasGeneratedBy ?w .
?w prov:used ?z .
?w prov:wasAssociatedWith ?u .
GRAPH <http://db.ing.puc.cl/temp> {?z ?u ?y}}}

}
SELECT ?x ?y
FROM <http://db.ing.puc.cl/temp>
WHERE ?x ?u ?y

Queries from Subsection 5.1

The query QA is represented by the following recursive query:

WITH RECURSIVE http://db.ing.puc.cl/temp AS{
CONSTRUCT {<http://data.linkedmdb.org/resource/actor/29539>
<http://relationship.com/collab> ?act}
FROM NAMED <http://db.ing.puc.cl/temp>

FROM <Quad.defaultGraphIRI>
WHERE {
{?mov <http://data.linkedmdb.org/resource/movie/actor>
<http://data.linkedmdb.org/resource/actor/29539> .
?mov <http://data.linkedmdb.org/resource/movie/actor> ?act}
UNION {
{?mov <http://data.linkedmdb.org/resource/movie/actor> ?act1} .
{?mov <http://data.linkedmdb.org/resource/movie/actor> ?act} .
GRAPH <http://db.ing.puc.cl/temp>
{<http://data.linkedmdb.org/resource/actor/29539>
<http://relationship.com/collab> ?act1}}
}
}
SELECT ?z FROM NAMED <http://db.ing.puc.cl/temp>
WHERE {GRAPH <http://db.ing.puc.cl/temp>
{<http://data.linkedmdb.org/resource/actor/29539>
<http://relationship.com/collab> ?z}}
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The following is the formulation of the query QB:

WITH RECURSIVE http://db.ing.puc.cl/temp AS
{
CONSTRUCT {<http://data.linkedmdb.org/resource/actor/29539> ?dir ?act}
FROM NAMED <http://db.ing.puc.cl/temp>
FROM <Quad.defaultGraphIRI>
WHERE
{
{?mov <http://data.linkedmdb.org/resource/movie/actor>
<http://data.linkedmdb.org/resource/actor/29539> .
?mov <http://data.linkedmdb.org/resource/movie/actor> ?act .
?mov <http://data.linkedmdb.org/resource/movie/director> ?dir}
UNION
{{?mov <http://data.linkedmdb.org/resource/movie/director> ?dir} .
{?mov <http://data.linkedmdb.org/resource/movie/actor> ?act1} .
{?mov <http://data.linkedmdb.org/resource/movie/actor> ?act} .
GRAPH <http://db.ing.puc.cl/temp>
{<http://data.linkedmdb.org/resource/actor/29539> ?dir ?act1}}
}
}
SELECT ?y ?z FROM NAMED <http://db.ing.puc.cl/temp>
WHERE {GRAPH <http://db.ing.puc.cl/temp>
{<http://data.linkedmdb.org/resource/actor/29539> ?y ?z}}

The following is the formulation of the query QC:

WITH RECURSIVE http://db.ing.puc.cl/temp AS
{
CONSTRUCT {<http://data.linkedmdb.org/resource/actor/29539>
<http://relationship.com/collab> ?act}
FROM NAMED <http://db.ing.puc.cl/temp>
FROM <Quad.defaultGraphIRI>
WHERE
{
{?mov <http://data.linkedmdb.org/resource/movie/actor>
<http://data.linkedmdb.org/resource/actor/29539> .
?mov <http://data.linkedmdb.org/resource/movie/actor> ?act .
?mov <http://data.linkedmdb.org/resource/movie/director> ?dir .
?dir <http://data.linkedmdb.org/resource/movie/director_name> ?x .
?y <http://data.linkedmdb.org/resource/movie/actor_name> ?x}
UNION
{{?mov <http://data.linkedmdb.org/resource/movie/director> ?dir} .
{?dir <http://data.linkedmdb.org/resource/movie/director_name> ?x} .
{?y <http://data.linkedmdb.org/resource/movie/actor_name> ?x} .
{?mov <http://data.linkedmdb.org/resource/movie/actor> ?act1} .
{?mov <http://data.linkedmdb.org/resource/movie/actor> ?act} .
GRAPH <http://db.ing.puc.cl/temp>
{<http://data.linkedmdb.org/resource/actor/29539>
<http://relationship.com/collab> ?act1}}
}
}
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SELECT ?z FROM NAMED <http://db.ing.puc.cl/temp>
WHERE {GRAPH <http://db.ing.puc.cl/temp>
{<http://data.linkedmdb.org/resource/actor/29539>
<http://relationship.com/collab> ?z}}

The following is the formulation of the query QD:

WITH RECURSIVE http://db.ing.puc.cl/temp AS
{
CONSTRUCT {

<http://yago-knowledge.org/resource/Berlin>
<http://yago-knowledge.org/resource/isLocatedIn> ?x1
}
FROM NAMED <http://db.ing.puc.cl/temp>
FROM <urn:x-arq:DefaultGraph>
WHERE {

{
<http://yago-knowledge.org/resource/Berlin>
<http://yago-knowledge.org/resource/isLocatedIn> ?x1

}
UNION
{

?y <http://yago-knowledge.org/resource/isLocatedIn> ?x1 .
GRAPH <http://db.ing.puc.cl/temp> {

<http://yago-knowledge.org/resource/Berlin>
<http://yago-knowledge.org/resource/isLocatedIn> ?y

}
}

}
}
SELECT * FROM NAMED <http://db.ing.puc.cl/temp>
FROM <urn:x-arq:DefaultGraph>
WHERE {

?z <http://yago-knowledge.org/resource/dealsWith> ?v .
GRAPH <http://db.ing.puc.cl/temp> {
?x ?y ?z }

}

The following is the formulation of the query QE :

WITH RECURSIVE http://db.ing.puc.cl/temp AS
{
CONSTRUCT {?x0 <http://yago-knowledge.org/resource/isMarriedTo> ?x1}
FROM NAMED <http://db.ing.puc.cl/temp>
FROM <urn:x-arq:DefaultGraph>
WHERE {
{ ?x0 <http://yago-knowledge.org/resource/isMarriedTo> ?x1 .

?x1 <http://yago-knowledge.org/resource/owns> ?y }
UNION
{ ?x0 <http://yago-knowledge.org/resource/isMarriedTo> ?y .

GRAPH <http://db.ing.puc.cl/temp> {
?y <http://yago-knowledge.org/resource/isMarriedTo> ?x1



Reutter, Soto and Vrgoč / Recursion in SPARQL 23

}
}
}
}
WITH RECURSIVE http://db.ing.puc.cl/temp2 AS
{
CONSTRUCT {

?x0 <http://yago-knowledge.org/resource/isLocatedIn>
<http://yago-knowledge.org/resource/United_States>

}
FROM NAMED <http://db.ing.puc.cl/temp2>
FROM <urn:x-arq:DefaultGraph>
WHERE {
{

?x0 <http://yago-knowledge.org/resource/isLocatedIn>
<http://yago-knowledge.org/resource/United_States>

}
UNION
{ ?x0 <http://yago-knowledge.org/resource/isLocatedIn> ?y .

GRAPH <http://db.ing.puc.cl/temp2> {
?y <http://yago-knowledge.org/resource/isLocatedIn>
<http://yago-knowledge.org/resource/United_States>

}
}
}
}
SELECT *
FROM NAMED <http://db.ing.puc.cl/temp>
FROM NAMED <http://db.ing.puc.cl/temp2>
FROM <urn:x-arq:DefaultGraph>
WHERE {

?z1 <http://yago-knowledge.org/resource/owns> ?x2 .
GRAPH <http://db.ing.puc.cl/temp> { ?x1 ?y1 ?z1 } .
GRAPH <http://db.ing.puc.cl/temp2> { ?x2 ?y2 ?z2 }

}

Queries from Subsection 5.2

The following are the queries generated by the GMark benchmark:

PREFIX : <http://example.org/gmark/>
SELECT * WHERE { ?x0 (:p16/^:p16) ?x1 . ?x1 (:p16/^:p16)* ?x2 }

PREFIX : <http://example.org/gmark/>
SELECT * WHERE { ?x0 ((:p23/^:p23)|(:p25/^:p23)) ?x1 .
?x1 ((:p23/^:p23)|(:p25/^:p23))* ?x2 }

PREFIX : <http://example.org/gmark/>
SELECT * WHERE { ?x0 (:p25/^:p25) ?x1 . ?x1 (:p25/^:p25)* ?x2 }

PREFIX : <http://example.org/gmark/>
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SELECT * WHERE { ?x0 (^:p22/:p16)* ?x1 . ?x1 (^:p19/:p20) ?x2 }

PREFIX : <http://example.org/gmark/>
SELECT * WHERE { ?x0 (:p0/:p22/^:p23) ?x1 . ?x1 (:p24/^:p24)* ?x2 }

PREFIX : <http://example.org/gmark/>
SELECT * WHERE { ?x0 ((:p23/^:p23)|(:p25/^:p23)) ?x1 .
?x1 ((:p23/^:p23)|(:p25/^:p23))* ?x2 }

PREFIX : <http://example.org/gmark/>
SELECT * WHERE { ?x0 ((^:p15/:p18)|(^:p18/:p15))* ?x1 .
?x1 ((^:p15/:p8/^:p13)|(^:p15/:p8/^:p14)) ?x2 }

PREFIX : <http://example.org/gmark/>
SELECT * WHERE { ?x0 ((:p21/^:p21)|(:p21/^:p22)) ?x1 .
?x1 ((:p21/^:p21)|(:p21/^:p22))* ?x2 .
?x2 (:p16/^:p21)* ?x3 }

PREFIX : <http://example.org/gmark/>
SELECT * WHERE { ?x0 (^:p23/:p24) ?x1 .
?x1 (^:p23/:p24)* ?x4 .
?x0 (^:p17/:p21)* ?x2 .
?x0 (^:p25/:p25)* ?x3 }

PREFIX : <http://example.org/gmark/>
SELECT * WHERE { ?x0 (:p16/^:p23) ?x1 .
?x1 (:p24/^:p24)* ?x2 .
?x2 (:p23/^:p23)* ?x3 }

The same queries written in Recursive SPARQL can be found at https://alanezz.github.io/RecSPARQL.

Queries from Subsection 4.2

The following is SPARQL rewriting of the query Q1 computing Bacon number of length at most 5:

SELECT ?act WHERE{{?mov
<http://data.linkedmdb.org/resource/movie/actor>
<http://data.linkedmdb.org/resource/actor/29539> .
?mov <http://data.linkedmdb.org/resource/movie/actor> ?act}

UNION { ?mov <http://data.linkedmdb.org/resource/movie/actor>
<http://data.linkedmdb.org/resource/actor/29539> .
?mov <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act}

UNION {?mov <http://data.linkedmdb.org/resource/movie/actor>
<http://data.linkedmdb.org/resource/actor/29539> .
?mov <http://data.linkedmdb.org/resource/movie/actor> ?act3 .
?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act3 .
?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .

https://alanezz.github.io/RecSPARQL
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?mov3 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
?mov3 <http://data.linkedmdb.org/resource/movie/actor> ?act }

UNION {?mov <http://data.linkedmdb.org/resource/movie/actor>
<http://data.linkedmdb.org/resource/actor/29539> .
?mov <http://data.linkedmdb.org/resource/movie/actor> ?act4 .
?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act4 .
?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act3 .
?mov3 <http://data.linkedmdb.org/resource/movie/actor> ?act3 .
?mov3 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
?mov4 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
?mov4 <http://data.linkedmdb.org/resource/movie/actor> ?act }}

Other rewritings are similar and can be found at https://alanezz.github.io/RecSPARQL.

https://alanezz.github.io/RecSPARQL
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