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Abstract.

Experimental reproducibility is a major cornerstone of the Scientific Method, allowing to run an experiment to verify its
validity and advance science by building on top of previous results introducing changes to it. In order to achieve this goal, in
the context of current in-silico experiments, it is mandatory to address the conservation of the underlying infrastructure (i.e.,
computational resources and software components) in which the experiment is executed. This represents a major challenge, since
the execution of the same experiment on different execution environments may lead to significant result differences, assuming
the scientist manages to actually run that experiment. In this work, we propose a method that extends existing semantic models
and systems to automatically describe the execution environment of scientific workflows. Our approach allows to identify issues
between different execution environments, easing experimental reproducibility. We have evaluated our approach using three
different workflow management systems for a total of five different experiments, running on a container virtualization system
(i.e. Docker). That showcases the feasibility of our approach to both reproduce the experiments as well as to identify potential

execution issues.

Keywords: experiment reproducibility, semantic models

1. Introduction

Looking at the International Vocabulary of Metrol-
ogy from the ACM [1], experiment reproducibility is
achieved when the measurement from a experiment
can be obtained with stated precision by a different
team, a different measuring system, in a different loca-
tion on multiple trials. For computational experiments,
this means that an independent group can obtain the
same result using artifacts which they develop com-
pletely independently. Similarly, according to [2], ex-
periment reproducibility is the ability to run an exper-
iment with the introduction of changes to it, getting
results that are the same with the original one. Intro-
ducing changes allows to evaluate different experimen-

*Corresponding author. E-mail: cbuil @inf.utfsm.cl.

tal features of that experiment since researchers can
incrementally modify it, improving and re-purposing
the experimental methods and conditions [2]. To allow
experiment reproducibility it is necessary to provide
enough information about that experiment, allowing to
understand, evaluate and build it again. Commonly, ex-
periments are described as scientific workflows (rep-
resentations that allow managing large scale computa-
tions) which can be executed on distributed comput-
ing systems. To allow reproducibility of these scien-
tific workflows it is necessary to address a workflow
conservation problem, which implies the conservation
of the underlying infrastructure (i.e. computational re-
sources such as the hardware infrastructure and soft-
ware components) in which the scientific workflow is
executed. Experimental workflow conservation refers
to the process of obtaining the same result from an ex-
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2 Automatizing experiment reproducibility using semantic models and container virtualization

periment in a different environment [3]. Experimen-
tal workflows need to guarantee that there is enough
information about the experiments so it is possible to
build them again by a third party, obtaining the same
results without any additional help from the original
author. In the context of experimental conservation and
reproducibility for digital objects, physical conserva-
tion is usually defined as the process keeping a copy of
the environment that is able to mimic the original in-
frastructure and that can be enacted without interven-
tion or modification, as opposed to logical conserva-
tion, which focus on describing how the environment
can be reproduced [3].

To achieve that conservation, the research commu-
nity has focused on conserving workflow executions
by conserving data, code, and the workflow descrip-
tion, but little work has been done in conserving the
underlying infrastructure. The work in [4] or the Tim-
bus project! [5], which focuses on business processes
and the underlying software and hardware infrastruc-
ture, provided some advances in the problem of con-
serving the experiment infrastructure.

Other approaches, such as Reprozip [6], propose to
describe an environment using a packaging tool. Re-
prozip runs the experiment and generates package file
which contains the experiment itself and a description
of the inputs, outputs, environment variables and ev-
erything needed to run the experiment. Finally, it is
possible to generate a Docker image from the exper-
iment by using these descriptions. However these de-
scriptions use the internal Reprozip structure and they
do not have any ontology describing them. Further-
more, Reprozip suffers from the same problem than the
Timbus project since it needs to run the experiment to
obtain that information. However, these approaches ei-
ther leave out of the scope the physical conservation of
the workflow computational environment (relying on
the chosen infrastructure) or that conservation is done
almost manually.

One way to solve the physical conservation prob-
lem is the use of Virtual Machines (VM), as described
in [4]. However there are several problems associated
to the use of VMs, such as the use of large amounts of
space to distribute any scientific workflow. A VM is an
entire Operating System on which all packages needed
to run a workflow are installed. Whereas this generates
a cohesive package for distributing and experiment,
it highly difficulties the portability and distribution of

"http://www.timbusproject.net/

software that need specific configuration. Moreover,
scientific communities are moving from VM-based ap-
proaches to using lightweight solutions to solve the
computational needs, including a more collaborative
and agile approach. To solve these problems, the sci-
entific community started to use operating-system-
level virtualization. This technology, also known as
containerization, refers to an Operating System (OS)
feature in which the OS kernel allows the existence
of multiple isolated user-space instances called con-
tainers. It is thus not a complete OS virtualization,
since it depends on the host OS. Also, containers are
architecture-dependent, and thus it is not possible to
run a container in a different system architecture from
the one it was built on. However, the containers on
which the experiments run are around 1/10 of a VM,
making containers a more suitable scenario to dis-
tribute experiments, taking into account the previous
considerations. One of the most popular container-
based virtualization technologies is Docker?.Docker
Containers can be seen as lightweight virtual machines
that allow the assembling of a computational environ-
ment, including all necessary dependencies, e.g., li-
braries, configuration, code and data needed, among
others. Docker containers are used intensively in both
industry and science, mostly to preserve the execu-
tion environment of software applications and also to
preserve the physical environment of an experiment.
We claim that containers not only are lightweight but
more importantly, they are easier to automatically de-
scribe so we will improve the process of documenting
scientific workflows. Using Docker, the users can dis-
tribute these computational environments through soft-
ware images using public repositories such as Dock-
erHub?. In order to achieve logical conservation, we
have developed an annotator system for Docker Im-
ages that describe the workflow management system,
as well as their dependencies. In this way, we aim at
improving the container’s limited physical conserva-
tion they provide, adding the annotations as context
of the execution environment. To validate our solu-
tion we reproduce 5 different computational experi-
ments. These experiments span different systems, lan-
guages and configurations, showing that our approach
is generic and can be applied to a wide range of rep-
resentative computational experiments. We run these
experiments, we describe them logically and next we

Zhttps://www.docker.com/
3https://hub.docker.com/
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Automatizing experiment reproducibility using semantic models and container virtualization 3

reproduce them based on the logical descriptions we
obtained before. To validate the approach we compare
the outputs obtained from the reproduced experiments
to the original ones.

2. Scientific workflows using containers

Scientific communities are following container-
based approaches more and more often for conduct-
ing their empirical studies. Even when their main
goal is not necessarily experimental reproducibility,
the fact that these communities, which are mainly IT-
oriented [7], are embracing such paradigms shows that
lightweight virtualization techniques are a suitable en-
vironment for computational science. We now briefly
introduce Docker and how Docker images are built.

2.1. Introduction to Docker

From a technological point of view, Docker is a
solution that allows virtualizing a minimal version
of an Operating System (OS), sharing the resources
from the host machine by means of software images.
On top of this virtualized OS image, dependencies
can be deployed and applications can be executed.
These new imagescan be easily published into Docker
Hub*, the canonical repository which also supports the
maintenance and download of containers. Through-
out this section, we introduce how Docker and its hub
work, starting with how Docker images are created and
stored in Docker Hub.

2.2. Docker repositories and files

Docker builds a software image by following the set
of instructions, defined as steps, written in the Dock-
erfile. A Dockerfile is a text file that contains all com-
mands to build a Docker image and run a container
using this image. The Dockerfile usually have several
lines, which are translated into image layers whereas
Docker builds the image (one dockerfile line translates
to one image layer). The first line in such files is the
FROM keyword, which imports the base OS on which
all software will be installed. These base OS are the
so called parent images. In the building process, com-
mands are executed sequentially, creating one layer at
a time. These lines contain commands to be executed
within the OS at the FROM line. When an image is up-

“https://hub.docker.com/

dated or rebuilt, only the modified layers (i.e. modified
lines) are updated. These explicit mentions to the com-
mands to be executed, including their order and param-
eters, is what allows our system to extract the neces-
sary information for annotating the computational en-
vironment, including the components and steps. Since
various images can have common layers, the proposed
annotation process analyses each layer of the image
and not the resultant image. Thus, the system can reuse
previous analysis.

2.3. Publishing and Deploying Docker images from
Docker Hub

Docker Hub is an online registry that stores two
types of public repositories, official and community.
Official repositories contain public, verified images,
from well-known companies and software providers,
such as Canonical, Nginx, Red Hat, and Docker itself.
At the same time, community repositories can be pub-
lic or private repositories that are created by individual
users and organizations, which share their applications
and results.

By using that registry and a command line, it is pos-
sible to download and deploy Docker images locally,
running the container in a host environment and then
executing the software inside the image. Users are al-
lowed to create and store images into the Docker Hub
registry, by creating a Dockerfile or extending an exis-
tent one. This descriptor file describes all steps needed
to build the Docker image, builds the image and finally
uploads it to Docker Hub via command line. However,
Docker Hub and the image do not control what pack-
ages are in the images nor whether the image will de-
ploy correctly. It is worth noticing that to upload the
new Docker image users need to use a set of command
line tools provided by Docker and that the Dockerfile
is not uploaded within the image.

These registries allow scientific communities to
store and share, curating the content of the containers,
as well as to check the identity of the publisher and
retrieve the containers of interest. However, the infor-
mation of the content of each repository is not always
accessible in a clear manner. As most of the times only
short descriptions of the containers is provided, it is
not clear what components are installed on it. Even
when Dockerfiles are available, these are not intuitive
enough to follow and understand which packages are
being deployed by each command. Also, some compo-
nents might exist in the container that are not specified
by the Dockerfile itself. To tackle this problem, we pro-
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4 Automatizing experiment reproducibility using semantic models and container virtualization

pose an automatic approach for analyzing the content
of a Docker image and extract the information about
the software components installed on them. This infor-
mation is then converted to semantic data, codified as
RDF under the set ontologies we have developed, as
mentioned in Section 3.1.

2.3.1. Docker and Virtual Machines

As we have seen, the container architecture allows
to store millions of images in a single place such as
DockerHub. This is due to the use of the layered ar-
chitecture of Docker images and the fact that these im-
ages are executed on top of a host operating system.
Consider a 1 GB container image; for a user to run a
VM for each experiment she would need to have 1 GB
times the number of VMs she wants. With Docker and
AuFS that user can share the 1 GB data between all the
containers. If that user has 1,000 containers she still
might only have a little over 1 GB of space for the con-
tainers OS (assuming they are all running the same OS
image).

The Singularity container system. In the scientific
community the most popular solution for allowing
container-based reproducible experiments is Singular-
ity [8]. Singularity main characteristic is that allows
running containers without the need of using super
user privileges since a Singularity container image en-
capsulates the operating system environment and all
application dependencies necessary to run a defined
workflow. If a container needs to be copied, this means
physically copying the image. Since Singularity im-
ages are terated as standard files simplifies manage-
ment and access controls to well known POSIX based
file permission [8].

3. Reproducibility in scientific workflows using
Docker Containers

In this paper, we mainly focus on the role that
Docker plays for experimental reproducibility, which
fundamentally happens once the experiment has been
conducted and its results have been disseminated. The
use of containers poses several benefits during the
designing, development, testing and execution phases
of a research process, before the publication of the
results. As isolated environments, containers allow
users, mostly researchers from different areas conduct-
ing computational simulations, to test new solutions
without jeopardizing real, and costly, production in-
frastructures. Containers thus allow scientists to ex-

plore different configurations without hindering the
performance and stability of the final computational
infrastructure.

Moreover, as their evolution can be tracked along
the development process, it is possible to rollback to
previous Docker images in case new dependencies or
modifications introduce errors. Thus, containers are
being more and more commonly adopted by research
communities, publishing them as part of the scholarly
communication process, hosted on the aforementioned
repositories. However, some work is still needed to use
containers as key element for experiment reproducibil-
ity.

Here, we argue that the description of computational
environments is necessary for achieving the reproduc-
tion of the experiment. Furthermore, the information
must be enough to compare and detect differences be-
tween the original and the reproduced environments.

Since Docker images are isolated and indepen-
dent environments, the installed software components
within the container should only be related to a single
experiment. This is considered a best practice in the
software engineering community and we adhere to it.
By making this assumption, we consider that the de-
scription of the environment is done without any noise
from other tools or experiments.

To automatically annotate the software packages
within the Docker images we propose a system which
receives as input the repository name, queries the con-
tainer’s package system which software packages are
installed and stores the annotations in our RDF repos-
itory.

3.1. Semantic models

In [4], the authors proposed The Workflow In-
frastructure Conservation Using Semantics ontology
(WICUS). WICUS is an OWL2 (Web Ontology Lan-
guage) ontology network that implements the concep-
tualization of the main domains of a computational in-
frastructure. These are: Hardware, Software, Workflow
and Computing Resources domain. Scientific work-
flow requires a stack of software components, and the
researchers must know how to deploy this software
stack to achieve an equivalent environment. The main
drawback of these ontologies is that they do not con-
sider OS virtualization techniques. The only ontol-
ogy that considers that technology is [9], however it
is not integrated with a provenance ontology such as
WICUS. We extend these previous works to develop
our ontology, named Dockerpedia, so we can annotate
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Automatizing experiment reproducibility using semantic models and container virtualization 5

scientific experiments using container virtualization.
Following Ontology Engineering best practices, we
start by importing some abstract classes, and relations
from WICUS ontology: (1) DeploymentPlan,
DeploymentStep, ConfigurationInfo and
ConfigurationParameter classes describe the
steps to deploy and configure the software, and
(2) SoftwareStack and SoftwareComponent
that model the software elements that must be
installed and their dependencies. We extend the
ontology with the specific classes and proper-
ties related to OS virtualization, generic to any
virtualization system that uses deployment layers
such as Docker or Singularity’. We define the
new class SoftwarePackage as a subclass of
SoftwareComponent so we are able to define the
software packages installed by the underlying OS. Ev-
ery wicus:SoftwareComponent has an object
type relation to dockerpedia:hasVersion de-
noting the package version which was installed within
the container.

We annotate every line from the Docker file as a
wicus:DeploymentStep and the Dockerfile as a
wicus:DeploymentPlan. In summary, we anno-
tate every installed software package on the container
file system, not only those packages in the Docker-
file. This allows us to reproduce any experiment as
long as it uses a container virtualization system and
imports and build their tools using their configuration
files (such as with multi-stage builds®).

Our final ontology, which is available online under
its namespace URI’, is depicted in Figure 1.

3.2. Annotator

The annotation service implements a REST inter-
face which receives as input the Docker image in
which the scientific workflow will run. By scanning
it, the system can describe the software components
that support such the filesystem of the image and the
building steps needed to run it. The whole annotation
process is the following: First, the system downloads
the Docker image and mounts it (without running it).
Next, we scan the image searching the software pack-
ages installed, and finally, the system creates the RDF

Shttps://singularity.lbl.gov/

Shttps://docs.docker.com/develop/develop-images/
multistage-build/

7https://dockerpedia.github.io/ontology/release/0.1.0/index-en.
html

data from the scan process and link these data to exter-
nal RDF resources such as the Debian package repos-
itory and the Common Vulnerabilities and Exposures
database®. We show the overall architecture of the an-
notator, available as part of the project’, in Figure 2.

3.2.1. Building steps annotations

Docker builds an image by either reading a set of
instructions from a Dockerfile or just deploying that
image on a host in case the Dockerfile is nor present.
Thus, to identify what packages are going to be in-
stalled within the docker image we either read that
Dockefile and execute it or we deploy that image and
run an analysis over it. In case of the latter, we have to
extract the information from the Docker image by us-
ing the image’s manifest file, which is always available
for a given image in the image manifest file (available
in every Docker image). This file contains the image’s
internal configuration and the set of layers from which
the image is built. According to the official documen-
tation '°, the most important attributes of the manifest
file are:

name: name of the image’s repository

history : the list of the layers composing the current
image layer. This field contains its ID and its par-
ent layers ID’s. It is the history of how the cur-
rent image is constructed. More in detail, for each
layer the history field contains:

Id: the layer’s ID;

Parent: string the parent’s ID;
ContainerConfig: the layer’s build command;
Author: the author’s name and email.

With all these information provided by either the
Docker file or the manifest file within the Docker im-
age we are able to reproduce the Docker image only
deploying it, and thus without modifying any param-
eter in the image. In the next section we describe
how we annotate the software components within the
Docker images.

3.2.2. Software Components annotations

Each Docker image layer installs or removes soft-
ware packages. To be able to describe the execution
environment of a scientific experiment we need to
describe the software components that are installed
within the experiment image. To do that we rely on

8https://cve.mitre.org/
9https://github.com/dockerpedia/annotator
10nttps://docs.docker.com/registry/spec/manifest-v2-2/
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6 Automatizing experiment reproducibility using semantic models and container virtualization

Fig. 1. Docker ontology.

wicus:
DeploymentSeript
docker:DockerFile docker:builds docker:SoftwareImage

Debian Security
Bug Tracker rdl:seeAlS0

docker:

docker:hasLayer-

docker:ImagelLayer

docker:modilesLayer

dockernasSofwareVulnerability| docker:

i seeAlso

Ubuntu CVE Tracker

the installation process done by the software package
managers of the image’s operating system. A package
manager system is a collection of software tools that
automate the process of installing, upgrading, config-
uring, and removing software components. We classify
the package managers in two types: system and gen-
eral. System package managers are the managers of
the operating system (e.g., apt by Debian Family, yum
by RedHat Family) and general package managers are
custom package manager, which generally are used to
install a specified language package (e.g., pip, conda,
npm).

A common approach for finding the software com-
ponents is to search the lines that use the package man-
ager. For example, Listing 1 shows the command to
install the TensorFlow software package.

wicus:
SoftwareComponent| owl'sameAs
docker: dockernasversion
SoftwarePackage

1 apt—get install —y —no—install —recommends \
2 build—essential \

3 curl \

4 libfreetype6 —dev \

5 libhdf5—serial —dev \

6 libpng12—dev \

7 libzmqg3—dev \

8 pkg—config \

9 python \

10 python—dev \

11 rsync \

12 software—properties—common \
13 unzip

Listing 1: Ubuntu command to install the Tensor-
Flow software

The main problem of this approach is that there is no
information about the software packages versions nor
the software dependencies installed. Also, this com-
mand installs 184 packages which the scientist may not
be aware of.

PackageVersion

s

We use Clair'!, a tool designed for the analysis of
vulnerabilities in docker containers, to identify which
packages the container virtualization system installs.
Clair is an open-source tool from CoreOS designed to
identify known vulnerabilities in Docker images. It has
been primarily used to scan images in the CoreOS pri-
vate container registry, Quay.io'?, but it can also be
used to analyze images from DockerHub. Clair down-
loads all layers of an image, mounts and analyzes
them, determining the operating system of the layer
and the packages added and removed from it. As a re-
sult from the analysis, Clair downloads all layers of an
image, mounts and analyzes them, determining the op-
erating system of the layer and the packages added and
removed from it. Clair is compatible with several of
the most common system package managers, such as
Ubuntu, Debian, Alpine, RedHat, CentOS, and Oracle.
Thus, our implementation supports experiments that
run over those well-known Linux distributions. Due to
the popularity of the Conda'® management tool in the
scientific community and as a generalization proof, we
extend Clair in our system to detect the packages and

dependencies installed by this package manager'.

3.3. Comparing different versions of execution
environments

One of the most common problems when reproduc-
ing an experiment is to ensure that the execution envi-
ronment is not the problem if the results obtained from
a latter execution are different. Using our approach it is
possible to check that two execution environments are
the same. The process to ensure that is the following:

1. Annotate execution environment 1 (e.g. Pegasus
workflow) using the annotator and store the an-
notations.

https://coreos.com/clair
2http://status.quay.io
Bhttps://conda.io/docs/
https://github.com/dockerpedia/clair
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Automatizing experiment reproducibility using semantic models and container virtualization 7
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the Docker Image

Postgres
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with the information using Postgres

l
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!
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- Car Detect features and
RDF store Vulnerabilities
(Go) (Go) (Go)
Annotator saves the Annotator asks.

Feature Extractor
process the

capabilities of the
computational resources

Fig. 2. This Figure shows the general architecture of the Annotator system. The Annotator provides researchers an API which receives as input a
Docker image URL from DockerHub. The annotator will describe that image using the semantic model depicted in Figure 1 and it will aso search
for software vulnerabilities. The system also provides a visualization tool of the components within each Docker image. These components are

highlighted in yellow.

2. Run the experiment and verify the results from
execution environment 1.

3. Annotate execution environment 2 using the an-
notator and store the annotations

4. Run the experiment and verify the results from
execution environment 2.

5. If any execution fails or the results differ, we can
run one or more SPARQL queries to check the
differences.

These queries can be used to check which layers of
the environment are different. In Listing 2 we depict
the SPARQL query used to identify the software com-
ponents contained in the latest version of Pegasus.

Listing 2: SPARQL query obtaining the software pack-
ages installed in the latest Pegasus version

PREFIX vocab:
<http :// dockerpedia.inf.utfsm.cl/vocab#>

pegasus_workflow_images%3Alatest

1

2

3

4 SELECT x WHERE {
5

6 vocab:containsSoftware ?p
7

}

In case there was any problem reproducing the exe-
cution environment of an experiment we can also com-
pare the differences between two images. For example,
the query in Listing 3 shows the query to compare two
versions of the Pegasus image.

Listing 3: SPARQL query comparing two the software
packages installed in two different Pegasus versions

1 SELECT % WHERE {

2 pegasus_workflow_images%3Alatest

3 vocab:containsSoftware ?p

4 pegasus_workflow_images%3Apegasus —4.8.5
5 vocab:containsSoftware ?p

6

4. Experimentation Process

In this section we evaluate our approach for allow-
ing scientific experiment reproducibility. We repro-
duce five different experiments which run in different
workflow systems (SoyKB and Montage on Pegasus,
Internal extinction and Seismic Ambient Noise Cross-
correlation on Dyspel4Py, and Modflow on WINGS).
These workflows run over Java and Python and we de-
ployed them on three different execution environments
(Google Cloud, Digital Ocean and on a local machine)
to guarantee that our approach is IaaS independent.

This section is organized as follows: we first de-
scribe how we execute the experiments we use to eval-
uate our approach (i.e. how we build the experiment
images, how and where we store them, how we de-
scribe them and how we compare the results from the
different experiment executions). When evaluating our
approach, we first introduce the workflow system we
use for next introducing the experiments that will run
on that workflow system. Before continuing to the next
workflow system and scientific experiments we show
and compare the results from the workflow executions
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8 Automatizing experiment reproducibility using semantic models and container virtualization

Resource Digital Ocean | Google Compute | Local

CPU (Arch) 64 bits 64 bits 64 bits

oS Centos 7 Debian 9 Fedora 27

Docker version | 17.05 17.05 17.05
Table 1

Image appliances characteristics.

with the existing state of the art results for the same
experiments, showing the feasibility of our approach.

4.1. Building and storing the images

We built one Docker image for each workflow sys-
tem so a researcher can import that image and install
on it the software components needed to run the sci-
entific data workflow. We did that by using the FROM
instruction in the Dockerfile. For example, the SoyKB
experiment uses the Pegasus workflow manager, thus
the SoyKb image uses as base image the Pegasus
software image at DockerHub. The SoyKB workflow
needs to install other software packages besides the
Pegasus system, which we also incorporated into the
Dockerfile describing the container image. These files
are available on our repositories for each workflow 3.
We also describe the workflow images using the Con-
tainer description vocabulary developed by the Open
Container Initiative'S.

4.2. Running the experiments

We rely on Docker Images stored on DockerHub for
the physical conservation. Thus, the first experiment is
to test if the Docker images are capable of packaging
the software components of the selected experiments.
The images that we are using in our experimentation
are publicly available on DockerHub!”. Moreover, we
published the images with the corresponding Docker-
files so that any user can inspect and improve them.
Finally, we use two different infrastructure providers
(DigitalOcean and Google Cloud) and a local machine
to evaluate the reproducibility using physical conser-
vation. Table 1 shows the hardware characteristics of
these three environments.

The Docker version tested for this experimentation
is compatible with CentOS 7, Debian 10/9/8/7.7, Fe-
dora 26/27/28, Ubuntu 14.04/16.06/18.04, Windows
10, macOS El Capitan 10.11 and newer macOS re-

5https://github.com/dockerpedia
16https://www.opencontainers.org/
17https://hub.docker.com/u/dockerpedia/

leases. The installation process can be found https:
//docs.docker.com/install/

We include in each Docker image a README file
with the instructions to run the experiment showing
how to run the container. To illustrate this, Listings 4, 5
and 6 show the instructions to run the SoyKB work-
flow. First, we run the container the image, Next, the
user must enter the container. The user can confirm that
you are inside the container by the prompt. Finally, the
user runs the workflow.

Listing 4: Download and run the SoyKB image

1 docker run —d —rm —it —name soybean \
2 mosorio/pegasus_workflow_images : soykb

Next, the user must enter the container. The user
can confirm that you are inside the container by the
prompt.

Listing 5: Run the shell bash and use it

1 root@docker—instance :~# docker exec |
2 —ti —u workflow:workflow soybean bash
3  workflow@a0f861e6fbc4 :~

Finally, the user runs the workflow.

Listing 6: Run the workflow

1  workflow@a0f861e6fbc4 :~/soykb \
2 ./workflow—generator —exec—env distributed

4.3. Describing the components of the environment

As described in Section 3.2, we annotate the afore-
mentioned workflows using the set of semantic mod-
els we have extended. The annotations are grouped by
building steps and software components. In order to
get the annotations from the containers, we use and ex-
tend Clair, as depicted in Figure 2, which shows the
main steps of the process. Overall, the annotation pro-
cess works based on the following phases.

1. The user queries the DockerPedia annotator API,
using a Docker image at DockerHub as input.
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2. The DockerPedia annotator uses our extended
version of Clair to analyze the image. Clair
downloads all layers of an image, mounts and an-
alyzes them, determining the operating system of
the layer and the packages added and removed
from it. In parallel, the annotator reads the build-
ing steps, labels, architecture and manifest from
DockerHub.

3. Finally, the annotator combines all the gathered
information and codifies and stores it in RDF, us-
ing the semantic models we developed.

4.4. Is the reproduced environment similar?

To evaluate if the original and reproduced environ-
ments are the same, we compare both annotated im-
ages using SPARQL to query the annotations. We have
tested this in a real scenario, where one image was able
to execute a workflow, whereas the other could not.
More in detail, recently Pegasus updated to version 4.9
and required Java version 1.8 while the SoyKB work-
flow requires Java version 1.7 making thus incompat-
ible the new Pegasus version with the workflow. With
the result of the SPARQL query included in Listing 7
it is possible to spot the differences between both exe-
cution environments clearly.

Listing 7: What are the different components between
two images?

PREFIX vocab:

<http :// dockerpedia.inf.utfsm.cl/vocab#>
PREFIX DPimage:

<http ://dockerpedia.inf.utfsm.cl/resource
/ Softwarelmage/>

SELECT ?p WHERE {

DPimage : dockerpedia—pegasus_workflo
9 w_images_latest

10 vocab:containsSoftware ?p .

[c BN e NNV R N S R

11 MINUS{

12 DPimage : dockerpedia—pegasus_workflow
13 _images —4.8.5

14 vocab:containsSoftware ?p

15 }

16 }

In summary, for each of the experiments described
in the next Section, we perform the following steps:

— Build a Docker image for each of the scientific
workflows.

— Annotate each of the previous Docker images.

— Reproduce the environment from the annotations
obtained by our approach.

— Compare both execution environments.

— Evaluate and compare the size between virtual
machine image and container image.

— Run the experiments and compare their execution
results with the original workflow execution re-
sults. If the results are the same we managed to
successfully reproduce the experiment.

4.5. Pegasus

Pegasus [10] is a Workflow Management System
(WMS) able to manage workflows comprised of mil-
lions of tasks, recording data about the execution and
intermediate results. The Pegasus package has been
obtained from the official repository '® and the Pega-
sus images used in this work are available on Docker-
Hub °.

4.5.1. Soybean Knowledge Base

The SoyKB workflow [11] is a genomics pipeline
that re-sequences soybean genes for desirable traits
such as oil, protein or root system architecture. The
workflow analyzes in parallel several samples of soy
genes and executes operations over the resulting data
such as de-duplicate data, and merge and filter results.
The workflow instance used in this paper is based on
a sample dataset that requires less memory than a full-
scale production workflow, however it carries out the
same process and requires the same software compo-
nents.

Figure 3 shows the SoyKB main software dependen-
cies for running the workflow on Pegasus are classified
in self-dependencies (in yellow) and third-party de-
pendencies (in purple). The main components in these
dependencies are bwa, gatk and picard while the
main third-party dependency is an unknown version of
Java.

We evaluated the results obtained manually, as
in [4], since the scientific workflow execution is non-
deterministic, due to some of its steps being probabilis-
tic, as they were originally designed. We compared
the structure of the resulting data, file sizes, number
of lines and the absence of errors. The workflow out-
puts a VCEF file containing genomic data, which is the

18http://download.pegasus.isi.edu/wms/download/debian
19https://hub.docker.com/r/dockerpedia/pegasus_workflow_
images/
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10 Automatizing experiment reproducibility using semantic models and container virtualization

SoyKb
> bwa
> gatk
—> bwa

4>[ openjdk, version desconocida }

L{ openjdk-devel }
%{ pegasus }

Fig. 3. Pegaqsus’s SoyKB Workflow representation.

same data available in the official Pegasus repository
in GitHub ?°, thus we can conclude that the outputs
are equivalent and that the workflow was reproduced
successfully. Both the SoyKB workflow image and the
workflow execution results are in DockerHub 2!.

4.5.2. Montage

The Montage workflow [12] was created by the
NASA Infrared Processing and Analysis Center
(IPAC) as an open source toolkit that can be used to
generate custom mosaics of astronomical images in the
Flexible Image Transport System (FITS) format. In a
Montage workflow, the geometry of the output mosaic
is calculated from the input images. The inputs are then
re-projected to have the same spatial scale and rotation,
the background emissions in the images are corrected
to have a uniform level, and the re-projected, corrected
images are co-added to form the output mosaic. Fig-
ure 4 illustrates a small (20 node) Montage workflow.
The size of the workflow depends on the number of im-
ages required to construct the desired mosaic. Each of
the nodes in the workflow is a binary software that con-
tributes to the final image generation. Since the soft-
ware is only provided in its binary format (not pack-
aged), we downloaded it and added it as a dependency
in our DockerFile [13].

We use a perceptual hashing tool % to compare the
outputs from the original Montage workflow execution
provided by Pegasus and our reproduced Pegasus en-
vironment. We obtain as result a similarity factor of

2Ohttps://github.com/pegasus-isi/
PGen-Genomic Variations- Workflow

2 https://doi.org/10.5281/zenodo. 1889356, https://doi.org/10.
5281/zenodo.1897809

2http://phash.org

Data Partitioning

Data

mProjectPP mDiffFit mConcatFit mBgModel mBackground

mImgTbl mAdd ‘mShrink mJPEG

Fig. 4. Workflow representation provided by Pegasus. Each of the
nodes is an operation executed by different software components.
This shows the complexity of the execution environment needed to
run the experiment.

1.0 (out of 1.0). Figures 5a and 5b show both resulting
images.

4.6. dispeldpy

dispeldpy [14] is a Python library for describing
workflows. It describes abstract workflows for data-
intensive applications, which are later translated and
enacted in distributed platforms (e.g. Apache Storm,
MPI clusters, etc.). The dispel4py images are available
at DockerHub 3. To install the packages needed to run
the workflows we use Conda, a package, dependency
and environment manager for Python-based execution
environments. To freeze the version of the packages
that will be installed, we include the complete list of
installed packages on the GitHub repository.

4.6.1. Internal extinction

Internal Extinction of Galaxies The Virtual Obser-
vatory (VO) is a network of tools and services imple-
menting the standards published by the International
Virtual Observatory Alliance (IVOA) ?* to provide
transparent access to multiple archives of astronomi-
cal data. VO services are used in Astronomy for data
sharing and serve as the main data access point for as-
tronomical workflows in many cases. This is the case
of the workflow presented here, which calculates the

Zhttps://hub.docker.com/r/dispel4py/dispeldpy
24http://www.ivoa.es
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(b) Result from the Montage workflow execution
on our reproduced Pegasus environment.

Fig. 5. The results from the Montage workflow execution using two different execution environments are exactly the same, validating our

hypothesis.

read getvVO internal
RaDec Table extinction

Fig. 6. Execution steps of the Internal Extinction scientific workflow

Internal Extinction of the Galaxies from the AMIGA
catalogue 2. This property represents the dust extinc-
tion within the galaxies and is a correction coefficient
needed to calculate the optical luminosity of a galaxy.

The scientific workflow first reads the file contain-
ing the inclination and ascension rate of 1051 galaxies.
Next, the workflow use these data values to to query
the Virtual Observatory and obtains the results select-
ing only those values corresponding to the morpholog-
ical type (Mtype) and the apparent flattening (logr25)
features of the galaxies. Finally, the workflow calcu-
lates the internal extinction of the galaxy. Figure 6
shows the execution steps fo the workflow.

The main software dependencies needed to run such
workflow are requests, Python 2.7, numpy
and astropy.

Since the Internal Extinction workflow uses an on-
line service, the input data may vary among workflow
executions. Thus, we validated the different workflow
execution outputs by verifying the results data struc-
tures, file sizes, number of lines and nonexistence of

2Shttp://amiga.iaa.es

errors during the execution. Both executions (from the
original and reproduced execution environments) were
identical and we conclude that we were able to repro-
duce the experimental workflow. The Docker images
and their results from these experiments are available
at DockerHub 2.

4.6.2. Seismic Ambient Noise Cross-Correlation

Seismic Ambient Noise Cross-Correlation workflow
(or xcorr workflow) is part of the project Virtual Earth-
quake and seismology Research Community e-science
environment in Europe (VERCE). The goal of this
workflow is to prevent damages by earthquakes and
volcano eruptions. These natural events are preceded
by changes in the Earth’s geophysical properties such
as wave speed.

The xcorr workflow has two stages, being the first
a time series pre-processing of a seismic station data
(which is done in parallel) and next each station corre-
lates each pair. Figure 7 shows the workflow steps.

The main software dependencies are
Python 2.7, obspy and numpy. Regarding the
workflow execution, both executions on the original
and replicated environment obtained the same results,
thus concluding that we successfully reproduced the
experiment. The output of xcorr is written to a file

26https://doi.org/10.528 1/zenodo. 1889332, https://doi.org/10.
5281/zenodo.1889328
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/ producir 0 )/ Escribir

preparar
!
leer traza aza pares resultados

=" Ss \ N
P Soo \ Fase2is
- ase 1 X .. ' Cross o
- - =~ "Pipeline para preparar la traza a partir de un sismografo. <. Gorrelation

re
decim > % > move > fiter —>
trend norm

— white = calc it xCorr
resp

Fig. 7. Seismic Ambient Noise Cross-Correlation workflow repre-
sentation. Each of the nodes has several operations executed by dif-
ferent software components, leading thus to multiple software ver-
sions that may cause problems when reproducing the experiment.

with the result of the cross-correlation calculations,
which we compared for both executions.

The workflow images and results are available with
persistend identiers in Zenodo?”.

4.7. WINGS

WINGS is a semantic workflow system that as-
sists scientists with the design of computational ex-
periments. A feature of WINGS is that its work-
flow representations incorporate semantic constraints
about datasets and workflow components, and are
used to create and validate workflows and to gener-
ate metadata for new data products. WINGS submits
workflows to execution frameworks such as Pegasus
and OODT to run workflows at large scale in dis-
tributed resources. Similarly, its main dependencies
are Git, Python 2.7, Java 1.8, Tomcat 8.5
and Docker. We also include the complete list
of installed packages on the Dockerpedia GitHub
repository?®. WINGS is the base WMS for executing
MODFLOW-NWT.

4.7.1. MODFLOW-NWT

The USGS MODFLOW-NWT is a Newton-
Raphson formulation for MODFLOW-2005 to im-
prove solution of unconfined groundwater-flow prob-
lems. MODFLOW-NWT is a standalone program
that is intended for solving problems involving dry-
ing and rewetting nonlinearities of the unconfined
groundwater-flow equation. MODFLOW-NWT im-
ports the Upstream-Weighting (UPW) Package for
calculating intercell conductances, needs the Flow-
property input for the UPW Package. The NWT lin-
earization approach generates an asymmetric matrix.
Figure 8 shows the three-step experiment workflow.
The process starts by reading the MODFLOW-NWT
model, next the workflow specifies in wich geograph-

2Thttps://doi.org/10.5281/zenodo.1889342,
5281/zenodo. 1889336
28https://github.com/dockerpedia/wings-docker

https://doi.org/10.

nameFile
frey.nam

MODFLOW-NWT
[Run on Localhost]
@)

budget

budget-4w679v11qprig801mveqevpmu

zoneMap
zonef_mit.zbr

extractedBudget
extractedBudget-bx2epwjkbdggygle1xyqis5n2

BudgetVisualization
[Run on Localhost]

visualization
visualization-65lujaso2xj13q7p7qudaabgn

Fig. 8. MODFLOW-NWT workflow representation which we run
locally. The workflow we run is identical to the existing in [15] and
each workflow node executes an action for which different software
components are needed. Descriptions are needed to ensure correct
workflow reproducibility.

ical zone the model is executed and finally the results
are shown. Figure 9a and Figure 9b show the results
generated by the original and reproduced execution en-
vironments respectively. The Docker images used for
executing both workflows are available online 2°.

4.8. Results and discussion

We executed the images for the workflows over their
corresponding platforms, and each one of them used a
different Docker version. Nonetheless, Docker guaran-
tees that software will always run the same, regardless
of underlying infrastructure and the Docker version.

All the executions were compared to their original
one in a predefined VM image, where the execution
environment was already in place. Results show that
the container execution environments are able to ex-
ecute their related workflows fully. To check that not
only the workflows are successfully executed but also
that the results are correct and equivalent, we checked
their produced output data.

2https://doi.org/10.5281/zenodo.1889348,
5281/zenodo.1889328

https://doi.org/10.
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(a) This image shows the results from the MODFLOW workflow execution by the Information Sciences Institute (ISI)
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(b) This image shows the results from the MODFLOW workflow execution in our local system.

Fig. 9. The results from executing the MODFLOW workflow at the ISI and on our local machine after using are identical. We managed to
reproduce the original workflow by using our semantic model and container virtualization using Docker images.

In the case of Montage, which produces an image as
output, we used a perceptual hash tool. The resulting
image (0.1 degree image of the sky) against the one
generated by the baseline execution, obtaining a simi-
larity factor of 1.0 (over 1.0) with a threshold of 0.85.

In SoyKB and Internal Extinction workflows, the
output data is non-deterministic due to the existence
of probabilistic steps. In this case, the use of a hash
method is unfeasible. Hence, we validated the correct
execution of the workflow by checking that correct
output files were actually produced, and that the stan-
dard errors produced by the applications did not con-
tain any error message. In both cases the results ob-
tained in each infrastructure were equivalent in terms
of their size (e.g., number of lines) and content.

In the case of MODFLOW-NWT, which produces a
histogram by zone, so we can compare it easily. The
resulting histograms are the same between the original
and reproduced environment.

Experimental results show that our proposal can au-
tomatically detect the software components, related
vulnerabilities, building steps, and specific metadata of
scientific experiments in the form of Docker images.
Also, the results show that it is possible to extend Clair
to annotate other package managers. In particular, we
extended for Conda Package Manager.

The annotations generated by our approach allow
comparing the software components between two or

more environments. This feature can be used as a de-
bug tool when a reproduced environment did not work.

For example, On August 2018, we built the SoyKB
workflow image, and we could execute the work-
flow successfully. However, we rebuilt a new image
in November with the same DeploymentPlan and we
were not able to run the workflow successfully.

We compared the software components inside both
images and found the following differences:

— August image: Pegasus 4.8 and Java 1.7
— November image: Pegasus 4.9 and Java 1.8

Thus, we analyzed the SoyKB code and documen-
tation and the Pegasus 4.9 dependencies obtaining the
dependency graphs in Figures 10a and 10b. These
graphs show that Pegasus 4.9 and the SoyKB exper-
iment need different Java versions (Java 1.8 and 1.7
respectively), failing thus the execution of the exper-
iment if one of these Java versions is used incor-
rectly. Building a new image with Pegasus 4.8 and
Java 1.8 and SoyKB using Java 1.7 (Figure 10a) the
experiment was executed correctly. Without the se-
mantic descriptions provided a scientist would have
had a hard time to spot that problem. Notice that
the latest tag was not used in the Dockerfile to
build none of the images. Simply an update opera-
tion caused that problem. This new image was named:
pegasus_workflow_images:4.8.5

In summary, the results of our experiments are:
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Debian 9

Pegasus 4.9

Genome
Java>=1.8
Analysis TK

(a) Dependency graph Pegasus 4.9 and SoyKB

Debian 9

Pegasus 4.8

Genome
Analysis TK

(b) Dependency graph Pegasus 4.8 and SoyKB

Fig. 10. The orange nodes are the differences between the images

Docker Images allow the execution the selected

scientific workflows.

— Our annotator correctly obtained the software
components installed by the supported package
managers without install new components inside
the image or execute the experiment.

— We could reproduce the environment for the five
workflows using the annotations obtained by our
approach.

— We can detect the similarities and differences be-

tween two versions of an image. Furthermore, we

used the feature to detect and solve a issue.

5. Related work

This work aims to allow scientists to reproduce their
in-silico experiments. This is not the first work in try-
ing to enable experiment reproducibility, and thus it
is mandatory to look at the work done so far before
starting our journey. For computational experiments to
become reproducible, one needs to develop a system
for linking scientific publications with computational
recipes. These recipes (scientific workflows) need to
be executed by data workflow systems [10, 16, 17],
which run over commodity machines and make use of
several other software components during its execution
(i.e. the execution environment). All these experiment
components need to interact to execute it, and they also
have to run similarly if the experiment is reproduced
by some other scientist in another environment. How-
ever, such component coordination is prone to errors,
as the work in [18] pointed out. The authors studied the
reproducibility of scientific workflows, showing that

almost 80% of the workflows could not be reproduced.
About 12% of the problems to reproduce these experi-
ments were due to the lack of information about the ex-
ecution environment. Furthermore, 50% of them were
due to the use of third-party resources such as web ser-
vices and databases that were not available anymore.
Other studies have exposed the necessity of publishing
adequate descriptions of the run-time environment of
experiments to avoid replication hindering [19].

One way to allow experiment reproducibility is to
use virtualization techniques by using a virtual ma-
chine (VM). In this way, the execution environment
can be packed within a Virtual Machine and distribute
it along with the experiment [20, 21]. However, the
high storage demand of VM images remains a problem
since a virtual machine needs to install the whole Oper-
ating System before installing any software component
within it (consider that the minimal version of Win-
dows is 4GB and 1GB for a Linux distribution). Also,
the cost of storing and managing data in the Cloud is
still high, and the execution of high-interactivity exper-
iments through a network connection to remote virtual
machines is also challenging. A list of advantages and
challenges of using VMs for achieving reproducibil-
ity was exposed in [22]. VMs also introduce problems
at the time of reproducing experiments: VMs work as
black boxes, and even though is not strictly required to
describe the experiment execution environment since
we rely on the VM, it should be possible to know what
components are installed within that VM, to be able
to reproduce such environment outside the initial VM.
In summary, even when VMs support reproducibil-
ity, they are too large and fixed, not being possible to
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know what components are inside the VM and which
of those are really needed to reproduce the execution
of the in-silico experiment. In [23] the author presents
a set of best practices to use Docker as a fundamen-
tal part for experiment reproducibility, however it is an
early work describing some desiderata.

To solve the aforementioned problems, the commu-
nity has adopted the use of Docker, contributions such
as [24-26], so reviewers, interested readers, and future
researchers can to reproduce the experiments within
the same environment. Container solutions solve the
problem of storage, however, the challenge of repro-
ducing scientific contributions due to their high depen-
dence on developed algorithms, tools and prototypes,
quantitative evaluations, and other computational anal-
yses that are not adequately documented still persists.
It persists due to the containers working as black boxes
in which the scientist cannot know easily what pack-
ages are installed, and thus making virtually impossi-
ble what software packages are required to run that ex-
periment. In order to understand what is required to
execute the experiment and what components might be
causing issues when reproducing the experiment, addi-
tional information, in the form of well structured data,
should be provided.

In the ReproZip project [6, 27] the authors present a
work that allows researchers to automatically create a
VM or a companion Docker container along with the
experiment. What Reprozip does is to build a Docker
image from the source code of a specific experiment.
Using its package system, Reprozip stores an internal
description of the scientific experiment and its environ-
ment, which can be recreated by on another machine
having installed Reprozip. However, to use Reprozip
it is still needed to install other software components,
and the internal description used by Reprozip does not
provide the features and flexibility provided by seman-
tic descriptions, such as easily comparing two differ-
ent execution environments or knowing which compo-
nents are needed to run a specific part of a workflow.

The work in [4] addresses the problem of describing
what is inside the VM image. To do that the authors
solve the problem proposing a semantic modeling ap-
proach to conserve computational environments in sci-
entific workflow executions. However, the annotation
process is manual, and the high storage problem of the
virtual machines persists. In the Timbus project®® [5]
the problem of logical conservation is addressed in-

30http://www.timbusproject.net/

stalling new software inside each environment (in this
case, a virtual machine). However, this approach in-
creases the complexity of the environment and requires
to execute the computational environment.

In terms of ontological engineering for describing
software components, the authors in [9] present the
Smart Container ontology which extends the Prove-
nance Ontology PROV-O [28] and models Docker in
terms of its interactions for deploying images. Another
related work [29] describes how to use RDF to rep-
resent Docker files. Similarly, a different approach in
which software ontologies are used is to allow com-
putational reproducibility [4]. In this work, the au-
thors present a set of ontologies that model software
and hardware components to allow the execution envi-
ronment reproducibility.

As described in this section, several works have ad-
dressed the experiment reproducibility problem, pro-
viding frameworks in which virtualization techniques
and structured knowledge representation are used.
However, they either rely on VMs as black boxes,
which are large and fixed environments that make the
portability of such experiments not optimal or require
a manual annotation process, which potentially hinders
the quality and trust of the annotations, as the analy-
sis of the dependencies is not always trivial to do for
a human annotator. In the following section, we will
describe our approach, which combines semantic de-
scriptions and container-based virtualization to tackle
these two problems.

6. Conclusion and future work

In this work, we proposed an automatic tool to an-
notate the software components of the computational
environment of a scientific experiment. In this work
we focus on container-based environments,combining
them semantic capabilities of the annotations to con-
serve and reproduce computational environments of
scientific workflow executions.

We conducted experiments to show the Docker Im-
ages are a lightweight unit and the images can be
stored using public or private repositories such as
DockerHub. Thus, we can ensure the physical con-
servation using these repositories. The utilization of
Docker Images combined with our annotation process
is a powerful approach to obtain the software compo-
nents and building steps related to the environment.
Moreover, we prove that the approach can be extended
to other package managers such as Conda. In con-
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clusion, this is a unique contribution which success-
fully addresses both physical and logical conserva-
tion of computational environments for scientific ex-
periments. In regard to the reproducibility, our pro-
posal can use these annotations, rebuild the computa-
tional environment and execute the related workflow
automatically. Also, the results of our experimenta-
tion showed that these annotations can detect software
components issues (e.g., incorrect versions).

In summary, this work adopts, modifies and imple-
ments new tools building a framework to automate the
process of obtaining the requirements of the computa-
tional environment, to then store these annotations ac-
cording to semantic models. Finally, this proposal con-
cludes that the use of these annotations allows the re-
production and detection of problems in the computa-
tional environment of a scientific experiment.

As for the future work, this work could be extended
to support other container-based virtualization solu-
tions, such as Singularity [30]. Also, it would be pos-
sible to improve the software components descriptions
by providing a visualization of the dependency graph
and the installed files within the experiment. Finally,
a much more challenging contribution would be to
detect workflow execution events using perf events’!
from the Linux Kernel, allowing to identify which
workflow steps are being executed and what files are
being accessed so a more fine grained analysis could
be done.
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