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Abstract. Knowledge graph, as a backbone of many information systems, has been created to organize the rapidly growing
knowledge in a semantical and visualized manner. Symbolic reasoning and statistical reasoning are current mainstream tech-
niques that play important roles in knowledge completion, automatic schema constructing, complex question answering, expla-
nation of AI. However, both of them have their merits and limitations. Therefore, it is desirable to combine them to provide
hybrid reasoning in a knowledge graph. In this paper, we present the first work on the survey of methods for hybrid reasoning in
knowledge graphs. We categorize existing methods based on problem settings and reasoning tasks, and introduce the key ideas of
them. Finally, we re-examine the remaining research problems to be solved and outlook the future directions for hybrid reasoning
in Knowledge graphs.
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1. Introduction

With the rapid development of Internet technol-
ogy and Web applications, large amount of data is
published online, which contains valuable knowledge.
How to organize, represent and analyze these knowl-
edge has attracted much attention. Knowledge graph
(KG), as a backbone of many information systems, has
been created to organize the rapidly growing knowl-
edge in a semantical and visualized manner. Most of
KGs are the directed graphs that compose of entities
(nodes) and various relations (different semantic labels
of edges) [1]. A fact in a knowledge graph is usually
represented as a triple of the form (head entity, relation,
tail entity), indicating that two entities are connected

*Corresponding author. E-mail: gqi@seu.edu.cn.

by a specific relation, e.g., (Barack Obama, BornIn,
Honolulu, Hawaii, U.S). Recent years have witnessed
rapid growth in KG construction such as DBpedia [2],
YAGO [3], NELL [4] and Probase [5], which have be-
come the essential supporters for real applications of
Semantic Web.

Although effective in representing structured data,
the underlying symbolic nature of triples and their
incompleteness still limit the applications of KGs.
Knowledge reasoning, which plays an important role
in the services of KGs, aims at inferring implicit
knowledge to enrich incomplete data and refine their
correctness. There are two mainstream techniques
for knowledge reasoning. One is symbolic-based rea-
soning approaches that formalize the problem by a
semantic framework and infer the implicit knowl-
edge according to some predefined rules. The other is
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statistical-based reasoning approaches that try to find
one suitable statistic models to fit the samples and pre-
dict the expected probability or similarity about test
ones.

Unfortunately, no single method can be competent
for knowledge reasoning perfectly. Symbolic reason-
ing is often based on either rules or schematic knowl-
edge, which is hard to obtain. Relatively, statistical
reasoning draws imprecise conclusions and is often
data-driven so that it is hard to provide the human-
centric explanation. Therefore, more researchers tried
to combine their advantages together, and obtained
some encouraging performances in related tasks such
as knowledge completion [6, 7], knowledge alignment
[8, 9], query answer [10, 11] and so on. There exist var-
ious combination strategies tailored for different tasks.
Some of them merge the symbolic information (e.g.,
path, context or logical rules) into the statistical frame-
work so as to constrain the conditions of object func-
tions or refine the predicted results. Some of them em-
ploy the idea of statistical reasoning (e.g., continuous
vectors or matrices) to soften symbolic reasoning in
order to be compatible with objective facts well. In ad-
dition, some works unify them together to achieve the
goal of completing multiple tasks (e.g, rule learning
and link prediction) simultaneously.

So far, there is no systematical and in-depth sur-
vey on hybrid reasoning methods for various tasks of
KGs. In this paper, we summarize the latest research
progress of hybrid reasoning techniques in knowledge
graphs and look forward to the future development
direction and prospects. Specifically, we first give a
short introduction of knowledge graphs, and analyze
the pros and cons of symbolic reasoning and statistic
reasoning, respectively, which motivate the necessity
of hybrid reasoning. Next, we provide a thorough re-
view of current hybrid reasoning techniques for vari-
ous tasks of KG. Finally, we re-examine the remaining
research challenges and outlook the future directions
for hybrid reasoning in KGs.

2. Hybrid reasoning in knowledge graph

In this section, we present a short introduction of
knowledge graphs and motivation of hybrid reason-
ing in a knowledge graph. So far, some people have
tried to provide a formal definition of a knowledge
graph [12, 13]. However, none of them has become a
standard definition as the term "knowledge graph" can
have different views. In this paper, we do not intend to

provide such a definition, but consider the characteris-
tics of a knowledge graph given in [14]:

– mainly describes real world entities and their in-
terrelations, organized in a graph.

– defines classes and properties of entities in a
schema.

– allows for potentially interrelating arbitrary enti-
ties with each other.

– covers various topical domains.

As shown in Fig. 1, entities represent real-world
individuals (e.g. “Yao Ming” and his wife “Ye Li”).
A concept represents a set of individuals with the
same characteristics, for example, “Yao Ming”, “Kobe
Bryant”, “Michael Jordan”, and etc., compose a set
corresponding to the concept “Basketball Player”. Lit-
erals refer to the strings which indicate specific val-
ues of some relations, such as string “2.29 m”, the
“height” of entity “Yao Ming”. Edges between these
nodes represent different relationships between enti-
ties, concepts and literals, such as “Yao Ming” is a
“Basketball player” and the wife of “Yao Ming” is “Ye
Li”. All of these relationships and their related entities,
concepts or literals are stored in the form of triples in
knowledge graphs which is the basic storage unit of
knowledge graphs. Triples organize knowledge in the
form of <subject, predicate, object>, e.g. <Yao Ming,
is-a, Basketball Player> and <Yao Ming, height, “2.29
m”>.

Fig. 1. An example for a part of a knowledge graph

There are two kinds of knowledge in a knowledge
graph, one is called schematic knowledge and the other
is called factual knowledge. The schematic knowledge
consists of the statements about concepts and proper-
ties, and the factual knowledge consists of the state-
ment about instances. For example, the triple <Asian
Country, subclassOf, Country> is a piece of schematic
knowledge, whilst the triples given in Fig. 1 are all
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factual knowledge. Existing knowledge graphs mostly
contain a large number of factual knowledge and a
small number of schematic knowledge. For exam-
ple, the well-known knowledge graph DBpedia con-
tains more than 6.6M entities and over 13 billion
triples. However, it only contains 685 concepts which
are described by 2,795 different properties, and these
concepts form a subsumption hierarchy consisting of
the subclassOf relations. There exist some knowledge
graphs which consist of a large number of schematic
knowledge, such as SNOMED CT1.

Knowledge graph has its logical foundations based
on ontological languages, such as Resource Descrip-
tion Framework (RDF)2 and Ontology Web Language
(OWL)3, which are W3C recommended languages.
RDF is a graph data model for describing resources on
the Web and to enable data exchange and sharing, it
is originally used to represent metadata of a webpage,
such as what tools were used to create the webpage
and the authors of the webpage. The factual knowledge
in a knowledge graph can be described by RDF. OWL
is a family of ontology languages which can represent
rich and complex knowledge about entities, proper-
ties and relations. OWL can describe both factual and
schematic knowledge and can support logical reason-
ing. Since ontology languages, such as RDF and OWL,
are often based on first-order logic semantics, one kind
of reasoning in a knowledge graph is deductive reason-
ing. Logic-based reasoning, or symbolic reasoning, is
important to ensure the quality of a knowledge graph
and to infer implicit knowledge from a given knowl-
edge graph. Another approach to reasoning in a knowl-
edge graph is based on statistical machine learning,
and this kind of reasoning is often called statistical rea-
soning. Both symbolic reasoning and statistical rea-
soning have their pros and cons. Symbolic reasoning
can infer precise conclusions, but it is often based on
either rules or schematic knowledge, which is hard to
obtain. In contrast, statistical reasoning draws impre-
cise conclusions and is often data-driven, thus is eas-
ier to scale to large knowledge graphs without human
intervention or with little human intervention. There-
fore, it is desirable to combine symbolic reasoning and
statistical reasoning to provide hybrid reasoning in a
knowledge graph. In the following sections, we will
give a review of existing work on hybrid reasoning in a

0https://wiki.dbpedia.org
1https://bioportal.bioontology.org/ontologies/SNOMEDCT
2https://www.w3.org/RDF/
3https://www.w3.org/OWL/

knowledge graph and present some challenging prob-
lems for future work.

3. Methodology

In this section, we roughly categorize the hybrid
reasoning techniques of KGs into six groups: statis-
tical relational learning, schema induction, schematic
knowledge embedding, knowledge alignment, multi-
hop reasoning for query answer and other hybrid rea-
soning methods. Next, we review these research efforts
as follows.

3.1. Statistical relational learning

Statistical relational learning (SRL) attempts to rep-
resent, reason and learn in domains with complex re-
lational and rich probabilistic structure [15]. With the
rapid growth in KGs, path ranking algorithms (PRA)
[16] and knowledge graph embedding (KGE) [1] be-
come two typical representatives of SRL, and have
shown some efficiency of applications.

PRA is a random walk inference technique, which
first proposed for discovering complex path features
of relational data [16]. The key idea of PRA is em-
ploying the paths that connect two entities as features
to predict potential relations between them. For exam-
ple, 〈bornIn, capitalOf〉 is a path linking Ludwig van
Beethoven to Germany, through an intermediate node
Bonn. Such paths can be used as features to predict the
presence of specific relations, e.g., nationality.

Knowledge graph embedding embeds components
of a KG including entities and relations into continu-
ous vector spaces to preserve the inherent structure of
the KG [1]. There are mainly two types of embedding
models. One is transnational distance models, which
exploit distance-based scoring functions and measure
the plausibility of a fact as the distance between two
entities such as TransE [6]. The other is semantic
matching models, like RESCAL [7], which measure
plausibility of facts by matching latent semantics of
entities and relations embodied in their vector space
representations.

As triples in KGs are not independent, so the inter-
relations of each triple should not be ignored, which
can give the power in knowledge reasoning. PTransE
[17] is an extending model of TransE to model a path-
based representation. The authors utilized connected
relational facts between entity pairs instead of only
considering the relation between two entities. Since

https://wiki.dbpedia.org
https://bioportal.bioontology.org/ontologies/SNOMEDCT
https://www.w3.org/RDF/
https://www.w3.org/OWL/
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not all relation paths are reliable, they designed a path-
constraint resource allocation algorithm to measure
the reliability of relation paths and represented rela-
tion paths via semantic composition of relation embed-
dings. GAKE [18] defined three types of graph con-
text which contains different KGs structured informa-
tion for representation learning. Therefore, the score
function of GAKE takes into account the connection
between target entities (or relations) and their contexts.
In addition, the authors designed an attention mecha-
nism to learn the representative power of different ver-
tices or edges. Furthermore, Gao et al. [19] proposed a
triple context-based method called TCE for knowledge
graph embedding. TCE takes two structured informa-
tion of a triple into consideration. One is a set of neigh-
boring entities along with their outgoing relations, the
other is a set of relation paths which contain a pair of
target entities.

Assertions of relations contain rich background in-
formation (e.g., domain, range) that are widely treated
as constraint rules in KGs. Wang et al. [20] utilized
these rules to refine embedding models. In their work,
KG completion was formulated as an integer linear
programming problem that was constrained by rules.
Hence, the inferred facts would be the most preferred
by the embedding models and complied with all the
rules. Similarly, Wei et al. [21] combined rules and
embedding models via Markov logic networks [15],
in which they incorporated the similarity priori gen-
erated by embedding-based models into inferring and
designed the grounding network sampling to promote
the inference precision.

3.2. Schema induction

Existing KGs often contain a large number of triples
but lack schematic knowledge like disjointness axioms
and subclassOf axioms. It brings a difficulty to in-
fer implicit information, deal with the heterogeneous
problem for ontology mapping and object reconcilia-
tion tasks, and detect or resolve the contradictions [22–
25]. Therefore, producing schematic knowledge to en-
rich existing KGs becomes a critical and meaningful
task.

One main category of the methods to produce
schematic knowledge combines rule mining algo-
rithms with symbolic reasoning. The works in [24, 26]
defined some association rule patterns to generate vari-
ous kinds of axioms and performed inconsistency han-
dling for ontology construction by enriching an origi-
nal schema incrementally. Considered the open world

assumption adopted by KGs, the work in [27] adopted
partial completeness assumption to generate coun-
terexamples for rules and redefines support or confi-
dence. Its extension AMIE+ [28] further improved the
precision by using type hierarchy and joint reasoning
when learning association rules. The work in [29] gen-
erated rules with AMIE+. It obtained the rules of inter-
est for learning inverse and symmetric axioms which
could be extended by applying the predefined reason-
ing rules. Inspired by these methods, the method given
in [30] exploited a type inference algorithm and de-
fined a mining model with the probabilistic type as-
sertions to deal with noisy negative examples. Their
method can generate high-quality disjointness axioms
and subclassOf axioms. To improve the scalability of
the rule-based methods, the work in [31] introduced a
new sampling algorithm and the embedding represen-
tations of arguments. Both of them could guide the ex-
traction of rules. Similarly, the work in [32] employed
embedding models and iteratively extracted rules by
utilizing probabilistic representations of missing facts
and relying on feedback from a precomputed embed-
ding model.

The other main category combines machine learning
techniques with logical reasoning. The work in [33]
used inductive logic programming, which integrated
machine learning with logic programming, and de-
fined an ALC downward refinement operator for learn-
ing concept descriptions. This operator was extended
in [34] that could learn more expressive schematic
knowledge like cardinality restrictions. In [25], a sta-
tistical method was proposed to extract domain and
range of a property. The vector space model from in-
formation retrieval was applied to extract class dis-
jointness. After the extraction finished, consistency
checking was performed in parallel based on prede-
fined inconsistency patterns. A light-weight method
presented in [35, 36] obtained schema and data in-
formation via SPARQL, and then applied machine
learning algorithms to generate nearly all kinds of ax-
ioms. After that, a logical reasoner could be applied
for inferencing those implicit knowledge. The work in
[37] integrated the probabilistic inference capability of
Bayesian networks with the logical formalism to learn
subclassOf and disjointness relations. It used logical
rules for generating more complex axioms and dealing
with inconsistency during the construction of KGs.
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3.3. Schematic knowledge embedding

Schematic knowledge, as a critical component of
KGs, defines logical axioms based on concepts to sup-
port for eliminating heterogeneity, integration, and rea-
soning over KGs. Recently, there two kinds of ap-
proaches that try to encode schematic knowledge to
enhance the performances of embedding models. One
is treating schematic knowledge as logical rules and
incorporating them to obtain better embedding. The
other focuses on preserving the logical properties of
axioms.

The incorporated logical rules are usually repre-
sented as first-order horn clauses e.g., ∀x, y (x, Capital-
Of, y) → (x, Located-In, y) stating that any two enti-
ties linked by the relation Capital-Of should also be sat-
isfied with the relation Located-In. Such logical rules
contain rich background information and are widely
defined in ontologies. Guo et al. [38] proposed a joint
model, called KALE, which embedded factual knowl-
edge and logical rules in a unified framework, in which
logical rules were interpreted as complex formulae
constructed by combining ground atoms with logi-
cal connectives (e.g., ∧ and →) and measured by t-
norm fuzzy logics [39]. After that, they improved this
model further, referred to as RUGE [40], which could
learn simultaneously from labeled triples, unlabeled
triples, and soft rules in an iterative manner. Zhang et
al. [41] proposed a novel framework called IterE for
alleviating of sparsity entities in KGs. It could iter-
atively learn embeddings and logical rules, in which
rules were learned from embeddings with proper prun-
ing strategy, and embeddings were learned from ex-
isting triples and new triples inferred by rules. In ad-
dition, Gutiérrez-Basulto and Schockaert argued that
existing combined models might not represent expres-
sive classes of rules sufficiently, and proposed an ap-
proach based on convex-regions [42]. With the help
of defined convex-regions, KGs restricted to the quasi-
chained existential rules could be faithfully encoded in
most cases.

Another type of embedding methods has been pro-
posed for the embedding of schematic knowledge in
a simple ontology language called RDF Schema (or
RDFS). On2Vec [43] employed translation-based em-
bedding method for ontology population, which inte-
grated matrices that transformed the head and tail enti-
ties in order to characterize the transitivity of some re-
lations. To represent concepts, instances, and relations
differently in the same semantic space, TransC [44] en-

coded instances as vectors and concepts as spheres so
that they can preserve the transitivity of isA relations.

3.4. Knowledge alignment

Over past decades, more and more knowledge
graphs become available on the Web, but the hetero-
geneity and multi-linguality gap of KGs still hinder
their sharing and reusing in the Semantic Web. Ben-
efited from the combination of hybrid reasoning, the
studies of knowledge alignment have obtained some
encouraging results.

Cross-lingual taxonomy alignment (CLTA) refers to
mapping each category in the source taxonomy of one
language onto the most relevant category in the tar-
get taxonomy of another language. However, existing
methods for CLTA mainly rely on features based on
symbolic similarities. Wu et al. [8] proposed a bilin-
gual topic model, called Bilingual Biterm Topic Model
(BiBTM). After obtained the candidates’ alignment
based on string similarity, they trained BiBTM by tex-
tual contexts extracted from the Web and obtained the
topic vector of the extracted textual context for each
category. Finally, they utilized the cosine similarity be-
tween topic vectors to calculate the taxonomy align-
ment. Furthermore, they improved the performances of
proposed models by merging explicit category corre-
lations including co-occurrence correlation and struc-
tural correlation [45].

In addition, there exist some works that employ
embedding-based ideas [6] for entity alignment (EA)
among knowledge graphs. MTransE [9] separately
trained the entity embeddings of two KGs and de-
signed different techniques to represent cross-lingual
transitions including axis calibration, translation vec-
tors and linear transformations. JAPE [46] learned the
embeddings of two KGs in a unified space and lever-
aged attributes of triples to refine entity embeddings.
To solve the lack of prior alignment, IPTransE [47]
and BootEA [48] employed an iterative process and
designed several sophisticated strategies based on the
structure of KG to refine the new alignment. Chen et al.
[49] proposed semi-supervised cross-lingual learning
method, called KDCoE, which co-trained multilingual
KG embeddings and the embeddings of entity descrip-
tions. Considered the identity information in the prior
alignment could not be efficiently propagated from one
KG to another, Guo et al. [50] proposed a recurrent
skipping network (RSN) for entity alignment, which
leveraged biased random walk sampling for generating
long paths across KGs.
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3.5. Multi-hop reasoning for query answer

Question answering (QA) is a hot topic that has re-
cently been facilitated by large-scale knowledge bases.
However, due to the variety and complexity of lan-
guage and knowledge, question answering over knowl-
edge bases (KBQA) is still a challenging task, espe-
cially in multi-hop relation QA.

There are two typical categories of multi-relation
questions, a path question [51] and a conjunctive ques-
tion [52]. A path question contains only one topic en-
tity and its answer can be found by walking down an
answer path consisting of a few relations and interme-
diate entities. A conjunctive question is a question that
contains more than one subject entity and the answer
can be obtained by the intersection of results from mul-
tiple path queries. At present, semantic parsing mod-
els [10, 53] and embedding-based models [11, 54] tai-
lored for QA are not adequate to handle multi-hop QA
because of heavy data annotations and reasoning abil-
ity. Therefore, recent works utilized hybrid ideas to
improve the performances and make these results ex-
plainable.

Zhang et al. [55] proposed a probabilistic model-
ing framework based on end-to-end QA system, which
could simultaneously handle uncertain topic entity and
multi-hop reasoning. They introduced a new propa-
gation architecture over KG so that logical inference
could be performed in the probabilistic model. Zhou
et al. [51] designed an interpretable reasoning network
(IRN), which employed an interpretable hop-by-hop
reasoning process for question answering. IRN could
dynamically decide which part of an input question
should be analyzed at each hop, and predict a rela-
tion corresponding to the parsed results. Compared
with existing methods, the intermediate entities and
relations predicted by IRN could construct traceable
reasoning paths to reveal how the answer was de-
rived. Hamilton et al. [52] introduced a framework
to efficiently make predictions about conjunctive log-
ical queries. They embedded graph nodes in a low-
dimensional space and represented logical operators
(i.e., projection operator and intersection operator) as
learned geometric operations. Moreover, they further
demonstrated how to map a practical subset of logic to
efficient geometric operations in an embedding space.

3.6. Other hybrid reasoning methods

Other hybrid reasoning methods focus on boosting
the performances of NLP tasks. Most of them merge

the symbolic information (e.g., knowledge graph struc-
ture) into the statistic-based methods and provide some
human-centric explanation [56].

Wang et al. [57] proposed a joint model that takes
advantage of both explicit and implicit representations
for short text classification. They incorporated char-
acter level features of KG into a convolutional neural
network to capture fine-grained subword information.
Experiments on real data showed that their method
achieved significant improvement for this task.

Chen et al. [58] exploited the semantics of data
streams interpreted in ontologies to tackle the problem
of concept drift, in which semantic reasoning and ma-
chine learning are combined by revisiting features em-
beddings as semantic embeddings. Such embeddings
were exploited in a context of supervised stream learn-
ing that was robust to concept drifts. Moreover, they
explored an ontology-based knowledge representation
and reasoning framework for human-centric transfer
learning explanation [59]. It modeled a learning do-
main in transfer learning with expressive OWL and
complemented the learning domain with the predic-
tion task-related common sense knowledge. They fur-
ther designed a correlative reasoning algorithm to in-
fer three kinds of explanatory evidence for explaining
a positive feature or a negative transfer from one learn-
ing domain to another.

4. Conclusion and future direction

Hybrid reasoning in knowledge graphs plays an
important role in knowledge completion, automatic
schema constructing, complex question answering, ex-
planation of AI, ect. However, it is still a new topic and
lacks a survey of existing methods for it. In this pa-
per, we presented the first work on survey of methods
for hybrid reasoning in knowledge graphs. We argued
the necessity of combination symbolic reasoning and
statistical reasoning. More importantly, we categorized
existing methods based on problem settings and rea-
soning tasks, respectively, and further introduced the
key ideas of them. Although there have been many
methods for hybrid reasoning in knowledge graphs,
there are still many problems to be solved in the future.
We list some of the problems in the following.

– Statistical relational learning: Taking relational
paths into account can significantly improve the
discrimination of relational learning and system
performances. However, existing models are still
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some preliminary attempts at modeling relational
paths. There still exist many investigations in the
reliability measure and semantic composition of
relational paths to be done.

– Schema induction: Horn rules are one of the
most simple schemas that can be learned from
KGs. It is still challenging for existing methods
to extend the set of rules to more complex non-
monotonic ones such as existential variables or
disjunctions in rule heads. In addition, the sparse
long-tail relations still need to be considered,
which are actually more common in KGs.

– Schematic knowledge embedding: RDF Schema
is a simple ontology language. There exist sev-
eral challenges for embedding the schematic
knowledge described by expressive OWL such
as preserving its complex semantic properties
(e.g., symmetry, inversion, composition) simulta-
neously.

– Knowledge alignment: It is worth to consider
combing the methods of CLTA and EA together
because most KGs consist of taxonomy and en-
tities. In addition, these models still can merge
some senior symbolic reasoning techniques (e.g.,
incoherent checking) during the training process.

– Multi-hop reasoning for QA: The frameworks
of multi-hop reasoning are still limited by some
types of queries so that they cannot handle arith-
metic operation or logical queries with negation
or disjunction. Integrating attention mechanism
[60] and employing graph neural networks [61]
to incorporate richer feature information on nodes
and edges will be two promising directions.
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