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Abstract. A vision of a truly multilingual Semantic Web has found strong support with the Linguistic Linked Open Data com-
munity. Standards, such as OntoLex-Lemon, highlight the importance of explicit linguistic modeling in relation to ontologies and
knowledge graphs. Nevertheless, there is room for improvement in terms of automation, usability, and interoperability. Neural
Language Models have achieved several breakthroughs and successes considerably beyond Natural Language Processing (NLP)
tasks and recently also in terms of multimodal representations. Several paths naturally open up to port these successes to the Se-
mantic Web, from automatically translating linguistic information associated with structured knowledge resources to multimodal
question-answering with machine translation. Language is also an important vehicle for culture, an aspect that deserves consid-
erably more attention. Building on existing approaches, this article envisions joint forces between Neural Language Models and
Semantic Web technologies for multilingual, transcultural, and multimodal information access and presents open challenges and
opportunities in this direction.
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1. Introduction

One central endeavor of the Semantic Web (SW) [1]
is intelligent access to heterogeneous and distributed
sources of knowledge. However, limiting this access to
natural languages predominant in the world inevitably
creates biases and hegemonies. Supporters of a multi-
lingual SW can account for several successes to over-
come the language barrier, from multilingual struc-
tured knowledge resources, such as BabelNet [2] and
Framester [3], to multilingual methods and applica-
tions (cf. e.g. [4]). Nevertheless, approaches that fur-
ther improve the level of automation, usability, and in-
teroperability are required.

This article proposes a vision that is based on Neu-
ral Language Models (NLMs) to foster a multilingual,

transcultural, and multimodal Semantic Web. Its con-
tribution is a detailed exploration of this vision based
on existing approaches and an outline of currently
valid challenges and envisioned opportunities, which
provides a solid starting point for the Semantic Web
and NLP community to initiate and/or advance such
interdisciplinary research.

A language model is designed to assign probabili-
ties to an input sequence, i.e., learn a joint probabil-
ity function of sequences of signs. Based on this idea,
powerful Natural Language Processing (NLP) appli-
cations from machine translation (e.g. [5]) and natu-
ral language generation (e.g. [6]) to textual entailment
(e.g. [7, 8]) have been proposed.

NLMs learn implicit semantic representations of se-
quences on their hidden layer(s), resulting in a dense
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real-valued vector for each word, phrase, sentence,
document, or knowledge base triple, which turned out
to be a powerful representation. Such embeddings have
been applied to a large variety of traditional SW tasks,
from link prediction to ontology alignment [9]. Recent
NLMs have provided a strong backbone to many Arti-
ficial Intelligence (AI) applications that go beyond tra-
ditional NLP tasks, see for instance [10] for a wide
range of tasks, including a new best performance on
the Winograd Schema Challenge. Resolving pronouns
in such schemas requires world knowledge, such as
spatio-temporal relations and mental states.

Regarding automation and usability of SW tech-
nologies, NLMs have successfully been applied to
translating from natural language to natural language
but also to ontology representation [11] and structured
query [12] languages. Automatically translating natu-
ral language questions to queries can improve the us-
ability of SW query interfaces. However, the usage
of NLMs goes considerably beyond translating lan-
guages, structured or unstructured. Neural Machine
Translation (NMT) based on NLMs has even been ap-
plied to noise-tolerant RDFS reasoning [13].

Language enables communication and at the same
time serves as a vehicle for cultural and social iden-
tity. This function of natural language should find con-
sideration in approaches to the multilingual Seman-
tic Web by building on decades of research on cross-
cultural and transcultural communication (e.g. [14]).
NLMs potentially provide interesting methods to port
information learned for one language and culture to an-
other in form of domain adaptation and transfer learn-
ing [15, 16]. Nevertheless, a more thorough basis is
required to capture cultural aspects, such as cognitive
principles guiding our communication.

Communication in natural language is by no means
confined to textual boundaries and can be signed, spo-
ken, or written. This calls for multimodal represen-
tations of language in relation to SW technologies,
which finds strong support in state-of-the-art language
modeling. Recent advances of NLMs provide power-
ful approaches that allow flexible alignments between
text and video [17] and translate directly from speech
to speech without a need for textual transcriptions [18].

In short, this vision goes beyond plurality of lan-
guage and envisions multilingual, transcultural, and
multimodal information access backed by NLMs and
the Semantic Web. As preliminaries, this article first
briefly defines language models and the Multilingual
Semantic Web. The sections Multilingual, Transcul-
tural, and Multimodal detail existing joint approaches

on different SW tasks, each of which is followed by
a description of the challenges and opportunities for
joining language modeling and SW approaches. Nei-
ther of these can be fully accounted for in this article,
but are detailed to the point of grounding envisioned
future research directions.

2. Language Model: A Brief Definition

Language modeling has been key to the success of
NLP applications and tasks, such as machine transla-
tion, speech recognition, question-answering, spelling
correction and many more. A language model (LM)
predicts a probability of a previously unseen sequence
of words based on a preceding learned probability dis-
tribution over the whole vocabulary of the training cor-
pus. In general, the joint probability of a sequence is
decomposed as the product of conditional probabili-
ties of co-occurring words, two in the case of bigrams,
three in the case of trigrams, and so on. Smoothing is a
procedure to avoid zero probabilities due to unknown
words (cf. e.g. [19] for more details).

Neural language models (NLMs) can learn dis-
tributed representations without smoothing and gen-
eralize well across contexts. Training tasks generally
consist in predicting a center word of a sequence given
its context words (skip-gram) or predicting a context
given a center word (CBOW), which where popularly
introduced by [20]. Both tasks train word embeddings
as values of their hidden layers and the base methods
have been extended to train vector representations of
knowledge graph triples (e.g. [21]).

A common architectural style is that of encoder-
decoder, either of which can be independent mod-
els. One recent best-performer in machine translation,
the Transformer model [5], has soon been propagated
to many NLP tasks, from multi-task approaches [10]
to text-video combinations [17]. A Transformer com-
bines multi-head attention, that is, a mechanism to sin-
gle out central words in sequences for given queries,
and feedfoward layers in an encoder-decoder archi-
tecture. Frequently, this architecture is combined with
Byte Pair Encodings (PBE), a form of data compres-
sion [22] that iteratively merges most frequent charac-
ters or character sequences with a single, unused byte.
Since it evaluates words on character-level it strongly
mitigates the problem of unknown words.
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3. Multilingual Semantic Web: A Long-Standing
Endeavor

For several decades multiple research endeavors
[4, 23] have made it their mission to provide a truly
multilingual SW. To this end, algorithms and systems
are required that help overcome linguistic and national
boundaries, to grant information access to users of dif-
ferent cultures and languages. Limiting such access
to languages spoken by majorities inevitably creates
a bias. The SW, with its language-independent repre-
sentation of knowledge, provides an excellent anchor
point for multilingual, transcultural, and multimodal
information access.

As a first step towards a multilingual SW, several
mediation mechanisms to translate between abstract
conceptual layers and lexical manifestations, which
frequently are different across languages and cultures,
have been proposed. In fact, concepts might exist in
one language but not in another, so called lexical gaps,
such as the German “Schadenfreude” (joy when some-
thing bad happens to someone else) that has been read-
ily adopted in English due to a lack of an equivalence.

Knoweldge representation needs to be able to ac-
commodate such differences. First, the OntoLex-
Lemon model that provides an ontology-lexicon inter-
face has found broad uptake by the community and
has recently been published as a W3C report [24].
Second, similar models have been proposed to in-
terchange domain-specific terminological information
grounded in ontological resources [25]. Combined rep-
resentations of linguistic, terminological, and ontolog-
ical knoweldge have been modeled [26]. As a final ex-
ample, the NLP Interchange Format (NIF) [27] based
on Linked Data principles serves to improve the inter-
operability of NLP tools.

Rich combinations of structured knowledge and lin-
guistic information can be applied to a variety of tasks,
such as ontology-based information extraction [28],
completing and correcting natural language informa-
tion [29], translating from knowledge resource to nat-
ural language and/or vice versa [30], and ontology
learning from text [31].

Over the past few decades the Linked Open Data
(LOD) cloud and resources published in the Re-
source Description Framework (RDF) and Web On-
tology Language (OWL) have experiences a tremen-
dous growth, however, predominantly in English with
several notable exceptions, such as BabelNet [2] and
WikiData [32]. To foster this endeavor, automated
means, such as NLMs, can improve and fasten ap-

proaches. While this section detailed initiatives by the
multilingual SW community, Section 4 focuses on the
utilization of NLMs towards a multilingual SW.

4. Multilingual

Within the context of this article, multilingual refers
to this aspect of the presented vision, that is, how
NLMs can contribute to multilingual SW tasks and
technologies.

Machine Translating the SW: One most immediate
application scenario of NLMs is the translation of nat-
ural language contents of the SW. Ontology labels, es-
pecially in domain ontologies, provide a rich termino-
logical layer, but are still predominantly in English. To
overcome this problem, Neural Machine Translation
(NMT) and Statistical Machine Translation (SMT)
models have been applied to translate ontology la-
bels [15]. As an interesting side-aspect, the impact
of injection approaches of domain-specific termino-
logical knowledge to NMT and SMT on the transla-
tion quality are evaluated. The most promising knowl-
edge augmentation method is domain adaptation of a
trained model with terminological expressions, which
has been utilized before to translate ontology labels
[33] and fine-tune machine translation [34].
Challenges and Opportunities: As concluded in a re-
cent survey on machine translation and SW technolo-
gies [35], this combination is still in its infancy. SW
technologies have the potential to aid NMT models for
disambiguating senses and targeting NMT to particu-
lar domains of discourse, which in turn can be applied
to produce multilingual domain-specific ontology de-
scriptions.

A most promising direction for such combinations
lies in the injection of domain, lexical, and terminolog-
ical knowledge into NMT systems. While some pre-
liminary evaluations, such as the impact of linguis-
tic processing results injected into a neural question-
answering system, are available [36], a systematic in-
vestigation is yet to be performed. Knowledge injec-
tion or augmentation holds the potential to help bridge
the neural-symbolic gap (cf. e.g. [37]) and support Ex-
plainable AI (cf. e.g. [38]). It refers to the task of ac-
tively including external (knowledge) resources in the
training process of NLMs, e.g. by continuing training
on a pre-trained model with such a resource or by ad-
justing the attention mechanism during training with
external knowledge.
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This topic of injecting knowledge to NLMs implic-
itly raises an important challenge posed to the Se-
mantic Web community. Current semantic represen-
tations, such as RDF and OWL, while readily em-
braced by the multilingual Semantic Web and Linguis-
tic Linked Open Data (LLOD) community, might re-
quire an adaptation towards the more lightweight end
in order to be readily adopted by the machine learning
and NLP community.

Finally, a fully automated and NLM-based transla-
tion of existing ontology labels to rich linguistic rep-
resentations in form of ontology-lexicon or ontology-
terminology models would be a very interesting appli-
cation of NMT, which brings us to the next topic of
learning structured languages.

Machine Translating to Structured Languages:
NMT can not only translate natural languages. Early
neural approaches utilized joint knowledge base and
language embeddings to extract relations [39]. [40]
utilize multilingual natural-language patterns to learn
RDF predicates, which are refined by way of a feedfor-
ward neural network. Recent approaches treat the en-
tire problem of structure learning as a machine trans-
lation task and utilized an NMT system to learn a spe-
cific subset of Description Logic formulas from def-
initions [11]. For instance, from the input A bee is
an animal that produces honey the model produces
bee v animal u ∃produces.honey.

A long-standing endeavor in Semantic Web research
has been the automated translation of natural lan-
guage questions to SPARQL queries. Since SPARQL
requires syntactic and semantic expertise, a translation
from natural language could considerably boost its up-
take and make Semantic Web resources broadly avail-
able without any prior knowledge of representation
and query languages. A broad test of existing NMT
models to the task of translating from natural language
to SPARQL has been proposed [12].
Challenges and Opportunities: One substantial fu-
ture application scenario of NLMs is that of learning
structured knowledge resources. Ontology learning ex-
periments with NLMs focus on a subset of logical ex-
pressions and on English only. However, automating
the process of extracting structured knowledge from
natural languages, holds the promise of obtaining con-
ceptualizations specific to the language and culture.

This joining of both technologies is not only attrac-
tive for its promised speed of creating resources, but
also for the ability to adapt trained models to new do-
mains and languages, such as zero-shot translation, the

ability to translate from one language to another with-
out ever explicitly training the language model on this
particular language pair. Thus, these approaches have
the potential to consider low-resource languages. As
a central problem in NLP is the predominance of cer-
tain widespread language varieties in applications, this
could boost the uptake of SW technologies in machine
learning.

Machine Translation for Reasoning: A very recent
approach is that of tailoring embeddings to accommo-
date RDFS reasoning in an NMT task [13]. To this
end, RDF graphs are layered and encoded as adjacency
matrices, where each layer layout represents a graph
word. Input graph and entailments are then represented
as sequences of graph words, which enables treating
RDFS reasoning as a machine translation task.
Challenges and Opportunities: Deductive reasoning
as a machine translation task is attractive due to its po-
tential reasoning speed, a major challenge for reason-
ing engines. Encoding information as input to NLM-
based reasoning engines is an open research topic. [13]
suggest layered graph word embeddings as a first ap-
proach. However, there is a lot of room for experimen-
tation and further proposals in this regard.

It would be interesting to evaluate whether embed-
dings learned for the purpose of reasoning in one for-
malism might allow for transitioning to or similarity
measures of elements or statements in different rep-
resentation languages. In other words, this could be a
potential approach for tackling diversity of ontology
languages, as proposed by [41] in form of a meta lan-
guage. For instance, distributed vector representations
learned for an ontology represented in RDF might be
comparable to embeddings trained on an OWL ontol-
ogy or on information encoded in the Unified Model-
ing Language (UML).

The challenge in combining machine learning and
logic lies in conciliating advantages of both with-
out aggravating their limitations. The advantages of
symbolic approaches are the provision of sound and
explainable reasoning, while neural approaches with
NLMs have the potential of providing fast and robust
learning. The difficulty in combining them, in fact, is
the current low-level representation of information in
neural approaches instead of symbolic representations
as done in logic. An additional opportunity here is a
hybrid interaction of both methodologies, as proposed
for image segmentation by [42]. The ability of a fully
integrated or hybrid solution to support explainability
of NLMs might currently be the most trendy opportu-
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nity. A discussion specific to neural-symbolic systems
can be found in [37] in this issue.

NLM-based ontology alignment: has been success-
fully applied to matching knowledge bases. For in-
stance, utilizing multilingual pretrained embeddings,
domain-specific industry classification standards could
be aligned [9]. The task of aligning large ontologies
has been subdivided into smaller, tractable tasks uti-
lizing a lexical index, neural embeddings, and locality
models [43].

A broader alignment strategy is that of bringing
together a multitude of resources from the Linguis-
tic Linked Open Data (LLOD) cloud with ontology
resources in Framester [3]. Based on this resource,
frame-based embeddings are trained and utilized for
knowledge reconciliation purposes [44], but could also
be applied to a wide range of NLP tasks.
Challenges and Opportunities: NLM-based align-
ment strategies could benefit from the previous tasks in
form of using neural-symbolic reasoning to align large
multilingual, transcultural, and multimodal ontologies.
In addition, the substantial surge of knowledge graph
embedding approaches could be joint with the multi-
tude of word embedding models, building on and con-
tributing to the tradition of modeling at the ontology-
natural language interface of the SW community. Joint
NLM- and SW-based alignment approaches can poten-
tially also foster the transitioning from knowledge rep-
resented in one cultural context to another.

5. Transcultural

When it comes to culture, a multitude of prefixes is
commonplace: cross-cultural, intercultural, multicul-
tural, and transcultural. Cross-cultural refers to ana-
lytic comparative approaches of different cultures. In-
tercultural generally establishes a certain understand-
ing for different cultures. Multicultural refers to a plu-
rality of cultures even within a society. And finally
transcultural refers to a social concept that denotes a
joint shared culture irrespective of origin or nationality.
With an ever-growing global connectivity, this last pre-
fix best denotes what this vision entails. Rather than a
mere coexisting alignment of cultural representations,
a capacity to move between and within cultural and
social identity is foreseen. Importance of differences
in semantic modeling across cultures finds support in
cross-cultural neuro-scientific findings that show dif-

ferences in categorization and in processing semantic
relationships across cultures [45].

Cultural Evolution: Cultural evolution is closely tied
to evolutionary biology science and Darwinian evolu-
tionary principles [46]. A set of algorithms based on
evolution by natural selection, that is, variation, hered-
itiy, and selection, has been put forward and recently
extended by fission, fusion, and cooperation in their
application to cultural phenomena [47]. As a basic as-
sumption, biological concepts for the origin of living
beings can be mapped to the cultural and linguistic do-
main, which have then been combined in a theory of
cultural language evolution [48]. An application of the
SW tests this assumption in terms of ontology align-
ments and evolutionary alignment repair in cultural en-
vironments utilizing a multi-agent system [49].

Challenges and Opportunities: A theory and experi-
ments for the cultural evolution of human language has
been thoroughly investigated [48]. It studies, for in-
stance, how linguistic variants are generated in a pop-
ulation and on which basis some variants survive and
become dominant. As a social phenomenon, language
features cooperative interaction patterns, such as open-
ended questions. While many of these phenomena are
language-specific, it is highly unlikely that vocabular-
ies and grammars are stored as different language sys-
tems by users. Instead, a widely accepted theory is that
of storing such knowledge in form of constructions, as-
sociating meaning with form. One construction stores
many constraints for efficient parsing and is presumed
to incorporate several different language systems [48].

Various grammars have been proposed to capture
such linguistic constructions. NLMs potentially com-
plement tested construction grammar approaches, in-
creasing the level of automation and potentially do-
main coverage by means of transfer learning. In par-
ticular, NLM-based multi-agent system negotiations
of meaning could foster transcultural modeling of
cultural evolution. An alternative way of modeling
cultural language evolution is that of formal game-
theoretic semantics. Bringing NLMs and formal se-
mantics of constructions spanning across language
systems together could potentially boost a transcultural
SW. In fact, a SW that facilitates cultural exchange
cannot only support human users, but building on evo-
lutionary theories can foster a dynamically evolving
SW that embraces diversity rather than rigidity, which
again raises the challenge of less focus on formaliza-
tion and more focus on usability and robustness.
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Cultural Heritage: denotes physical artifacts as much
as intangible attributes of a culture or society from
the past. Several SW approaches can be found, from
cultural heritage modeling (e.g, [50]) to creating
ontology-based lexicographic tools for the study of an-
cient culture to enable object-multilingual links [51].
Culture-specific knowledge graphs of cultural heritage
have been proposed, such as for Italy [52]. While there
is a multitude of NLM-based approaches, little over-
lap could be detected between NLM- and SW-based
research on cultural heritage.

Challenges and Opportunities: The range of possi-
ble joint approaches of NLM and SW technologies
to model cultural heritage includes all of the multi-
lingual approaches presented above and most of the
multimodal approaches presented below. For instance,
based on knowledge graphs, NLMs can be utilized to
analyze similarities and differences across cultural her-
itages as well as refine technologies to share and ana-
lyze cultural data. Neural-symbolic reasoning could be
particularly powerful for such alignments.

One of the most central challenges in terms of
cultural heritage is the linking and representing of
cultural data in a harmonized way across individual
data collections. Here symbolic ontology-based inte-
gration methods could strongly benefit from NLMs
and their ability to detect similarities even with noisy
data, bringing together rich semantic representations
and noise-tolerant, robust learners.

On a more local level, organizations procuring cul-
tural heritage data are frequently interested in a possi-
bility to provide highly personalized user experiences.
For instance, a virtual tour through a museum or ar-
chaeological site should be fully in the control of each
user. In this direction it would be interesting to ex-
plore the joint power of NLM-based SW technologies
or SW-empowered NLMs to suggest or predict inter-
esting paths or items for each individual user.

Culture-specific Modeling: Another important tran-
scultural SW connection is that of utilizing ontologies
for culture-specific modeling. For instance, [53] ex-
plore Australian Indigenous knowledge systems uti-
lizing SW technologies. When utilizing SW technolo-
gies for cross-cultural modeling, lexical gaps rapidly
become unavoidable. Cross-language information re-
trieval (CLIR) tasks equally encounter this problem,
and have come up with NLM-based methods to bridge
such lexical gaps [54]. Embedding spaces have also
been analyzed for their ability to represent culture-

specific association [55] and their ability for macro-
cultural modeling.
Challenges and Opportunities: Going from mod-
eling individual culture-specific knowledge represen-
tations to a transcultural one represents the biggest
challenge in this task. Domain ontologies potentially
provide a language-independent anchor for transcul-
tural knowledge modeling, joint with NLM-based
cross-language information retrieval and analysis ap-
proaches. Bringing both together enables transcul-
tural question-answering and potentially automated
localization approaches. By transcultural question-
answering, this article refers to the phenomenon of not
only foreseeing multilingual answers to queries posed
to a language-agnostic knowledge base, but the ability
to verbalize responses from such a knowledge base in
a variety of cultural spheres and states of cultural lan-
guage evolution. Localization differs from translation
in that it focuses on a regional adaptation of contents
more than their transformation to a different language
or linguistic variation. As such it takes cultural prefer-
ences into account.

One powerful aspect that could potentially boost
transcultural modeling is a solid cognitive basis, such
as multilingual knowledge extraction and modeling re-
lated to embodied cognition [56, 57]. Such a cognitive
framework can be utilized to analyze and model cul-
tural differences on a cognitive-conceptual basis rather
than a primarily data-driven approach.

One important aspect of culture are regional lin-
guistic differences. Considering dialects and linguis-
tic variations in machine translation and semantic
speech technologies is still an open field of research.
Rich variation-aware linguistic representation mod-
els in connection to ontologies, that is, extensions of
ontology-lexicon and ontology-terminology models,
injected into NLMs are promising for this task. Espe-
cially in this regard a connection to other modalities,
such as speech synthesis approaches, could bring sig-
nificant benefits.

6. Multimodal

NLMs promise to boost not only the SW’s multi-
linguality but are capable of contributing to its mul-
timodality. For the sake of the vision, a broad per-
spective will be adopted also considering multisen-
sory approaches, from vision to tactile. Such mul-
timodal representations can be utilized in intelligent
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conversational agents, multimodal information extrac-
tion, robotics, among many more.

Semantic Speech Technologies: Speech technologies
building on SW resources and NLM systems promise
to support important present-day applications, such
as assisted living. Google registered a patent on uti-
lizing language models for understanding conversa-
tions based on SW resources [58]. A speech interface
for question-answering systems has been proposed
[59], which, in combination with the above multilin-
gual strategies for NLM-based question answering,
could provide broad access to SW resources. Another
Google patent for reformulations of speech queries has
been registered [60], providing alternative queries if
the submitted one returns no results. Most of these
systems rely on text transcriptions utilizing automated
speech recognition (ASR) systems. The recently pub-
lished Translatotron [18] omits this step and translates
directly from speech to speech in the speaker’s voice.
Challenges and Opportunities: Intelligent voice in-
teraction is a booming business model as much as vi-
brant research field. Building on neural-symbolic rea-
soning, such systems could enable a multilingual, mul-
timodal query-answering system on formally struc-
tured resources. Major challenges here are similar to
those of transcultural modeling. Local contexts and
linguistic variations need to be taken into account
to grant broad information access and a high usabil-
ity. Nevertheless, achieving a speech-empowered SW
technologies strongly furthers the endeavor to break
down access barriers to represented information.

Semantic Video Technologies: In order to include the
visual-manual modality to convey meaning in form
of sign language, knowledge needs to be conveyed
by video. [61] combine speech synthesis, machine
translation, and SW technologies to create a machine-
readable knowledge representation for the Turkish sign
language. In consequence, NMT can be utilized to
translate between natural language and sign language,
as has been suggested utilizing the above sign lan-
guage representation for Turkish [62].
Challenges and Opportunities: Semantic video tech-
nologies still suffer from a lack of broad coverage in
terms of language and visual-manual modality. Estab-
lishing such a coverage potentially provides all users,
including users with special needs or illiterate users,
with access to information truly breaking down infor-
mation barriers. In fact, very few SW sign language
approaches can be found. Latest NLM advances can

contribute to automating and improving existing ap-
proaches. For instance, VideoBERT [17] treats video
frames as “video words” utilizing a vector quanti-
zation approach and an off-the-shelf speech recogni-
tion system to transcribe audio. Resulting represen-
tations allow for a seamless transition between text
and video. Further adding cross-modal reasoning ap-
proaches could boost the interface between video and
natural language [63]. A video-enabled NLM-based
SW can strongly support barrier-free online communi-
cation, especially if transformations between different
modalities are provided.

Semantic Sensor Web: A Semantic Sensor Web in
the Internet of Things vision [64] is probably the clos-
est corpus of related approaches. Building on SW en-
ablement or Linked Data standards, sensor data are
linked and annotated. Thus, SW query technologies
can be applied to sensor data [65]. Its link to language
models comes from the necessity of connecting sen-
sor data to human communication means, the human-
robot interface, such as natural language understand-
ing of robot instructions which has been shown to ben-
efit from ontology-natural language groundings [66].

Challenges and Opportunities: Linking sensory data
and language can boost human-robot interactions, as
sensory information, their semantic representation,
and neural-symbolic reasoning could be highly benefi-
cial to the task of explainable robotics and AI [38]. Re-
cent advances in terms of cross-modal predictions [67]
connected to SW technologies can potentially boost
cognitive AI systems.

One major challenge of connecting NLMs with se-
mantic sensor data is that of magnifying biases. NLMs
have been shown in multiple studies to easily suffer
from biases, which unfortunately is also true for sensor
data, thereby bearing the risk of multiplying and inten-
sifying biases across modalities. For example, sensors
in self-driving cars have been shown to detect lighter
skin tones better than darker ones [68].

Multisensor semantic data might also relate to neu-
ral patterns and the ability to automatically decode
them. A recent approach managed to reconstruct a
word from neural activation patterns from auditory in-
puts [69]. Thus, one future scenario of this neural-
symbolic vision is the application of SW and NLM
models in the brain-computer interface.
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7. Conclusion

Building on selected existing approaches, this arti-
cle laid out a vision of a multilingual, transcultural,
and multimodal Semantic Web (SW) utilizing Neural
Language Models (NLMs). Joining forces of SW and
NLMs can boost a wide variety of tasks, such as ex-
tracting data from different languages and channels,
formally interlinking them, and verbalizing logical an-
swers in natural language or sign language in response
to multimodal queries.

The biggest challenge and at the same time opportu-
nity is a seamless connection of and transition between
multilingual, transcultural, and multimodal knowledge
representations. Individual bridges across this big gap
have been built, such as transitioning from natural lan-
guage text to video and sign language. However, in-
tegrating transcultural representations requires further
investigations. In fact, cultural modeling and transcul-
tural alignments might be the pillar that requires most
further construction work to provide a footing for this
vision, which targets a truly unbiased and fully acces-
sible Semantic Web.

One central opportunity of this vision is the fact that
seamlessly accessibly and dynamic SW technologies
can foster not only cultural language evolution but si-
multaneously knowledge evolution. One key to this vi-
sion is thus an easily accessible representation mech-
anism - one that can easily be adopted by other com-
munities, such as machine learning - that strongly em-
braces diversity and boosts diversity-aware AI, which
in the end will foster robustness.

While the focus here was on benefits of SW tech-
nologies,some advantages that NLMs can obtain by
joining forces with SW technologies have been braced
upon. For instance, injecting structured and formal
knowledge into NLM architectures have shown im-
provements for machine translation and textual entail-
ment task. Further investigations in the ability of SW
technologies to support NLM tasks and applications
would be interesting.
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