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Abstract.
While workflow systems have improved the repeatability of scientific experiments, the value of the processed (intermediate)

data have been overlooked so far. In this paper, we argue that the intermediate data products of workflow executions should be
seen as first-class objects that need to be curated and published. Not only will this be exploited to save time and resources needed
when re-executing workflows, but more importantly, it will improve the reuse of data products by the same or peer scientists in
the context of new hypotheses and experiments. To assist curator in annotating (intermediate) workflow data, we exploit in this
work multiple sources of information, namely: i) the provenance information captured by the workflow system, and ii) domain
annotations that are provided by tools registries, such as Bio.Tools. Furthermore, we show, on a concrete bioinformatics scenario,
how summarising techniques can be used to reduce the machine-generated provenance information of such data products into
concise human- and machine-readable annotations.
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1. Introduction

We have witnessed in the last decade a paradigm
shift in the way scientists conduct their experiments,
which are increasingly data-driven. Given a hypothe-
sis that the scientist seeks to test, verify or confirm,
s/he processes given input datasets using an experi-
ment which is modelled as a series of scripts written
in languages such as R, Python and Perl, or pipelines
composed of connected modules (also known as work-
flows [1,2]). For example, the recent progress in se-
quencing technologies, combined with the reduction
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of their cost has led to massive production of genomic
data with growth rates that exceed major manufactur-
ers’ expectations [3]. A single research lab that is using
the last generation sequencer can currently generate in
one year1 the equivalent of the world-wide collabora-
tive sequencing capacity in 2012 [4].

The datasets obtained as a result of the experiment
are analyzed by the scientist who then reports on the
finding s/he obtained by analyzing the results [5]. As
a response to the reproducibility movement [6], which
has gained great momentum recently, scientists were

1Theoretically around 2500 whole genomes per year with an Illu-
mina NovaSeq technology
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encouraged to not only report on their findings, but
also document the experiment (method) they used,
the datasets they used as inputs, and eventually, the
datasets obtained a result. To assist scientist in the task
of reporting, a number of methods and tools have been
proposed (see e.g., [7,8,9]). In [10] Gil et al. propose
data narratives to automatically generate text to de-
scribe computational analyses that can be presented to
users and ultimately included in papers or reports.

While we recognize that such proposals are of great
help to the scientists and can be instrumental to a cer-
tain extent to check the repeatability of experiments,
they are missing opportunities when it comes to the
reuse of the intermediate data products that are gener-
ated by their experiments. Indeed, the focus in the re-
ports generated by the scientist is put on their scientific
findings, documenting the hypothesis and experiment
they used, and in certain cases, the datasets obtained as
a result of their experiment. The intermediate datasets,
which are by-products of the internal steps of the ex-
periment, are in most cases buried in the provenance
of the experiment if not reported at all. The availability
of such intermediate datasets can be of value to third-
party scientists to run their own experiment. This does
not only save time for those scientists in that they can
use readily available datasets but also save time and
resources since some intermediate datasets are gener-
ated using large-scale resource- and compute-intensive
scripts or modules.

We argue that intermediate datasets generated by the
steps of an experiment should be promoted as first-
class objects on their own right, to be findable, ac-
cessible and ultimately reusable by the members of
the scientific community. We focus, in this paper, on
datasets that are generated by experiments that are
specified and enacted using workflows. There has been
recently initiatives, notably FAIR [11], which specify
the guidelines and criteria that need to be met when
sharing data in general. Meeting such criteria remains
challenging, however.

In this paper, we show how we can combine prove-
nance metadata with external knowledge associated
with workflows and tools to promote processed data
sharing and reuse. More specifically, we present FRESH
an approach to associate the intermediate, as well as
the final, datasets generated by the workflows with
annotations specifying their retrospective provenance
and their prospective provenance (i.e., the part of the
workflow that was enacted for their generation). Both
prospective and retrospective provenance can be over-
whelming for a user to understand them. Because of

this, we associate datasets with a summary of their
prospective provenance. Moreover, we annotate the
datasets with information about the experiment that
they were used in, e.g., hypothesis, contributors, as
well as with semantic domain annotations that we au-
tomatically harvest from third-party resources, in par-
ticular, Bio.Tools2 [12]. Our ultimate objective is to
promote processed data reuse in order to limit the du-
plication of computing and storage efforts associated
to workflow re-execution.

The contributions of this paper are the following:

– Definition of workflow data products reuse in the
bioinformatics domain.

– A knowledge-graph based approach aimed at an-
notating raw processed data with domain-specific
concepts, while limiting domain experts over-
whelming at the time of sharing their data.

– An experiment based on a real-life bioinformat-
ics workflow, that can be reproduced through an
interactive notebook.

This paper is organised as follows. Section 2 presents
motivation and defines the problem statement. Sec-
tion 3 details the proposed FRESH approach. Sec-
tion 4 presents our experimental results. Section 5
summarises related works. Finally, conclusions and fu-
ture work are outlined in Section 6.

2. Motivations and Problem Statement

We motivate our proposal through an exome-se-
quencing bioinformatics workflow. This workflow
aims at (1) aligning sample exome data (the protein-
coding region of genes) to a reference genome and (2)
identifying genetic mutations for each of the biologi-
cal samples. Figure 1 drafts a summary of the bioin-
formatics analysis tasks required to identify and anno-
tate genetic variants from exome-sequencing data. For
a matter of clarity, we hide in this scenario some of
the minor processing steps such as the sorting of DNA
bases, but they are still required in practice. The real
workflow will be described in detail in the experimen-
tal results section.

This workflow consumes as inputs two sequenced
biological samples sample_1 and sample_2. For
each sample, sequencers produce multiple files that
need to be merged later on (Sequence merging

2http://bio.tools/
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Fig. 1. A typical bioinformatics workflow aimed at identifying and annotating genomic variations from a reference genome. Green waved boxes
represent data files, and blue rounded boxes represent processing steps.

step). The first processing step consists in align-
ing [13] (Mapping to reference genome) the
short sequence reads to the human reference genome
(GRCh37). Then, for each sample, data are merged
and post-processed [14,15] and result in binary (BAM)
files representing the aligned sequences with their
quality metrics. Finally, from these aligned sequences,
the genetic variants are identified [16] and enriched
with annotations [17] gathered from public knowledge
bases such as DBsnp [18] or gnomAD3. This last pro-
cessing step results in a VCF file listing, for all pro-
cessed sample sequences, all known genomic varia-
tions compared to the GCRh37 reference genome.

Performing these analyses in real-life conditions is
computation intensive. They require a lot of CPU time
and storage capacity. As an example, similar work-
flows are run in production in the CNRGH french
national sequencing facility. For a typical exome-
sequencing sample (9.7GB compressed), it has been
measured that 18.6GB was necessary to store the input
and output compressed data. In addition, 2 hours and
27 minutes were necessary to produced an annotated
VCF variant file, taking advantage of parallelism in a
dedicated high-performance computing infrastructure
(7 nodes with 28 CPU Intel Broadwell cores each),
which corresponds to 158 cumulative hours for a single
sample, i.e. 6 days of computation on a single CPU.

Considering the computational cost of these analy-
ses, we claim that the secondary use of data is criti-

3https://gnomad.broadinstitute.org

cal to speed-up Research addressing similar or related
topics. In this workflow, all processing steps produce
data but they do not provide the same level of reusabil-
ity. We tagged reusable data with a white star in Fig-
ure 1. More precisely, (GRCh37) is by nature highly
reusable since it is a reference “atlas” for genomic hu-
man sequences, and results from state-of-the-art scien-
tific knowledge at a given time. Then, BAM files can
also be considered as more reusable than the raw input
data since they have been aligned to this atlas and thus
benefit from consensual knowledge on this genome.
As an example, they provide the relationship between
sequences and known genes, they can be visualized
in a genome viewer, they can also be reused to re-
generate raw unmapped sequences.

From the scientist perspective, answering questions
such as "can or should I reuse these files in the con-
text of my research study" is still challenging. To reuse
the final VCF variant file, it is of major importance to
know the version of the reference genome as well as to
clearly understand the scientific context of the study,
the phenotypes associated to the samples, as well as
the possible relations between samples. Finally, having
precise information on the variant calling algorithm
is also critical due to application-specific detection
thresholds [19]. More generally, not only fine-grained
provenance information regarding data and tools lin-
eage are required but also domain-specific annotations
based on community agreed vocabularies (Issue 1).
These vocabularies exist but annotating processed data

https://gnomad.broadinstitute.org
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with domain-specific concepts requires a lot of time
and expertise (Issue 2).

In this work, we show how we can improve the
findability and reusability of workflow (intermedi-
ate) data by leveraging (1) community efforts aimed
at semantically cataloguing bioinformatics process-
ing tools to reduce the solicitation of domain ex-
perts, and (2) the automation and provenance ca-
pabilities of workflow management systems to au-
tomate the annotation of processed data, towards
more reusable workflow results.

3. FRESH Approach

FRESH is an approach to improve the Findabil-
ity and the Reusability of genomic workflow data.
FAIR [11,20] and Linked data[21,22] principles con-
stitute the conceptual and technological backbones in
this direction.

FRESH partially tackles FAIR requirements for
better findability and reusability. We address find-
ability, by relying on Linked Data best practices,
namely associating a URI to each dataset, linking these
datasets in the form of RDF knowledge graphs with
controlled vocabularies for the naming of concepts and
relations.

Being tightly coupled to scientific context, reusabil-
ity is more challenging to achieve. Guidelines have
been proposed for FAIR sharing of genomic data [23],
however, proposing and evaluating reusability is still a
challenging and work in progress [24]. In this work, we
focus on reusable data as annotated with sufficiently
complete information allowing, without needs for ex-
ternal resources: traceability, interpretability, under-
standability, and usage by humans or machines.

To be traceable, provenance traces are mandatory
for tracking the data generation process.

To be interpretable, contextual data [11] are manda-
tory, this includes: i) Scientific context in terms of
Claims, Research lab, Experimental conditions, previ-
ous evidence (academic papers). ii) The technical con-
text in terms of material and methods, data sources,
used software (algorithm, queries) and hardware.

To be understandable by itself, data must be anno-
tated with domain-specific vocabularies. For instance,
to capture knowledge associated with the data process-
ing steps, we can rely on EDAM4 which is actively de-

4http://edamontology.org

veloped and used in the context of the Bio.Tools reg-
istry, and which organizes common terms used in the
field of bioinformatics. However, these annotations on
processing tools do not capture the scientific context
in which a workflow takes place. To address this issue,
we rely on the Micropublications [25] ontology which
has been proposed to formally represent scientific ap-
proaches, hypothesis, claims, or pieces of evidence, in
the direction of machine-tractable academic papers.

Figure 2 illustrates our approach to provide more
reusable data. The first step consists in capturing
provenance for all workflow runs. PROV5 is the de
facto standard for describing and exchanging prove-
nance graphs. Although capturing provenance can be
easily managed in workflow engines, there is no sys-
tematic way to link a PROV Activity (the actual execu-
tion of a tool) to the relevant software Agent (i.e. the
software responsible for the actual data processing). To
address this issue we propose to provide, at workflow
design time, the tool’s identifier in the tool catalogue.
This allows to generate a provenance trace which asso-
ciates (prov:wasAssociatedWith) each execution, and
thus each consumed and produced data to the software
identifier.

Then, we assemble a bioinformatics knowledge
graph which links together (1) the tools annotations,
gathered from the Bio.Tools registry, and providing in-
formation on the functions of the tools (bioinformat-
ics EDAM operations) and which kind of data they
consume and produce, (2) the complete EDAM ontol-
ogy, to gather for instance the community-agreed defi-
nitions and synonyms for bioinformatics concepts, (3)
the PROV graph resulting from a workflow execution
which provides fine-grained technical and domain-
agnostic provenance metadata, and (4) the experi-
mental context using Micro-publication for scientific
claims and hypothesis associated to the experiment.

Finally, based on domain-specific provenance queries,
the last step consists in extracting few and meaning-
ful data from the knowledge graph, to provide scientist
with more reusable intermediate or final results, and to
provide machines findable and query-able data stories.

In the remainder of this section, we rely on the
SPARQL query language to interact with the knowl-
edge graph in terms of knowledge extraction and
knowledge enrichment.

5https://www.w3.org/TR/prov-o/

http://edamontology.org
https://www.w3.org/TR/prov-o/
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Fig. 2. Knowledge graph based on workflow provenance and tool annotations to automate the production of human- and machine- oriented data
summarises.

SELECT ?d_label ?title ?f_def ?st WHERE {
?d rdf:type prov:Entity ;

prov:wasGeneratedBy ?x ;
prov:wasAssociatedWith ?tool ;
rdfs:label ?d_label .

?tool dc:title ?title ;
biotools:has_function ?f .

?f rdfs:label ?f_label ;
oboInOwl:hasDefinition ?f_def .

?c rdf:type mp:Claim ;
mp:statement ?st .

}

Query 1: SPARQL query aimed at linking processed
data to the processing tool and the definition of what is
done on data.

CONSTRUCT {
?x2 p-plan:wasPreceededBy ?x1 .
?x2 prov:wasAssociatedWith ?t2 .
?x1 prov:wasAssociatedWith ?t1 .
?t1 biotools:has_function ?f1 .
?f1 rdfs:label ?f1_label .
?t2 biotools:has_function ?f2 .
?f2 rdfs:label ?f2_label .

} WHERE {
?d2 prov:wasDerivedFrom ?d1 .

?d2 prov:wasGeneratedBy ?x2 ;
prov:wasAssociatedWith ?t2 ;
rdfs:label ?d2_label .

?d1 prov:wasGeneratedBy ?x1 ;
prov:wasAssociatedWith ?t1 ;
rdfs:label ?d1_label .

?t1 biotools:has_function ?f1 .
?f1 rdfs:label ?f1_label .

?t2 biotools:has_function ?f2 .

?f2 rdfs:label ?f2_label .
}

Query 2: SPARQL query aimed at assembling an ab-
stract workflow based on what happened (provenance)
and how data were processed (domain-specific EDAM
annotations).

Query 1 aims at extracting and linking together
data artefacts with the definition of the bioinformat-
ics process they result from. In this SPARQL query,
we first identify data (prov:Entity), the tool execu-
tion they result from (prov:wasGeneratedBy), and
the used software (prov:wasAssociatedWith). Then
we retrieve from the Bio.Tools sub-graph the EDAM
annotation which specify the function of the tool
(biotools:has_function). The definition of the func-
tion of the tool is retrieved from the EDAM ontol-
ogy (oboInOwl:hasDefinition). Finally, we retrieve
the scientific context of the experiment by matching
statements expressed in natural language (mp:Claim,
mp:statement).

The Query 2 shows how a specific provenance
pattern can be matched and reshaped to provide a
summary of the main processing steps, in terms of
domain-specific concepts. The idea consists in identi-
fying all data derivation links (prov:wasDerivedFrom).
From the identified data, the tool executions are
then matched, as well as the corresponding software
agents. Similarly, as in the previous query, the last
piece of information to be identified is the function-
ality of the tools. This is done by exploiting the
biotools:has_function predicate. Once this graph pat-
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tern is matched, a new graph is created using a CON-
STRUCT query clause, to represent an ordered chain
of processing steps (p-plan:wasPreceededBy).

4. Experimental results and Discussion

4.1. Raw provenance traces from a bioinformatics
workflow execution

We experimented our approach on a production-
level exome-sequencing workflow6, designed and op-
erated by the GenoBird genomic and bioinformatics
core facility. It implements the motivating scenario we
introduced in section 2. We assume that, based on the
approach beforehand presented, the workflow has been
run, the associated provenance has been captured and
the knowledge graph has been assembled.

The resulting provenance graph consists in an RDF
graph with 555 triples leveraging the PROV-O ontol-
ogy. The following two tables show the distribution of
PROV classes and properties.

Table 1

Number of instances per PROV class, resulting from the execution
of the exome-sequencing workflow.

Classes Number of instances

prov:Entity 40
prov:Activity 26
prov:Bundle 1
prov:Agent 1
prov:Person 1

Interpreting this provenance graph is challenging
from a human perspective due to the number of nodes
and edges and, more importantly, due to the lack of
domain-specific terms.

4.2. Human-oriented data summaries

Based on query 1 and a textual template, we show
in Figure 3 sentences which have been automatically
generated from the knowledge graph. They intend to
provide scientists with self-explainable information on
how data were produced, and in which scientific con-
text, leveraging domain-specific terms.

Complex data analysis procedures would require a
long text and many logical articulations for being un-

6https://gitlab.univ-nantes.fr/bird_
pipeline_registry/exome-pipeline

Table 2

Number of predicates per PROV and RDF(S) property, resulting
from the execution of the exome-sequencing workflow.

Properties Number of predicates

prov:wasDerivedFrom 167
prov:used 100
rdf:type 69
prov:wasAssociatedWith 65
prov:wasGeneratedBy 39
rdfs:label 39
prov:endedAtTime 26
prov:startedAtTime 26
rdfs:comment 22
prov:wasAttributedTo 1
prov:generatedAtTime 1

[...]
The file <Samples/Sample1/BAM/Sample1.final.bam>
results from tool <gatk2_print_reads-IP> which
<Counting and summarising the number of short
sequence reads that map to genomic features.>
It was produced in the context of <Rare Coding
Variants in ANGPTL6 Are Associated with Familial
Forms of Intracranial Aneurysm>
[...]
The file <VCF/hapcaller.recal.combined.annot.
gnomad.vcf.gz> results from tool
<gatk2_variant_annotator-IP> which <Predict the
effect or function of an individual single
nucleotide polymorphism (SNP).>
It was produced in the context of <Rare Coding
Variants in ANGPTL6 Are Associated with Familial
Forms of Intracranial Aneurysm>
[...]

Fig. 3. Sentence-based data summaries providing, for a given file,
information on the tool the data originates from, and the definition
of what does the tool, based on the EDAM ontology.

derstandable. Visual diagrams provide a compact rep-
resentation for complex data processing and constitute
thus an interesting mean to assemble human-oriented
data summaries.

Figure 4 shows a summary diagram automatically
compiled from the bioinformatics knowledge graph
previously described in section 3. Black arrows repre-
sent the logical flow of data processing, and black el-
lipses represent the nature of data processing, in terms
of EDAM operations. The diagram highlights in blue
the Sample1.final.bam. It shows that this file re-
sults from a Read Summarisation step and is followed
by a Variant Calling step.

Another example for summary diagrams is provided
in Figure 5 which highlights the final VCF file and its
binary index. The diagram shows that these files result
from a processing step performing a SNP annotation,
as defined in the EDAM ontology.

https://gitlab.univ-nantes.fr/bird_pipeline_registry/exome-pipeline
https://gitlab.univ-nantes.fr/bird_pipeline_registry/exome-pipeline
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Fig. 4. The Sample1.final.bam file results from a Read Summarisation step and is followed by a Variant Calling step.

VCF/hapcaller.recal.combined.annot.gnomad.vcf.gz.tbi VCF/hapcaller.recal.combined.annot.gnomad.vcf.gz

Genetic variation analysis

Sequence feature detection

Sequence merging

Local alignment

Read mapping

Formatting

Indel detection

Variant calling
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Sequence analysis

Read summarisation

Generation Sequence alignmentSNP annotation Genome indexing

Fig. 5. Human-oriented diagram automatically compiled from the provenance and domain-specific knowledge graph.

These visualisations provide scientists with means
to situate an intermediate result, genomic sequences
aligned to a reference genome (BAM file), or ge-
nomic variants (VCF file) in the context of a com-
plex data analysis process. While an expert bioinfor-
matician won’t need these summaries, we consider that
expliciting and visualizing these summaries is of ma-
jor interest to better reuse/repurpose scientific data, or
even provide a first level of explanation in terms of
domain-specific concepts.

4.3. Machine-oriented data summaries

Linked Data principles advocate the use of con-
trolled vocabularies and ontologies to provide both
human- and machine-readable knowledge. We show

in Figure 6 how domain-specific statements on data,
typically their annotation with EDAM bioinformatics
concepts, can be aggregated and shared between ma-
chines by leveraging the NanoPublication vocabulary.
Published as Linked Data, these data summaries can
be semantically indexed and searched, in line with the
Findability of FAIR principles.

4.4. Implementation

Provenance capture. We slightly extended the Snake-
make [26] workflow engine with a provenance capture
module7. This module, written in Python, is a wrapper

7https://bitbucket.org/agaignar/
snakemake-provenance/src/provenance-capture

https://bitbucket.org/agaignar/snakemake-provenance/src/provenance-capture
https://bitbucket.org/agaignar/snakemake-provenance/src/provenance-capture
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Table 3
Enhancing reuse of processed data with FRESH

What ? How? Results
Traceable Provenance PROV traces

Interpertable Scientific and technical Context Micropublications vocabulary

Understandable Domain-Specific Context ontologies EDAM terms

For human Human-oriented data summaries Text and diagrams

For machine Machine-oriented data summaries NanoPublications

[...]
:head {

_:np1 a np:Nanopublication .
_:np1 np:hasAssertion :assertion .
_:np1 np:hasProvenance :provenance .
_:np1 np:hasPublicationInfo :pubInfo .

}

:assertion {
<http://snakemake-provenance/Samples/Sample1/
BAM/Sample1.merged.bai> rdfs:seeAlso
<http://edamontology.org/operation_3197> .

<http://snakemake-provenance/VCF/hapcaller.
indel.recal.filter.vcf.gz> rdfs:seeAlso
<http://edamontology.org/operation_3695> .

}
[...]

Fig. 6. An extract of a machine-oriented NanoPublication aggregat-
ing domain-specific assertions, provenance and publication informa-
tion.

Table 4
Time for producing data summaries

RDF Graph load time Text-based NanoPub. Graph-based
218 906 triples 22.7s 1.2s 61ms 1.5s

for the AbstractExecutor class. The same source code
is used to produce PROV RDF metadata when locally
running a workflow, or when exploiting parallelism in
an HPC environment, or when simulating a workflow.
Simulating a workflow is an interesting feature since
all data processing steps are generated by the work-
flow engine but not concretely executed. Nevertheless,
the capture of simulated provenance information is still
possible without paying for the generally required long
CPU-intensive tasks. This extension is under revision
for being integrated in the main development branch
of the SnakeMake workflow engine.
Knowledge graph assembly. We developed a Python
crawler8 that consumes the JSON representation of
the Bio.Tools bioinformatics registry and produces
an RDF data dump focusing on domain annotations
(EDAM ontology) and links to the reference papers.

8https://github.com/bio-tools/biotoolsShim/
tree/master/json2rdf

RDF dumps are nightly built and pushed to a dedicated
source code repository9.
Experimental setup. The results shown in section 4
were obtained by running a Jupyter Notebook. RDF
data loading and SPARQL query execution were
achieved through the Python RDFlib library. Python
string templates were used to assemble the NanoPub-
lication while NetworkX, PyDot and GraphViz were
used for basic graph visualisations.

We simulated the production-level exome-sequen-
cing workflow to evaluate the computational cost of
producing data summaries from an RDF knowledge
graph. The simulation of the workflow execution al-
lowed to not being impacted by the actual comput-
ing cost of performing raw genomic data analysis. Ta-
ble 4 shows the cost using a 16GB, 2.9GHz Core i5
MacBook Pro desktop computer. We measured 22.7s
to load in memory the full knowledge graph (218 906
triples) covering the workflow claims and its prove-
nance graph, the Bio.Tools RDF dump, and the EDAM
ontology. The sentence-based data summaries have
been obtained in 1.2s, the machine-oriented NanoPub-
lication has been generated in 61ms, and finally 1.5s
to reshape and display the graph-based data summary.
This overhead can be considered as negligible com-
pared to the computing resources required to analyse
exome-sequencing data as shown in section 2.

To reproduce the human- and machine-oriented data
summaries, this Jupyter Notebook is available through
a source code repository10. To go beyond the provided
experimental results, and to apply more generally the
FRESH approach, the following requirements should
be satisfied:

– the overall data analysis process should be for-
malised into a computational workflow,

– the running workflow management system should
be able to dynamically capture generic prove-

9https://github.com/bio-tools/biotoolsRdf
10https://github.com/albangaignard/

fresh-toolbox

https://github.com/bio-tools/biotoolsShim/tree/master/json2rdf
https://github.com/bio-tools/biotoolsShim/tree/master/json2rdf
https://github.com/bio-tools/biotoolsRdf
https://github.com/albangaignard/fresh-toolbox
https://github.com/albangaignard/fresh-toolbox
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nance metadata as Linked Data, following the
PROV-O ontology,

– the run tools should be semantically annotated
with domain-specific concepts. These descrip-
tions should be accessible in a machine-actionable
registry through a SPARQL endpoint,

– mappings between workflow steps and the iden-
tifiers of the semantically annotated tools should
be provided in the workflow specification so that
provenance traces refer to semantically annotated
tools.

4.5. Discussion

The validation we reported has shown that it is pos-
sible to generate data summaries that provide valu-
able information about workflow data. In doing so,
we focus on domain-specific annotations to promote
the findability and reuse of data processed by scien-
tific workflows with particular attention to genomics
workflows. This is justified by the fact that FRESH
meets the findability and reusability criteria set up by
the FAIR community11.

Regarding findability, FRESH partly meets require-
ments F1 ((Meta)data are assigned a globally unique
and persistent identifier), F2 (Data are described with
rich metadata) and F3 (Metadata clearly and explicitly
include the identifier of the data they describe) since
(i) we assign Universal Unique Identifiers (UUIDs)
to provenance artefacts and (ii) we reuse the NanoP-
ublication framework, and the EDAM bioinformat-
ics ontology to share and reuse intermediate data re-
sults based on rich metadata. Although the generated
nanopublications are not yet indexed in a searchable
resource, they could be published either through a
SPARQL endpoint, or through the network of peer
NanoPublication servers.

Regarding reusability, Table 3 points out the reusabil-
ity aspects of FRESH in line with the FAIR commu-
nity requirements. In particular, we note that FRESH
is aligned with R1.2 ((meta)data are associated with
detailed provenance) and R1.3. ((meta)data meet domain-
relevant community standards). As illustrated in the
previous sections, FRESH can be used to generate
human-oriented data summaries or machine-oriented
data summaries.

Still in the context of genomic data analysis, a typ-
ical reuse scenario would consists in exploiting as in-

11https://www.go-fair.org/fair-principles

puts, the annotated genomic variants (in blue in Fig-
ure 4), to conduct a rare variant statistical analysis.
If we consider that no semantics is attached to the
names of files or tools, domain-agnostic provenance
would fail in providing information on the nature of
data processing. By looking on the human-oriented di-
agram, or by letting an algorithm query the machine-
oriented nanopublication produced by FRESH, sci-
entists would be able to understand that the file re-
sults from an annotation of single nucleotide polymor-
phisms (SNPs) which was preceded by a variant call-
ing step itself preceded by an insertion/deletion (Indel)
detection step.

We focused in this work on the bioinformatics do-
main and leveraged Bio.Tools, a large-scale commu-
nity effort aimed at semantically cataloguing avail-
able algorithms/tools. As soon as semantic tools cat-
alogues are available for other domains, FRESH can
be applied to enhance the findability and reusability
of processed data. Even if more recent, similar efforts
address the bioimaging community through the setup
of the BISE12 bioimaging search engine (Neubias EU
COST Action). Annotated with a bioimaging-specific
EDAM extension, this tool registry could be queried
to annotate bioimaging data following the same ap-
proach.

In our work, we validated our solution by manu-
ally inspecting the usefulness of the summaries that are
constructed given a real-life workflow. That said, we
believe that there is a need for a benchmark that can be
utilized by the community to systematically assess and
compare the effectiveness of the proposed solutions.
We also think that such a benchmark should be the
result of a community-led effort to cater for different
needs/requirements and different scientific domains.

5. Related Work

Our work is related to proposals that seek to enable
and facilitate the reproducibility and reuse of scien-
tific artefacts and findings. We have seen recently the
emergence of a number of solutions that assist scien-
tists in the tasks of packaging resources that are neces-
sary for preserving and reproducing their experiments.
For example, OBI (Ontology for Biomedical Investi-
gations) [27] and the ISA (Investigation, Study, As-
say) model [28] are two widely used community mod-

12http://www.biii.eu
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els from the life science domain for describing ex-
periments and investigations. OBI provides common
terms, like investigations or experiments to describe
investigations in the biomedical domain. It also allows
the use of domain-specific vocabularies or ontologies
to characterize experiment factors involved in the in-
vestigation. ISA on the other hand structures the de-
scriptions about an investigation into three levels: In-
vestigation, for describing the overall goals and means
used in the experiment, study for documenting infor-
mation about the subject under study and treatments
that it may have undergone, and assay for representing
the measurements performed on the subjects. Research
Objects [29] is a workflow-friendly solution that pro-
vides a suite of ontologies that can be used for aggre-
gating workflow specification together with its execu-
tions and annotations informing on the scientific hy-
pothesis and other domain annotations. ReproZip [7]
is another solution that helps users create relatively
lightweight packages that include all the dependencies
required to reproduce a workflow for experiments that
are executed using scripts, in particular, Python scripts.

The above solutions are useful in that they help sci-
entists package information they have about the ex-
periment into a single container. However, they do not
help scientists in actually annotating or reporting the
findings of their experiments. In this respect, Alper et
al. [9] and Gaignard et al. [8] developed solutions that
provide the users by the means for deriving annotations
for workflow results and for summarizing the prove-
nance information provided by the workflow systems.
Such summaries are utilized for reporting purposes.

While we recognize that such proposals are of great
help to the scientists and can be instrumental to a cer-
tain extent to check the repeatability of experiments,
they are missing opportunities when it comes to the
reuse of the intermediate data products that are gener-
ated by their experiments. Indeed, the focus in the re-
ports generated by the scientist is put on their scientific
findings, documenting the hypothesis and experiment
they used, and in certain cases, the datasets obtained as
a result of their experiment. The intermediate datasets,
which are by-products of the internal steps of the ex-
periment, are in most cases buried in the provenance
of the experiment if not reported at all. The availability
of such intermediate datasets can be of value to third-
party scientists to run their own experiment. This does
not only save time for those scientists in that they can
use readily available datasets but also save time and
resources since some intermediate datasets are gener-

ated using large-scale resource- and compute-intensive
scripts or modules.

Of particular interest to our work are the standards
developed by the semantic web community for cap-
turing provenance, notably the W3C PROV-O recom-
mendation, and its workflow-oriented extensions, e.g.,
ProvONE 13, OPMW 14, Wfprov 15 and P-Plan [30].
The availability of provenance provides the means for
the scientist to issues queries on Why and How data
were produced. However, it does not necessarily al-
low the scientists to examine questions such as "Is
this data helpful for my computational experiment ?",
or "if potentially useful, does this data has enough
quality ?". These queries are particularly challeng-
ing since the capture of related meta-data is in gen-
eral domain-dependent and should be automated. This
is partly due to the fact that provenance information
can be overwhelming (large graphs), and partly be-
cause of a lack of domain annotations. In previous
work [8], we proposed PoeM an approach to gen-
erate human-readable experiment reports for scien-
tific workflows based on provenance and users anno-
tations. SHARP [31,32] extends PoeM for workflows
running in different systems and producing heteroge-
neous PROV traces. In this work, we capitalize in
our previous work to annotate and summarize prove-
nance information. In doing so, we focus on Workflow
data products re-usability as opposed to the workflow
itself. As data re-usability require to meet domain-
relevant community standards (R1.3 of FAIR princi-
ples). We rely on Bio.tools (https://bio.tools/) registry
to discover tools descriptions and automatically gener-
ate domain-specific data annotations.

The proposal by Garijo and Gil [10] is perhaps the
closest to ours in the sense that it focuses on data (as
opposed to the experiment as a whole), and gener-
ate textual narratives from provenance information that
is human-readable. The key idea of data narratives is
to keep detailed provenance records of how an anal-
ysis was done, and to automatically generate human-
readable description of those records that can be pre-
sented to users and ultimately included in papers or re-
ports. The objective that we set out in this paper is dif-
ferent from that by Garijo and Gil in that we do not aim
to generate narratives. Instead, we focus on annotating
intermediate workflow data. The scientific communi-

13https://purl.dataone.org/provone-v1-dev
14https://www.opmw.org
15http://purl.org/wf4ever/wfprov#
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ties have already investigated solutions for summariz-
ing and reusing workflows (see e.g., [33,34]).

The solution proposed by Starlinger et al. [33] aims
at identifying similarities between workflows. The au-
thors exploit three sources of information, namely the
labels used to describe the modules that compose the
workflow, the structure (i.e., dataflow) of the workflow,
and authorship information. In doing so, the authors
do not tackle the problem that the human user faces
when trying to understand a potentially complex work-
flow. Such a solution can be envisaged when the aim
is to effectively search similar workflows in a repos-
itory given an initial input workflow. Our objective
is different in that we aim to promote the reuse not
only of workflows but also of the data products that
the execution of such workflows produce, and we do
so by leveraging summarisation techniques to produce
human-friendly account on the data products.

Cerezo et al. [34] proposed a conceptual workflow
model, close to end-user’s domain of expertise, aimed
at enhancing the sharing and reuse of scientific work-
flows. These conceptual workflows are conceived at
workflow design-time and are then semi-automatically
refined into concrete executable workflows through
a set of semantic transformations. Although our ap-
proach tackles reuse in data-driven sciences, we focus
on the reuse of intermediate produced/consumed data
whereas Cerezo et al. focus on the reuse of the data
transformation process itself. In addition, our approach
is bottom-up, based on workflow executions, and tends
to limit the solicitation of domain experts, by leverag-
ing already running semantically annotated tools cata-
logues.

It is worth noting that our work is complementary
and compatible with the work by Garijo and Gil. In
particular, the annotations and provenance summaries
generated by the solution we propose can be used to
feed the system developed by Garijo and Gil to gener-
ate more concise and informative narratives.

Our work is also related to the efforts of the scien-
tific community to create open repositories for the pub-
lication of scientific data. For example, Figshare16 and
Dataverse17, which help academic institutions store,
share and manage all of their research outputs. The
data summaries that we produce can be published in
such repositories. However, we believe that the sum-
maries that we produce are better suited for reposito-

16https://figshare.com/
17https://dataverse.org/

ries that publish knowledge graphs, e.g., the one cre-
ated by the whyis project18. This project proposes a
nano-scale knowledge graph infrastructure to support
domain-aware management and curation of knowledge
from different sources.

6. Conclusion and Future Works

In this paper, we proposed FRESH, an approach
for making scientific workflow data more findable
and reusable, with a focus on genomic workflows. To
do so, we utilized data-summaries, which are gen-
erated based on provenance and domain-specific on-
tologies. FRESH comes in two flavors by provid-
ing concise human-oriented and machine-oriented data
summaries. Experimentation with a production-level
exome-sequencing workflow shows the effectiveness
of FRESH in terms of time, the overheads of produc-
ing human-oriented and machine-oriented data sum-
maries are negligible compared to the computing re-
sources required to analyze exome-sequencing data.
FRESH open several perspectives, which we intend to
pursue in our future works.

So far, we have focused in FRESH on the findability
(F) and reuse (R) of workflow data products. We intend
to extend FRESH to cater for the two remaining FAIR
criteria (A, I). To do so, we intend to rethink and re-
define interoperability and accessibility when dealing
with workflow data products and public catalogues,
before proposing solutions to cater for them. We then
plan to evaluate the effectiveness of FRESH through
a user study when it comes to the reuse of genomic
data, and its portability to other domains and commu-
nities. Finally, we intend to identify means for the in-
centivization of scientists to (1) provide tools with high
quality domain-specific annotations (2) generate and
use domain-specific data summaries to promote reuse.
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