o J oy s W N

Qs s s s s s s s D DWW W W W W W W W W NNNNNDNNNNN R R R R R R e R P e
HF O W © J & 0 W N O W Jdo s W N R O VW Do s W NP O LV ®Jd o W N R O WV

Semantic Web 0 (0) 1 1
10S Press

ML-Schema: An interchangeable format for
description of machine learning experiments

Gustavo Correa Publio &, Agnieszka Lawrynowicz b Larisa Soldatova ¢, Pan&e Panov 91,

Diego Esteves ®", Joaquin Vanschoren f, Tommaso Soru &

& Institut fiir Informatik, AKSW Group, Universitit Leipzig, Germany

E-mail: gustavo.publio @informatik.uni-leipzig.de

b Faculty of Computing, Poznan University of Technology, Poland

E-mail: agnieszka.lawrynowicz @ cs.put.poznan.pl

¢ Department of Computing, Goldsmiths, University of London, United Kingdom
E-mail: Lsoldatova@gold.ac.uk

4 Department of Knowledge Technologies, JoZef Stefan Institute,Slovenia
E-mail: pance.panov@ijs.si

¢ SDA Research, University of Bonn,Germany

E-mail: diego.esteves@farfetch.com

f Mathematics and Computer Science, Eindhoven University of Technology,Netherlands
E-mail: j.vanschoren @tue.nl

& Research Group, Semantic Integration Ltd., United Kingdom

E-mail: tom@tommaso-soru.it

h Search and Discovery, Farfetch, Portugal

E-mail: diego.esteves@farfetch.com

i JoZef Stefan International Postgraduate School, Ljubljana, Slovenia

E-mail: pance.panov@ijs.si

Abstract. In this paper, we present the ML-Schema, proposed by the W3C Machine Learning Schema Community Group.
ML-Schema is a top-level ontology that provides a set of classes, properties, and restrictions for representing and interchanging
information on machine learning algorithms, datasets, and experiments. ML-Schema, a canonical format, resulted of more than
seven years of experience of different research institutions. We discuss the main challenges in the development of ML-Schema,
which have been to align existing machine learning ontologies and other relevant representations designed for a range of par-
ticular purposes following sometimes incompatible design principles, resulting in different not easily interoperable structures.
The resulting ML-Schema can now be easily extended and specialized allowing to map other more domain-specific ontologies
developed in the area of machine learning and data mining.

Keywords: ontology, data interchange standard, machine learning

1. Introduction expert knowledge. Ensuring that ML research out-

comes are properly comparable, understandable, inter-
Machine learning (ML) experiments are complex

.. pretable, reusable and reproducible is a challenge that
studies involving many steps and iterations requiring

many proposals, such as Wings [1], OpenTox [2] and

- - — —— MyExperiment [3], have tried to address. Neverthe-
Corresponding author. E-mail: gustavo.publio@informatik.uni-

leipzig.de. less, each of them deals with a set of specific scenarios

1570-0844/0-1900/$35.00 (© 0 — IOS Press and the authors. All rights reserved

=W N

©w o g o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

mailto:gustavo.publio@informatik.uni-leipzig.de
mailto:agnieszka.lawrynowicz@cs.put.poznan.pl
mailto:l.soldatova@gold.ac.uk
mailto:pance.panov@ijs.si
mailto:diego.esteves@farfetch.com
mailto:j.vanschoren@tue.nl
mailto:tom@tommaso-soru.it
mailto:diego.esteves@farfetch.com
mailto:pance.panov@ijs.si
mailto:gustavo.publio@informatik.uni-leipzig.de
mailto:gustavo.publio@informatik.uni-leipzig.de

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

2 G. Publio et al. / ML-Schema

and fails to address a broader, generic approach in the
context of reproducible and reusable science.

Ontologies, as formal machine-readable knowledge
representations, have the potential to help achieve this
goal. An ontology formally defines essential concepts,
their properties, and relevant axioms pertinent to a par-
ticular area of interest [4].

In the last decade, several ontologies have been
proposed to formally represent and model the area
of machine learning and data mining. Onto-DM (an
Ontology of Data Mining) was designed to provide
generic representations of principle entities in the area
of data mining [5, 6]. DMOP (Data Mining OPti-
mization ontology) has been developed to support
meta-mining, i.e. meta-learning from complete ML
processes [7]. Exposé has been designed to describe
and reason about ML experiments [8]. It underpins
OpenML' [9], a collaborative meta-learning platform
for machine learning that embodies the concept of ex-
perimental databases [10]. Finally, the MEX Vocabu-
lary (composed of three modules: mex-core, mex-algo
and mex-perf) aims to tackle the problem of manag-
ing ML outcomes and sharing provenance information,
particularly on the basic ML iterations, in a lightweight
format [11].

The development of these ML ontologies is a signif-
icant step towards ensuring unambiguous interpretabil-
ity and reproducibility of ML experiments. However,
none of the existing ontologies fully covers the area
of machine learning and supports all the needs for the
representation and encoding of ML experiments.

Instead of the development of a comprehensive
general-purpose ML ontology, here we propose a more
practical and flexible approach that involves the devel-
opment of ML-Schema — Machine Learning Schema
(MLS) — for mapping the existing ML ontologies and
to support a variety of useful extensions. To achieve
this ambitious goal, in September 2015 developers of
several ML ontologies (OntoDM, DMOP, Expose and
MEX) formed a W3C Community Group?. The de-
velopment of MLS has been initiated as an attempt to
prevent a proliferation of incompatible ML ontologies
and to increase interoperability among existing ones.
The MLS Community Group (MLS-CG) is an open-
source community currently comprehending over 50
international researchers and industry representatives.

The main challenge in the development of MLS is
to align existing ML ontologies and other relevant rep-

"URL:https://www.openml.org/
2See www.w3.org/community/ml-schema/

resentations designed for a range of particular pur-
poses following sometimes incompatible design prin-
ciples, resulting in different not easily interoperable
structures. Moreover, ML experiments are executed on
different ML software platforms; each of those having
specific conceptualization or schema for representing
data and meta-data about the experiment.

To address the challenge, the members of the MLS-
CG identified and aligned them with the related ontolo-
gies and vocabularies. The schema is focusing on the
representation of the algorithms, the machine learning
tasks they address, their implementations and execu-
tions, as well as inputs (e.g., data), outputs (e.g., mod-
els), and performances. The schema also defines a re-
lationship between machine learning algorithms and
their single executions (runs), experiments and studies
encompassing them.

The terms in the core vocabulary were defined and
manually mapped to the ML ontologies participating
in this endeavor through several rounds of consulta-
tions and working sessions. In 2016, the MLS-CG pub-
lished an online proposal for MLS on the community
group portal, and welcomed comments and sugges-
tions from the research community and wider [12].

In this paper, we present the results of three years of
MLS-CG efforts in the standardization of the encod-
ing of ML experiments. MLS aims to support a high
level of interoperability among scientific experiments
concerning machine learning to foster reproducible re-
search. MLS enables recording of machine learning
studies and results as linked open data. MLS is ben-
eficial to ML experiments Ecosystems (e.g., OpenML
and Research Objects [13]) and ML Metadata Reposi-
tories (e.g., WASOTA [14]) by providing a more repre-
sentative standard for their architectures. In OpenML,
MLS is used to export all machine learning datasets,
tasks, workflows, and runs as linked open data. This
allows scientists to connect the results of their machine
learning experiments to other knowledge sources, or
to build novel knowledge bases for machine learning
research.

This paper is organized as follows. In Section 2,
we introduce and discuss the MLS core vocabulary
and properties. Next, in Section 3, we present a dis-
cussion of the alignment of MLS with related ontolo-
gies. Furthermore, in Section 4 we discuss several use-
cases of our proposed schema. Finally, in Section 5 we
present a summary of contributions and avenues for
future work.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.openml.org/
www.w3.org/community/ml-schema/

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

G. Publio et al. / ML-Schema 3

automatic metadata generation

based on code annotation

Highest Level of Provenance
and Interoperability

r Global]

0 l Standard Schema
¥

MLF |'

Middleware }
Standard Schema

p—

r (3] ML Tools
IDE Schemas

SWFS
Workflow
Schemas

' d
| Schema
l Self-Definition

reducing the gap

Neither Provenance nor Interoperability

[) No Metadata]

Fig. 1. Vertical and Horizontal Interoperability across ML Environments.

2. The ML-Schema

In this section, we introduce the MLS w.r.t. its aims
and design principles. Next, we describe the MLS core
vocabulary. Finally, we describe the properties defined
within the MLS namespace.

2.1. The MLS aims and design principles

The main aim of MLS is to provide a high-level
standard to represent ML experiments in a concise, un-
ambiguous and computationally processable manner.
In particular, it aims to align existing ML ontologies
and to support the development of more specific on-
tologies for particular purposes and applications.

To serve its purposes, MLS has to be compact but
sufficiently comprehensive and easily extendable. To
achieve such an aim, we chose to design MLS as
a light-weight ontology that can be used as a basis
for ontology development projects, markup languages,
and data exchange standards. We then show how the
MLS is open for further extensions and mappings to
other resources.

For example, MLS can support vertical and hor-
izontal interoperability across various ML environ-
ments [15]. Different ML platforms have different un-
derlying schemes for representing data and metadata
(see Figure 1: items 3 and 4: vertical interoperability).
In turn, each schema may have a different level of en-
gineering design, although representing the same in-
formation, i.e., two or more properties representing the

same concept, but named differently (vertical level).
In the worst-case scenario, a self-defined schema is
used, which may lack clarity and may not follow
any standard. In the best-case scenario, a generic for-
mat is defined and accepted by the academic com-
munity, serving as an upper-level ontology which is
designed taking into account state-of-the-art (SOTA)
ML-ontologies (see Figure 1: item 5). The idealiza-
tion of this format would enable the interchange of ma-
chine learning metadata across different frameworks.
Esteves et al [15] provides a more in-depth analysis of
this problem.

It is worth noting that we do not propose yet another
ontology for representing ML metadata, but rather
work towards a global representation of ML metadata
through existing SOTA ML ontologies. New terms in
our representation suppress possible missing proper-
ties and/or concepts from SOTA ML Ontologies. We
thus propose ML-Schema to act as a central point to
connect existing and new ML schemata. We claim the
gap can be further (significantly) reduced by achiev-
ing interoperability among SOTA schemata of those
resources (see Figure 1: item 5) i.e. achieving the hor-
izontal interoperability (Figure 1: item 6). Therefore,
different groups of researchers could exchange SOTA
metadata files in a transparent manner, e.g.: from On-
toDM and MEX (MLS.Schemadata=MLS.conve
rt ('myfile.ttl’,MLS.Ontology.OntoDM,
MLS.Ontology.MEX)).

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4 G. Publio et al. / ML-Schema

realizes

| Model |] ModelCharacteristic |
s I e —
hasPart hasOutput
| Algorithm I/ Run ModelEvaluation EvaluationMeasure
|:| implements executes hasQutput - hasValue : rdfs:Literal specifiedBy —7M
ImplementationCharacteristic HyperParameter
! E ! ! i | haslhput achieyes hasPart
L I | 1
specifiedBy =
Y pata Task I EvaluationSpecification
HyperParameterSetting definedOn I defines I
- hasValue : rdfs:Literal
haspPart

DataCharacteristic

EvaluationProcedure |

I DatasetCharacteristic |

I FeatureCharacteristic I
I |
L

Fig. 2. The ML Schema core vocabulary. The diagram depicts Information Entities as yellow boxes, Processes as blue boxes, and Qualities as

green boxes.
2.2. MLS upper-level categories

In this section, we present an overview of MLS
upper-level categories. The diagram depicted in Fig-
ure 2 shows the complete MLS vocabulary. In general,
the MLS vocabulary contains representations of three
categories of entities we observe in the domain of ma-
chine learning experimentation: information entities,
process entities and quality entities.

Information content entity is defined in the IAQ?
(Information Artefact Ontology) as “a generically de-
pendent continuant that is about some thing.” Exam-
ples of information entities in our vocabulary include:
task, data, dataset, feature algorithm, implementation,
software, hyper-parameter, hyper-parameter setting,
model, model evaluation, evaluation measure, evalua-
tion specification and evaluation procedure.

Process is defined in the BFO* (Basic Formal Ontol-
ogy) [16] as a “an occurrent that has temporal proper
parts and for some time t, p s-depends_on some ma-
terial entity at t.” In our vocabulary we deal mostly
with planned processes, defined in OBI (Ontology of
Biomedical Investigations) [17] as “a processual en-

3URL: https://github.com/information-artifact-ontology/IAQ/
4URL: http://purl.obolibrary.org/obo/bfo.owl

tity that realizes a plan which is the concretization
of a plan specification.” Examples of process enti-
ties in our vocabulary include: run, experiment and
study. Processual entities (e.g., run) can have partic-
ipants, which can be input (e.g., data) or output par-
ticipants (e.g., model, model evaluation). Planned pro-
cesses (e.g., run) can also execute a plan (e.g., in our
case a plan is encoded in the algorithm implementa-
tion) and can achieve a planned objective represented
as a fask specification. Finally, our process entities
form a parthood taxonomy: one study can have as parts
experiments; and one experiment can have as parts
runs.

Quality is defined in BFO as “a specifically depen-
dent continuant that, in contrast to roles and dispo-
sitions, does not require any further process in order
to be realized.” PATO’ (Phenotypic Quality Ontology)
defines quality as a “a dependent entity that inheres
in a bearer by virtue of how the bearer is related to
other entities.” Examples of quality entities in our do-
main include: data characteristic, dataset character-
istic, feature characteristic, model characteristic, and
implementation characteristic.

SURL: http://purl.obolibrary.org/obo/pato.owl

=W N

o 0 g o

11
12
13
14

16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/information-artifact-ontology/IAO/
http://purl.obolibrary.org/obo/bfo.owl
http://purl.obolibrary.org/obo/pato.owl

@ J oy U W N

10
11
12
13
14
15

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

50
51

G. Publio et al. / ML-Schema 5

2.3. MLS core vocabulary

In the continuation of this section, we briefly discuss

the core classes of MLS in more detail.

Task in MLS represents a formal specification of a

process objective that needs to be completed or
achieved (e.g.based on specific inputs and out-
puts). In general, a task is any piece of work
that needs to be addressed in a data mining pro-
cess. Example of possible sub-classes of tasks in-
clude: classification, regression, clustering, fea-
ture selection, missing value imputation and oth-
ers. Examples of individuals include for example
the task of classification on Iris dataset®.

Algorithm in MLS, represents an algorithm specifi-

cation described in a report, a scientific paper or
just written on some media in a form of a pseudo
code. This allows the potential users to extend the
representation by adding algorithm provenance
information, such as title, creator and others, by
using for example the Dublin Core (DC) vocab-
ulary’. Examples of possible sub-classes of al-
gorithm include: classification algorithm, regres-
sion algorithm, multi-label classification algo-
rithm. Examples of individuals include: ID3 algo-
rithm [18] and C4.5 algorithm [19] as instances
of the classification algorithm, linear regression
algorithm as an instance of regression algorithm
and others.

Implementation in MLS, represents an executable

software implementation of a machine learn-
ing algorithm, script, or workflow. It is ver-
sioned, and sometimes belongs to a library (e.g.
WEKA [20], RapidMiner®). This is represented
by the part hood relation with Software. Im-
plementations have hyper parameters. Poten-
tial users can extend the representation of im-
plementations to include provenance informa-
tion by using external vocabularies and ontolo-
gies. Example sub-classes of implementation can
include: learner implementation, data process-
ing implementation, evaluation procedure im-
plementation, and others. Example of individu-
als include: weka.J48, rapidminer. RandomForest,
weka.evaluation.CrossValidation, and others.

SURL:https://archive.ics.uci.edu/ml/datasets/iris

TURL: https://www.dublincore.org/specifications/dublin-core/
dces/

8URL:https://rapidminer.com/

HyperParameter in MLS represents a prior parame-
ter of an implementation, i.e., a parameter which
is set before its execution (e.g. C, the complex-
ity parameter, in weka.SMO implementation).
Hyper-parameters are built in the implementa-
tion by design and they influence the implemen-
tation execution, when realized in a run pro-
cess. Example of individuals of this class can
include: weka.SMO_C (the C parameter in the
WEKA'’s implementation of the support vector
machines [21]), weka.J48_M (the M parameter
in the WEKA'’s implementation of the C4.5 algo-
rithm - named J48 in the implementation), rapid-
miner.RandomForest_number_of _trees (the num-
ber of trees parameter in the Rapidminer imple-
mentation of the Random forest algorithm [22]).

HyperparameterSetting class is used for representa-
tion of the parameter settings of the implementa-
tion that is realized in each specific run. This is
done by using hasValue data property.

Data in MLS represent data items. In IAO, data item
is defined as “information content entity that is in-
tended to be a truthful statement about something
(modulo, e.g., measurement precision or other
systematic errors) and is constructed/acquired by
a method which reliably tends to produce (ap-
proximately) truthful statements.” Data used in
machine learning experiments can appear in vari-
ous levels of granularity and complexity depend-
ing on the task at hand. With regard to granular-
ity, it can be a complete dataset (for instance, one
main table and possibly other tables), a single ta-
ble, a single feature (e.g., a column of a table), or
only an instance (e.g., a row of a table), or a sin-
gle feature-value pair. With regards to complex-
ity, data items are characterized by their datatype,
which may be arbitrarily complex (e.g., instead of
a table it can be a graph). Finally, depending on
the use case at hand, data descriptions can be ex-
tended by incorporating provenance information
(e.g., name, description, URL, identifier, creator,
publisher, and others) by reusing external vocabu-
laries, such as DC, schema.orgg, and DCAT (Data
Catalog Vocabulary)!©.

Dataset and Feature are represented as sub-classes
of data. Example of individuals of the datasets
class can include: Iris dataset, FaceScrub dataset,
IMDB-WIKI dataset, and others. Examples of in-

9URL: https://schema.org/
10URL:https://www.w3.org/TR/vocab-dcat/

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://archive.ics.uci.edu/ml/datasets/iris
https://www.dublincore.org/specifications/dublin-core/dces/
https://www.dublincore.org/specifications/dublin-core/dces/
https://rapidminer.com/
https://schema.org/
https://www.w3.org/TR/vocab-dcat/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

48
49
50
51

G. Publio et al. / ML-Schema

dividuals of features that appear in the Iris dataset
are as follows: sepal length, sepal width, petal
length, petal width, and class.

DataCharacteristic in MLS is used for representa-

tion of different data properties. This class has
two sub-classes used for representation of proper-
ties of datasets (DatasetCharacteristic) and fea-
tures (FeatureCharacteristic). Examples of such
properties include: number of features, number of
labels, number of instances, and others.

Run in MLS is an execution of an implementation of

an algorithm on a machine (e.g., computer). Runs
receive data and hyper-parameter settings at in-
put. Runs are limited in time, have a start and an
end point, and can be successful or failed. If suc-
cessful, runs produce a specific result, such as a
model and evaluations of model’s performance.
Although runs are called very differently in the
different existing ontologies, the semantics are
the same. Examples of individuals of run include:
process running SVMIib on Iris on Machine M
on timestamp t. Finally, depending on the use
case at hand, runs can be extended by incorpo-
rating provenance information about a run (e.g.,
name, description, identifier, creator, and others)
by reusing external vocabularies.

Model is defined as an generalization of the input data

produced by an execution of an algorithm imple-
mentation in a specific run. Models have a dual
nature: they can be treated as data structures and
as such represented, stored and manipulated; on
the other hand, they act as functions and are exe-
cuted (e.g., in the case of predictive models they
take as input unlabeled data examples and giv-
ing as output the prediction of target features).
Models can also be divided into global or local
ones. A global model has global coverage of a
data set, i.e., it generalizes the whole data set. A
local model, such as a pattern set, is a set of local
hypotheses, i.e. each applies to a limited region of
the data set. Example sub-classes of model class
include: decision tree, rule set, clustering, pattern
set, bayesian network, neural network and oth-
ers. Example of an individual is a decision tree
built on Iris dataset using weka.ID3 implementa-
tion with default parameters.

ModelCharacteristic are used for characterizing dif-

ferent properties of models. For example, if we
have decision trees as the type of model, we can
characterize the model with several propertied:
tree size, tree depth, number of leaves, number of

internal nodes, and others. The model properties
are directly dependent on the model type (e.g.,
neural networks have different set of characteris-
tics then decision trees).

EvaluationProcedure in MLS is used to represent

different procedures to evaluate machine learn-
ing models. The evaluation procedure is depen-
dent on the task at hand (e.g., different evalua-
tion procedures are used for predictive modeling
and for clustering). Examples of evaluation pro-
cedures include: cross-validation, train-test vali-
dation, leave-one-out validation and others.

Evaluation measure in MLS uniquely defines how to

assess the performance of a model. For exam-
ple, for the case of classification model we can
assess the performance of the built model with
a set of measures that include: accuracy, preci-
sion, recall, F-measure, and others. after it has
been trained in a specific run. These measures
are directly dependent on the task at hand (e.g.,
the evaluation measures for classification are dif-
ferent from evaluation measures for regression).
There also exist evaluation measures that are task
independent, such as duration of the model train-
ing, duration of the model testing and consump-
tion of memory.

EvaluationSpecification in MLS represents a specifi-

cation of a specific evaluation defined on a task
by using specific evaluation procedure and eval-
uation measure. For example, we can represent a
specification of an evaluation that is considering
cross-validation in a classification setting and ac-
curacy as an evaluation measure.

Experiment in MLS is a collection of runs. It can be

used to group the runs in logically defined units
that are used to address a specific research ques-
tion or hypothesis.

Study in MLS has the highest level of granularity in

representing collections of experiments. Studies
are often the most natural product of a scientific
investigation (that usually tackles several research
questions or tests several hypothesis) and can be
directly linked to certain claims and other prod-
ucts, such as research papers.

2.4. MLS Ontology properties

Finally, in the following we list and briefly describe

the properties modeled in MLS:

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

G. Publio et al. / ML-Schema 7

achieves A relation between a run and a task, where
the run achieves specifications formulated by the
task.

definedOn A relation between a task and either the
data or an evaluation specification pertinent to
this task.

defines The inverse relation of definedOn.

executes A relation between a run and an implemen-
tation that is being executed during the run.

hasHyperParameters A relation between implemen-
tation of a machine learning algorithm and its hy-
perparameter.

hasInput A relation between a run and data that is
taken as input to the run.

hasOutput A relation between a run and either a
model or model evaluation that is produced on its
output.

hasPart A relation which represents a part-whole re-
lationship holding between an entity and its part.

hasQuality A relation between entities and their vari-
ous characteristics.

implements A relation between an information entity
and a specification that it conforms to.

realizes A relation between a run and an algorithm,
where the run realizes specifications formulated
by the algorithm.

specifiedBy A relation between an entity and the in-
formation content entity that specifies it.

3. Alignment of MLS with related ontologies

In this section, we first give a brief overview of the
related ontologies and vocabularies in the domain of
machine learning and data mining. Second, we focus
on the alignment of the proposed MLS with the related
ontologies. Here, we perform an analysis of the differ-
ent representations and discuss the alignments with the
MLS core vocabulary.

3.1. Related ontologies

The development of MLS was highly influenced by,
initially independent, research of several groups on
modeling the machine learning/data mining domain.
Due to this the classes and relations presented in MLS
re-appear in the current ML/DM ontologies and vo-
cabularies. The following related ML ontologies are
those that MLS is aligned to the moment. These in-
clude the OntoDM ontology [6], the DMOP ontology
[7], the Exposé ontology [8] and the MEX vocabulary

[11]. These alignments will be further described in the
remainder of the section.

The OntoDM ontology. The Onto-DM ontology was
initially designed to provide generic representations of
principle entities in the area of data mining. In one
of the preliminary versions of the OntoDM ontology
[23], the authors decided to align the proposed ontol-
ogy with the Ontology of Biomedical Investigations
(OBI) [24] and consequently with the Basic Formal
Ontology (BFO) at the top level'!, in terms of top-level
classes and the set of relations. That was beneficial for
structuring the domain more elegantly and establish-
ing the basic differentiation of information entities, im-
plementation entities, and processual entities. In this
context, the authors proposed a horizontal descrip-
tion structure that includes three layers: a specifica-
tion layer, an implementation layer, and an application
layer [6]. The specification layer, in general, contains
information entities (example classes are data mining
task and data mining algorithm). The implementation
layer, in general, contains entities that are realized in
a process, such as parameters and implementations of
algorithms, as well as models that are the output of the
execution of algorithms on specific datasets. The ap-
plication layer contains processual classes, such as the
execution of the data mining algorithm.

The DMOP ontology. The DMOP ontology has been
developed with a primary use case in meta-mining,
that is meta-learning extended to an analysis of full
DM processes [7]. At the level of both single algo-
rithms and more complex workflows, it follows a very
similar modeling pattern as described in the MLS. To
support meta-mining, DMOP contains a taxonomy of
algorithms used in DM processes which are described
in detail in terms of their underlying assumptions, cost
functions, optimization strategies, generated models
or pattern sets, and other properties. Such a "glass
box" approach which makes explicit internal algorithm
characteristics allows meta-learners using DMOP to
generalize over algorithms and their properties, includ-
ing those algorithms which were not used for training
meta-learners.

The Exposé ontology. The main goal of the Exposé
ontology is to describe (and reason about) machine
learning experiments in a standardized fashion and

'URL: http://basic-formal-ontology.org/

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://basic-formal-ontology.org/

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

8 G. Publio et al. / ML-Schema

support a collaborative approach to the analysis of
learning algorithms [8]. It is built on top of OntoDM
by reusing several general ML classes and DMOP by
reusing classes related to internal algorithm mecha-
nism, as well as other general ontologies for experi-
mentation, such as EXPO [25]. Its conceptualization
is currently used in OpenML [9], as a way to structure
data (e.g. database design) and share data (APIs). MLS
will be used to export all OpenML data as linked open
data (in RDF). For the sake of simplicity and compre-
hension, we further refer to the Exposé ontology as the
OpenML vocabulary, or simply OpenML.

The MEX vocabulary. MEX has been designed
to reuse existing ontologies (i.e., PROV-O, Dublin-
Core'?, and DOAP'?) for representing basic machine
learning information. The aim is not to describe a com-
plete data-mining process, which can be modeled by
more complex and semantically refined structures. In-
stead, MEX was designed to provide a simple and
lightweight vocabulary for exchanging machine learn-
ing metadata to achieve a high level of interoperability
as well as supporting data management for ML out-
comes.

3.2. Alignment analysis

MLS provides a model for expressing data mining
and machine learning algorithms, datasets, and exper-
iments. In Table 1, we present the mapping between
the terms present in the MLS and the current ML/DM
ontologies and vocabularies. This mapping highlights
how MLS is compatible with prior ontologies and how
resources currently described in other ontologies can
be described uniformly using MLS, hence allowing us
to link currently detached machine learning resources.

In the remainder of this section, we discuss the anal-
ysis of the mappings of MLS core vocabulary with the
existing ML ontologies, presented in the previous sec-
tion.

3.2.1. Task

In MLS, the Task class represents a formal de-
scription of a process that needs to be completed or
achieved. We directly align it with the following con-
cepts from the related ontologies: OntoDM: “Data
Mining Task”, DMOP: DM-Task, OpenML:TaskType.

2http://dublincore.org
Bhttp://usefulinc.com/doap/

In the MEX vocabulary the closest concept is mex-
core:ExperimentConfiguration. We briefly discuss the
representation rationale in each of the related ontolo-
gies.

OntoDM. OntoDM defines a data mining task as an
objective specification that specifies the objective that
a data mining algorithm needs to achieve when exe-
cuted on a dataset to produce as output a generaliza-
tion. It is represented as a subclass of the IAO: objec-
tive specification class, where objective specification
is a directive information entity that describes and in-
tended process endpoint. The data mining task is di-
rectly dependent on the datatypes of the data exam-
ples on which the task is defined, and is included di-
rectly in the task representations. This allows us to rep-
resent tasks defined by arbitrarily complex datatypes.
The definition of data mining algorithm and general-
izations is strongly dependent on the task definition.

OntoDM contains a taxonomy of data mining tasks.
At the first level, they differentiate between four major
task classes: predictive modeling task, pattern discov-
ery task, clustering task, and probability distribution
estimation task. Predictive modeling task is worked out
in more detail. A predictive modeling task is defined
on a pair of datatypes (one describing the part of the
data example on the descriptive side and the other de-
scribing the part of the data example on the target/out-
put side), they differentiate between primitive output
prediction tasks (that include among others the tradi-
tional ML tasks such as classification and regression)
and structured output prediction tasks (that include,
among other, tasks such as multi-label classification,
multi-target prediction, hierarchical multi-label classi-
fication).

DMOP. In DMOP, a task is any piece of work that
is undertaken or attempted. A DM-Task is any task
that needs to be addressed in the data mining process.
DMOP’s DM-Task hierarchy models all the major
task classes: CoreDM-Task, DataProcessingTask, Hy-
pothesisApplicationTask, HypothesisEvaluationTask,
HypothesisProcessingTask, InductionTask, Modeling-
Task, DescriptiveModelingTask, PredictiveModeling-
Task, and PatternDiscoveryTask.

OpenML. OpenML differentiates a TaskType (e.g. clas-
sification, regression, clustering,. ..) and Taskinstances.
The TaskType defines which types of inputs are given
(e.g. a dataset, train-test splits, optimization measures)
and which outputs are expected (e.g. a model, predic-

O O d oy U W NP

[T e S S S S S
[NS, B SR VR SRS)

17

48
49

51

http://dublincore.org
http://usefulinc.com/doap/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

48
49
50
51

G. Publio et al. / ML-Schema

Table 1

Full alignment between the core terms of ML-Schema and the related vocabularies.

ML-Schema OntoDM-core DMOP OpenML/Exposé MEX Vocabulary
.. :E i

Task Data mining task DM-Task Task mexcolre vaer Hmen
tConfiguration

Algorithm Data mining algorithm DM-Algorithm Algorithm mexalgo:Algorithm

Software Data mining software DM-Software Software mexalgo:Tool

e Data mlmpg algorithm im- PM-Operatqr Algorithm W enilommarton me x algo:Implement

plementation implementation ation

HyperParameter Parameter Parameter Parameter mexalgo:HyperPara
meter

HyperParameterSetting ~ Parameter setting OpParameterSetting Parameter setting N/A

Study Investigation N/A Study mexcore:Experiment

Experiment N/A DM-Experiment Experiment N/A

Run Data} mining algorithm ex- DM-Operation Algorithm execution mexcore:Execution

ecution

Data Data item DM-Data Data mexcore:Example

Dataset DM dataset DataSet Dataset mexcore:Dataset

Feature N/A Feature Feature mexcore:Feature

DataCharacteristic Data specification DataCharacteristic Dataset specification N/A

DatasetCharacteristic Dataset specification DataSetCharacteristic Data quality N/A

FeatureCharacteristic Feature specification FeatureCharacteristic Description N/A

. DM-Hypothesis (DM-
Model Generalization Model mexcore:Model
Model / DM-PatternSet) *
- o . . . Model Structure, Parame-

ModelCharacteristic Generalization quality HypothesisCharacteristic ter N/A

ModelEvaluation Generalization evaluation ModelPerformance Evaluation N/A

EvaluationMeasure Evaluation datum ModelEvaluationMeasure Evaluation measure mexperf:Performan
ceMeasure

EvaluationProcedure Evaluation algorithm ModelEvaluationAlgorithm Performance Estimation N/A

tions,...). On the other hand, a Task contains specific
dataset, splits, etc. It can be seen as an individual of
the class.

MEX. MEX has a higher level of abstraction, de-
signed for representing ML executions and related
metadata and not DM tasks. There are specific classes
for representing specific ML standards. This infor-
mation could be obtained from Learning Problem +
Learning Method + Algorithm Class in a more concise
level.

— Learning Problem: Association, Classification,
Clustering, Metaheuristic, Regression, Summa-
rization, ...

— Learning Method: Supervised Learning, Unsu-
pervised Learning, Semi-supervised Learning,
Reinforcement Learning, ...

— Algorithm Class: ANN, ILP, Bagging, Bayes
Theory, Boosting, Clustering, Decision Trees,

Genetic Algorithms, Logical Representations,
Regression Functions, Rules, Support Vector Net-
works, ...

Asan :ExperimentConfiguration may have
many :Executions and an :Experiment may
have many : ExperimentConfigurations, these
can be aligned to amls: Task.

3.2.2. Algorithm

In MLS, the Algorithm class represents an algo-
rithm regardless of its software implementation. We
directly align it with the following concepts from
the related ontologies: OntoDM: “Data Mining Algo-
rithm”, DMOP: DM-Algorithm, OpenML: Algorithm,
and MEX: mexalgo:Algorithm. We briefly discuss the
representation rationale in each of the related ontolo-
gies.

OntoDM In OntoDM, authors differentiate between
three aspects of algorithms: algorithm as a specifica-

=W N

w J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://mex.aksw.org/mex-algo#LearningProblem
http://mex.aksw.org/mex-algo#LearningMethod
http://mex.aksw.org/mex-algo#AlgorithmClass

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

10 G. Publio et al. / ML-Schema

tion, algorithm as an implementation, and the process
of executing an algorithm. Data mining algorithm (as
a specification) is represented as a subclass of IAO: al-
gorithm. In this sense, a data mining algorithm is de-
fined as an algorithm that solves a data mining task
and as a result outputs a generalization and is usually
published/described in some document (journal/con-
ference/workshop publication or a technical report).

In OntoDM, it is given a higher-level taxonomy
of algorithms. At the first level, it is differentiated
between single generalization algorithms (algorithms
that produces a single generalization as a result) and
ensemble algorithms (algorithms that produce an en-
semble of generalizations as a result). At the second
level, the taxonomy follows the taxonomy of tasks.
This modular and generic approach allows easy exten-
sions to characterize each algorithm class with its own
distinctive set of characteristics that can be represented
as qualities.

DMOP. A DM-Algorithm is a well-defined sequence
of steps that specifies how to solve a problem or per-
form a task. It typically specifies an input and an out-
put. A DM-Algorithm is an algorithm that has been de-
signed to perform any of the DM tasks, such as feature
selection, missing value imputation, modeling, and in-
duction. The higher-level classes of the DM-Algorithm
hierarchy correspond to DM-Task types. Immediately
below are broad algorithm families or what data min-
ers more commonly call paradigms or approaches. The
Algorithm hierarchy bottoms out in individual algo-
rithms such as CART, Lasso or ReliefF. A particular
case of a DM-Algorithm is a Modeling (or Learning)
algorithm, which is a well-defined procedure that spec-
ifies data as input and an output in the form of models
or patterns.

OpenML. OpenML currently does not abstract over
algorithms anymore, it simply has ‘implementations’.
The underlying reasoning is that algorithms can come
in endless variations, including hybrids that combine
multiple pre-existing algorithms. Classifying every
implementation as a specific type of algorithm is there-
fore not trivial and hard to maintain. Instead, to orga-
nize implementations, OpenML has ‘tags’, so that any-
body can tag algorithms with certain keywords, includ-
ing the type of algorithm that is implemented. Hence,
a hybrid algorithm can have multiple tags.

MEX. Sharing the solution by OpenML, MEX la-
bels different levels of ML algorithms in Algorithm

class instead of specific algorithm characterisations.
As much as more precise information is needed, re-
lated classes could be instantiated, such as Learning
Problem + Learning Method + Algorithm Class + Im-
plementation.

3.3. Implementation

In MLS, the Implementation class represents an ex-
ecutable implementation of a machine learning algo-
rithm, script, or workflow. It is versioned, and some-
times belongs to a library (e.g. WEKA). We directly
align it with the following concepts from the related
ontologies: OntoDM: “Data mining algorithm imple-
mentation”, DMOP: DM-Operator / DM-Workflow,
OpenML: Flow / Implementation and MEX: mex-
algo:Implementation. We briefly discuss the represen-
tation rationale in each of the related ontologies.

OntoDM. In OntoDM, a data mining algorithm exe-
cution is a subclass of SWO: information process-
ing, which is an OBI : planned process. Planned pro-
cesses realize a plan which is a concretization of a plan
specification. A data mining algorithm execution real-
izes (executes) a data mining operator, has as input a
dataset, has as output a generalization, has as agent a
computer, and achieves as a planned objective a data
mining task.

Data mining operator is a role of a data mining al-

gorithm implementation that is realized (executed) by
a data mining algorithm execution process. The data
mining operator has information about the specific pa-
rameter setting of the algorithm, in the context of the
realization of the operator in the process of execution.
The parameter setting is an information entity which is
a quality specification of a parameter.
OpenML. OpenML does not distinguish between ‘op-
erators’ and ‘workflows’, because the line is often
very blurry. Many algorithms have complex internal
workflows to preprocess the input data and make them
more robust. Also, many environments (e.g. R, Mat-
lab, etc.) do not have the concept of operator; they just
have function calls, which are part of scripts. Hence,
in OpenML, every implementation is called a Flow,
which can be either atomic or composite.

DMOP and MEX. The Implementation class of
MLS is aligned to DMOP class DM-Operator: a
programmed, executable implementation of a DM-
Algorithm. Implementation in MEX is meant to rep-
resent the Software Implementation and has no link to

http://mex.aksw.org/mex-algo#Algorithm
http://mex.aksw.org/mex-algo#LearningProblem
http://mex.aksw.org/mex-algo#LearningProblem
http://mex.aksw.org/mex-algo#LearningMethod
http://mex.aksw.org/mex-algo#AlgorithmClass
http://mex.aksw.org/mex-algo#Implementation
http://mex.aksw.org/mex-algo#Implementation

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

G. Publio et al. / ML-Schema 11

the algorithm itself. Examples are Weka, SPSS, Oc-
tave, DL-Learner.

3.4. HyperParameter

The MLS HyperParameter class represents a prior
parameter of an implementation, i.e., a parame-
ter which is set before its execution (e.g. C, the
complexity parameter, in weka.SMO). We directly
align it with the following concepts from the re-
lated ontologies: OntoDM: Parameter, OpenML:
Parameter, MEX:AlgorithmParameter and mex-
algo:HyperParameter (term under a proposal status),
and DMOP’s OperatorParameter.

In OntoDM, authors represent a data mining algo-
rithm implementation as a subclass of OBI: plan is a
concretization of a data mining algorithm. Data min-
ing algorithms have as qualities parameters that are de-
scribed by a parameter specification. A parameter is a
quality of an algorithm implementation, and it refers
the data provided as input to the algorithm implemen-
tation that influences the flow of the execution of algo-
rithm realized by a data mining operator that has infor-
mation about the specific parameter setting used in the
execution process.

3.5. Data

In MLS, the Data class represents a data item com-
posed of data examples and it may be of a various
level of granularity and complexity. We directly align
it with the following concepts from the related on-
tologies: OntoDM: data item, OpenML: Data, DMOP:
DM-Data and MEX mexcore:Example. Furthermore,
we align the Dataset class with the following con-
cepts: OntoDM: DM-dataset, DMOP: DataSet and
MEX mexcore:Dataset (as metadata). We briefly dis-
cuss the representation rationale in the related ontolo-
gies.

OntoDM. OntoDM imports the IAO class dataset (de-
fined as ‘a data item that is an aggregate of other data
items of the same type that have something in com-
mon’) and extends it by further specifying that a DM
dataset has part data examples. OntoDM-core also de-
fines the class dataset specification to enable charac-
terization of different dataset classes. It specifies the
type of the dataset based on the type of data it con-
tains. In OntoDM, the authors model the data charac-
teristics with a data specification entity that describes
the datatype of the underlying data examples. For this

purpose, we import the mechanism for representing ar-
bitrarily complex datatypes from the OntoDT ontol-
ogy. Using data specifications and the taxonomy of
datatypes from the OntoDT ontology, in OntoDM-core
have a taxonomy of datasets.

DMOP. In SUMO, Data is defined as an item of factual
information derived from measurement or research. In
TAO, Data is an alternative term for ‘data item’: ‘an in-
formation content entity that is intended to be a truth-
ful statement about something (modulo, e.g., measure-
ment precision or other systematic errors) and is con-
structed/acquired by a method which reliably tends to
produce (approximately) truthful statements’. In the
context of DMOP, DM-Data is the generic term that
encloses different levels of granularity: data can be a
whole dataset (one main table and possibly other ta-
bles), or only a table, or only a feature (column of a
table), or only an instance (row of a table), or even a
single feature-value pair.

MEX. In MEX, it is possible to represent even each
instance (mexcore:Example) and each feature (mex-
core:Feature) of the dataset.

3.6. Model

We define Model as a generalization of a set of train-
ing data able to predict values for unseen instances. It
is an output from the execution of a data mining al-
gorithm implementation. Models have a dual nature:
they can be treated as data structures and as such rep-
resented, stored and manipulated; on the other hand,
they act as functions and are executed, taking as input
data examples and giving as output the result of ap-
plying the function to a data example. Models can also
be divided into global or local ones. We directly align
it with the following concepts from the related on-
tologies: OntoDM: Generalization, OpenML: Model,
DMOP: DM-Hypothesis (with main subclasses: DM-
Model, DM-PatternSet). We briefly discuss the repre-
sentation rationale in the related ontologies.

OntoDM. In OntoDM, authors take generalization to
denote the outcome of a data mining task. They con-
sider and model three different aspects of generaliza-
tions: the specification of a generalization, a general-
ization as a realizable entity, and the process of ex-
ecuting a generalization. Generalizations have a dual
nature. They can be treated as data structures and as
such represented, stored and manipulated. On the other
hand, they act as functions and are executed, taking as

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

12 G. Publio et al. / ML-Schema

input data examples and giving as output the result of
applying the function to a data example. In OntoDM,
a generalization is defined as a sub-class of the BFO
class realizable entity. It is an output from a data min-
ing algorithm execution.

The dual nature of generalizations in OntoDM is
represented with two classes that belong to two differ-
ent description layers: generalization representation,
which is a sub-class of information content entity and
belongs to the specification layer, and generalization
execution, which is a subclass of planned process and
belongs to the application layer.

DMOP. By Hypothesis, DMOP actually meant roughly
ML models. They introduced the concept of a ‘hypoth-
esis’ to differentiate ML models from pattern sets. On
the other hand, the DM-PatternSet represents a pat-
tern set, as opposed to a model which by definition has
global coverage, is a set of local hypotheses, i.e. each
applies to a limited region of the sample space.

3.7. Run

An MLS run is an execution of an implemen-
tation on a machine (computer). If successful, it
often has a specific result, such as a model and
evaluations of that model’s performance. Although
runs are called very differently in the different ex-
isting ontologies, the semantics are the same. We
directly align it with the following concepts from
the related ontologies: OpenML: Run; DMOP: DM-
Process (i.e., execution), OntoDM: Data mining algo-
rithm execution, and mexcore:Execution (singly mex-
core:SingleExecution,mexcore: OverallExecution).

3.8. EvaluationMeasure

An MLS evaluation measure unique defines how
to evaluate the performance of a model after
it has been trained in a specific run. We di-
rectly align it with the following concepts from
the related ontologies: OpenML: EvaluationMeasure,
DMOP: Measure, OntoDM:Evaluation datum and
mexperf:PerformanceMeasure. In DMOP, however,
there exist subclasses, such as ComputationalCom-
plexityMeasure, HypothesisEvaluationMeasure, and
ModelComplexityMeasure.

3.9. Study

An MLS study is a collection of runs that belong to-
gether to perform some kind of analysis on its results.
This analysis can be general or very specific (e.g. an
hypothesis test). It can also be linked to files, data, that
belong to it. Studies are often the most natural prod-
uct of a scientific investigation, and can be directly
linked to certain claims and other products, such as re-
search papers. As shown in Table 1 existing ontologies
call this either a study, investigation or experiment, al-
though the semantics are similar.

4. Use cases

To elucidate the benefits of MLS, in this section we
present four use cases where MLS can be utilized to
foster the reproducibility of experiments. In particular,
we show how previous research can benefit from the
existence of an upper ontology which interlinks sev-
eral vocabularies used for the exchange of experiment
data and metadata. The first use case shows how MLS
can be used to represent machine learning studies on
an application domain. The second use case discusses
the potential MSL has to be used together with the
Open Provenance Model for Workflows and Research
Objects. The third use case shows the use of MLS in
the OpenML platform. Finally, in the fourth use case,
we discuss the potential of using MLS in the future to
support deep learning models.

4.1. Representing Machine Learning Studies

In this use case, we illustrate how MLS can be used
for representing machine learning studies. Exposing
metadata about performed study may be of use for pos-
sible collaborators who may wish to analyse research
networks and try to assess the "trustwothiness’ of what
is published in the literature. Such information that a
study is done within a funded project, may increase
their level of trust to the published results.

In Figure 3, we show an example describing
ML study (: studyl) and the corresponding dataset
(:mt1l_dataset), providing reference to a publi-
cation (:articlel), and acknowledging a fund-
ing body (:EPSRC). In addition, we provide the
RDF code listing in Figure 4. This example refers
to the article “Multi-Task Learning with a Natu-
ral Metric for Quantitative Structure Activity Re-
lationship Learning” by Sadawi et al which re-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

G. Publio et al. / ML-Schema 13

frapo:FundingAgency
——— 1

rdfitype

rdfitype

rdf:type

\I meta-gsar project

EP/K030582/1 ar.
E frapo:hasGrantNumber I:' frapo:funds
frapo:i igati mls:Study I
I\A I frapo:enables

rdf:type

mls:hasOutput

Article: Multi Task
Learning with a Natural

mls:hasOutput

1

dc:dateSubmitted

http://www.openml.org/s/3

1 dc:source

Metric for Quantitative [article1 | CC by 3.0 mtl dataset !
Structure Activity rdfs:label L 1" dclicence [
Relationship Learning
rdf:type rdf:type rdf:type
dcBibliographicResource | | dcLicenseDocument | | mis:Dataset
I] !

Fig. 3. An example of representation of a machine learning study using MLS and FRAPO.

ports on the ML study carried out within the Meta-
QSAR project'* (:meta-gsar_project) funded
by :EPSRC (:grant1 with number EP/K030582/1).
The referred dataset is freely available in OpenML">.
For this use case we are linking MLS with the Fund-
ing, Research Administration and Projects Ontology
(FRAPO)'S.

4.2. Open Provenance Model for Workflows and
Research Objects

It is often crucial to know exactly which data was
used to train a machine learning model, where this
data came from, and how it was processed before mod-
elling. MLS is compatible with the Open Provenance
Model for Workflows (OPMW) [26] and Research Ob-
jects [13]. This allows machine learning experiments
to be described in a uniform way that preserves the
provenance of data and models.

The term provenance, in computer science and sci-
entific research, means metadata about the origin,
derivation or history of data or thing. For instance,

14URL: http://www.meta-qsar.org/index.html
ISURL:https://www.openml.org/s/3
16URL: http://purl.org/cerif/frapo

in biology or chemistry, we track steps of experimen-
tal processes to enable their reproduction. In com-
puter science, we track the creation, editing and pub-
lication of data, including their reuse in further pro-
cesses. The PROV data model for provenance was cre-
ated, founded on previous efforts such as Open Prove-
nance Model (OPM) [27], and later became recom-
mended by W3C [28]. The PROV Ontology (PROV-
0), also recommended by W3C [29], expresses the
PROV Data Model using the OWL language. PROV-O
provides a set of classes, properties, and restrictions
that can be used to represent and exchange provenance
information generated in various systems. The Open
Provenance Model for Workflows (OPMW) is an on-
tology for describing workflow traces and their tem-
plates which extends PROV-O and the ontology P-plan
designed to represent plans that guided the execution
of processes [26]. Figure 5 presents the mapping of the
MLS directly to OPMW and indirectly to PROV-O and
P-plan.

Belhajjame et al. [13] proposed a suite of ontolo-
gies for preserving workflow-centric Research Ob-
jects. The ontologies use and extend existing widely
used ontologies, including PROV-O. Especially, the
two ontologies from the suite, the Workflow Descrip-
tion Ontology (wfdesc), used to describe the workflow

=W N

o 0 g o

http://www.meta-qsar.org/index.html
https://www.openml.org/s/3
http://purl.org/cerif/frapo

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

14 G. Publio et al. / ML-Schema

@prefix : <http://example.org#> .

@prefix mls: <http://www.w3.org/ns/mls#> .

@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.o0rg/2001/XMLSchema#> .

@prefix dc: <http://purl.org/dc/elements/1.1/>> .

@prefix frapo: <http://purl.org/cerif/frapo/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

dc:BibliographicResource rdf:type owl:Class .

mls:Study rdfs:subClassOf frapo:Investigation .

:EPSRC rdf:type frapo:FundingAgency ,
owl:NamedIndividual ;

frapo:awards :grantl .

rarticlel rdf:type dc:BibliographicResource ,
owl:NamedIndividual ;

rdfs:label "Article: Multi Task Learning with
a Natural Metric for Quantitative Structure Activity
Relationship Learning" .

:grantl rdf:type frapo:Grant ,
owl:NamedIndividual ;

frapo:hasGrantNumber "EP/K030582/1" ;

frapo:funds :meta-gsar_project .

:meta-gsar_project rdf:type owl:NamedIndividual ,
foaf:Project .

:mtl_dataset rdf:type owl:NamedIndividual
mls:Dataset ;

dc:licence :CC_by_3.0 ;
dc:dateSubmitted "06/09/15" ;
dc:source "http://www.openml.org/s/3" .

:CC_by_3.0 rdf:type owl:NamedIndividual
dc:LicenceDocument .

:studyl rdf:type owl:NamedIndividual
mls:Study ;

frapo:enables :meta-gsar_project ;
frapo:hasOutput :mtl_dataset .

Fig. 4. An example of a RDF code listing ilustrating the use case
depicted in Figure 3.

specifications, and the Workflow Provenance Ontology
(wfprov), used to describe the provenance traces ob-
tained by executing workflows, follow a very similar
conceptualization of workflows to that of OPMW and
map to MLS.

4.3. OpenML

The OpenML platform contains thousands of ma-
chine learning experiments, with millions runs using
thousands of machine learning workflows on thou-
sands of datasets. However, in themselves, these ex-
periments form another island of data disconnected to
the rest of the world. To remedy this, we have used
MLS to describe all of these experiments as linked
open data, so that scientists can connect their machine

learning experiments to other knowledge sources, or
build novel knowledge bases for machine learning re-
search.

This is achieved through an export function that
reads in OpenML’s current JSON descriptions of
datasets, tasks, workflows, and runs, and emits an RDF
description using the MLS schema. This functionality
is available as an open source Java library!”. OpenML
also supports this export functionality on the platform
itself. In the web interface (openml.org) every dataset,
task, workflow (flow), and run page has an RDF ex-
port button that returns the RDF description of that ob-
ject, linked to other objects by their OpenML IDs. This
functionality is also available via predictable URLSs
in the format https://www.openml.org/{type}/{id}/rdf,
where type is either d (dataset), ¢ (task), f (flow), or
r (run), and id the OpenML ID of that object. Hence,
the RDF description of dataset 2 can be obtained via
https://www.openml.org/d/2/rdf.

As such, OpenML data becomes part of the Seman-
tic Web, which allows scientists to link it to other data
and reuse it in innovate new ways.

In Figure 7, we illustrate an annotation using MLS
of an example derived from the OpenML portal. This
example describes entities involved to model a sin-
gle run of the implementation of a logistic regres-
sion algorithm from a Weka machine learning environ-
ment. The referenced individuals can easily be looked
up online. For instance, run 100241 can be found on
http://www.openml.org/r/100241. In addition, in Fig-
ure 6 we present the RDF listing of the annotation.

4.4. Deep Learning

This use case can also be described as a possible
future work of MLS, where it is extended to support
Deep Learning (DL) models.

As an initiative of Microsoft and Facebook, a re-
cently created community group called Open Neural
Network Exchange (ONXX)'® aims to allow users to
share their Neural Network models and transfer them
between frameworks. At the moment, it covers im-
port/export to 3 different frameworks, while libraries
for other 5 frameworks are under development or have
partial support.

DL models have some requirements that MLS can-
not describe at the moment — information such as the

"The library is available on https:/github.com/ML-
Schema/openml-rdf
Bhttps://onnx.ai/

=W N

w J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

openml.org
https://www.openml.org/{type}/{id}/rdf
https://www.openml.org/d/2/rdf
http://www.openml.org/r/100241
https://onnx.ai/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

G. Publio et al. / ML-Schema 15

p-plan:Variable

|opmw:WorkflowTempIateArtifact|
A

A

opmw:ParamaterVariable
A

["HyperParameter |+— hasHyperParameter

Algorithm _ |«—— implements

executes

Data |«——— hasinput

R

Implementation

un

| opmw:WorkflowTemplateProcess | |opmw:WorkrowTempIate|
N A

hasOutput

hasOutput

ModelEvaluation

v
|opmw:WorkrowExecutionArtifact |

[opmw:WorkflowExecutionProcess |

opmw:Artifact

\

Erov:Entiﬂ

opmw:Process

Y

Legend
ml schema
opmw

p-plan

BLD

prov

Fig. 5. The mapping of MLS to OPMW, PROV-O and P-plan.

number of layers and neurons, weights, and pre-trained
models — as it only contains the HyperParameter class
that is not able to store this additional information.

Unfortunately, the ONNX initiative does not pro-
vide an ontology; instead, their operators are described
in the project GitHub documentation, while their terms
are hardly defined in C code. On the other hand, the ex-
tension of the MLS ontology by adding new properties
based on those terms would benefit not only the MLS,
but all the aligned ontologies described in this work,
that would instantly be able to use those properties to
extend their models and support the description of DL
models and experiments.

5. Conclusions and Future Work

In this paper we presented ML-Schema, a light-
weight but sufficiently comprehensive and extend-
able ontology for the description of Machine Learning
which supports the description and open publication
of such experiments in an interchangeable format. We
show the extension of its expressiveness and how the
MLS ontology was designed to be aligned with several
ML ontologies, such as DMOP, OntoDM, MEX, and

Exposé. It was also possible to elucidate through use
cases the capabilities of our work, such as the usage
of MLS format for exporting ML experiments to RDF
format in the OpenML framework, its extension of that
provides direct support to the OPMW and indirect to
the PROV-O ontology, as well as the possible exten-
sion to elucidate the description of DL experiments.
Such extension will be handled in the future discus-
sions of the MLS Community Group, that welcomes
everyone interested in extending our format to achieve
better support for description of ML experiments in
an interchangeable format. Future works may also in-
clude another converters, such as for MyExperiment
or many other e-Science platforms.

Acknowledgements

Gustavo Correa Publio acknowledges the support of
the Smart Data Web BMWi project (GAOIMD15010B)
and CNPq Foundation (201808/2015-3). Agnieszka
Lawrynowicz acknowledges the support from the Na-
tional Science Centre, Poland, within the grant number
2014/13/D/ST6/02076. Pane Panov acknowledges

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

16 G. Publio et al. / ML-Schema

the support of the Slovenian Research Agency within
the grant J2-9230.

Sw N

o J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@prefix
@prefix
@prefix
CGprefix
CGprefix

<http://example.org#>

G. Publio et al. / ML-Schema

mls: <http://www.w3.org/ns/mls#>

owl:
rd

<http://www.w3.0rg/2002/07/owl#>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

xsd: <http://www.w3.0rg/2001/XMLSchema#>

:runl00241 rdf:type owl:NamedIndividual ,

mls:Run ;

mls:executes :wekalogistic ;

mls:hasInput :credit-a ,

:wekaLogisticMSetting29 ,

:wekaLogisticRSetting29 ;
mls:hasOutput :modelEvaluationl00241 ,

:wekaLogisticModell00241 ;
mls:realizes :logisticRegression ;

mls:achieves :task29

:wekaLogistic rdf:type owl:NamedIndividual ,

:weka r
mls

mls:Implementation ;

mls:hasHyperParameter :wekalLogisticC ,
:wekaLogisticDoNotCheckCapabilities ,
:wekaLogisticM ,
:wekaLogisticOutputDebugInfo ,
:wekaLogisticR ;

mls:implements :logisticRegression

df:type mls:Software,
:hasPart :wekalogistic.

:logisticRegression rdf:type owl:NamedIndividual ,

mls:Algorithm

:wekaLogisticC rdf:type owl:NamedIndividual ,

mls:HyperParameter

:wekaLogisticDoNotCheckCapabilities rdf:type owl:NamedIndividual ,

mls:HyperParameter

:wekalLogisticM rdf:type owl:NamedIndividual ,

mls:HyperParameter

:wekaLogisticOutputDebugInfo rdf:type owl:NamedIndividual ,

mls:HyperParameter

:wekaLogisticR rdf:type owl:NamedIndividual

mls:HyperParameter

:wekaLogisticMSetting29 rdf:type owl:NamedIndividual ,

mls:HyperParameterSetting

i

mls:specifiedBy :wekalLogisticM ;

mls:hasValue -1

:wekalLogisticRSetting29 rdf:type owl:NamedIndividual ,

mls:HyperParameterSetting

i

mls:specifiedBy :wekaLogisticR ;
mls:hasValue "1.0E-8"""xsd:float

:credit-a rdf:type owl:NamedIndividual ,

mls:Dataset ;

mls:hasQuality :defaultAccuracy ,
:numberOfFeatures ,
:numberOfInstances

:defaultAccuracy rdf:type owl:NamedIndividual

mls:DatasetCharacteristic

i

mls:hasValue "0.56"""xsd:float

:numberOfFeatures rdf:type owl:NamedIndividual ,

mls:DatasetCharacteristic

mls:hasValue "16"""xsd:long

i

:numberOfInstances rdf:type owl:NamedIndividual ,

mls:DatasetCharacteristic

;

mls:hasValue "690"""xsd:long

:wekalogisticModell00241 rdf:type owl:NamedIndividual ,

mls:Model

:modelEvaluationl100241 rdf:type owl:NamedIndividual ,

mls:ModelEvaluation ;

mls:specifiedBy :predictiveAccuracy ;

mls:hasValue 0.8478

:predictiveAccuracy rdf:type owl:NamedIndividual ,

mls:EvaluationMeasure

:task29 rdf:type owl:NamedIndividual

mls:Task ;
mls:definedOn :credit-a

revaluationSpecificationl rdf:type owl:NamedIndividual ,
mls:EvaluationSpecification ;

ml efines :task29 ;

mls:hasPart :TenFoldCrossValidation ,
:predictiveAccuracy

:TenFoldCrossValidation rdf:type owl:NamedIndividual ,

mls:EvaluationProcedure

Fig. 6. An example instantiation of MLS derived from OpenML.

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

18 G. Publio et al. / ML-Schema

wekalogisticR

hasParanfeter

:wekalogisticOutputDebuglinfo
L 1

implgments

hasPart realizes

hasQutput

‘logisticRegression

:wekal ogisticModel10024 1
I 1

16AA"xsd:long"

achipves

hasvalue
numberOffeatures | _hasQuality credit-a definedOn I task29 :modelEvaluation100241
% I

hasQuality def|nes

hasPart

numberOfinstances

| defaultAccuracy | | evaluationSpecificationl
L 1 L

hasValue hasValue hasPart hasValue

690AA"xsd -long’" | 0.562A"sd:floar” | [:tenFoldCrossvalidation | 0.8478
L] L 1

Fig. 7. An example illustrating a single run of an ML algorithm implementation. The diagram depicts Information Entities as yellow boxes,

Processes as blue boxes, and Material Entities as red boxes..

=W N

w J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

G. Publio et al. / ML-Schema 19

References

(1]

[2

—

(3]

(4]

(5]

(6]

(71

[8

—_—

[9

—

[10]

[11]

[12]

[13]

[14]

Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth,
J. Moody and E. Deelman, Wings: Intelligent Workflow-
Based Design of Computational Experiments, [EEE In-
telligent Systems 26(1) (2011), 62-72, ISSN 1541-1672.
doi:10.1109/M1S.2010.9.

O. Tcheremenskaia, R. Benigni, I. Nikolova, N. Jeliazkova,
S.E. Escher, M. Batke, T. Baier, V. Poroikov, A. Lagunin,
M. Rautenberg et al., OpenTox predictive toxicology frame-
work: toxicological ontology and semantic media wiki-based
OpenToxipedia, in: Journal of biomedical semantics, Vol. 3,
BioMed Central, 2012, p. 7.

D. De, R. Carole and G.R. Stevens, The design and realisation
of the myexperiment virtual research environment for social
sharing of workflows (2008).

T.R. Gruber, A translation approach to portable ontology spec-
ifications, KNOWLEDGE ACQUISITION 5 (1993), 199-220.

P. Panov, S. DZeroski and L. Soldatova, OntoDM: An ontology
of data mining, in: Data Mining Workshops, 2008. ICDMW’08.
IEEE International Conference on, IEEE, 2008, pp. 752-760.
P. Panov, L. Soldatova and S. DZeroski, Ontology of core data
mining entities, Data Mining and Knowledge Discovery 28(5—
6) (2014), 1222-1265.

C.M. Keet, A. Lawrynowicz, C. d’Amato, A. Kalousis,
P. Nguyen, R. Palma, R. Stevens and M. Hilario, The Data
Mining OPtimization Ontology, J. Web Sem. 32 (2015), 43-53.
doi:10.1016/j.websem.2015.01.001. https://doi.org/10.1016/j.
websem.2015.01.001.

J. Vanschoren and L. Soldatova, Exposé: An ontology for data
mining experiments, in: International workshop on third gen-
eration data mining: Towards service-oriented knowledge dis-
covery (SoKD-2010), 2010, pp. 31-46.

J. Vanschoren, J.N. Van Rijn, B. Bischl and L. Torgo, OpenML:
networked science in machine learning, ACM SIGKDD Explo-
rations Newsletter 15(2) (2014), 49-60.

J. Vanschoren, H. Blockeel, B. Pfahringer and G. Holmes,
Experiment databases, Machine Learning 87(2) (2012), 127-
158, ISSN 1573-0565. doi:10.1007/s10994-011-5277-0. https:
//doi.org/10.1007/s10994-011-5277-0.

D. Esteves, D. Moussallem, C.B. Neto, T. Soru, R. Us-
beck, M. Ackermann and J. Lehmann, MEX vocabulary: a
lightweight interchange format for machine learning experi-
ments, in: Proceedings of the 11th International Conference on
Semantic Systems, ACM, 2015, pp. 169-176.

D. Esteves, A. Lawrynowicz, P. Panov, L. Soldatova, T. Soru
and J. Vanschoren, ML Schema Core Specification, draft re-
port, W3C Machine Learning Schema Community Group,
2016, http://www.w3.0rg/2016/10/mls/.

K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K.M. Hettne,
R. Palma, E. Mina, 0. Corcho, J.M. Goémez-Pérez, S. Bech-
hofer, G. Klyne and C.A. Goble, Using a suite of ontolo-
gies for preserving workflow-centric research objects, J. Web
Sem. 32 (2015), 16-42. doi:10.1016/j.websem.2015.01.003.
http://dx.doi.org/10.1016/j.websem.2015.01.003.

C.B. Neto, D. Esteves, T. Soru, D. Moussallem, A. Valdestilhas
and E. Marx, WASOTA: What Are the States Of The Art?, in:
SEMANTICS (Posters, Demos, SuCCESS), 2016.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Esteves, P. N. Mendes, D. Moussallem, J. Duarte, A. Za-
veri, J. Lehmann, C. Neto and M.C. Cavalcanti, MEX In-
terfaces:Automating Machine Learning Metadata Generation,
2016. doi:10.1145/2993318.2993320.

R. Arp, B. Smith and A.D. Spear, Building Ontologies
with Basic Formal Ontology, The MIT Press, 2015. ISBN
0262527812, 9780262527811.

A. Bandrowski, R. Brinkman, M. Brochhausen, M.H. Brush,
B. Bug, M.C. Chibucos, K. Clancy, M. Courtot, D. Derom,
M. Dumontier, L. Fan, J. Fostel, G. Fragoso, F. Gibson,
A. Gonzalez-Beltran, M.A. Haendel, Y. He, M. Heiska-
nen, T. Hernandez-Boussard, M. Jensen, Y. Lin, A.L. Lis-
ter, P. Lord, J. Malone, E. Manduchi, M. McGee, N. Mor-
rison, J.A. Overton, H. Parkinson, B. Peters, P. Rocca-Serra,
A. Ruttenberg, S.-A. Sansone, R.H. Scheuermann, D. Schober,
B. Smith, L.N. Soldatova, C.J. Stoeckert Jr., C.F. Taylor,
C. Torniai, J.A. Turner, R. Vita, PL. Whetzel and J. Zheng,
The Ontology for Biomedical Investigations, PLOS ONE 11(4)
(2016), 1-19. doi:10.1371/journal.pone.0154556. https://doi.
org/10.1371/journal.pone.0154556.

JR. Quinlan, Induction of decision trees, Machine
Learning 1(1) (1986), 81-106, ISSN 1573-0565.
doi:10.1007/BF00116251. https://doi.org/10.1007/
BF00116251.

J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
ISBN 1-55860-238-0.

I.H.W. Eibe Frank Mark A. Hall, The WEKA Workbench. On-
line Appendix for "Data Mining: Practical Machine Learn-
ing Tools and Techniques", Morgan Kaufmann, Fourth Edition,
2016.

J. Platt, Fast Training of Support Vector Machines using Se-
quential Minimal Optimization, in: Advances in Kernel Meth-
ods - Support Vector Learning, B. Schoelkopf, C. Burges and
A. Smola, eds, MIT Press, 1998. http://research.microsoft.
com/\texttildelowjplatt/smo.html.

L. Breiman, Random Forests, Machine Learning 45(1) (2001),
5-32, ISSN 1573-0565. doi:10.1023/A:1010933404324. https:
//doi.org/10.1023/A:1010933404324.

P. Panov, L.N. Soldatova and S. DZeroski, Towards an ontology
of data mining investigations, in: International Conference on
Discovery Science, Springer, 2009, pp. 257-271.

R.R. Brinkman, M. Courtot, D. Derom, J.M. Fostel, Y. He,
P. Lord, J. Malone, H. Parkinson, B. Peters, P. Rocca-
Serra, A. Ruttenberg, S.-A. Sansone, L.N. Soldatova,
CJ. Stoeckert, J.A. Turner, J. Zheng and the OBI con-
sortium, Modeling biomedical experimental processes with
OBI, Journal of Biomedical Semantics 1(1) (2010), 7, ISSN
2041-1480. doi:10.1186/2041-1480-1-S1-S7. https://doi.org/
10.1186/2041-1480-1-S1-S7.

L.N. Soldatova and R.D. King, An ontology of scientific ex-
periments, Journal of the Royal Society Interface 3(11) (2006),
795-803.

D. Garijo and Y. Gil, Augmenting PROV with Plans in P-
PLAN: Scientific Processes as Linked Data, in: Second In-
ternational Workshop on Linked Science: Tackling Big Data
(LISC), held in conjunction with the International Semantic
Web Conference (ISWC), Boston, MA, 2012. http://www.isi.
edu/~gil/papers/garijo-gil-lisc12.pdf.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://doi.org/10.1016/j.websem.2015.01.001
https://doi.org/10.1016/j.websem.2015.01.001
https://doi.org/10.1007/s10994-011-5277-0
https://doi.org/10.1007/s10994-011-5277-0
http://dx.doi.org/10.1016/j.websem.2015.01.003
https://doi.org/10.1371/journal.pone.0154556
https://doi.org/10.1371/journal.pone.0154556
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
http://research.microsoft.com/\texttildelow jplatt/smo.html
http://research.microsoft.com/\texttildelow jplatt/smo.html
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1186/2041-1480-1-S1-S7
https://doi.org/10.1186/2041-1480-1-S1-S7
http://www.isi.edu/~gil/papers/garijo-gil-lisc12.pdf
http://www.isi.edu/~gil/papers/garijo-gil-lisc12.pdf

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

20 G. Publio et al. / ML-Schema

[27] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth,
N. Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale,
Y. Simmhan, E. Stephan and J.V. den Bussche, The Open
Provenance Model Core Specification (V1.1), Future Gener.
Comput. Syst. 27(6) (2011), 743-756, ISSN 0167-739X.
doi:10.1016/j.future.2010.07.005. http://dx.doi.org/10.1016/j.
future.2010.07.005.

[28] P. Missier and L. Moreau, PROV-DM: The PROV
Data Model, W3C Recommendation, W3C, 2013,
http://www.w3.0rg/TR/2013/REC-prov-dm-20130430/.

[29] S. Sahoo, T. Lebo and D. McGuinness, PROV-O: The
PROV Ontology, W3C Recommendation, W3C, 2013,
http://www.w3.0rg/TR/2013/REC-prov-0-20130430/.

[30] H. Hanke and D. Knees, A phase-field damage model based
on evolving microstructure, Asymptotic Analysis 101 (2017),
149-180.

[31] K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K. Het-
tne, R. Palma, E. Mina, O. Corcho, J.M. Go6mez-Pérez,
S. Bechhofer et al., Using a suite of ontologies for preserving
workflow-centric research objects, Web Semantics: Science,
Services and Agents on the World Wide Web 32 (2015), 16-42.

[32] E. Lefever, A hybrid approach to domain-independent taxon-
omy learning, Applied Ontology 11(3) (2016), 255-278.

[33] P.S. Meltzer, A. Kallioniemi and J.M. Trent, Chromosome al-
terations in human solid tumors, in: The Genetic Basis of Hu-
man Cancer, B. Vogelstein and K.W. Kinzler, eds, McGraw-
Hill, New York, 2002, pp. 93-113.

[34] PR. Murray, K.S. Rosenthal, G.S. Kobayashi and M.A. Pfaller,
Medical Microbiology, 4th edn, Mosby, St. Louis, 2002.

[35] E. Wilson, Active vibration analysis of thin-walled beams, PhD
thesis, University of Virginia, 1991.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://dx.doi.org/10.1016/j.future.2010.07.005
http://dx.doi.org/10.1016/j.future.2010.07.005

	Introduction
	The ML-Schema
	The MLS aims and design principles
	MLS upper-level categories
	MLS core vocabulary
	MLS Ontology properties

	Alignment of MLS with related ontologies
	Related ontologies
	Alignment analysis
	Task
	Algorithm

	Implementation
	HyperParameter
	Data
	Model
	Run
	EvaluationMeasure
	Study

	Use cases
	Representing Machine Learning Studies
	Open Provenance Model for Workflows and Research Objects
	OpenML
	Deep Learning

	Conclusions and Future Work
	Acknowledgements
	References

