
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

UCQ-rewritings for Disjunctive Knowledge
Enrique Matos Alfonso *, Alexandros Chortaras and Giorgos Stamou
Electrical and Computer Engineering, National Technical University of Athens, Greece
E-mails: gardero@image.ntua.gr, achort@cs.ntua.gr, gstam@cs.ntua.gr

Abstract. We focus on the problem of query rewriting for
the framework of Disjunctive Existential Rules. It is a well-
known approach for query answering on knowledge bases
with incomplete data. We propose a rewriting technique that
uses Negative Constraints and Conjunctive Queries to re-
move components from the disjunction in Disjunctive Exis-
tential Rules. This process will eventually generate new Exis-
tential Rules. The generated rules can then be used to produce
new rewritings considering the existing rewriting approaches
for the Existential rules Framework. The algorithm is imple-
mented in COMPLETO in order to provide complete rewrit-
ings for unions of conjunctive queries with negation. Addi-
tionally, we report some experiments to evaluate the viability
of the proposed solution.
Keywords: Disjunctive Rules, Queries with Negation, Back-
ward Chaining and Query Rewriting.

1. Introduction

Rules are very important elements in knowledge-
based systems and incomplete databases; they allow us
to perform query answering over incomplete data and
come up with complete answers. There are two main
approaches to perform query answering and they de-
fine the way we use the rules in the knowledge base.
Forward chaining approach [17] uses rules and facts to
produce new facts. Backward chaining [11] uses rules
to translate the query into other queries that also encode
answers of the original query.
Example 1.1. Let us consider a rule to define the
grand-parent relationship based on the parent relation-
ship:

r = ∀X∀Y parent(X,Z)∧
parent(Z, Y)→ grand-parent(X, Y)

*Corresponding author. E-mail: gardero@image.ntua.gr.

and the information that

parent(ana,maria) ∧ parent(maria, julieta).

Traditional database systems would fail to entail that
the query q = ∃Zgrand-parent(ana, Z) holds be-
cause it is not stated explicitly in the data. However,
since the hypothesis of the rule holds we can then en-
sure (forward application of the rule) that the fact
grand-parent(ana, julieta) also holds. Adding this new
information allows traditional database systems to
conclude that q holds. Additionally, The rule r can also
be applied to q in a backward direction to derive other
ways to obtain answers to the same question expressed
in the query i.e.

q′ = ∃Z∃Y parent(ana, Z) ∧ parent(Z, Y).

Forward chaining allows efficient query answering
in systems where data is constant and queries change
frequently. However, the size of the stored data can
grow excessively and the method is not appropriate for
frequently changing data. Backward chaining, on the
other hand, is ideal for constant queries and changing
data, although the size of the rewriting can be expo-
nential with respect to the initial size of the query. In
both cases, the application of rules does not always ter-
minate. Furthermore, having no restriction on the ex-
pressivity of the rules or having negated atoms on the
query makes the entailment problem of the query un-
decidable [1].

In this paper we focus on query rewriting for con-
junctive queries with negated atoms (CQ¬) on the
framework of disjunctive existential rules based on
first-order logic (FOL) without functions symbols.

Disjunctive existential rules allow the representation
of very expressive knowledge in FOL e.g.

∀X∃Y is-parent(X)→ father(X, Y)∨
mother(X, Y),

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:gardero@image.ntua.gr
mailto:achort@cs.ntua.gr
mailto:gstam@cs.ntua.gr
mailto:gardero@image.ntua.gr

2 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

where disjunction and existentially quantified variables
can appear on the right-hand side of the implication.
Conjunctive Query entailment is undecidable even in
the case of existential rules without disjunction. How-
ever, under some restrictions the problem can become
decidable [1]. To the best of our knowledge, the ex-
isting research for existential rules with disjunction is
only based on forward chaining algorithms [6, 8].
Additionally, conjunctive queries with negation let

us define the counter examples of disjunctive rules e.g.
∃X∀Y ∀Zperson(X)∧ ¬married(X, Y)∧

¬parent(X,Z)

represents the cases where the following rule does not
hold

∀X∃Y ∃Zperson(X)→ married(X, Y)∨
parent(X,Z).

Here we use the open world assumption, where the
negation is associated to the “cannot” semantics and the
example query expresses the question whether there is
a person that cannot be married and cannot be a parent.
The entailment problem for CQ¬ is undecidable even
for very simple types of rules [10]. On the other hand,
the use of guarded negation in queries is proven to
be decidable [5] over frontier-guarded existential rules.
Yet, the existing rewriting based approaches in the lit-
erature [7, 12, 13] have some limitations in the use of
the negation.
Having existential variables, disjunction and queries

with negated atomsmakes the entailment problem even
more difficult. However, using these expressive re-
sources in a smart way provides very interesting and
useful decidable fragments.
More specifically, we are interested in rewriting a

Union of Conjunctive Queries with Negation (UCQ¬)
into a Union of Conjunctive Queries (UCQ) called
UCQ-rewriting and where each element in the resulting
UCQ is a rewriting of the initial UCQ¬. We extend the
existing rewriting algorithm for existential rules [11]
into a sound and complete algorithm that also supports
disjunctive existential rules and queries with negated
atoms. However, the proposed algorithm only termi-
nates for some specific cases.
Outline of our contributions. We introduce two re-
stricted forms of FOL resolution (Semi-Horn Reso-
lution and Constraint Resolution) that are sound and
complete and where subsumption holds for restricted
types of consequences. The number of choices at the

moment of selecting clauses to perform resolution
steps is reduced in these two types of resolutionwith re-
spect to the number of choices we have in unrestricted
resolution.

Based on one of the constraint resolution method,
we propose an algorithm to compute UCQ-rewritings
that is capable of handling both disjunctive existential
rules and conjunctive queries with negation. The al-
gorithm is proved to be sound and complete. We also
present two theorems with sufficient conditions for the
termination of the algorithm. One case requires discon-
nected disjunctive existential rules and the other case
is based on knowledge bases where all the elements are
linear.

Additionally, conjunctive queries with negated atoms
and answer variables are considered with respect to ex-
istential rules. We present two theorems with sufficient
conditions for the termination of the rewriting process
in this special case. One case requires that the variables
in the positive and negated atoms of the query are also
part of the answer variables of the query. The second
case is based on queries with only one positive atom
and an unbounded number of negated atoms.
Paper organization. Section 2 introduces the relevant
theory needed to understand the rest of the paper. Sub-
section 2.1 introduces concepts related to First Order
Logic Resolution and Subsection 2.2 presents the Dis-
junctive Existential Rules Framework. Section 3 Intro-
duces two types of resolution derivations and a back-
ward chaining rewriting algorithm for Disjunctive Ex-
istential Rules. Section 4 describes an implementation
of the proposed rewriting algorithm in order to find
UCQ-rewritings for queries with negated atoms. Exper-
iments describing the performance of our implementa-
tion are presented in Subsection 4.1. Finally, Section 5
presents an overview of the paper with some conclu-
sions.

2. Preliminaries

In this section we introduce the basic concepts re-
lated to the First Order Logic resolution process. Reso-
lution is the base of all the reasoning processes we de-
scribe in this paper. All steps in high level reasoning
processes can be tracked down to sequences of resolu-
tion steps that ensure the correctness. Additionally, we
also describe the framework of Disjunctive Existential
Rules and present the definition of Conjunctive Queries
with Negated Atoms.

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.1. First Order Logic Resolution

We assume the reader is familiar with the standard
definition of First Order Logic Formulas. In this paper
we focus on First Order Logic Formulas without func-
tion symbols over a finite set of predicate names and a
finite set of constant symbols. We also adopt the stan-
dard definitions for substitutions and unifiers, as they
are rarely modified in the literature. However, we refer
the reader to [15, 16] in case a background reading is
needed.
In order to make the modification of formulas more

compact and easier to understand we introduce the def-
inition of Conjunctive (Disjunctive) Set formula (CSF
and DSF).
Definition 2.1 (Conjunctive (Disjunctive) Set For-
mula). A Conjunctive (Disjunctive) Set Formula (CSF
and DSF respectively) is a set of formulas {F1,… , Fn}
and the interpretation of this formula is equivalent to
the interpretation of the conjunction (disjunction) of
the formulas in the set:

F1 ∧… ∧ Fn (F1 ∨… ∨ Fn).

For a given set of formulas {F1,… , Fn} aCSF contain-
ing these formulas will be denoted as F1,… , Fn. On
the other hand, a DSF will be denoted by [F1,… , Fn].
However, in case CSF is a subformula of another set
formula we will use parenthesis to avoid ambiguity e.g.
[(A,B), D] is equivalent to (A ∧ B) ∨ D. Finally, we
have that an empty CSF is denoted by and is equivalent
to ⊤ and an empty DSF is denoted by and is equivalent
to ⊥.

Set operators can then be used to combine set for-
mulas of the same type and obtain a new formula. The
interpretation of the new formula is the interpretation
of the resulting set formula. Additionally, formulas that
are equivalent and belong to the same set can be col-
lapsed into one element e.g.

[¬A] ∪ [A → ⊥,B] ≡ [¬A,B].

We can easily prove the validity of the following axi-
oms:
1. A DSF and a CSF of one element are equivalent:

[F] ≡ F .

2. De Morgan’s Law allows to change from DSF to
a CSF using negation:

¬[F1,… , Fn] ≡ ¬F1,… ,¬Fn.

3. Flattening set formulas is possible when they are
of the same type i.e for B ∈ F , two set formulas
of the same type, we have that:

F ≡ (F ⧵ {B}) ∪ B.

Additionally, the entailment operator in FOL is
based on a CSF A1,… , An of axioms Ai on the left-
hand side of the entailment symbol:

A1,… , An ⊧ F .

The right-hand side of the entailment operator is de-
fined as a DSF. For CSFs B and A (where B ⊆ A)
and DSFs C and F (where C ⊆ F) we can ensure that
A ⊧ F if and only if A ⧵ B ⊧ F ∪ ¬B; likewise A ⊧ F
if and only if A ∪ ¬C ⊧ F ⧵ C .

Following, we recall some of the concepts that are
more relevant to the theory presented in this paper.

An atom is a formula a(x1,… , xn)where a is a pred-
icate of arity n. The arguments xi can either be vari-
ables or constants. A literal is an atom or a negated
atom. The complement l of a literal l is ¬a(X) for
l = a(X) and a(X) in case l = ¬a(X). A literal has a
positive polarity if it is an atom and a negative polarity
if it is the negation of an atom.

A formula is ground if it contains no variables in its
atoms. Variables in a formula can be universally quan-
tified, existentially quantified or free. A formula with-
out free variables is closed. The set of all the variables
present in a formula F is denoted by vars(F).
ACSF of atoms can represent a hypergraph using the

set of variables in the arguments of the atoms as nodes
and the predicates as labeled hyperedges. Each atom in
the formula represents a hyperedge. With this notion
we can define some properties for CSFs of atoms.
The cardinality of a CSF of atoms F is the number

of variables in the formula card(F) = |vars(F)|. Two
variables u and v in a CSF of atoms F are connected iff
they both belong to the same atom (∃A ∈ F |{v, u} ⊆
vars(A)) or if there is another variable z in F that is
connected to both u and v.

A CSF of atoms F is connected if all the atoms in
it contain variables and all the variables are connected
to each other. An atom that has only constants in its
arguments is a connected formula that is not connected

4 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

X

Y

Z

W

parent parent

parent

Fig. 1. Hypergraph corresponding to a CSF.

to any other atom and has a cardinality of zero. It is also
represented by an empty hypergraph. We can also find
a partition of connected CSFs for a given CSF of atoms
⊍Ui = F . The connected cardinality of F is defined as
the maximum cardinality of the connected CSFs in F
and denoted as card∗(F) = maxi (card(Ui)).
Example 2.1. The CSF

F = parent(X, Y), parent(Y ,Z),
grand-parent(X,Z), person(W)

is represented by the hypergraph in Fig. 1. We can split
F in two connected components

{(person(W)),
(parent(X, Y), parent(Y ,Z),
grand-parent(X,Z))}.

The connected cardinality of F is 3, the cardinality of
the greatest connected component.

Lemma 2.1. Let  be a CSF and {… , Ui,…} a par-
tition of connected CSFs for a given F CSF of atoms.
Then,

 ⊧ F iff  ⊧ Ui
for every connected CSF Ui.

Proof. A detailed proof is given by Tessaris [18]. How-
ever, the reader can clearly see that since no variable is
shared between the connected components Ui, the in-terpretations of each component can be combinedwith-
out conflicts on the assignments of the variables i.e.
i ∪ j ⊧ Ui, Uj iff i ⊧ Ui and j ⊧ Uj .
Lemma 2.2. Let k be a natural number. There is a fi-
nite number of equivalence classes in the set of CSF of
atoms that have connected cardinality at most k.

Proof. Two CSF of atoms are equivalent iff they are
unifiable by a renaming substitution i.e a substitution

that assigns new names to the variables of the formula.
Therefore, we can focus only on the number of vari-
ables present in a connected CSF of F . Because we
have a finite number of predicates symbols and con-
stant symbols and at most k different variables, we can
combine them in a finite number of ways (denoted by
M) to represent a connected CSF. In a CSF with more
thanM connected CSFs we will have that some of the
connected components will be a renaming of another
one, then keeping only one of them will be enough.
Hence, there will be at most 2M different equivalence
classes.
Example 2.2. Let us take one predicate s/2 and the
maximum cardinality k = 2. The different equivalence
classes of CSFs are:

1. s(X,X), s(X, Y), s(Y ,X), s(Y , Y)
2. s(X,X), s(X, Y), s(Y ,X)
3. s(X,X), s(X, Y), s(Y , Y)
4. s(X,X), s(X, Y)
5. s(X,X), s(Y ,X)
6. s(X, Y), s(Y ,X)
7. s(X, Y)
8. s(X,X)

Any otherCSF of cardinality less than or equal to 2 will
be equivalent to one of the above formulas. Notice that
in this restricted example we do not have constants.

A clause C is a DSF [l1,… , ln] of literals li, whereall the variables are universally quantified. A formula
F is in conjunctive normal form (CNF) if it is a CSF of
clauses i.e:

[l′1,… , l′n],… , [l(m)1 ,… , l(m)
n(m)
].

Every formula in FOL can be transformed into
an equisatisfiable CNF formula using Standarization,
Skolemization, De Morgan’s laws and distributivity of
conjunction (∧) and disjunction (∨) logical operators.

An instance of a clause C is the result of applying
a substitution � to the clause i.e. C�. If two or more
literals of the same polarity in a clause C are unifiable
and � is their most general unifier, then the clause C�
is called a factor of C and the application of � is called
factorization.
Definition 2.2 (Binary Resolution Rule). Let C1 and
C2 be two clauses with no variables in common and let
L1 ∈ C1 and L2 ∈ C2 be complementary literals with
respect to a most general unifier � = mgu({L1, L2}).

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The binary resolvent of C1 and C2 with respect to the
literals L1 and L2 is the clause:

C1 ∪r C2 = (C1� ⧵ [L1�]) ∪ (C2� ⧵ [L2�]).

C1 and C2 are said to be clashing clauses. The resol-
vent C1 ∪r C2 of two clauses is a binary resolvent of
factors Ci�i of the clauses i.e. C1�1 ∪r C2�2.

It is easy to show that resolution is sound i.e.
C1, C2 ⊧ C1 ∪r C2. Consequently, resolution can used
to deduce new clauses and also to prove that a formula
does not hold if we are able to derive the empty clause.
Definition 2.3 (Derivation (Refutation)). LetΣ be a set
of clauses and C a clause. A derivation of C from Σ
is a finite sequence of clauses R1,… , Rk = C , such
that eachRi is either in Σ, or a resolvent of two clauses
in {R1, ..., Ri−1}. If such a derivation exists, we write
Σ ⊧r C . We then sayC can be derived fromΣ. A deriva-
tion of the empty clause ⊥ from Σ is called a refutation
of Σ. The steps of a resolution derivation are the reso-
lution operations performed to obtain the resolvents in
the sequence.

Sometimes it is useful to know which clauses where
used in order to produce a resolvent Ri in a resolution
derivation. In those cases a corresponding graph or tree
representation can be helpful.
Definition 2.4 (Derivation (Refutation) Graph). Let Σ
be a set of clauses and C a clause such that Σ ⊧r C .
A derivation (refutation) graph of C from Σ is a graph
structure where each node represents a resolvent of two
clauses or a a clause fromΣ. There will be an edge from
each resolvent to the clauses used in the resolution step
to derive it.

We focus on the important part of derivations i.e. ev-
ery clause in the derivation is used in at least a resolu-
tion step with the exception of the last one. As a conse-
quence the derivation graph can be seen as a tree-like
shape where the last resolvent C is the root of the tree
and the leaves are clauses from Σ. Cloning nodes with
more than one input edge (clauses used in several res-
olution steps) can help us transforming the derivation
graph into a derivation tree. Graphically we find more
convenient to draw such trees or graphs upside-down
e.g.:

⊥

[a(X)]*[¬a(X)]

[¬a(X), b(X)][¬b(X)]

[¬a(X),¬b(X)][a(X)]

Derivations and derivation graphs (trees) are closely
related. They keep track of the clauses that were used to
produce each resolvent. From a derivation R1,… , Rkthe process of building the derivation graph is straight-
forward. Also, finding a sequence of clauses that form
a derivation is a matter of taking the nodes of the graph
in pre-order traversal starting from the root and ide-
ally without repeating clauses or factors of the same
clauses.
Theorem 2.1 (Soundness of derivation). Let Σ be a set
of clauses, and C be a clause. If Σ ⊧r C , then Σ ⊧ C .

Proof. This is straightforward consequence of the
soundness of the resolution rule.
If a clause holds, an instance of it extended with pos-

sibly more literals will also hold. This is based on the
definitions of the disjunction operator and the universal
quantification of the variables in the clauses.
Definition 2.5 (Subsumption). LetC andD be clauses,
we say C subsumes D if there exists a substitution �
such that C� ⊆ D.

Definition 2.6 (Deduction). Let Σ be a set of clauses
and C a clause. We say that there exists a deduction
of C from Σ, written as Σ ⊧dr C , if C is a tautology,
or if there exists a clause D such that Σ ⊧r D and D
subsumes C . If Σ ⊧dr C , we say C can be deduced from
Σ.

Resolution steps and derivations between ground in-
stances of some clauses ensure that there are also cor-
responding steps or derivations using the non ground
version of the clauses. This process is known as lifting
a resolution step or a derivation.

Bellow we mention known theorems taken from the
literature [15, 16].
Theorem 2.2 (Lifting Lemma). Let C ′1, C

′
2 be ground

instances of C1, C2, respectively. Let C ′ be a ground
resolvent of C ′1 and C

′
2. Then there is a resolvent C of

C1 and C2 such that C ′ is a ground instance of C .

6 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Theorem 2.3 (Derivation Lifting). Let Σ be a set of
clauses, and Σ′ a set of ground instances of clauses
from Σ. SupposeR′1, ..., R

′
k is a derivation of the clause

R′k from Σ
′. Then there exists a derivationR1, ..., Rk of

the clauseRk from Σ, such thatR′i is an instance ofRi,
for each i ∈ {1,… , k}.

Finally, resolution derivations allow us to infer
clauses that are logical consequences of the initial
knowledge in a complete way.
Theorem 2.4 (Subsumption Theorem). Let Σ be a set
of clauses, and C be a clause. Then Σ ⊧ C iff Σ ⊧dr C

Theorem 2.5 (Refutation completeness of resolution).
Let Σ be a set of clauses. Then Σ is unsatisfiable iff Σ ⊧r
⊥ .

Performing resolution steps in a breath-first man-
ner ensures we find the empty clause for unsatisfiable
formulas. However, for satisfiable formulas we might
never stop generating new clauses that are not sub-
sumed by the existing clauses. In general, resolution al-
lows us to define sound and complete algorithms but we
cannot ensure termination for all formulas in the FOL
fragment.
The resolution operator∪r has very useful propertiesthat allow us to transform derivations without affecting

the consequence.
Property 2.1 (Symmetry). Let C1 and C2 be clashing
clauses, then the resolvent can be computed symmetri-
cally:

C1 ∪r C2 ≡ C2 ∪r C1.

Property 2.2 (Distributivity). Let C1, C2 and C3 be
clauses such that C3 resolves with the resolvent from
C1 and C2 using literals from both C1 and C2, then we
can ensure the distributivity property i.e.

(C1 ∪r C2) ∪r C3 ⟹ (C1 ∪r C3) ∪r (C2 ∪r C3).

Notice that the converse holds only if there is a mgu
for the literals used in the resolution with respect to
both individual clauses (C1 ∪r C3) and (C2 ∪r C3).
Property 2.3 (Commutativity). Let C1, C2 and C3 be
clauses such that C3 resolves with the resolvent from
C1 and C2 but only using literals from C1, then we can
ensure the commutativity property i.e.

(C1 ∪r C2) ∪r C3 ≡ (C1 ∪r C3) ∪r C2.

Proving the above properties is straight forward if
we consider them over ground instances of the clauses
and we track the set operations on ground literals. As a
consequence of the derivation lifting theorem 2.3, we
can ensure that the properties also hold for general res-
olution over non ground clauses.
Example 2.3. Let us illustrate the distributivity prop-
erty with clausesC1 = [a(X), b(X)],C2 = [a(X),¬b(X)]
and C3 = [¬a(X), c(X)]. We have that:

(C1∪rC2)∪rC3 = [a(X)]∪r[¬a(X), c(X)] = [c(X)]

and

(C1 ∪r C3) ∪r (C2 ∪r C3) = [b(X), c(X)]∪r
[¬b(X), c(X)]

= [c(X)]

Also, [c(X)] ⟹ [c(X)].

2.2. Disjunctive Existential Rules and Conjunctive
Queries with Negation Framework

A conjunctive query CQ is a CSF l1,… , ln of pos-itive literals li where all the variables are existentiallyquantified i.e. ∃X l1,… , ln. Queries that allow nega-
tion in the literals li are called conjunctive queries withnegation CQ¬. In order to avoid domain dependant
queries, only the variables present in positive literals
X can appear existentially quantified and the variables
that are only present in negative literals Z will be uni-
versally quantified i.e. ∃X∀Z l1,… , ln. Because the
rules for quantifying variables are straight forward we
omit quantifiers e.g.∃X∀Y person(X),¬married(X, Y)
will be denoted by person(X),¬married(X, Y). The set
of variables that are present in both positive and neg-
ative literals is called the frontier of the query. Notice
that for now we do not introduce the concept of answer
variables. Therefore, the queries we define are also
known as Boolean conjunctive queries. A DSF of con-
junctive queries (conjunctive queries with negation)
is referred to as Union of Conjunctive Queries UCQ
(Union of Conjunctive Queries with Negation UCQ¬)
A fact is a CSF l1,… , ln of positive literals li, whereall the present variables are existentially quantified

e.g. parent(ana, Y), parent(maria, Y). Here existential
quantifiers are also omitted.

A closer look to the definition of facts can reveal the
similarities to the definition of conjunctive query.More
precisely, the definition of fact is equivalent to the defi-
nition of Boolean conjunctive query. However, facts are

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

used to express existing knowledge and queries repre-
sent questions i.e. they both have different roles in the
process of reasoning.
An existential rule is a closed formula:
∀X∃Y B → H,

where B (body) and H (head) are CSF of positive lit-
erals. Variables in the body X = vars(B) are univer-
sally quantified and variables present only in the head
Y = vars(H)⧵vars(B) are existentially quantified. The
frontier of a rule is the set of variables that are present
in both body and head of the rule vars(B) ∩ vars(H).
The quantifiers are omitted in the notation of existential
rule.
A disjunctive existential rule is a closed formula:
∀X∃Y B → H,

where B (body) is a CSF of positive literals. The quan-
tification of variables follows the same rules described
in the definition of an existential rule. However, the
head H is a DSF, where all H ′ ∈ H are a CSF of
positive literals. A disjunctive existential rule with an
empty head is a negative constraint i.e. B → ⊥. How-
ever, if from the context is clear that we refer to a con-
straint we can omit the “→ ⊥” and write only the body
B of the constraint.
We say aCSF of atomsQ depends on a rule r iff there

is a CSF of atoms F such that F ⊭ Q and F , r ⊧ Q. A
rule ri depends on a rule rj iff the body of ri depends onthe rule rj . The concept of rules dependencies allowsus to define the graph of rule dependencies (GRD) by
building a graph where the rules are the nodes and a di-
rected edge between two nodes represents the existence
of a dependency between the corresponding rules.
A knowledge base (⟨,,∨,⟩) is a CSF of CSFs

of facts (), of existential rules (), of disjunctive ex-
istential rules (∨) and of negative constraints ().
Example 2.4 (Knowledge Base). Let’s define some
knowledge about family relationships in an example
knowledge base.

– Facts:

 = (parent(Y , ana), sibling(Y ,maria)),
sibling(ana, juan)

– Existential Rules:

 = (sibling(X, Y)→ parent(Z,X),
parent(Z, Y)),

(sibling(X, Y)→ sibling(Y ,X))

– Negative Constraints:

 = (sibling(X, Y), parent(X, Y)),
(same-age(X, Y), parent(X, Y))
(parent(X, Y), parent(Y ,X))
(parent(X,X))

– Disjunctive Existential Rules :

∨ = first-deg-relative (X, Y)→
[parent(X, Y),
parent(Y ,X),
sibling(X, Y)]

(1)

Notice that the existential rule has an existential vari-
able Z that refers to an anonymous entity that is the
father of both siblings i.e. two people are siblings if
they share a parent. We can also see a rule stating
that the sibling/2 predicate is symmetric. We could also
add symmetry for same-age/2. There is also a fact that
states that there is an anonymous entity Y that is parent
of both maria and ana. The negative constraints states
the impossibility of a person being parent of his sib-
ling and also of a person of the same age. Additionally,
with the negative constraints we express that parent/2
is asymmetric and irreflexive. Finally, the disjunctive
rule defines the relation that represents the first degree
relative concept [14]: a parent, a child (inverse of par-
ent), or a sibling.

In this paper, we analyze the problem of query en-
tailment i.e.

,∨,, ⊧ , (2)
where  is a UCQ (UCQ¬). In particular we solve the
entailment problem by reducing it to the entailment of
UCQs with respect to the set of facts  i.e.

 ⊧ ′,

where ′ is a Union of Conjunctive Queries UCQ.
We say ′ is a UCQ-rewriting of Q with respect to

,∨ and  if for all set of facts  it holds that
 ⊧ ′ implies ,∨,, ⊧ .

If the converse
,∨,, ⊧  implies  ⊧ ′

also holds for all set of facts, we say′ is a complete
UCQ-rewriting of  with respect to ,∨ and .

8 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Additionally, we can be interested in the values that
some of the variables in take. However, this does not
change the semantic definition of Conjunctive Queries
and therefore, we discuss it later in the subsection 3.4.

3. Backward Chaining with Disjunctive
Knowledge

In this section we present two types of resolution
(Semi-Horn Resolution and Constraint Resolution)
that are sound and complete. Additionally, these types
of resolution reduce the number of choices in the res-
olution steps. Constraint Resolution is then translated
into backward rewriting steps using disjunctive exis-
tential rules. Thus, allowing to define a rewriting al-
gorithm for the framework of Disjunctive Existential
Rules that is able to solve the query entailment problem
(2).
3.1. Constraint Resolution

The entailment problem (2) can be transformed into
a consistency check problem:

,∨,,,¬ ⊧ ⊥ (3)
in order to be solved using resolution refutation. De-
pending on the expressivity of the queries in  the
negation can yield new facts, negative constraints, ex-
istential rules or even disjunctive existential rules.
The process of resolution can be controlled in order

to decrease the number of choices we have every time
we perform a resolution step. This might result in big-
ger derivations but the algorithm to generate them is
simpler.
The main goal of the restrictions we introduce is

to focus on generating clauses without positive literals
and any number of negative literals. After, the process
can continue with eliminating those remaining literals
without introducing positive literals.
Definition 3.1 (Positive/Negative Charge). The pos-
itive (negative) charge |C|+ (|C|−) of a clause C is
defined as the number of positive (negated) literals
present in the clause.

From the previous definition follows that clauses
corresponding to the negation of CQs (or negative
constraints) have zero positive charge. A Horn clause
C has a positive charge smaller than or equal to one
i.e. |C|+ ≤ 1. The Skolemized version of a (dis-

Table 1
Different Types of Clauses in the Disjunctive Existential Rules
Framework.

Name Properties
Rule Clause (RC) |C|+ = 1 ∧ |C|− ≥ 1
Fact Clause (FC) |C|+ = 1 ∧ |C|− = 0
Constraint Clause (CC) |C|+ = 0 ∧ |C|− ≥ 1
Disjunctive RC (DRC) |C|+ ≥ 2 ∧ |C|− ≥ 0

junctive) existential rule r can produce several Rule
Clauses (Disjunctive Rule Clauses). Facts generate
ground clauses (FCs) containing only one literal and
with positive polarity. Table 1 shows a compact view of
the properties that define the different types of clauses
we will find when doing resolution based on a knowl-
edge base coming from the disjunctive existential rules
framework. Additionally, DRCs could also represent
disjunctive facts with no negated atoms when the body
of the rule is empty. Finally, a CQ¬ can be translated
into a FC, RC or a DRC depending on the its positive
and negative charge.
Example 3.1. From example 2.4 the following are the
corresponding clauses:

– Fact Clauses:

[parent(f0, ana)], [parent(f0, ana)]
[sibling(ana, juan)]

– Rule Clauses:

[¬sibling(X, Y), parent(f2(X, Y), X)]
[¬sibling(X, Y), parent(f2(X, Y), Y)]
[¬sibling(X, Y), sibling(Y ,X)]

– Constraint Clauses:

[¬sibling(X, Y),¬parent(X, Y))],
[¬same-age(X, Y),¬parent(X, Y)]
[¬parent(X, Y),¬parent(Y ,X)]
[¬parent(X,X)]

– Disjunctive Rule Clauses :

[¬first-deg-relative(X, Y), parent(X, Y),
parent(Y ,X), sibling(X, Y)]

Table 2 shows properties of the resolvent from dif-
ferent types of clauses when we perform resolution
steps. Any resolution refutation should involve resolu-
tion steps with respect to fact clauses, they always pro-
duce clauses with a smaller negative charge. Those res-

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Properties of the resolvent C3 from different type of clauses C1 and
C2.
C1 C2

CC DRC RC

FC |

|

C3||
− < |

|

C1||
−

|

|

C3||
− < |

|

C1||
−

|

|

C3||
− < |

|

C1||
−

RC |

|

C3||
+ = 0 |

|

C3||
+ ≤ |

|

C2||
+

|

|

C3||
+ = 1

DRC |

|

C3||
+ < |

|

C1||
+

|

|

C3||
+ >

max(|
|

C1||
+ , |

|

C2||
+)

CC does not exist

olution steps can be arranged so that they are performed
in the last part of the resolution derivation. Addition-
ally, this type of resolution steps is generally linked to
Data Retrieval with respect to databases. For this rea-
son, we mainly focus in the initial segment of the reor-
ganized resolution derivation until it reaches a clause
that has only negated atoms. This process is linked to
producing Conjunctive Query Rewritings and the re-
sulting clause will correspond to the negation of a con-
junctive query. In order to reach a conjunctive query
we need to produce clauses with a decreasing positive
charge. Therefore, we need to avoid resolutions steps
involving two DRC i.e. we need to use in every resolu-
tion step at least one Horn clause.
Definition 3.2 (Semi-Horn Derivation). A resolution
derivation (refutation) Σ ⊧r C of a clause C , is semi-
Horn iff all the resolution steps are based on binary res-
olution with at least a Horn factor of a clause. A semi-
Horn derivation of a clause C is written as Σ ⊧sH C .
Similarly, there is a semi-Horn deduction of C from Σ,
written as Σ ⊧dsH C , if C is a tautology or if there is a
clause D such that Σ ⊧sH D and D subsumes C .

Theorem 3.1 (Completeness of Semi-Horn Resolu-
tion Derivations). A set of clauses Σ is unsatisfiable iff
Σ ⊧sH ⊥.

Proof. Semi-Horn derivations are sound because they
are also resolution derivations. The proof is based on
being able to transform every resolution refutation into
a semi-Horn refutation.
Horn clauses are very important in a resolution refu-

tation. We need them in order to generate clauses with
fewer positive literals and eventually end up with the
empty clause.
Because Σ is unsatisfiable, from the completeness

theorem of resolution refutations we can ensure that
Σ ⊧r ⊥. Let us focus on the resolution derivation tree
that corresponds to the refutation of Σ. Let Ci1 be theclosest resolvent to the root that is obtained by apply-

ing binary resolution with two non Horn factor clauses:
Ci1 =

(

Ci0 ∪r Cj0
)

. We can assume that on the path to
the root of the tree the resolution steps will then involve
only Horn factors of clauses Cj1 ,… , Cjk :

(

Ci0 ∪r Cj0
)

∪r Cj1 ∪r…∪r Cjk = ⊥.

These Horn clauses clash on literals coming from
Cj0 and/or Ci0 . Therefore, we can apply the distributiv-ity (commutativity) property of the resolution operator
and perform the resolution steps with respect to clauses
Cj1 ,… , Cjk in the same order.

(

Ci0 ∪
l1
r Cj1 ∪r…∪lkr Cjk

)

∪r
(

Cj0 ∪
l1
r Cj1 ∪r…∪lkr Cjk

)

= ⊥.

Notice that some of the resolution steps might be
skipped because the literal it resolves upon was not
present in one of the resolving clauses. Those cases are
based on using the commutativity property instead of
distributivity.

In the end, both clauses will have factors with com-
plementary literals:

(

Ci0 ∪
l1
r Cj1 ∪r…∪lkr Cjk

)

�1 = [l0]
(

Cj0 ∪
l1
r Cj1 ∪r…∪lkr Cjk

)

�2 = [l0]

Therefore, the resolution between them will involve
Horn factor clauses. However, we need to be careful
and apply the resolution steps with respect to clauses
Cj1 ,… , Cjk using the same complementary literals and
the same horn factors of the clauses.

The process described can continue in a top down
(from the root down to the leaves) manner until all the
steps involving two non horn clauses are removed. This
way, every refutation can be transformed into a semi-
Horn refutation.

In general, the subsumption theorem does not hold
for semi-horn deductions.
Example 3.2. Let

C1 = [¬r(X, Y),¬r(X,Z),¬a(Y),
¬b(Z), r(Y ,Z), r(Z, Y)]

10 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

and

C2 = [¬r(X′′, Z′),¬a(Z′′),¬b(Z′),
r(Z′′, Z′), r(Z′, Z′′),

¬r(X′′, Y ′′),¬r(X′′, Z′′),
¬a(Y ′′),¬b(Z′′), r(Z′′, Y ′′)]

a clause obtained from C1 ∪r C1. As a consequence
of the correctness of resolution, for any set of horn
clauses, we have that ∪ {C1} ⊧ C2. Nevertheless,
 ∪ {C1} ⊭d

sH C2. The clause C2 cannot be obtained
by applying resolution with respect to horn clauses be-
cause |

|

C2||
+ > |

|

C1||
+ and resolution with respect to

Horn clauses cannot generate causes with greater pos-
itive clause charge.

However, if we restrict it to Horn consequences the
subsumption theorem for semi-Horn deductions holds.
Theorem 3.2 (Semi-Horn Subsumption for Horn Con-
sequences). Let Σ be a set of clauses and C a Horn
clause. Then Σ ⊧ C iff Σ ⊧dsH C .

Proof. Based on the subsumption theorem for general
resolution derivations (2.4), the fact that Σ ⊧ C implies
that we have a resolution deduction of C i.e. Σ ⊧dr C .Such derivation for sure involves resolution steps with
respect to some Horn clauses or Horn factors clauses.
If we use the process described on the proof of The-

orem (3.1), the derivation of C can also be transformed
into a semi-Horn derivation.
Let Ci1 be the closest resolvent to the root (C) of thecorresponding derivation tree that is obtained by apply-

ing binary resolution with two non Horn factor clauses:
Ci1 =

(

Ci0 ∪r Cj0
)

. We can assume that on the path
to the root of the tree the resolution steps involve only
Horn factors of clauses Cj1 ,… , Cjk :

|

|

|

|

(

Ci0 ∪r Cj0
)

∪r Cj1 ∪r…∪r Cjk
|

|

|

|

+
≤ 1

implies that
|

|

|

|

(

Ci0 ∪r Cj1 ∪r…∪r Cjk
)

∪r
(

Cj0 ∪r Cj1 ∪r…∪r Cjk
)

|

|

|

|

+
≤ 1

Therefore, at least one of the factors of the resolvents
is horn

|

|

|

|

(

Ci0 ∪r Cj1 ∪r…∪r Cjk
)

�1
|

|

|

|

+
≤ 1

or
|

|

|

|

(

Cj0 ∪r Cj1 ∪r…∪r Cjk
)

�2
|

|

|

|

+
≤ 1

and this eliminates the resolution step between the two
nonHorn clauses. In the samewaywe can eliminate the
rest of the resolution steps that involve two non Horn
clauses and transform the initial resolution derivation
into a semi-Horn derivation.

Resolutions steps in a semi-Horn derivation are also
possible between a RC and another RC or also with
a DRC. Those steps do not generate clauses with a
greater positive query charge. However, we should pre-
fer steps involving CC because they always produce
clauses with a smaller positive clause charge (See table
2).
Definition 3.3 (Constraint Derivation). A resolution
derivation (refutation) Σ ⊧r C is a constraint deriva-
tion iff all the resolution steps are based on binary res-
olution with a clause that has no positive literals. A
constraint derivation is written as Σ ⊧c C . Similarly,
there is a constraint deduction of C from Σ, written as
Σ ⊧dc C , if C is a tautology or if there is a clause D
such that Σ ⊧c D and D subsumes C .

Subsumption theorem can be formulated using con-
straint deductions and consequences with no positive
literals.
Theorem 3.3 (Constraint Subsumption for Conse-
quences without positive literals). Let Σ be a set of
clauses and C a clause with no positive literals. Then
Σ ⊧ C iff Σ ⊧dc C .

Proof. Based on the subsumption theorem for semi-
Horn resolution derivations (3.2), the fact that Σ ⊧ C
implies that we have a semi-horn deduction of C i.e.
Σ ⊧dsH C . However, we need avoid resolution steps be-
tween two RCs or a RC and a DRC.

Such derivation for sure involves resolution steps
with respect to some constraint clauses. If we use the
process described on the proof of Theorem (3.1), the
semi-Horn derivation ofC can also be transformed into
a constraint derivation.

Let Ci1 be the closest resolvent to the root (C) of
the corresponding derivation tree that is obtained by

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

applying binary resolution without using a constraint
clause: Ci1 =

(

Ci0 ∪r Cj0
)

. We can assume that on the
path to the root of the tree the resolution steps involve
always constraint clauses Cj1 ,… , Cjk :

|

|

|

|

(

Ci0 ∪r Cj0
)

∪r Cj1 ∪r…∪r Cjk
|

|

|

|

+
= 0

implies that
|

|

|

|

(

Ci0 ∪r Cj1 ∪r…∪r Cjk
)

∪r
(

Cj0 ∪r Cj1 ∪r…∪r Cjk
)

|

|

|

|

+
= 0.

Therefore, at least one of the factors of the resolvents
is a constraint clause:

|

|

|

|

(

Ci0 ∪r Cj1 ∪r…∪r Cjk
)

�1
|

|

|

|

+
= 0

or
|

|

|

|

(

Cj0 ∪r Cj1 ∪r…∪r Cjk
)

�2
|

|

|

|

+
= 0

and this eliminates the resolution step between the two
non constraint clauses clauses. In the same way we can
eliminate the rest of the resolution steps that involve
two non constraint clauses.
Theorem 3.4 (Completeness of Constraint Resolution
Derivations). A set of clauses Σ is unsatisfiable iff Σ ⊧c
⊥.

Proof. This follows from theorem 3.3 as a colorary
where the consequence is the empty clause.
3.2. Rewriting Operations and Resolution

Conjunctive Query Rewriting is a process that mi-
mics the constraint derivations introduced in the previ-
ous section. However resolution steps involving Skolem
functions are performed together in order to avoid in-
troducing literals with Skolem functions that will not
be able to be removed. For existential rules, the pro-
cess of query rewriting is well known [11]. However,
disjunctive rules are mainly used in a forward chaining
manner in most of the existing literature [6, 8].
In example 2.4 one could infer that two first-degree

relatives that have the same age have to be siblings:
first-deg-relative(X, Y),

same-age(X, Y)→ sibling(X, Y). (4)

This rule can be obtainedwith a constraint derivation
using (1) and the clauses corresponding to:
(same-age(X, Y), parent(X, Y)→ ⊥)
(The child of a parent cannot have his same age)
(same-age(X, Y)→ same-age(Y ,X))
(Symmetry).

This creates a new existential rule (4) that was obtained
from an initial disjunctive rule (1) and can also be used
in rewriting steps defined for existential rules.

The resolution step between a RC Cr correspondingto an existential rule r and a CC Cq corresponding to
the negation of a CQ q, corresponds to a rewriting step
as defined in the Existential Rules framework [11].
Definition 3.4 (Rewriting Step). Let r = B → H be an
existential rule, q a conjunctive query and � a unifier
forH ′ ⊆ H and q′ ⊆ q (H ′� = q′�) such that:

1. if v ≠ v� and v ∈ vars(q ⧵ q′), then v� is a fron-
tier variable of r or a constant.

2. if v is an existential variable in the rule, then v� ∉
(q ⧵ q′).

Then the query rew(r, q) = (B∪(q⧵q′))� is a rewrit-
ing of q using the rule r.

Having more than one atom in the head of existen-
tial rules corresponds to more than one RC. Neverthe-
less, the resolution steps using those clauses are always
performed together in order to avoid unnecessary prop-
agation of Skolemized existential variables. Thus, the
resulting clause can not contain a Skolemized constant
representing an existential variable in r. Hence, exis-
tential variables cannot be assigned to a variable that
will be part of the result (condition 1 in definition 3.4)
nor should be replaced by a variable that belongs to the
result (condition 2 in definition 3.4).

For the resolution step between a DRC Cr corre-
sponding to a disjunctive existential rule r and a CC Cqcorresponding to the negation of a CQ q, we define a
corresponding rewriting step.
Definition 3.5 (Disjunctive Rewriting Step). Let B →
H be a disjunctive existential rule, q a conjunctive
query,H ′ ⊆ H and � a unifier for q′ ⊆ q in the query
and ℎ′i a subset of ℎi ∈ H

′ (ℎ′1� = …ℎ′n� = q
′�) such

that:

1. if v ∈ vars(q ⧵ q′) , then v� is a frontier variable
of r or a constant.

2. if v is an existential variable in the rule, then v� ∉
(q ⧵ q′).

12 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Then rew(r, q) = (B ∪ (q ⧵ q′) → H ⧵ H ′)� is a
rewriting of q using the rule r.

The resulting expression rew(r, q) can be a disjunc-
tive rule with fewer disjunctive components, an exis-
tential rule in case |H ⧵H ′

| = 1 or a conjunctive query
in case |H ⧵H ′

| = 0.
Example 3.3. Let us consider a disjunctive rule:

r1 = diabetesRisk(X)→ [(diabetic(Y),
sibling(Y ,X)),
(diabetic(Z),
parent(Z,X))].

If we want to rewrite a query to know if there are di-
abetic people q = diabetic(X1), we can obtain the
UCQ-rewriting [diabetic(X1), diabetesRisk(X)], us-
ing r1 with the unifier � = {Y ←←← X1, Z ←←← X1}.
On the other hand, if we have a negative constraint

singleChild(X1), sibling(Y1, X1) and a query for a dia-
betic parent q′ = diabetic(Y2), parent(Y2, X2), we can
derive the rule:

diabetesRisk(X), singleChild(X)→ diabetic(Z),
parent(Z,X)

if we rewrite the constraint with r1 and the unifier �2 =
{X1 ← X, Y1 ← Y }. Using the new rule we can then
obtain the following UCQ-rewriting:

[(singleChild(X), sibling(Y ,X)),
(diabetic(Y), parent(Y ,X)),
(diabetesRisk(X), singleChild(X))].

Notice that the final UCQ-rewriting contains also
negated constraints which are possible reasons for
which a query can be entailed i.e. inconsistent knowl-
edge bases. However, sometimes we might want to filter
out inconsistencies if we are sure that the knowledge
base is consistent.

A rewriting can then be defined for knowledge bases
using rewriting steps.
Definition 3.6 (Rewriting). Let ⟨,∨,⟩ be set of
existential rules, disjunctive existential rules and a
UCQ. A one step rewriting ⟨′,′∨,′⟩ of ⟨,∨,⟩
can be obtained as follows:

1. by adding to  the result q′ of a rewriting step
that uses one of the queries in  and a rule in,
where ′ =  ∪ [q′].

2. by adding to ∨ (to  or to ) the result f ′ of
a disjunctive rewriting step that uses one of the
queries in and a rule in′∨, where∨ = ∨∪
(f ′) if f ′ is a disjunctive existential rule, ′ =
 ∪ (f ′) if f ′ is an existential rule, otherwise
′ =  ∪ (f ′).

A k-steps rewriting of ⟨,∨,⟩ is obtained apply-
ing a one step rewriting to a (k − 1)-steps rewrit-
ing of ⟨,∨,⟩. For any k, a k-steps rewriting of
⟨,∨,⟩ is a rewriting of ⟨,∨,⟩.

So far we can deal with existential rules, disjunc-
tive existential rules and conjunctive queries. However,
constraints and conjunctive queries with negated atoms
need to be considered also. Negative Constraints are
transformed into queries in the rewriting process i.e.

,,,∨ ⊧  iff ,,∨ ⊧ ¬ ∪.

In a similar way if we have a UCQ¬  ∪ ¬, where
 is a UCQ and ¬ CSF that contains only CQ¬s, the
entailment problem can be reduced to the entailment of
a UCQ:

,,,∨ ⊧  ∪¬ iff
,,∨,¬¬ ⊧ ¬ ∪, (5)

where ¬¬ can contain some existential rules (nega-
tions of CQ¬s with one negated atom), some disjunc-
tive existential rules (negations ofCQ¬s withmore than
one negated atom) and some facts (negations of CQ¬s
with no positive literal).
Theorem 3.5 (Soundness and Completeness of Rewrit-
ings). Let ⟨,,,∨

⟩ be a knowledge base and 
a UCQ. Then ,,,∨ ⊧  iff there is a q′ ∈
Q′, a UCQ component in ⟨′,′∨,′⟩ a rewriting of
⟨,∨, ∪ ¬⟩ such that:

 ⊧ q′.

Proof. The k-steps rewriting of ⟨,∨, ∪ ¬⟩ is
based on a constraint derivation.Moreover, such rewrit-
ing can be mapped to a constraint derivation. Since
constraint derivations are sound and complete (Theo-
rem 3.4), this theorem also holds.

The Algorithm in Figure 2 alternates the rewri-
ting of CQs using existential rules (rewrite∃/2)
and the rewriting using disjunctive existential rules
(rewrite∨/3). New CQs are used to generate more
rules and new rules are used to generate more CQs un-

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

f unc t i on rewrite(, ∨, , )
′′ ∶=  ∪ ¬
′′ ∶= 
′′∨ ∶= ∨

do
′ ∶= ′′

′∨ ∶= ′′∨

′ ∶= ′′
′′ ∶= rewrite∃(′,′)
′′,′′∨ ∶= rewrite∨(′,′∨,′′)

whi le (′′ ≠ ′ or ′′∨ ≠ ′∨

or ′′ ≠ ′)
re turn ′′

end func t i on

Fig. 2. Function to rewrite Horn UCQs.

f unc t i on rewrite∃(, )
′ ∶= 
′′ ∶= 
do

′′′ ∶=cover(′∪ rew(′′,))
′′ ∶= ′′′ ⧵′
′ ∶= ′′′

whi le ′′ ≠ ∅
re turn ′

end func t i on

Fig. 3. Function to rewrite UCQs using existential rules.

til a fix point is reached i.e. no new rule or query is
produced.
The function rew/2 computes the set of one step

rewritings with all the combinations of rules and CQs
in the arguments. This step is known as the expansion
of a query or a disjunctive existential rule that gener-
ates more conjunctive queries, existential rules or dis-
junctive existential rules. The cover/1 function com-
putes for a given CSF F the minimal subset F ′ ⊆ F
such that for all c ∈ F there is a c′ ∈ F ′ such that c′
subsumes c i.e. the corresponding clause c′c to c′ sub-sumes cc , the corresponding clause to c. However, the
definition of subsumption needs to be extended for the
case of (disjunctive) existential rules where there are
more than one clause in their CNF representation. In a

f unc t i on rewrite∨(,∨,)
′∨ ∶= ∨

′′∨ ∶= ∨

do
′ ∶=  ∪′∨∪rew(,′′∨)
′′′∨, ∶=cover(′)
′′∨ ∶= ′′′∨ ⧵′∨

′∨ ∶= ′′′∨

whi le ′′∨ ≠ ∅
re turn ′∨,

end func t i on

Fig. 4. Function to rewrite UCQs using disjunctive existential rules.

similar way for c and c′ CNFs, we say c′ subsumes c if
all the clauses in c are subsumed by a clause in c′.
The cover/1 function allow us to keep always the

minimal set of CQs that can yield the same results.
In [11] the authors perform a deeper analysis showing
that using the cover computation on the rewriting al-
gorithm they propose ensures that the resulting UCQ-
rewriting will be of minimal size (cardinality). In our
case, the minimal rewriting property is also present de-
spite of the fact that the extension we propose for sub-
sumption in CNFs does not ensure that the cover of a
set of rules will be minimal.
Example 3.4. For  = (a → b), (b → c), (a → c)
we have that cover() = . However, there is a subset
′ = (a → b), (b → c) of  and ′ ⊧ . Thus, the
cover of a set of rules does not always return a set of
minimal size.

Redundant existential rules, will generate redundant
queries but they will be removed when the cover of the
UCQ is computed in rewrite∃/2 conserving the min-
imal size property of the UCQ-rewriting.

The generated elements are also expanded unless
they are removed when computing the cover. The pro-
cess stops when a fix point is reached. The one-step
rewriting function (rew/2) can keep track of the pairs
of conjunctive queries and rules that were used in order
not to repeat their rewritings and focus only on rewrit-
ing using the new rules and new conjunctive queries.
3.3. Rewritable Queries and Knowledge Bases

The termination of algorithm 2 depends on the ter-
mination of algorithms 3 and 4. Algorithm 4 always ter-
minates because the produced rewritings contain less

14 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

disjunctive components in the head. On the other hand,
algorithm 3 is the classical rewriting algorithm for ex-
istential rules proposed in [11] and its termination is
studied in [1]. In general, it is undecidable to know if
there exists a finite UCQ-rewriting for every UCQwith
respect to an arbitrary set of existential rules. A set of
existential rules that ensures the existence of a UCQ-
rewriting for any UCQ is called a Finite Unification Set
(fus)[2]. There are some classes of rules that ensure the
fus property:
1. Linear rules [2]: rules with one atom in the body.
2. Disconnected rules [4]: rules that do not share

variables between the body and the head.
3. Acyclic graph of rule dependencies (aGRD) [3]:

rules that do not contain cycles in the graph of
rule dependencies.

If is a fus and the new rules generated from algo-
rithm 4 are also a fus, combining them could yield a
new set of rules that is not a fus [1].

A cut {1,2} is a partition of the set of rules 
and it is a directed cut 1 ⊳2 if none of rules in 1depends on a rule of 2.
Property 3.1. Given a set of rules  with a directed
cut 1 ⊳2, for all queries q and set of facts :

, ⊧ q if there is a query P such that
,1 ⊧ P and P ,2 ⊧ q.

Proof. The proof is based on being able to organize the
application of rules from. The existing dependencies
ensure that rules of 1 are never depending on rules
from2. For a detailed proof check [1].

Property 3.1[1] allows us to study the decidability
of entailment when we combine two sets of rules for
which the entailment problem is decidable.
Even if the union of and the set of existential rules

produced by algorithm 4 yields a fus, the process of
generating new rules could potentially continue forever
after we obtain new CQs from algorithm 3. Therefore,
we need ways to ensure that the total number of exis-
tential rules generated by algorithm 4 is a finite number
i.e. at some point the algorithm will not produce new
rules.
Existential rules with one atom in the body ensure

that the rewritings will never grow in size. Indeed, a
rewriting operation will replace one or more atoms for
the atomic body.
An (a disjunctive) existential rule B → H is called

linear rule if it has only one atom in the body i.e.

|B| = 1. Similarly, a constraint B → ⊥ is called linear
constraint if it has only one atom i.e. |B| = 1.
Theorem 3.6. The rewriting algorithm 2 stops for
atomic queries  and a knowledge base composed by
linear existential rules, linear disjunctive existential
rules ∨ and linear constraints .

Proof. Linear existential rules are a fus and rewriting
queries with them stops. The new rules generated with
the linear disjunctive existential rules and the atomic
queries will also be linear rules and adding them to 
will produce a fus. Additionally, the number of single
atoms that can be built using predicates, variables and
constants is bounded. Therefore, the number of rules
that we can derive from disjunctive rules is finite.
Rules that do not share variables between the head

and the body produce rewritings where the introduced
body of the rule is not connected to the rest of the the
query.

An (a disjunctive) existential rule B → H is called
disconnected rule (disc-rule) if no variable from the
body is present in the head of the rule i.e. vars(B) ∩
vars(H) = ∅.
Disconnected rules might still share constants be-

tween the body and the head and this allows to express
knowledge about specific individuals.
Theorem 3.7. Let1 be a fus and2 a set of discon-
nected existential rules. The union of both sets1∪2
is also a fus.
Proof. The rewritings produced by disconnected rules
add atoms that do not share variables with the query.
Therefore, we can say that the connected cardinality
in rewritings produced with rules B → H ∈ 2 is
bounded:

card∗(rew(B → H, q)) ≤
max (card∗(B), card∗(q)).

The rewritings obtained from rules in 1 could in-
crease the connected cardinality of the queries, but they
only produce a finite number of rewritings because1is a fus. Thus, we can affirm that the connected car-
dinality of the rewritings of an initial query q will be
bounded i.e.

card∗(rewrite∃ (1 ∪2, q)) ≤
max (card∗(rewrite∃(1, B)),

card∗(rewrite∃(1, q))).

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Using lemma 2.2 we can ensure that the number of
rewritings produced by 1 ∪ 2 cannot be infinite.
Thus, 1 ∪2 is also a fus.
Theorem 3.8. The rewriting algorithm 2 stops for
knowledge base composed by a fus , a set of dis-
connected disjunctive existential rules ∨, any set of
constraints  and any UCQ .

Proof. The new existential rules produced byrewrite∨
are disconnected rules and they can be combined with
 and produce another fus (Theorem 3.7).

Rewritings of disjunctive rules Bi → Hi will havethe following form:
⋃

j
B′j ∪

⋃

j
q′j → H ′,

whereH ′ ⊆ Hi� is a subset of an instanceHi� of the
original head of the ruleHi,B′j ⊆ rewrite∃(Bj ,)�′,
q′j ⊆ rewrite∃(qj ,)�′′ and none of the B′j or q′jshare variables between them because they are intro-
duced using an atom in the head of the disjunctive rule
that do not shares variables with the body. Because 
is a fuswe have a finite number of rewritingsB′j and q′j .This ensures there is only a finite number of different
bodies B′ for the generated existential rules. The num-
ber of different heads,H ′ is obviously finite too. There-
fore, there is only a finite number of different existential
rules that will eventually be generated by rewrite∨.
Thus, algorithm 2 stops.

For other types of queries and knowledge bases there
is no certainty that the algorithm will stop. However,
we can still try to compute the rewritings up to a certain
depth.
3.4. On Queries with Answer Variables and Linear

Queries

While Theorems 3.6 and 3.8 impose rather strong re-
strictions on the disjunctive framework, they also en-
sure the existence of finite UCQ-rewritings for very ex-
pressive types of queries with negated atoms.
A CQ q with answer variables is denoted by the ex-

pression q(X) ∶− B, where var(X) ⊆ var(B) are free
variables, X is called the answer tuple and B is a CSF
of atoms where the variables var(B) ⧵ var(X) are exis-
tentially quantified. Queries without answer variables
are called Boolean queries and for them the answer tu-
ple is the empty tupleX = (). A CQ¬ with answer vari-
ables is defined in the same way, however we do not al-

low variables that are only present in negated atoms to
be part of the answer variables in X. A UCQ (UCQ¬)
with answer variables q(X) ∶− B is defined for a UCQ
(UCQ¬) B, where each of the answer variables var(X)
belongs as a free variable to each query in B.

If we replace variables in X by constants in  and
the resulting closed formulaB� is entailed ⊧ B�, we
say that the tuple X� is a certain answer of q with re-
spect to. The set of certain answers of a query q with
respect to a knowledge base is denoted by cert(q,).
Notice that we are only interested in answers contain-
ing constants in .
Example 3.5. Let us consider three different set of ans-
wer variables:

q1 () ∶− sibling(X, Y)
// Empty tuple {()} if someone has a sibling.

q2 (X) ∶− sibling(X, Y)
// The set of people that have siblings.

q3 (X, Y) ∶− sibling(X, Y)
// The set of pairs of people that are siblings.

Also, let us consider a knowledge base  based on ex-
ample 2.4 together with the following facts:

sibling(perdo, ana) // pedro and ana are siblings.
sibling(juan, Y) // juan has a sibling.

The certain answers of the queries with respect to 
are the following:

cert(q1,) = {()}
// There are some siblings in .

cert(q2,) = {pedro, ana, juan}
// Notice that sibling/2 is symetric.

cert(q3,) = {⟨pedro, ana⟩ , ⟨ana, pedro⟩}
// No identity for the sibling of juan.

The answers can be verified easily by applying the
corresponding substitutions to the query e.g.  ⊧
∃Y sibling(pedro, Y) ensures pedro is a certain answer
of q2.

For CQs (CQ¬s) with answer variables we focus on
the computation of the certain answers instead of just
solving the entailment problem. For theoretical pur-
poses we can try with all possible assignments of con-
stants in  to variables in X. Nevertheless, in the im-
plementation of algorithm 2, instead of trying with ev-
ery possible ground instance of X we can use variables
in the rewriting process. However, answer variables are

16 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

not standardized apart and they can only be assigned
to constants from and not to Skolem functions. This
requires some minor modifications in algorithm 2 (see
Section 4).
Sometimes the disjtunctive existential rules are not

disconnected but if they eventually will produce a dis-
connected existential rule, the rewriting algorithm will
also stop.
Example 3.6. Let us consider the following knowledge
base:

B(X), s(X, Y)→ [B(Y),W (Y)]
B(c)→ ⊥
B(a), s(a, b), s(b, c)

in order to answer queries with different answer vari-
ables: Q1() ∶− W (X) and Q2(X) ∶− W (X).

To prove Q1 we can use a simple constraint refuta-
tion:

[¬B(X),¬s(X, Y), B(Y),W (Y)] ∪r [¬W (X)]
= [¬B(X),¬s(X, Y), B(Y)]
[¬B(X),¬s(X, Y), B(Y)] ∪r [¬B(c)]
= [¬B(X),¬s(X, c)]
[¬B(X),¬s(X, Y), B(Y)] ∪r [¬B(X),¬s(X, c)]
= [¬B(X′),¬s(X′, X),¬s(X, c)]
(([¬B(X′),¬s(X′, X),¬s(X, c)] ∪r
[s(b, c)]) ∪r [s(a, b)]) ∪r [B(a)] = ⊥.

On the other hand, for the case of Q2 we add
[¬W (t)] where t ∈ {a, b, c}. However, the empty
clause cannot be reached.

[¬B(X),¬s(X, Y), B(Y),W (Y)] ∪r [¬W (t)]
= [¬B(X),¬s(X, t), B(t)]
[¬B(X),¬s(X, Y), B(Y)] ∪r [¬B(c)]
= [¬B(X),¬s(X, c)]
// notice that this forces t = c
[¬B(X),¬s(X, c), B(c)] ∪r [¬B(X),¬s(X, c)]
= [¬B(X′),¬s(X′, c),¬s(c, c)].

We end up in a clause that is subsumed by a previously
generated clause [¬B(X),¬s(X, c)]. Therefore, in this
case appliying resolution with respect to the resulting
rule [¬B(X),¬s(X, t), B(t)] is not necessary. This pre-
vent us from performing an infinite number of resolu-
tion steps in order to find a constraint refutation.

If we take a closer look atQ2 in example 3.6, we no-
tice that the RC produced in the first resolution step had
no variables in the positive literal and this corresponds
to a disconnected existential rule. In general, if the dis-

junctive rules only unify with grounded atoms all the
resulting existential rules will be disconnected rules.
Therefore, for a knowledge base ⟨,∨,⟩with be-
ing a fus and a UCQQ possibly with answer variables,
the rewriting algorithm 2 stops if the rules in ∨ al-
ways generate disconnected existential rules. There are
many combination of properties that can help in the the
generation of disconnected rules. However, they seem
to be very restrictive and algorithm 2 could check all
the new rules that are generated and abort if one of them
is not discontented. This would be an incomplete ap-
proach but such algorithm would stop and give a com-
plete answer if indeed all the new rules end up being
disconnected rules.

Using the reduction in equation (5) we can focus on
the disjunctive rules that come from the negation of a
CQ¬. In this case, we can ensure that if all the vari-
ables in the frontier of the query are also answer vari-
ables, then the corresponding disjunctive rules will be
disconnected.
Theorem 3.9. The rewriting algorithm 2 stops for a
knowledge base composed by a fus , a set of con-
straints  and a UCQ¬  ∪¬ where all the variables
in the frontier of the CQ¬s in¬ are part of the answer
variables.

Proof. When∨ = ∅, the entailment of UCQ¬s can be
transformed into the entailment of a UCQ (5):

, ⊧  ∪¬ iff ,¬¬ ⊧  ∪ ¬.

The variables present in negated atoms of the CQ¬s
will end up being the variables in the head of the corre-
sponding disjunctive rules. However, the variables that
are only present in the negated atoms will be trans-
lated to existential variables and answer variables are
replaced by constants in the entailment of queries with
answer variables. Therefore, the resulting disjunctive
rules will have only constants and existential variables
in the head i.e. they will be disconnected and Theorem
3.8 ensures that algorithm 2 stops for disconnected dis-
junctive rules combined with a fus.

Similarly, we can define other restrictions in UCQ¬s
that allow us to ensure that the rewriting algorithm stop
based on Theorem 3.6. A linear CQ (CQ¬) is a CQ
(CQ¬) with only one positive literal. Similarly, a UCQ
(UCQ¬) is linear if all the queries in it are also linear.
Theorem 3.10. The rewriting algorithm 2 stops for a
knowledge base composed by a linear set of existen-

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tial rules , a linear set of constraints  and a linear
UCQ¬  ∪¬.

Proof. Similarly, the entailment of UCQ¬s can be
transformed into the entailment of a UCQ (5):

, ⊧  ∪¬ iff ,¬¬ ⊧  ∪ ¬.

Because ¬ is linear we have that the corresponding
disjunctive rules ¬¬ will also be linear. Therefore,
Theorem 3.6 ensures that algorithm 2 stops for for our
system composed by linear elements.

4. Implementation and Experiments

COMPLETO1 is a query rewriting system that fo-
cuses on answering UCQ¬s in the framework of exis-
tential rules. The first version of COMPLETO[13] an-
swers CQ¬ using a resolution based approach to elimi-
nate the negated atoms.The algorithm proposed is com-
plete only for a very restricted type of queries.
In the second version of the system [12], queries with

only one negated atom are answered by transforming
them into rules. The approach is complete but we can
ensure the termination only when the resulting set of
rules is a fus.
The current version of COMPLETO answers queries

with an arbitrary number of atoms. Algorithm 2 can
be seen as a generalization of both algorithms pro-
posed previously. Indeed, we transform queries with
one negated atom into rules and the rewriting defined
for disjunctive rules is similar to what was presented in
[13] as constraint resolution. Furthermore, we take ad-
vantage of the termination results for a knowledge base
composed by a fus and UCQ¬ where the frontier is part
of the answer variables of the query (Theorem 3.9) and
for knowledge bases where all the elements are linear
(Theorem 3.10).
The algorithms defined in previous sections were

implemented in order to answer UCQ¬s with answer
variables in COMPLETO system. Instead of replacing
the answer variables with constants we define them as
global variables, a special type of variables that keep
the same value in each CQ-rewriting. In order to differ-
entiate those variables we include a fresh predicate q in
the queries and/or rules that contain those global vari-
ables e.g. a CQ with answer variables q(X) ∶− B will
be represented by a CQ q(X), B. The rewriting steps

1http://image.ntua.gr/~gardero/completo3.0/

applied toB will apply the same substitutions toX. The
atoms q(X) are known as answer atoms.
Example 4.1. The query

q(X, Y) ∶− person(X), person(Y),
¬married(X, Y)

is represented by the query

q(X, Y), person(X), person(Y),
¬married(X, Y)

and translated into the rule

q(X, Y), person(X), person(Y)→
married(X, Y).

If we use the constraint married(X,X)→ ⊥ the fol-
lowing rewriting is obtained q(X, Y), person(X). Thus,
when we query a database with people, the tupples
X,X will be answers of the initial query. This ensures
that no person can be married to itself.

Each CQ-rewriting that is entailed by the data 
represents a different way to entail the initial CQ. The
answer atoms identify the answer tupple that is pro-
duced by each CQ-rewriting. The variables in answer
atoms are global and in the derivation of a CQ we
cannot produce two different occurrences of answer
atoms. Having existential rules and UCQs ensures that
all the rewriting produced areCQs and it is not possible
to apply resolution between them. On the other hand,
introducing disjunctive rules or allowing negation for
UCQ¬s produces rewritings that could correspond to
existential rules or disjunctive existential rules that also
contain answer atoms in their body. Therefore, we have
to consider the interaction between the rewritings and
the possibility to introduce several occurrences of an-
swer atoms in a CQ.
Example 4.2. Let us Consider the elements in example
4.1 with a new query

q(X, Y) ∶− parent(X1, X), parent(Y1, Y),
married(X1, Y1)

represented by

q(X, Y), parent(X1, X), parent(Y1, Y),
married(X1, Y1).

18 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

When we use the rule corresponding to the query from
example 4.1 we can generate a rewriting with two oc-
currences of answer atoms:

q(X, Y), parent(X1, X), parent(Y1, Y),
q(X1, Y1), person(X1), person(Y1).

In this case the query yields certain answers only when
X = X1 and Y = Y1.

To approach this issue, we unify the arguments of
the multiple answer atoms after each rewriting step i.e.
if a CQ q (rule r) contains k occurrences of answer
atoms q(Xi) we then replace the query q (the rule r) by
q� (r�), where � is the unifier mgu(q(X1),… , q(Xk))of all the answer atoms q(Xi) in q (or in the rule r).
This unification step is important for the termination of
the rewriting process and it needs to be performed after
each 1-step rewriting in the algorithm. Consequently,
this prevents us from using external rewriters if we
want to terminate for the cases where answer variables
allow us to terminate.

4.1. Experiments

To the best of our knowledge there is no other sys-
tem that produces UCQ-rewritings for UCQ¬s. There-
fore, the experiments were preformed in order to get a
general idea of the performance of COMPLETO produc-
ing UCQ-rewritings. We used a Intel(R) Core(TM) i5-
7300HQ CPU at 2.50 GHz with 8 GB of RAM running
64-bit Windows 10.
For the experiments we used two ontologies that

contain negative constraints used in previous research
papers based on queries with negation [12, 13]. The
Lehigh University Benchmark (LUBM) ontology [19]
with an additional 70 disjoint classes assertions added
for the atomic siblings concepts. Also, we used the
TRAVEL ontology2 that has 10 disjoint class axioms.
The OWL 2 ER fragment of both ontologies was trans-
lated into existential rules.
We also prepared queries files with 500 CQ¬s for

both ontologies and the system produced the rewritings
of the UCQ¬ that contains all the queries in the file
and also for each separated CQ¬. The queries contain
3 atoms and 2 of them are negated. We generated the
queries by performing Association Rules Mining on a
dataset obtained from the assertions of the ontologies.

2http://www.owl-ontologies.com/travel.owl

Table 3 shows the size of the UCQ rewriting (rew)
for the UCQ¬ containing all the queries in the file and
the minimum (min), mean and maximum (max) statis-
tics for the rewriting of each individual query in the file.
Additionally we show the time (time) in seconds and
the memory used (men) in Mb used by the rewriting
process in each of the cases. The results give an idea
of the performance of the system with respect to each
UCQ¬ or individual CQ¬.
For the TRAVEL ontology, the size of the rewriting

of the UCQ¬ is smaller than the biggest rewriting for a
individual CQ¬. The time that took the rewriting of the
UCQ¬ is the time that takes in average to rewrite 125
individual queries (5 min). The ram memory used to
write the UCQ¬ is approximately the double of the ram
used for rewriting the individual query that consumed
the most memory.

For the LUBM ontology, the size of the rewriting of
the UCQ¬ has 11 more queries than the biggest rewrit-
ing for a individual CQ¬. The time that took the rewrit-
ing of the UCQ¬ is the time that takes in average to
rewrite 30 individual queries (less than 2 hours). The
ram memory used to write the UCQ¬ is less than the
ram memory used for rewriting the individual query
that consumed the most memory.

For both ontologies the memory consumed to com-
pute the rewritings was approximately 2 Gb.

Figures 5 and 6 show information about the rewriting
size. In both ontologies at least 85% of the queries have
zero rewritings. In this case, they are subsumed by the
rewritings of the constraints of the system.

Figures 7 and 8 show cummulative distribution of
the rewriting runtime. Dashed horizontal lines repre-
sent the mean runtime. Each bar represents the number
of queries that were rewritten under the corresponding
time. Note that in both cases the runtime for more than
60% of the queries was smaller than the mean runtime.

Figures 9 and 10 show the correlation matrix with
different performance parameters for the TRAVEL and
LUBM ontology. In order to get an idea of the rewrit-
ing process we computed the memory used by the sys-
tem (mem), the time that takes the commputation of
the rewriting (time), the size of the rewriting (rew),
the number of generated existential rules in the rewrit-
ing process (ger), the number of rewritten (expanded)
disjunctive existential rules (ecr) and also the num-
ber of generated (gcq) and rewritten (ecq) conjunctive
queries. For the LUBM ontology we can notice that the
number of generatedCQs and the number of rewritings
have a correlation coefficient of 0.9. For the TRAVEL

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 5. Size of the rewritings for the TRAVEL ontology.

Fig. 6. Size of the rewritings for the LUBM ontology.

Fig. 7. Cumulative distribution of the time that takes the computation
of the rewritings for the TRAVEL ontology.

Fig. 8. Cumulative distribution of the time that takes the computation
of the rewritings for the LUBM ontology.

Fig. 9. Correlation matrix with different performance parameters for
the TRAVEL ontology.

Fig. 10. Correlation matrix with different performance parameters
for the LUBM ontology.

Table 3
Rewriting experiments for UCQ¬s from LUBM and TRAVEL
ontologies.

Ontology Info rew time mem
LUBM UCQ¬ 77 6193.12 2138

min 0 104 1129
mean 4 205.58 2069
max 55 466 2237

TRAVEL UCQ¬ 18 264.96 2043
min 0 1 123
mean 2 2.12 143
max 76 8 920

ontology we can see that time, ecq, gcq and mem are
all correlated with coefficients higher than 0.9.
Example 4.3. One of the queries for the TRAVEL onto-
logy was:

Q(X) ∶− ¬Capital(X),¬Town(X),
Destination(X).

20 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

It focuses on destinations that are can not be capitals
or towns. The UCQ-rewriting produced by COMPLETO
was the following:

Q(X) ∶− [Farmland(X),
NationalPark(X),
RuralArea(X)].

Considering the above interpretation of the query, the
answer tells us that other only farmlands, national
parks and rural areas cannot be tows or capitals.

5. Conclusions

In this paper we focused on applying the query
rewriting approach to the framework of Disjunctive
Existential Rules in order to produce complete UCQ-
rewritings that encode the answers of an initial query.
Two special cases of First Order Logic resolution

were introduced in order to ensure the completeness
our rewriting approach. Semi-Horn Resolution uses in
all the steps at least a Horn clause and the subsump-
tion theorem holds for Horn consequences. We also in-
troducedConstraint Resolution, where every resolution
step involves one clause without positive literals and
the subsumption theorem holds when the consequence
is a clause without positive literals. The completeness
theorem holds for both types of resolution, allowing
them to be used in refutation procedures for First Order
Logic Formulas.
Based mainly in the definition of Constraint resolu-

tion we propose an extension of the rewriting approach
for existential rules in order to deal with disjunctive
existential rules. The rewriting of a Disjunctive Exis-
tential Rule produces disjunctive rules with less dis-
junctions in the head and eventually will produce an
existential rule or a conjunctive query. The rules gen-
erated from disjunctive rules are then used in order
to find additional rewritings of the conjunctive query
rewriting. The proposed algorithm can be used for gen-
eral knowledge bases with disjunctive existential rules;
however, there are rather strong conditions that ensure
the existence of a finite UCQ-rewriting. In the paper
we study some of those sufficient conditions that en-
sure that the proposed algorithm stops and yields a fi-
nite UCQ-rewriting.
Using the proposed algorithm and taking advantage

of the stopping criteria, we implemented a sound and
complete rewriting approach for Union of Conjunctive
Queries with Negated Atoms and Answer Variables in

the COMPLETO system that specialises in query an-
swering for Conjunctive Queries with Negation. The
implementation was evaluated on two ontologies in or-
der to get an idea of the performance.

The experimental results showed that the implemen-
tation is able to provide UCQ-rewritings in reasonable
time and using using a reasonable amount of RAM
memory. Also, rewriting UCQ¬s with a large amount
of queries takes considerably less time than the time
required to rewrite all the CQ¬s individually.
In the future, we would like to focus on implement-

ing in a more efficient way the proposed algorithm and
also on being able to use disjunctive rules as part of the
knowledge base and not only the ones corresponding
to the queries with negated atoms.

Acknowledgments

We would like to thank Lida Petrou for providing
the queries for the experiments. Also, we thank Stathis
Delivorias and Michael Giazitzoglou for their support
and comments in the writing process of this paper.

References

[1] Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules
with existential variables: Walking the decidability line. Arti-
ficial Intelligence 175(9), 1620 – 1654 (2011). , http://www.
sciencedirect.com/science/article/pii/S0004370211000397

[2] Baget, J.-F., Leclère, M., Mugnier, M.L., Salvat, E.:Extending
decidable cases for rules with existential variables. In IJCAI,
677âĂŞ682, 2009. http://dl.acm.org/citation.cfm?id=1661445.
1661553

[3] Baget, J.-F.:Improving the forward chaining algorithm for con-
ceptual graphs rules. In KR, pages 407âĂŞ414. AAAI Press,
2004.

[4] Baget, J.-F., Leclère, M., Mugnier.:The Complexity of Rules and
Constraints. J. Artif. Intell. Res. (JAIR), 16:425âĂŞ465, 2002.

[5] Bárány, V., ten Cate, B., Otto, M.: Queries with Guarded Nega-
tion (full version). CoRR abs/1203.0077 (2012), http://arxiv.org/
abs/1203.0077

[6] Carral, D., Dragoste I., Krötzsch, M. : Tractable Query An-
swering for Expressive Ontologies and Existential Rules. Pro-
ceedings of the 16th International Semantic Web Conference
(ISWC’17), LNCS 10587, Springer 2017. http://dx.doi.org/10.
1007/978-3-319-68288-4_10

[7] Du, J., Pan, J.Z.: Rewriting-Based Instance Retrieval for
Negated Concepts in Description Logic Ontologies, pp. 339–
355. Springer International Publishing, Cham (2015). , http:
//dx.doi.org/10.1007/978-3-319-25007-6_20

[8] Gottlob, G., Manna, M., Morak, M., Pieris, A.:On the
Complexity of Ontological Reasoning under Disjunctive Ex-
istential Rules. 1-18. Mathematical Foundations of Com-
puter Science (MFCS 2012), 2012. https://doi.org/10.1007/
978-3-642-32589-2_1

http://www.sciencedirect.com/science/article/pii/S0004370211000397
http://www.sciencedirect.com/science/article/pii/S0004370211000397
http://dl.acm.org/citation.cfm?id=1661445.1661553
http://dl.acm.org/citation.cfm?id=1661445.1661553
http://arxiv.org/abs/1203.0077
http://arxiv.org/abs/1203.0077
http://dx.doi.org/10.1007/978-3-319-68288-4_10
http://dx.doi.org/10.1007/978-3-319-68288-4_10
http://dx.doi.org/10.1007/978-3-319-25007-6_20
http://dx.doi.org/10.1007/978-3-319-25007-6_20
https://doi.org/10.1007/978-3-642-32589-2_1
https://doi.org/10.1007/978-3-642-32589-2_1

E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[9] Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL
Knowledge Base Systems. Web Semant. 3(2-3), 158–182 (Oct
2005). , http://dx.doi.org/10.1016/j.websem.2005.06.005

[10] Gutiérrez-Basulto, V., Ibañez-García, Y., Kontchakov, R.,
Kostylev, E.V.: Conjunctive Queries with Negation over DL-
Lite: A Closer Look, pp. 109–122. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2013). , http://dx.doi.org/10.1007/
978-3-642-39666-3_9

[11] König, M., Leclère, M., Mugnier, M., Thomazo, M.: Sound,
complete and minimal UCQ-rewriting for existential rules. Se-
mantic Web 6(5), 451–475 (2015). , https://doi.org/10.3233/
SW-140153

[12] Matos Alfonso, Enrique, Stamou, Giorgos.: On Horn Conjunc-
tive Queries, pp 115-130: Rules and Reasoning - Second Interna-
tional Joint Conference, RuleML+RR 2018, Luxembourg, Lux-
embourg, September 18-21, 2018, Proceedings.

[13] Matos Alfonso, E., Stamou, G.: Rewriting Queries with
Negated Atoms, pp. 151–167. Springer International Publishing,
Cham (2017). , http://dx.doi.org/10.1007/978-3-319-61252-2_
11

[14] Definition for first-degree relative, NCI Dictionary of Can-
cer Terms https://www.cancer.gov/publications/dictionaries/
cancer-terms/def/first-degree-relative

[15] Nienhuys-Cheng, Shan-Hwei, de Wolf, Roland. : First-order
logic: Foundations of Inductive Logic Programming pp. 17-
34 Springer Berlin Heidelberg, CY - Berlin, Heidelberg (1997)
https://doi.org/10.1007/3-540-62927-0_2

[16] Nienhuys-Cheng, Shan-Hwei, de Wolf, Roland. : Resolution:
Foundations of Inductive Logic Programming Springer Berlin
Heidelberg, CY - Berlin, Heidelberg (1997) pp. 55-74 https://
doi.org/10.1007/3-540-62927-0_4

[17] Onet, A.:The Chase Procedure and its Applications in Data Ex-
change. Data Exchange, Information, and Streams, 2013.

[18] Tessaris, S.:Questions and answers: reasoning and querying in
Description Logic.PhD thesis, University of Manchester. PhD
thesis, University of Manchester (2001).

[19] YuanboGuo, Zhengxiang Pan, and JeffHeflin. Lubm: A bench-
mark for owl knowledge base systems.Web Semant., 3(2-3):158–
182, October 2005.

http://dx.doi.org/10.1016/j.websem.2005.06.005
http://dx.doi.org/10.1007/978-3-642-39666-3_9
http://dx.doi.org/10.1007/978-3-642-39666-3_9
https://doi.org/10.3233/SW-140153
https://doi.org/10.3233/SW-140153
http://dx.doi.org/10.1007/978-3-319-61252-2_11
http://dx.doi.org/10.1007/978-3-319-61252-2_11
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/first-degree-relative
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/first-degree-relative
https://doi.org/10.1007/3-540-62927-0_2
https://doi.org/10.1007/3-540-62927-0_4
https://doi.org/10.1007/3-540-62927-0_4

	Introduction
	Preliminaries
	First Order Logic Resolution
	Disjunctive Existential Rules and Conjunctive Queries with Negation Framework

	Backward Chaining with Disjunctive Knowledge
	Constraint Resolution
	Rewriting Operations and Resolution
	Rewritable Queries and Knowledge Bases
	On Queries with Answer Variables and Linear Queries

	Implementation and Experiments
	Experiments

	Conclusions
	Acknowledgments
	References

