o J oy s W N

Qs s s s s s s s D DWW W W W W W W W W NNNNNDNNNNN R R R R R R e R P e
HF O W © J & 0 W N O W Jdo s W N R O VW Do s W NP O LV ®Jd o W N R O WV

Semantic Web 1 (0) 1-5
10S Press

Deploying Spatial-Stream Query Answering

in C-ITS Scenarios'

Thomas Eiter 2, Ryutaro Ichise ™9, Josiane Xavier Parreira ¢, Patrik Schneider " and Lihua Zhao >¢

2 Vienna University of Technology, Vienna, Austria
E-mails: eiter@kr.tuwien.ac.at, patrik@kr.tuwien.ac.at
® National Institute of Informatics, Tokyo, Japan
E-mail: ichise@nii.ac.jp

¢ Siemens AG Osterreich, Vienna, Austria

E-mail: josiane.parreira@ siemens.com

4 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

E-mail: lihua.zhao @aist.go.jp

Keywords: Mobility, C-ITS, Query Answering, Ontology-based Data Access, Stream Reasoning, Temporal Relations

1. Introduction

The development in (semi)-autonomous vehicles
leads to an extensive communication between vehicles
and the infrastructure, which is covered by Cooperative
Intelligent Transport Systems (C-ITS). These systems
produce temporal data (e.g., traffic light signal phases)
and geospatial data (e.g., GPS positions), which are ex-
changed in vehicle-to-vehicle, vehicle-to-infrastructure,
and combined communications (V2X). This aids to im-
prove road safety by analyzing traffic scenes that could
lead to accidents (e.g., red light violations), and to re-
duce emissions by optimizing traffic flow (e.g., dissolve
traffic jams). A key technology for this is the Local
Dynamic Map (LDM) [1] as an integration platform for
static, semi-static, and dynamic information in a spatial
context.

In previous work, we have semantically enhanced
the LDM to allow for an elaborate domain model that
is captured by a mobility ontology, and for queries over
data streams that cater for semantic concepts and spatial
relationships [2]. Our approach is based on ontology-
mediated query answering (OQA) and features con-
junctive queries (CQs) over DL-Lite, [3] ontologies
that support window operators over streams and spatial

IThis article is a revised and extended version of a paper presented
at EKAW 2018.
*Corresponding author. E-mail: patrik @kr.tuwien.ac.at.

relations between objects. We believe that OQA and
the related ontology-based data access (OBDA) [4] are
well suited for C-ITS applications, as an ontology can
be used to model vehicles, traffic, and infrastructure
details, and map to scalable stream database technol-
ogy adding dynamicity to the model. For example, the
definition of a hazardous situation is complex, rang-
ing from bad road conditions to traffic jams [1]. There-
fore, an expressive query language is crucial to cover
C-ITS specific requirements needed for retrieving dy-
namic data and expressing complex patterns regarding,
event detection for example. Furthermore, scalability
and swift response time are crucial since fast changing
traffic demands a quick response time of ranging below
1s to avoid accidents [1].

In this paper, we continue the work in [2, 5] with the
goal of showing how spatial-stream OQA can be used
to address a wider set of C-ITS scenarios. For achieving
this, the approach in [2] is extended with new domain-
specific features beyond “generic” spatial-stream OQA.
In cooperation with ITS domain experts from Siemens
the C-ITS scenarios — traffic statistics, events detec-
tion, and advanced driving assistance systems (ADAS)
— were defined and used to single out requirements de-
rived from a domain-specific list of features. We then
formulate for each use case, requirements that should
be covered by our approach. The focus of the new, more
specific features will be on temporal relations, e.g.,
during, as well as numerical and trajectory predictions

1570-0844/0-1900/$35.00 © 0 — IOS Press and the authors. All rights reserved

=W N

©w o g o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

mailto:eiter@kr.tuwien.ac.at
mailto:patrik@kr.tuwien.ac.at
mailto:ichise@nii.ac.jp
mailto:josiane.parreira@siemens.com
mailto:lihua.zhao@aist.go.jp
mailto:patrik@kr.tuwien.ac.at

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

2 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

on a query window. For the qualitative assessment of
the use cases, requirements, and domain-specific fea-
tures, we conducted several interviews with ITS ex-
perts, which supported our assumptions that temporal
relations and predictions are important extensions, but
also gave raise to important extensions for future work
such as capturing uncertainty in the ontology and the
query language. For the quantitative assessment, we
provide a detailed report on the improved implemen-
tation, which we extended with the features temporal
relations and predictions, but we also improved the per-
formance based on pre-compiling static elements of the
query, and the parallel execution of stream atoms. The
implementation is evaluated in an experimental setting
using queries that match with the features, where a real-
world traffic simulation is used to generate the data.
The results provide evidence for the potential feasibility
and efficiency of our approach in these scenarios. Our
contributions are briefly summarized as follows:

— we outline the field of V2X integration using
LDMs and provide details on our ontology-based
LDM (Section 2);

— we define three scenarios, use cases, desired fea-
tures, and requirements (Section 3);

— we conducted expert interviews to obtain feedback
on the scenarios, use cases, and query features
(Section 4);

— we present our current approach including data
model, query language, and evaluation strategy
(Section 5).

— we report on the implementation of our approach
in a prototype and comment on the implementation
details (Section 6);

— we evaluate our work regarding the set of features
and requirements based on a traffic simulation and
assess the results (Section 7).

— we list related work, and evaluate existing stream
reasoning systems, wherein we compare the per-
formance of our prototype to the systems C-
SPARQL [6] and CQELS [7] (Section 8).

In Section 9, we discuss lessons learned and conclude
with ongoing and future work.

2. C-ITS Data Integration and Query Answering

Our setting is the ongoing efforts in data integration
and querying in the C-ITS domain. The base technolo-
gies for C-ITS are already available and experimentally
deployed in infrastructure projects as in [1]. The com-

munication technology is based on the IEEE 802.11p
standard, and the data integration effort is the Local
Dynamic Map (LDM); there are starting points for this
work. IEEE 802.11p allows wireless access in vehicu-
lar environments, called V2X communications, which
enables messaging between vehicles and the infrastruc-
ture. The messages are broadcast every 100ms by traffic
participants, i.e., vehicles and roadside ITS stations, to
update other participants about their current states [1].
The main standardized message types are [8§—10]:

— CAMs (Cooperative Awareness Messages) provide
high frequency status updates of a vehicle’s posi-
tion, speed, and might include vehicle type, model,
and turn signals;

— MAPs (Map Data Messages) describe the detailed
topology of an intersection, including its lanes,
their connections, and assigned traffic light (TL)
signal groups;

— SPATs (Signal Phase and Timing Messages) con-
tain the projected TL signal phases (e.g., green,
yellow, and red) for each lane;

— DENMs (Decentralized Environmental Notifica-
tion Messages) informing whether specific events
like road works or a traffic jam occur in a desig-
nated area.

2.1. Local Dynamic Map

The V2X technology does not yet consider the inte-
gration of the different types of messages. As a compre-
hensive integration effort, the EU SAFESPOT project
[1] introduced the concept of an LDM, which acts as
an integration platform to combine static geographic
information system (GIS) maps, with dynamic environ-
mental objects (e.g., vehicles or pedestrians) [11, 12].
The integration is motivated by advanced safety appli-
cations, which need an “overall” understanding of a
traffic environment. The LDM consists of the following
four layers (see Figure 1a):

1. Permanent static: the first layer contains static
information obtained from GIS maps and includes
roads, intersections, and points-of-interest (POIs);

2. Transient static: the second layer extends the static
map by detailed local traffic informations such
as fixed ITS stations, landmarks, and intersection
features like lanes;

3. Transient dynamic: the third layer contains tem-
porary regional information like weather, road or
traffic conditions (e.g., traffic jams), and traffic
light signal phases;

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 3

4. Highly dynamic: the fourth layer contains dynamic
information of road users taken from V2X mes-
sages or in-vehicle sensors like the GPS module.

Recent research by Netten et al. [13], and Shimada
et al. [14] suggested that an LDM can be built on top
of a spatial relational RDBMS enhanced with stream-
ing capabilities. Netten et al. recognize that an LDM
should be represented by a world model, world objects,
and data sinks on the streamed input [13]. However, an
elaborate domain model captured by an LDM ontol-
ogy and extended query processing or rule evaluation
methods over spatial data streams were still missing
in the current approaches. An ontology-based LDM
has advantages regarding the maintainability and under-
standability of the model, since dependencies between
the concepts are clearly defined and easy extendable
without altering the underlying database (DB).

2.2. Ontology-based LDM

With the support of Siemens and AIST domain ex-
perts, we have worked on our LDM ontology % (shown
partially in Figure 1b) to capture the four levels of the
LDM, as well as V2X-specific elements such as maneu-
vers. The LDM ontology is represented in DL-Lite4 [3],
which is the logical underpinning for the W3C standard
OWL 2 QL. Apart from the restriction to DL-Litey, ,
our methods are ontology-agnostic; hence other mo-
bility ontologies could be used. We follow a layered
approach starting with a simple separation between the
top concepts as follows:

- V2XFeature is the representation of V2X objects,
such as the details of an intersection topology includ-

ing lanes (V2X Lane) and traffic lights (V2XS ignalGroup);

GeoFeature represents the GIS aspects of the LDM
including POls, areas like parks, and road networks
with Geometry as the geometrical representation of
them,;

LDMLayer is the representation of the four layers of
an LDM, where each feature can be assigned to one
layer by the role isOnLDMLayer;

Actor is the concept that includes persons, vehicles, as
well as roadside ITS stations, which are autonomous
agents and are the main generator of streamed data;
Event captures prototypical events that happen in
the ITS domain. An important subclass of Event is
Hazard that captures the different types of dangers,
e.g., accidents that might occur;

2available at http://www.kr.tuwien.ac.at/research/projects/
loctrafflog/LocalDynamicMapITS-v0.4-Lite.ow!

- CategoricalValues specify the different categories
such as signal phases, or vehicle roles used in the
domain.

Besides the “domain specific” roles and attributes
such as speedLimit, hasRole, speed, and position, we
also introduced generic roles that have an inherent
meaning, i.e., isPartOf, connected, and intersects.

2.3. Spatial-Stream Query Answering

The OQA component is central part regarding the
usage of a semantically enhanced LDM, since it allows
us to access the streamed data in the LDM.

Example 2.1. The following query detects red-light
violations on intersections by searching for vehicles
(in y) with an aggregated trajectory and speed above
30km/h in a 8 secs window, projecting 3 secs into the
future (represented as a negative distance), which move
on lanes (in x) during the time intervals, where the
signal phases of these lanes will turn to “Stop”, i.e., red,
in a 10 secs window with a 5 secs look into the future
to capture the current/next changes in the signal phases:

q1(x,y) : Laneln(x) A hasLoc(x,u) A intersects(u, p)A

Vehicle(y) A\ pos(y, pQi,)[traject_line, 5s, —3s]A\

speed(y,v)[mov_avg, 5s,—3s] A (v > 30)A
during (pQi,, sQi,) N\ isManagedBy(x,z)\

SignalGroup(z) N hasS tate(z, sQi,)[last, 5s, —5s|A

(s ='Stop")

Query ¢; exhibits the different dimensions that need to
be combined:

(a) Vehicle(y), Laneln(x), SignalGroup(z) and
isManagedBy(x, z) (assigning traffic lights z to lanes
x) are ontology atoms, which have to be unfolded
with respect to the concept/role hierarchies of the
LDM ontologys;
(b) intersects(u,v) and hasLoc(x,u) are spatial atoms,
where the first checks spatial intersection and the
second returns the object geometries;
speed(y,v)[traject_line, 5s, —3s] and
pos(y, pQi,)[mov_avg, 5s, —3s] define window oper-
ators that aggregate and predict the moving average
of speed and positions (represented by a path) of the
vehicle y over the streams speed and pos, respec-
tively, and hasS tate(z, sQi;)[last, 5s, —5s] returns the
traffic lights that have their last phase on “Stop”;
(d) the relation during(pQi,, sQi,) checks if “v hap-
pens during s”, where p is all the occurrences of tra-
jectories on the set of time intervals of i,, and s are
the traffic light phases that are on “Stop” in the set
of time intervals iy, were i, and i, are derived from

(c

~

=W N

o 0 g o

22

http://www.kr.tuwien.ac.at/research/projects/loctrafflog/LocalDynamicMapITS-v0.4-Lite.owl
http://www.kr.tuwien.ac.at/research/projects/loctrafflog/LocalDynamicMapITS-v0.4-Lite.owl

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

LOCAL DYNAMIC MAP

Legacy vehicle
/ Vehicles
; Y/ A— in queue
-
phases

Layer 4:
Highly Dynamic e Traffic

. congestion
Layer 3: A >
Transient Dynamic A " 4 -
Layer 2: =7 4

Transient Static

Layer 1:
Permanent Static

w4 Accident
- (just occurred)

Own vehicle (with position, —
speed, status, etc) r V2XManeuver t Right
S

AreaFeature
GeoFeature Ai}
RoadFeature
— Feature V2Xintersection
V2XSignalGroup
V2XFeature —
V2XLane
Point

— Geometry ‘1;7
L Polygon

Left

hi
CategoricalValue J; traight

Emergency
L VehicleRole %
PublicTransport

— Accident

Thing

— Event

Hazard

— Roadsidetnit

' 4 Bus
e _t .
Car

—— Actor

Figure 1. (a) The four Layers of a LDM [1] and (b) LDM Ontology

the trajectory aggregations and the phase duration
of the traffic lights, respectively.

Note that we added for readability the implicit defi-
nitions of p@i, and sQi, to the original query syntax,
where we would use solely p and s. The implicit vari-
ables i, and i, represents the time interval annotated to
the aggregated values of variable p and s. For instance,
the average speed of a vehicle in the interval [1, 6] as
(car, speed, 20)Q[1, 6]. A user formulating a query can
ignore this notation and use p and s.

3. Development of C-ITS Scenarios

In this section, we present three application scenar-
ios that are used to define requirements and features
split into three complexity levels. On the infrastructure
side, we have C-ITS (roadside) stations that receive
nearby V2X messages and send messages to inform
other participants on their current state, i.e., the traffic
light phases. Other participants such as vehicles share
their states such as their current speed, acceleration,
and position. On the vehicle side, ADAS perceive driv-
ing environments and make safe driving decisions to
improve safety of autonomous vehicles. The ADAS use
sensors such as Lidar/Radar or cameras, and process the
sensor data to avoid accidents by detecting pedestrians,
vehicles, or other obstacles [15]. The sensor data can
be linked to our ontology-based LDM and enables the
system to represent the driving environments.

3.1. Scenario Description
First, we give an overview of the three scenarios.

S1: Traffic Statistics. The focus of this scenario is
on the collection of statistical data that concerns stops,
throughput, traffic distribution, or types of participants
by aggregating the streaming data on specific intersec-
tions. Regarding this scenario, we have identified the
following use cases and related challenges:

1. Object level: for a single vehicle or station, the
average speed, acceleration, number of stops, or
on a sensor data such as the temperature could be
collected;

2. Road/Intersection level: on this level, besides cal-
culating a summary of road/lane level indicators
such as average throughput, waiting time, the
amount of stops, also matrices regarding trans-
fers (e.g. how many cars head straight on), modal-
ity, and type mix, (e.g. which vehicle classes are
present) could be determined;

3. Network level: on the network level, intersections
are represented by nodes connected by roads. We
could collect statistical summaries of indicators on
intersections. For instance, estimating the transfer
times and traffic flow between intersections.

S2: Hazardous Events Detection. An important C-
ITS application is road safety [1], where a reliable
event detection is central to find unexpected, hazardous

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

W W W W W W WwwNNNDNDNDNDNDNN DR R R R R R e R P e
4 o0 A W N P O LV ® J o s W N R O LW ®Jdo e W N R O

39
40
41
42
43
44
45
46
47
48
49
50
51

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 5

events. This is a more challenging case, since it requires
the combination of the topology, vehicle maneuvers,
and temporal relations that might be evaluated over
longer and shorter periods. We identified the following
events as possibly hazardous:

1. Simple vehicle maneuvers: the following ma-
neuvers are relevant for this case and are di-
rectly extractable from trajectories: (1) quick slow
down/speed up; (2) drive straight on, turn left, turn
right; (3) stop, unload, park;

2. Complex vehicle maneuvers: the aim is to detect
lane changes, overtakes, and u-turns, which are
complex maneuvers, composed of simpler maneu-
vers;

3. Red-light violation: we give in Example 2.1 a de-
tailed outline on task of detecting red-light viola-
tion;

4. Vehicle breakdown/accident: this event is based
on the stop maneuvers, where we identify vehicles
that are not moving and are inside a dangerous
area of an intersection. This case can be extended
to several vehicles;

5. Traffic congestions: this is a more complex event,
where short and long term observations must be
combined. Queuing cars could indicate a conges-
tion and be detected by checking the stop maneu-
vers of several vehicles that are behind each other,
but not stopped by a longer red light phase.

S3: ADAS. ADAS features are an important step to-
wards fully automated driving by enabling the vehicle
to take control of speed or breaking, where drivers still
have the “full” control over the vehicle. The following
challenges come for ADAS:

1. Self monitoring: self-monitoring is a central re-
quirement of ADAS, where intelligent speed adap-
tation is an important feature to improve roadway
safety;

2. Obstructed view: this concerns dangerous situa-
tions where a vehicle might collide with another
vehicle, since they have no visual contact due to
an obscured view (e.g., buildings). The crossing
of the predicted trajectories of two vehicles has to
be verified to provide a simple collision detection.

3. Traffic rules: the embedding of traffic rules like
checking of traffic rules such as right-of-way rules
could become an important requirement for au-
tonomous driving.

3.2. Features for Spatial-Stream QA

The eight “standard” requirements for stream pro-
cessing identified by [16], namely volume, velocity,
variety, incompleteness, noise, timely fashion, fine-
grained information access, complex domain models,
and user intention, as well as the three entailment levels
identified by [17] for stream reasoning systems, namely
stream-, window-, and graph-level entailment , are not
discussed here; they should hold for C-ITS stream sys-
tems as well. Besides the generic features F1, F2, F3,
and F9, we also focus on domain specific features that
are mapped to requirements crucial for enabling the
above scenarios. For this, we distinguish for each fea-
ture three levels of fulfillment: basic (L1), enhanced
(L2), and advanced (L3). We have identified the follow-
ing feature sets:

F1 - Time model: possible time models are point-
based (L1), and interval-based (L2), where L1 is the
“simplest” representation. Also belonging to L2, on
point-based data, applying aggregations can be repre-
sented by intervals based on point-based data items. If
we apply an interval-based model, temporal relations
(L3) such as Allen’s Time Interval Algebra [18] with
operators like before that can be used for querying and
inference.

F2 - Process paradigm: queries that are processed
in a pull-based (L1) manner should be the baseline.
Push-based processing (L2) in particular with sliding
windows is already more challenging. If we allow a
combined (L3) processing, we could treat high velocity,
resp. low velocity, atoms by push-based, resp. as pull-
based queries.

F3 - Query features: we consider “basic” query fea-
tures that are include in standard query languages as
in SPARQL or SQL such as selection, projection, join,
filter as part of L1. Allowing time- or triple-based win-
dows or event patterns belong also to L1. Combining
the basic features by nesting of queries, unions of CQs,
and allowing inter-stream joins belongs to L2.

F4 - Numerical aggregations: aggregations can be
“simple” functions such as sum or average on either
a set or multiset (bag) of data items (L1). L3 extends
the other levels by advanced functions by applying
statistical function such as median, or qualitative spatial
relations such as RCC5 and RCC8 [19]. Note that the
aggregation is mainly over multisets, since we often
have data items of different objects in a single stream.

F5 - Spatial aggregations: a wide range of spatial
aggregations can be applied to geometric objects like
points and lines (L1) and the aggregation functions need

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

6 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

to take the peculiarities of geometries into account, e.g.,
convex vs. concave objects. L2 adds the computation of
spatial relations using a simple point-set model [20] or
the more detailed 9-Intersection model (L2) based on
the aggregated objects. Smoothing and simplification
of complex objects could also be included,which leads
to L3.

F6 - Numerical predictions: predictions allow the
generation of unknown data items projecting from the
past into the future. Several prediction functions such
as moving average (L1) or exponential smoothing (L2)
regression should be available. Depending on the task,
also more complex machine learning methods could be
envisioned (L3).

F7 - Trajectory predictions: we predict a vehicle’s
movement, by linearly projecting the trajectory into the
future (L1). More accurate results could be achieved by
(1) a “point-to-curve” aggregation, and (2) calculating
possible paths using a road graph (L2), and the usage
of machine learning for trajectory predictions (L3).

F8 - Spatial matching: basic spatial matching is the
extraction of specific features such as angles from the
objects (L1). Advanced features include the matching
of complex geometries such as road graphs (L2).

F9 - Advanced reasoning: include the different
forms of reasoning ranging from rule-based to onto-
logical reasoning that reaches beyond the expressiv-
ity of query answering in OWL2 QL [21]. The un-
derlying language can include “simple” implications
as b(x,y) N c¢(y,2) — a(x,z), but also “advanced”
features such as aggregation, recursion as in OWL2
RL [21], and all combined with negation as failure as
present in Answer Set Programming (ASP) [22].

3.3. Requirements

In Table 1, we show the requirements that are derived
by analyzing each scenario and use case with respect
to the needed features. The requirements build the base
line for the implementation and a later experimental as-
sessment. In case of single features, we only distinguish
between L1 to L3 for required, blank for not required,
and “P” for possibly required. For instance, in $2.2 for
F1, a point-based time model (L1) suffices for detecting
left/right turns; however, if we want to detect u-turns,
an interval-based time model in combination with tem-
poral relations (L2) will be needed. Furthermore, push-
based queries are desired for swift reaction on changes.
In [2], we already cover level L1 for the features F1 to
F5, but aim in this work to introduce new features such
as time intervals, temporal relations, and unions of CQs.
F6, F7, and F8 are entirely new features.

4. Expert Interviews

We conducted four interviews with ITS experts, who
play different roles in the field. The first two experts
work in industry and the other two experts come from
academia. The interviews were conducted as guideline-
based interview [23]. Following the guidelines of [23],
we left the interviewee the freedom to choose the topic
he/she prefers to discuss. However, we had prepared
a set of questions, which we asked if the interviewee
heads into the direction of a particular topic, e.g., the
query language. The goal of the interviews is to answer:

“How suitable is our spatial-stream QA for real-
world ITS applications?”

This can be put into more specific questions as:

— QI: “What are important technologies/developments
for future ITS systems?”

— 02: “How well is the LDM suited for the integra-
tion of vehicle/traffic control sensor data such as
V2X messages?”

— Q3: “Is the presented ontology and the approach
of ontology-based data access suitable to realise
an LDM?”

— O4: “We present three scenarios with several use
cases, how relevant are they? Are different use
cases needed?”

— 05: “We present different query features, such as
trajectory predictions, how important are these fea-
tures in your opinion? Should they be extended?”

— Q06: “We present you an example for our queries
for detecting red-light violations; how well is this
query comprehensible for you? Do you believe
another query language is better suited for this?”

Following, we give a summary of the interviews con-
ducted with each expert, where we do not transcribe
the full interview, which range from 30 minutes to 1.5
hours, but only present a summarized version of each
interview.

Expert 1. The first expert is an initiators of the V2X
technology development in Europe. He was responsible,
in a large ITS company, for the standardization of V2X
messages in different committees of standardization or-
ganizations such as ETSI, ISO, and SAE. Additionally,
he was participating in several large research projects
such as DRIVE C2X.?

First, the expert pointed out that there are not only
CAM, SPAT, MAP, and DENM messages, but also

3http://www.drive-c2x.eu/project

=W N

o 0 g o

11
12
13
14
15
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://www.drive-c2x.eu/project

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

Use Case F1 F2 F3* F4 F5* F6 F7 F8* F9*

S1.1 (Object statistics) L1 L1 L1 L1 L1 RDFS

S1.2 (Road/Intersection statistics) L2 LI L2 L2 L2 L1 LI OWL2 QL

S1.3 (Network statistics) L2 L1 L2 L2 L2 L2 L1 P OWL2 RL / ASP

$2.1 (Simple maneuvers) L1 L1 L1 L1 L2 P P OWL2 QL

$2.2 (Complex maneuvers) L2 L2 L2 L1 L2 L1 L1 L1 OWL2 QL

§2.3 (Red-light violation) L2 L2 L2 L1 L2 L1 L1 L1 OWL2 QL

S2.4 (Vehicle breakdown) L2 L2 L2 Ll L2 L1 P OWL2 QL

§2.5 (Traffic congestion) L2 L3 L2 L2 L3 L2 P OWL2 RL / ASP

83.1 (Self monitoring) L1 L2 L1 L1 L1 P P OWL2 QL

$3.2 (Obstructed view) Ll L2 L2 L1 L2 L1 L1 L1 OWL2 QL

$3.3 (Traffic rules) L2 L2 L2 L2 L3 L1 L1 L1 OWL2 RL / ASP
Table 1

Requirement Matrix (L1/L2/L3 is required, blank is not required, P is possibly)

messages designed for public transport signal requests
called SRM/SSN, as well as position correction mes-
sages for autonomous vehicles. The latter are important
since in inner-cities, the exact postion in combination
with high-resolution maps are crucial for safety. An
important task arising form this challenge is the con-
tinuous matching of the vehicle position to the high-
resolution map. He stated that autonomous vehicles,
even with advanced sensors, will in the near future
not be able to drive autonomous and safely in inner-
cities with complex intersections, in particular when
the weather is unpredictable. He then said that mes-
sages like the CAM or DENM need to be send near
real-time to the surroundings, hence the existing 4G and
upcoming 5G mobile standards are not suitable for this
purpose, and the standard IEEE 802.11p (also called
ITS-G5) is better suited, since it is based on WLAN
technology and already available for low latency (in
ms) communication. However, existing WLAN tech-
nology can not be used, since these protocols require
sessions and authentication with a base station, which
would cause a long delay for fast moving vehicles. He
gave more details on DENM messages, which inform
the surrounding on dangerous events, and noted that
DENM messages a fired based on triggering conditions
that have specific probabilities assigned. The triggering
conditions are defined by the standardization bodies,
and vehicle manufacturer have to implement them ac-
cordingly. Furthermore, he highlighted that more de-
velopment is needed to protect vulnerable road users,
which requires the integration of bluetooth-based com-
munication such as ZigBee, and also the sharing of

data with infrastructure sensors such as mounted Li-
dar/Radar stations.

Second, we discussed the LDM, and he identified the
LDM as an integration platform for the V2X messages,
where each vehicle has its own proprietary representa-
tion of the LDM, since the ETSI standard defines only
the interfaces to access it, but not its internal structure.
He doubts though that a common definition of the LDM
is needed, since every manufacturer should implement
it on their own, where only the dynamic elements could
be encoded as a snapshot (in a standardized data model)
and exchanged with the surrounding. One discussed
use case is the exchange of snapshots, where legacy
vehicles and/or vulnerable road users are on the road,
hence only fixed Lidar/Radar stations could detect them
sending their snapshots to other V2X-based vehicles,
since the quality of fixed Lidar/Radar stations should
be more accurate than of the moving ones. Currently
several companies develop Collective Perception Mes-
sages (CPMs) [24], which figure as an exchange of
the mentioned Lidar/Radar data. A future development
could foster the exchange of sensor data by vehicles
using the CPMs.

Third, we discussed the usage of ontologies and OQA
for realizing the LDM, which he regarded initially scep-
tical since scalability might be an issue. After explain-
ing the intention of OQA this skepticism was in parts
redressed. Regarding the modelling of the ontology,
he stated that users do not care how the (ontological)
model is shaped, more important is the query language,
since users will directly be confronted with it. He iden-
tified that the query engine and the stream DB could be
migrated and deployed on roadside ITS stations, where

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

8 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

the user could cover custom use cases by writing and
applying queries.

Fourth, he reviewed the query features, where he
explained that an interval-based time model and push-
based processing is favourable since more information
can be extracted, and in C-ITS applications due to low
latency push-based queries should be supported, which
could include some buffering techniques so not every
change will be computed. He pointed out that “native”
query languages such as SQL might be too complicated
for writing queries, and a simplified, object-oriented
representation (similar to CQ) could be favourable.
While discussing the example query, we observed that
he understands and reads queries as rules. He noted also
that, if the query get complex as in the second scenario,
rules might be easier usable to express problems, since
they more aligned with “the way people think”. He also
stated that the aggregation feature can be also used to
guarantee privacy, since on aggregated values single
vehicles are not distinguishable anymore. Furthermore
aggregations can be used to calculate journey times in
aroad network. Finally, he agreed that predictions are a
crucial feature for accident prevention, hence it should
be more elaborated.

Expert 2. The second interviewed expert is the head of
a traffic engineering department in a large ITS company
and is responsible for managing R&D projects.

The expert described that historically traffic manage-
ment was a closed, autarkic system, where traffic data
was collected in a slow process using radar, road loops,
and cameras. She identified V2X as an important step
towards collecting real-time data on traffic and vehicles,
where besides the mentioned CAM, SPAT, and DENM
messages, Collective Perception Messages (CPMs) will
play an important role, since they allow one to exchange
locally perceived objects by a vehicles sensors, and ex-
change the object data with other V2X vehicles. She
believed that the LDM could be used in combination
with CPMs, where a CPM could be aligned with a ve-
hicle’s own LDM. However, she saw no immediate de-
mand for the use of an ontology-based extension of a
LDM and the use of spatial-stream queries to access the
(streaming) data, since they use their own tools and lan-
guages for processing V2X messages. She commented
though, that an ontology-enhanced LDM could be used
as a data integration platform, which could be used for
future data analytics tasks.

Expert 3. The interviewed expert is a associate pro-
fessor in an European university, where he works in
the fields where reasoning and learning over streams is

applied to safe autonomous systems including robots,
boats, and drones.

First, we discussed the LDM, and he noted that in
robotics similar techniques have been used for long, but
with the additional challenge that these dynamic maps
have to build cooperatively, on-the-fly. An interesting
challenge arises if different agents have a local repre-
sentation of an LDM, and for coordination a global
perspective has to be constructed based upon them. He
identified another important task in this context, which
is the matching of identical entities (in the sense of
a physical grounding of the same entity) detected by
different agents/sensors, which they solved by using
bridge-rules.

Second, we discussed the LDM ontology, where he
identified that meta-data is important, and a possibility
of capturing uncertainty should be part of an ontology.
Uncertainty introduces the additional challenge that
measured observations, e.g., speed, are not crisp any-
more, but are inside confidence intervals were the ob-
servation holds. He also stated that by using an average
or most-likely values instead of intervals, we encounter
a loss of information. This uncertainty also can occur
in the classification of objects, wherein an instance of a
vehicle is detected, but it turns out to be a bike. After
discussing our query rewriting technique, he described
their approach in robotics, which aims at matching the
data to the query (or formula), instead of rewriting
queries and checking for instances in the DB. The data
is processed/transformed until it matches the queries.
If new streamed data appears, they continuously try to
match the streamed data to the queries.

Third, he reviewed the query and could understand
most under certain assumptions (i.e., that aggregations
are grouped), and he believed that including predictions
are an important extension, which they consider for
their approach as well. Since predictions need an under-
lying model, he sees that it is important to re-evaluate
and monitor the predictions to detect concept drifts. He
also commented on the semantics of query language
and windows, where it is important to define when to
forget data in the stream, and how long a data item
holds into the future. Regarding the language features,
he noted that intervals are good way to also express
temporal uncertainty. Further it would be crucial to re-
spect the underlying time model, which could be dense
continuous or discrete. If someone assumes the finite
number of changes assumption, it is possible to map
the observation from the continuous into the discrete
space. Finally, he believed that numerical aggregations
and predictions could be enriched by different types of

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 9

filters, whereby he mentioned that Kalman or particle
filters [25] are often used in robotics.

Expert4. This interviewed expert is a senior researcher
in the fields of stream reasoning, graph DBs, and au-
tonomous driving in an European university, and has
also been involved in the development of stream rea-
soning tools.

First, we discussed the LDM, which he saw as a
suitable approach to integrate map and streaming data.
He pointed out though that classical DB technology
as B+ trees [26] are not suited for spatial-stream data,
but advances in the field of moving object DBs [27]
result in efficient query languages and spatio-temporal
indexing methods. Furthermore, the LDM does not
consider a 3D representation of maps, which is crucial
if the map is used in the context of autonomous driving,
since detected objects of a image recognition step (e.g.,
building), need to be anchored in a 3D map.

Second, he evaluated the LDM ontology, where he
agreed on the modelling regarding map features, but
criticized that the LDM ontology misses to concept of
sensors, resp., observations, which is crucial in C-ITS
applications. He noted that elements such as Stimulus,
Sensor, and Observation pattern of the Semantic Sensor
Network (SSN) ontology [28] could be incorporated in
the LDM ontology.

Third, he reviewed the query language, and easily
understood the presented query (for red-light viola-
tions). He noted that the definition of the ontology and
spatial atoms are clear, but the stream atoms need a
formal grammar to capture an atoms parameterization
such as speed|avg, 10s]. Subsequently, the definition
of speed|last, 5, —5s], i.e., the last element in a 10 secs
window projecting 5 secs to the future, was not clear
to him. He further suggested that using a SPARQL-
dialect, either C-SPARQL [6] or CQELS [7] could be
suitable languages. Evaluating the language features,
he believed that all presented features are important,
but more focus in terms of research and development
should be given numerical- (F6) and trajectory predic-
tion (F7), as he saw them as crucial for autonomous
driving, since these are the main techniques used, for
instance in object recognition and motion planning. He
also believed that the combination of (stream) reason-
ing and machine learning is in its early stages and needs
more attention from the community. He further sug-
gested that the aggregates (F4) could be extended with
top-k aggregate functions [29].

Fourth, he criticized that the scenario S3 is too
generic, and should narrowed to more specific tasks

in the domain of autonomous driving; he suggested to
include motion planing as a replacement for the generic
scenario.

5. Approach for Spatial-Stream Query Answering

First, we introduce the data model and the definition
of a spatial-stream knowledge base, which leads to our
main focus of spatial-stream queries. Then, we intro-
duce the “standard” query rewriting and extend it with
temporal relations. Finally, we describe how the queries
are evaluated putting the focus on stream aggregation
and predictions. We start from previous work in [2],
which introduced spatial ontology-mediated query an-
swering over Mobility Streams using DL-Lites [3]. We
focus on pull-based queries that are evaluated at one
single time point called the query time T;.

5.1. Data Model and Knowledge Base

Our data model is point-based and captures the valid
time, extracted from the V2X messages, saying that
some data item is valid at that time point. Importantly,
while evaluating a query, the model can change (tempo-
rary) to an interval-based model that results from the
window and aggregation functions. To capture stream-
ing data, we introduce the timeline T, which is a closed
interval of (N, <). A data stream is a triple D=(T, v, P),
where T is a timeline, v : T — (F,Sx) is a function
that assigns to each element of T (called a timestamp)
data items of (F, Sx), where F (resp. Sr) is a stream
(resp. spatial-stream) DB; the integer P is called pulse
defining the general interval of consecutive data items
on the timeline (cf. [30]), which naturally induces a
stream of data items. We always have a main pulse with
a fixed interval length that defines the highest granular-
ity of the validity of data points, and larger pulses for
streams with lower frequency can be defined. The pulse
also aligns the data items that arrive asynchronously in
the DB to the timeline. A spatial or spatial-stream DB is
a Data Stream Management System that support spatial
(geographic) objects and operators (e.g., ODYSSEUS,
PIPELINEDB or SQLSTREAM).*

Example 5.1. For the timeline T = [0, 100], we have
the stream Fcay = (T, v, 1) of vehicle positions and
speed at the assigned time points for the individuals ¢,
co and by:

4 http://odysseus.informatik.uni-oldenburg.de/, https:

/lwww.pipelinedb.com/, and https://sglstream.com/

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://odysseus.informatik.uni-oldenburg.de/
https://www.pipelinedb.com/
https://www.pipelinedb.com/
https://sqlstream.com/

O O d o U W N

B DD R W W W W W W W W W W NDNNDNDNNDNDNNDN R R R R R e
Sw DR O w0 d oYy U WD RO v o d Yy U WD RO v o Yy U W NN RO

45
46
47
48
49
50
51

10 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

v(0) = {speed(c1,30), pos(ci,(5,5)), speed(ca,10),
pos(c2, (4,4)), speed(b1,10), ...},

v(l) = {speed(c1,29), pos(c1,(6,5)), speed(cz2,0),
pos(cz, (5,4)), speed(b1,5), ...}, ...

A “slower” stream Fgp,;r = (T, v, 5) captures the next

signal state of a traffic light: v(0) = {hasS tate(t1, Stop)}

and v(5) = {hasS tate(t1,Go)}. The static ABox contains

assertions Car(c1), Car(cs), Bike(by), and S ignalGroup(t,).

A different “annotated” representation by applying
the function v on Fcay yields {speed(c1,30) @10, ...,
speed(c1,29)Qt1}, which is better suited for an
interval-based time model.

We consider a vocabulary of individual names I';, do-
main values I'y (e.g., N), and spatial objects I'y. Given
atomic concepts A, atomic roles P, and atomic attributes
E, we define (a) basic concepts B, basic roles Q, and
basic value-domains E (attribute ranges); (b) complex
concepts C, complex role expressions R, and complex
attributes V¢; and (c) value-domain expressions D:

n= P|P”
x= A|30|6(Uc)
p(Uc)
= Tc|B|-B|30.C’ @))
o= TD|D1 | |Dn
= Q] -0
VC n= UC | ﬁUC

ST AT IO
i

where P~ is the inverse of P, T p is the universal value-
domain and T ¢ is the universal concept; furthermore,
Uc is a given attribute with domain 6(U¢) (resp. range
p(Uc)). A DL-Lites knowledge base (KB) is a pair
K = (T, A) where the TBox 7 and the ABox A con-
sist of finite sets of axioms as follows:

— inclusion assertions of the form B C C, Q C R,
E C D, and U¢ C V¢; respectively

— functionality assertions of the form funct Q and
funct Ug;

— membership assertions of the form A(a), D(c),
P(a,b), and Uc(a,c), where a,b are individual
names in I'; and ¢ is a value in I'y.

The semantics of DL-Lite, is as usual (see [3]).

We introduce the possibility to specify the localiza-
tion of atomic concepts and roles. For this, we extend
the standard DL-Lites syntax as follows:

C:=Tc|B|-B|30.C"| (loc A) | (locs A)
R =0 0| (loc Q) | (locs Q),

2

where s € I'y and the concept and roles are as
before. Intuitively, (loc A) is the set of individ-
uals in A that can have a spatial extension (e.g.,
(loc Parks)), and (loc; A) is the subset where it is
s (e.g., (loc(ss.20,16.37) Vienna)). The extension with
streaming consists of the axiom schemes

(streamp C) and (streamp R), 3)

where F is a particular stream over either complex con-
cepts C or roles R of T . Details of the spatial and tem-
poral extension of DL-Lite,4 are given in [31] and [2].

Example 5.2. A TBox may contain (streamcay speed),
(streamcay (loc pos)), (streamcap Vehicle), and
(streamsg p,r hasS tate); we have the axioms Car C
Vehicle, Bike T Vehicle, Ambulance T Vehicle, and
Ambulance C JhasRole.Emergency describing vehicle
classes.

Finally, a spatial-stream knowledge base is a tuple

K=(T,A S84, (F,Sr),B),

where T (A, resp.) is a DL-Lite, TBox (ABox , resp.),
S4 is a spatial DB, and (F,Sr) is a spatial-stream
DB. Furthermore, B C I'; x I's is a partial function
called the spatial binding from A to S and (F,Sr).
The binding function B does not relate to the mapping
function known from OBDA mapping concepts/roles to
an underlying DB, but guarantees that spatial objects
in A have a spatial extension in S4 and (F, Sr).

5.2. Query Language

Our query language is based on conjunctive queries
(CQs) and adds spatial-stream capabilities (see Exam-
ple 2.1). A spatial-stream CQ g(x) is a formula:

/\:'n:l QOi(X’ y) A /\Zp:1 QSj(X’ y)/\ (4)
o

Niz1 Op.(x,¥) A Ny 1, (%,Y)
where x are the distinguished (answer) variables, y
consists of non-distinguished (existentially quantified)
variables, objects, and constant values:

— each atom Qg (x,y) has the form A(z) or P(z,7’),
where A is a class name, P is a property name of
the LDM ontology, and z, 7’ are from x or y;

— each atom Qs (x,y) is from the vocabulary of
spatial relations and of the form S (z,7’), where
7,7 represents geometries matched by S, where S
is one of the following relations: S ={intersects,
contains, next, equals, within, disjoint, outside },

O O d oy U W NP

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 11

— each atom Qp, (x,y) is similar to Qgp,(x,y) but
adds stream operators that relate to Continuous
Query Language operators [38]. We have a win-
dow [agr, b, e] over a stream Dy, where b and e
are the bounds of the window in time units (pos-
itive for past, negative for future) and an aggre-
gate function agr applied to the data items in the
window:

- |agr, b] represents the aggregate of last or next b
time units of stream Dy;

- [b] represents the single tuple of F; at index b
with b = 0 if it is the current tuple;

- [agr, b, e]: represents the aggregate of a window
[b, €] in the past/future of Dy.

— eachatom Or,(x,y) = (T1(21,21), - - - T4(24,25))
represents a disjunction of temporal relations,
where the variables z;, 7/ represent matches, i.e.,
individuals annotated with time points/intervals,
which are filtered by the temporal relation T;.
For points, T; = T7 is from {<,<,=,>,>};
for intervals, we choose the relations of Allen’s
Time Interval Algebra [18], i.e., T; = Til is from

{before, equal, meets, overlaps, during, starts, finishes}

and the set of inverses, e.g., during™, which filter
variable matches according to the start/end points
of the intervals.

The “historic” window operator [agr, b, e] is derived
from Brandt et al. [30] and allows us to query logs
represented by data streams. Details on handling the
temporal relations and aggregate functions are given
below. We also have added a limited form of disjunction
in our temporal relations; in general this would move
the language beyond CQ:s.

5.3. Query Rewriting by Stream Aggregation

For the evaluation of spatial-stream CQs, we have
to extend OQA to handle spatial and streaming data,
which is not considered in the standard approach as
[3]. In detail, we aim at answering pull-based queries
at a single time point T; with stream atoms that define
aggregate functions on different windows sizes relative
to T;. For this, we consider a semantics based on epis-
temic aggregate queries (EAQ) [33] over ontologies
by dropping the order of time points inside a window
and handle the streamed data items as bags (multi-sets).
Roughly, we perform two steps, where we (1) calculate
only “known” solutions, and (2) evaluate the rewrit-
ten query, which contains the rewritten TBox axioms,
over these solutions. Each EAQ is evaluated over fil-
tered and merged temporary ABoxes. The filtering and

merging, relative to the window size and T;, creates
for each EAQ a temporary ABox Ag,, which is the
union of the static ABox A and the filtered streaming
data items from the stream DB. The EAQs are then ap-
plied on Ag, by grouping and aggregating the normal
objects, constant values, and spatial objects. We use a
bag-based epistemic semantics for the queries, in which
we locally close our world for the specific window and
avoid “wrong” aggregations due to the open world se-
mantics of DL-Lite, . Further details on the algorithm
for evaluating EAQs are provided in [2].

5.4. Query Rewriting with Temporal Relations

At first sight, spatial and temporal relations could
be treated similarly. As shown in [2], we evaluate spa-
tial relations regarding their Point-Set Topological Re-
lations. This amounts to pure set theoretic operations
on point sets using the function points(p), which de-
fines the (infinite) set of points of a geometry p that is
a sequence p = (pi,...,py) of (defined) points. For
instance, the relation inside(x,y) between geometries
is defined as {(x,) : points(y)Cpoints(x)}. However,
for temporal relations, we distinguished point-based re-
lations that can be encoded as simple arithmetic filters,
from interval-based relations, where in Allen’s Time In-
terval Algebra (IA) [18] 13 relations can hold between
two intervals. The domain of IA relations is the set of
intervals T = {[p1],..., [px]} over the linear order of T
defined as [p;] = [p;, D] with p; < p;. The binary ba-
sic IA relations are defined according to their start/end
points as follows [18]:

A

before(x,y) =
meets(x,y) =
overlaps(x,y) =

{(xy) <y}
{(xy)
{(x)
starts(x,y) = {(x,y):
{(xy)
{(xy)
{(x)

AN AN A

(&)

finishes(x,y)
during(x,y) =
equal(x,y) =

Il
|
—

A A
sl =R =le I
A
~
—

N N N IO [R
I
s 1= IR e I %I =l

A NN A A

I
~<|
—

Interpretation of IA relations. IA relations can be
interpreted over the sets of intervals I4 and I in two
ways: (a) IA filtering, where each relation is treated as
a single binary constraint. In that sense, the temporal
relation acts as a filter on all intervals in I4 x Ip that
match the relations regarding their start/end points; (b)
IA reasoning, which requires the computation of the
path consistency of all temporal relations over the inter-
vals in I UIp using the predefined composition table of

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

12 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

[18]. The composition table is defined as a set of transi-
tive rules on basic relations, which are applied until no
new general relations can be inferred. For instance, if
we have the edges during(I, I3) and during(Is, I3), we
can infer a new relation during (I, I5). Note that only
with approach (b) all possible (chained) relations be-
tween intervals are derivable. A well-known represen-
tation for IA relations are IA graphs (also called IA net-
works), which are directed graphs, where the vertices
are the intervals of [, and I and the edges represent the
IA relations that hold between two intervals. Hence, an
IA graph (closed by transitive rules) is a materialization
of all relations that can hold between intervals, and can
be used to check the relations if a directed edge exists.

From timestamps to intervals. Time intervals are not
directly represented in our streamed data, but are an in-
termediate product of the EAQ evaluation and are used
to annotate the aggregated objects. After evaluating an
EAQ, the results (also called answers) are aggregations
of data items, hence their single timestamps are not
“meaningful” anymore; we need to assign time inter-
vals to the answers, which can be taken either from the
window itself, or be extracted from the aggregations
themselves.

We already have introduced the function v that as-
signs to each element of T the data items of (F,Sx).
Now, we define the function v* : & — 1, where
&, is the set of epistemic (certain) answers that re-
sult from evaluating the EAQ g4 (as described in [2])
and I is the set of intervals {[p1],...,[px]} over the
linear order of T; g4 represents a single query with
the atom ¢[agr, b, e], where agr, b, and e are defined
as before. The function v* assigns to each answer
of g4 in & one interval of I. For instance, we as-
sign the window size [2, 6] to an answer as follows:
v*(speed(c1,50)) = [2,6]. Note that we also have a
shorter notation using @, which would be in our exam-
ple: speed(c1,50)Q[2, 6].

The function v* can be defined in different ways.
In a first approach, we use T; and the window sizes b
and e for generating the interval for the annotation. For
instance, having T; and speed[avg, 3, —1], we would
annotate each grouped/aggregated match with the in-
terval [2, 6]. In a second approach, we extract for each
grouped and aggregated answer of an EAQ the upper
and lower bounds of the timestamps of each data item
that is part of the group/aggregation.

More sophisticated approaches might include a seg-
mentation of the data items, thus creating different frag-
mented subintervals.

hasLoc

xT
@ intersects o
pos
® Laneln u w
[] []
@ Vehicle
Y v 2
[] [] [}

Figure 2. Hypergraph of g2

5.5. Query Evaluation by Hypertree Decomposition

The four types of query atoms need different evalu-
ation techniques over separate DB entities. Ontology
atoms are evaluated over the static ABox A using a
“standard” DL-Lite4 query rewriting, i.e., PerfectRef
[3]. For spatial atoms, we need to dereference the bind-
ings to the spatial ABox S 4 and evaluate the spatial
relations to filter spatial objects. Stream atoms are com-
puted as EAQ to group and summarized over the tem-
porary ABoxes of the different streams.

For temporal atoms, we consider three techniques.
For time points, we simply add the filter conditions to
the rewritten query. For intervals, two techniques are
suitable: (a) IA filtering, hence we can rewrite each IA
relation of Qy, into a filter that encodes the equation
with the start/end points (as defined before); (b) IA
reasoning, where the closed IA graph is constructed
applying the transitive rules on all intervals derived
from an EAQ. We then extract all derived intervals
with the annotated objects from the IA graph that hold
according to the queried relations in Qr,.

In [2], we introduced two spatial query evaluation
strategies assuming that no bounded variables occur
in spatial atoms and the CQ is acyclic (roughly has
no proper cycle between join variables). One strategy,
based on the query hypergraph and the derived join plan,
is well-suited for implementing spatial-stream CQs, as
it gives us fine-grained caching, full control over the
evaluation, and possibly handling different DB entities.
Details are given in the standard DB literature such as
[34].

The main steps of our query evaluation strategy are
as follows. First, we construct the acyclic hypergraph
H, from g and label each hyperedge in H, with /o (on-
tology edge), Is (spatial edge), and [(stream edge),
where [gets the window size assigned. Then, we build
the join tree J, of H, and extract the subtrees Jy, in
H,, such that each node is covered by the same labels.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 13

Thus we have sub CQs that share the same aggrega-
tion/prediction functions and the same window size /.
For each subtree J,,, we perform the detemporalization
of the stream CQ g, by extracting and computing the
results, which are stored in a virtual relation (a tem-
porary table) Ry,. Finally, we traverse J, bottom up,
left-to-right, to evaluate g4, for each subtree J,, (with-
out stream atoms) and cache the results in memory for
future queries.

Example 5.3. The following example is a simplified
version of g1, where the layers distinguish between
ontology (first), stream/temporal (second), and spatial
(third line) atoms:

q2(x,y) : Laneln(x) N isManagedBy(x,z) A\ SignalGroup(z) A

Vehicle(y) A pos(y,v)[line, 10s] A during(v, s) A
hasS tate(z, s)[last, 5s, —5s] A\ hasLoc(x,u) A
intersects(u,v) A (s ='Stop’)

Based on the hypergraph decomposition, we have the
following evaluation order:

(1) g2, (y,v@Qi,) : Vehicle(y) A pos(y, vQi,)|line, 10s];

(2) g2y, (x,u) : Laneln(x) A hasLoc(x, u);

() gz, (x, sQiy) : Laneln(y) A isManagedBy(x, z) A
SignalGroup(z) N hasState(z, sQiy)[last, 5s, —5s]A
(s ='Stop’);

4 49271 (y’ V)
G2, (X, 5Qi5);

(5) q2(x,y) : q2;, (v, v) A intersects(u,v) A gay, (X, u).

g2, (v,vQ0,) A during(vQi,, sQi;) A

5.6. Stream Aggregation and Predictions

For normal objects and constant values, we allow the
aggregate functions count, first, and last on the stream
data items. For last and first, we need to search the
bag of data items, as the sequence of time is lost. This is
achieved by iteratively checking if we have a match at
one of the points in time. In the implementation, the first
and last match can be simply cached while processing
the stream. For individuals and constant (numerical)
values, we allow a range of aggregation and prediction
functions on the streamed data items:

— Order of items: first, last, where they give the
first or last element in the stream, respectively;

— Simple aggregations: count, min, max, sum, and
avg;

— Descriptive statistics (DS): mean, sd, var, median,
where each function calculates the mean, standard
deviation, variance, and median as expected;

— Predictions: we apply predefined regression meth-
ods to predict values from existing (time-series)

data items inside a window. Model building (i.e.,

the training) and prediction should be fast, hence

we support the following lightweight methods:

- (a) lin_reg calculates the log-linear regression
model;

- (b) mov_avg calculates the moving average of
the past values;

- (c) exp_smooth applies simple exponential
smoothing; and

- (d) grad_boost uses gradient boosting with re-
gression trees.

Note that the order of items is lost due to the bag seman-
tics, the temporal annotations (e.g., speed(c1,50)@10)
are needed in the prediction functions as the second
dimension. We allow different regression methods with
increasing complex models. On small windows with a
required fast response time, mov_avg and exp_smooth
is preferable, while on larger windows, e.g., for traffic
predictions, grad_boost could be applied.

For spatial objects, geometric aggregate functions
are applied to the bag of data items p, that repre-
sent geometries. As with first or last, we must rear-
range them to create a valid geometry, i.e., a sequence
Po = (p1,..., pa) of points. We allow these functions
to derive new geometries (among others):

— point: we evaluate the function last to get the last
data item p,, of the sequence p,;

— line: we create a sequence of points p, represent-
ing a path by calculating a total order on the bag of
points p;, such that we have a starting point using
last and iterate backwards finding the next point
by Euclidean distance;

— line_angle: the angle (in degrees) of line regarding
a reference system is calculated by
(1) applying the function line,

(2) obtaining a simplified geometry using smooth-
ing, and

(3) calculating the angles between the lines of the
simplified geometry;

— polygon: similar to line, but we create a polygon
(p1,- -, Pn), where the start- and endpoints are the
same, i.e., p1 = py, by (1) determining the convex
hull of the bag of points, and (2) extracting all
pairs of points representing the convex hull;

— traject_line and traject_heading are simple tech-
niques to project possible trajectories from past
points. The former is linearly projecting the trajec-
tory based on the previous points and the current
speed. The latter calculates the trajectory based on
the last point and the last heading of the vehicle.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

14 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

For the trajectory computation, besides a simple linear,
also a curvature-based models could be applied. To
improve the accuracy of the model, we could use the
speed of the last data points, so a speed-up or slow
down would be taken into account.

6. Implementation

We have implemented a prototype of our spatial-
stream OQA approach in JAVA 1.8 using the stream
RDBMS PIPELINEDB 9.8.1.° The system architecture
is shown in Figure 3. We chose PIPELINEDB, as it is
built on top of PostgreSQLS and PostGIS and thus
supporting stream and spatial data. It distinguishes be-
tween streams and continuous views, where streams
are write-only, so the query evaluator has to access the
read-only continuous views. We created an 1-to-1 map-
ping from streams to continuous views, and further to
the TBox concepts and roles; e.g., vehicle positions are
fed into the stream stream_pos(id, pos, tp), where id is
the vehicle id, pos its position, and 7p the time point of
adding; stream_pos is accessed via the continuous view
view_pos, which is mapped to the property pos. We
also provide an integration framework that constantly
receives V2X messages and adds the raw message data
either to normal tables of the static DB, spatial tables
of the GIS DB, or the streams of the stream DB.

6.1. Implementation Details

The parser/decomposer component is used for pars-
ing the input spatial-stream CQ, and then decomposing
the query hypertree using Gottlob et al.’s [35] imple-
mentation.® Depending on the size of the CQ, the de-
composition can be expensive, hence it is performed as
a preprocessing step, whereas the decompositions are
cached in-memory. The decomposer gives us the join
tree J, and the sub CQs assigned to each tree node. For
each node, we also keep the label that includes the sub-
query type, window size, and aggregation/prediction
function. The query evaluator traverses J, bottom up,
left-to-right, and (1) checks if the result of a sub CQ
are already cached; (2) if not, it instantiates one of the
evaluators according to the sub CQ type.

3https:/www.pipelinedb.com/
Shttps://www.postgresgl.org/
Thttp://postgis.net/
8https://www.dbai.tuwien.ac.at/proj/hypertree/

Ontology evaluator: this evaluator uses the DL-Lite, query

rewriter OWLGRES 0.1 [36], but a more efficient im-
plementation as in ONTOP [37] is planned.

Stream evaluator: for each stream sub CQ g¢;, it detem-
poralizes the streams by grouping/aggregating the data
items and performs the following steps:

(1) extract the data items according to the defined win-
dow size;

(2) evaluate ¢; (no rewriting) and store the “known
solutions” in memory as R; 1;

(3) evaluate ¢ (with rewriting) over R;; and store it in
memory as R;s;

(4) apply the prediction function on R;2 and add the
predicted data items;

(5) apply the grouping/aggregation function on R; 2,
and produce the outcome R; 3.

Predictors: the prediction function is an integrated part
of the stream evaluator, where we apply the predic-
tions on the aggregated data items. We provide a stan-
dard implementation for the functions mov_avg and
exp_smooth. For grad_boost, we use the state-of-art
library XGBooOST.”?

Spatial evaluator: it handles the different spatial rela-
tions. For performance reasons, we do not compile the
spatial relation to SQL, but evaluate them in-memory
using the functions of the JTS TOPOLOGY SUITE.!?
Temporal evaluator: this evaluator supports the men-
tioned /A filtering technique, since temporal relations
can be directly rewritten into SQL by encoding the rela-
tions as joins, where each relation is encoded as a filter
on the start/end points of the aggregated data items. The
second technique, /A reasoning, is planned for future
work.

We designed the prediction function being an inte-
grated part of the stream evaluator. However, predic-
tions could be treated as separate atoms, generating
data items continuously. This would be an appealing ex-
tension, but would change the query evaluation process
and needs further investigation. The same considera-
tions apply to the trajectory predictions. The aggregate
function tra ject is designed with the same intention; we
take the existing points (as coordinates) and project a
single path into the future. Currently, we apply a simple
straight-line projection to create new points. However,
taking the curvature into account is a desired extension.

9https://xgboost.readthedocs.io/en/latest/
10https://github.com/locationtechjts

https://www.pipelinedb.com/
https://www.postgresql.org/
http://postgis.net/
https://www.dbai.tuwien.ac.at/proj/hypertree/
https://xgboost.readthedocs.io/en/latest/
https://github.com/locationtech/jts

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 15

Stream Standard
Database Database

GIS

Datab —
alabase V2X Messages [

7~

Rewritten SQL
Agg. Queries

Resy
Yy X

PipelineDB ” \ \
Ternporary Memory

and Cache
"\Resu its

SQL Queries

Rewritten SQL
GIS Queries
LDM

Ontology
Results

I

S B vl
Stream Numerical Stream Numerical Standard Q Spatial Relation | E Qlilerr Join Trae +
ndard Query valuator
Aggregator | €7 Predictor Evaluaior Evaluator SubCQ Query :ﬂrser
EL
PR
Decomposer
Stream Spatial | ¢—» Trajectory Spatial Object >
Aggregator Predictor Matcher
Results

‘ Query Rewritter

T

Spatial Stream CQ

Figure 3. System Architecture

7. Evaluation

We evaluated our platform regarding the require-
ments/features (cf. Table 1) derived from the use cases.
The requirements are encoded into a set of queries that
include the desired features. The ontology, queries, ex-
perimental setup, logs, results, and the implementation
are available on the evaluation website.!!

7.1. Scenario Data

For having realistic traffic data, we generated our
streaming data with the microscopic traffic simulation
tool, PTV VissiM!'? which allows us to simulate real-
istic driving and traffic light behavior, as well as the
possibility to create unexpected events like accidents.
We extract the actual state of each Vissim simulation
step, and store the result as JSON in a log. A log player
is provided to replay the different simulations by feed-
ing the log data to PIPELINEDB. For varying the data
throughput, we adjusted the following parameters: (a)
replayed with Sms, 10ms, 50ms, 100ms delay, where
Sms are the fastest updates (i.e., simulating sensors)
and 100ms is the real-time speed of the Vissim simula-
tion; (b) we simulated light, medium, and heavy traffic
in our scenario, where we have approx. 20, 50, and
150 vehicles, respectively, simultaneously on the road
network. We modeled a real-world scenario shown in

http://www.kr.tuwien.ac.at/research/projects/loctrafflog/
ekaw2018
2http:/vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/

Figure 4. Four Intersection Scenario

Fig. 4, which is based on a grid layout with four inter-
sections of four roads crossing, and two incoming and
outgoing lanes per street. The two incoming lanes of
each side have traffic light controllers assigned; all ma-
neuvers (turn left/right, straight on) to outgoing lanes
are allowed. The main traffic flow is from north to south
and west to east. We encode the structure of the full
intersections into static ABox instances as follows:

(a) intersections, roads, lanes, signal groups, and vehi-
cles as concept assertions;

(b) geometries for each lane, road, etc. as attribute as-
sertions; and

(c) lane connectivity, signal group assignments, etc. as
role assertions.

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://www.kr.tuwien.ac.at/research/projects/loctrafflog/ekaw2018
http://www.kr.tuwien.ac.at/research/projects/loctrafflog/ekaw2018
http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

16 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

7.2. Queries for Experiments

Based on the requirements, we derived a set of
queries to assess each scenario, where each query aims
at answering a specific problem of the use case taking
the set of features into account. We use a more compact
representation, where the commas between atoms are
conjunctions and disjunctions are explicitly stated using
or.

For the use case S1.1 (object statistics), query ¢i 1
determines the average and max speed of BMWs and
VWs in the last 10 secs.

q1.1(x,u,v) : Vehicle(x), vehicleMaker(x, z), (z='BMW' or z='VW'),
speed(x, u)[avg, 10s], speed(x, v)[max, 10s]

For the use case S1.2 (intersection statistics), we count
vehicles according to their engine type. Sub-queries
q1.24 and g1 25 select cars with either diesel or petrol en-
gine that pass intersection i100. Query g, o aggregates
the sub-queries and returns the count of diesel in y and
petrol vehicles in z, respectively:

q1.24(x,y) : Vehicle(y), pos(y, z)|line, 10s], vehicleEngine(y, m),
(m="'Petrol’), intersects(z,u), hasLoc(x, u),
Intersection(x), x = 'i100’

q1.26(x,y) : Vehicle(y), pos(y, z)[line, 10s], vehicleEngine(y, m),
(m='Diesel'), intersects(z,u), hasLoc(x, u),
Intersection(x), x = 'i100’

q1.2(x,9,2) : q1.24(x, y)[count, 10s], q1.25(x, z)[count, 10s]

For the use case S1.3 (network statistics), we have two

linked intersections {100 and i200. Query ¢; 3 traces

the vehicles that start at {100 and counts those passing

through i200. A delay of 7s allows us to check the

vehicle’s position 7s later, and the temporal relation

be fore ensures that a vehicle first passes i100 and then

i200.

q1.34(x,v) : Vehicle(x), pos(x,v)[line, 6s], intersects(v, u),
Intersection(r), hasLoc(r,u), (r = 'i100")

delay(7s)

q1.35(x,2) : Vehicle(x), pos(x, z)line, 6s], intersects(z, w),

Intersection(r), hasLoc(r,w), (r = "i200")
q13¢(%) 1 q1.34(x,v),before(v,z),q1.35(x,2)

For the use case S2.1 (simple maneuvers), query go 1
returns all vehicles x that turned left or right in the last
6s, where the function match is an extension of the ag-
gregate function line_angle, which incorporates a filter
with a predefined interval on the results of line_angle,
e.g., they have to be between —175 and —15. Then both
results are combined by unions of CQs resulting in all
vehicles performing the two maneuvers.

q2.11(x,z) = Vehicle(x), pos(x,y)[line, 6s], match(y, z) [angle, =175, —15], |

intersects(y, u), hasLoc(r, u), Intersection(r), (r = 'i100")
g2.1r(x,z) : Vehicle(x), pos(x,y)|line, 6s], match(y, z)[angle, 15, 175],
intersects(y, u), hasLoc(r, u), Intersection(r), (r = 'i100")

q2.1(x) : q21(x,2) or g2.1,(x,2)

In use case S2.2 (complex maneuvers), query g2 de-
tects illicit lane changes in terms of crossing the middle
marker (i.e., a white line). This is detected by evaluat-
ing whether a vehicle passed for a certain period from
an in-lane to an out-lane or vice versa.
g2.2(x,y) : Laneln(z), hasLoc(z, u), intersects(u,v), Vehicle(x),
pos(x,v)line, 6s,3s], pos(x,w)|line, 3s, 0s],
intersects(t,w), hasLoc(y, t), LaneOut(y)
For the use case 2.3 (red-light violation), we modified
Ex. 1 by taking trajectory and speed prediction into
account, which allows us a more precise detection of vi-
olations, since we can rule out vehicles that are slowing
down or are about to change lanes.
g2.3(x,y) : Laneln(x), hasLoc(x, u), intersects(u,v), Vehicle(y),
pos(y,v)[traject_line, 5s, —3s], (r > 10),
speed(y, r)[mov_avg, 5s, —3s|, hasS ignalGroup(x, z),
SignalGroup(z), hasState(z, Stop)|last,5, —5]

For the use case S2.4 (vehicle breakdown), we check

with g 4, if a car has stopped for longer than 30s, while

(using the during relation) it is located inside our in-

tersections, but not on one of the park lanes (using the

dis joint relation).

q2.4(x,y) : Vehicle(x), speed(x,r)avg, 30s], (r < 1), inside(v, u),
pos(x,v)[line, 15s], hasLoc(y, u), Intersection(y),
during(v,r), disjoint(v, z), hasLoc(p, z), ParkLane(p)

The use case S2.5 (traffic congestion) can be evaluated
by a query similar to S2.4, but with the extension that
stop-and-go traffic can be excluded by checking if there
is no movement while the traffic light phases are on
“Go”.
g2.5(x,y) : Vehicle(x), speed(x, r)[avg, 30s], pos(x, v)[line, 30s],
(r < 1), intersects(v,u), hasLoc(y, u), Laneln(y),
hasSignalGroup(y, z), hasS tate(z, s)[last, 30s),
(s ='Go"),during(s,r), SignalGroup(z)

For the use case S3.1 (self monitoring), we aim to
detect with g3 if our ego vehicle is exceeding the
speed limit that is assigned to the lane the vehicle is
currently driving on.
g3.1(x,y) : Laneln(y), hasLocation(y, u), intersects(u, v),

pos(x,v)[line, 5s], Vehicle(x), speed(x, r)[max, 5s],
isEgo(x), speedLimit(y, s), (r > s)
In use case S3.2 (obstructed view) we compute query
g3.2, where our prototype (as part of the ego vehicle)
aims to detect vehicles that very likely will collide in 2s
on an intersection by checking whether their predicted
trajectories will cross another vehicle’s trajectory.

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 17

Figure 5. Use Case Traffic Rules

q3.2(x,y) : Vehicle(y),isEgo(y), pos(y,v)[traject_line,2s, —1s],
intersects(v,w), (r > 10), speed(x, r)[mov_avg, 5s, —2s],
Vehicle(x), pos(x, w)[traject_line, 2s, —15]

In S3.3 (traffic rules), our ego vehicle approaches an
uncontrolled intersection at the same time with other
vehicles. According to (local) traffic rules, preference
(shown Fig. 5) is given to (1) the vehicle on the main
road, (2) the one that is not changing lanes, and (3) the
vehicle approaching from the right. Vehicle C has pref-
erence over A and B, where B would have preference
over A, but the preference can not be given, since A is
on a single-lane road. We can express the traffic rules
with the following Datalog rules:

willCross(x,y) A straightOn(x) A turnRight(y) A onMainRoad (x)

NonMainRoad(y) — giveWay(y, x) (1)
willCross(x,y) A onMainRoad(x) N onTributRoad(y)

— giveWay(y, x) (2)
willCross(x,y) N\ giveWay(x,y) A onS ingleLaneRoad(x)

— giveWay(y, x) (3)
vehicle(x) A vehicle(y) N giveWay(y, x) — stop(y) (4)

The atom willCross(x,y) matches all vehicles that
might collide and can be evaluated by g32(x,y)
(modified without isEgo(x)). The atoms turnRight(x)
and straightOn(x) can be evaluated by the queries
q2.1,(x,y) assuming the queries are treated as atomic
rules with g(x, y) as the head. The atoms onMainRoad(x),
onTributRoad(y), and onS ingleLaneRoad(x) can be
evaluated in the spirit of ¢1.2,(x,y) checking spatial
containment. Then, the rules of 3.3 can be expressed
as unions of CQs, but with the difficulties that the order
of the query evaluation effects the completeness of the
results, Rule (2) as to be evaluated before (3).

7.3. Results

We conducted our experiments on a Mac OS X
10.14.4 system with an Intel Core i7 2.9GHz, 8GB of
RAM, and a 250GB SSD. The average of 21 runs for
query rewriting time and evaluation time was calculated.
The results are shown in Table 2, presenting the number

of subqueries #Q with stream queries in brackets, the
size of rewritten atoms #A, and ¢ as the average eval-
uation time (AET) in seconds for different traffic den-
sity and update delay in ms. The new experiments con-
firm results of [2] with closer to “real-world” queries
and simulation data. The AET ranges between 0.86s
and 2.06s with the exception of use case S3.3, which
emulates rules using unions of CQs. Query g3.1 shows
the highest delay of 2.06s, since the join condition of
(r > s) is evaluated inline and not on the DB, which
adds a delay of 0.4s with larger windows. Our baseline
query is g1 ; tested with 100ms delay and low traffic. It
has an AET of 0.86s, where 0.23s is the time-to-load
(TOL), 0.63s is needed for query evaluation of two
stream atoms, where we artificially delaying the next
stream atom evaluation by 180ms. The artificial delay is
empirically determined and needed for PIPELINEDB to
set up the continuous views (CVs); ignoring this would
lead to missing results.

As shown with the queries that are marked by an
asterisk, we could improve the baseline time by an AET
ranging between 0.49s and 1.05s. This can be attributed
to the following optimizations: (a) pre-compiling the
static part of the query, which shortens evaluation by
approx. 25%, and (b) parallel execution of the stream
atoms, which improves performance by approx. 20%.

The added functions for statistics, matching, and pre-
dictions, i.e., mov_avg and traject_line do not affect
performance, since they are applied on small windows
with few data items. If we would apply gradboost for
predictions on large windows for long-term traffic pre-
dictions, our query time can rise considerably, since
prediction time (without a preprocessed training step)
can be above 20s.

7.4. Feature Coverage

As shown with the queries, we covered in the im-
plementation all initial levels (L1) of features that are
defined in the scenarios/uses cases. We support tempo-
ral relations and a (partial) interval-based data model
(F1) evaluated by pull-based queries (£2). Then, we
allow temporal relations and nested queries that include
unions of CQs (F3). But, we have not yet implemented
the IA reasoning for temporal relations, since an in-
memory evaluation of the transitive rules completing
the IA graph needs further investigation. Regarding F4
and F5, we have implemented the initial set of numeri-
cal, descriptive statistical, and spatial aggregation func-
tions. For F6, we covered mov_avg and exp_smooth
for fast, simple predictions, and support grad_boost

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

18 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

#0O #A (1) with ms delay (m) with ms delay (h) with ms delay

5 10 50 100 5 10 50 100 5 10 50 100
q11 3(2) 42 1.35 1.18 0.95 0.86 1.45 130 0.99 0.88 1.46 135 1.14 0.99
g7, 3(2) 42 0.46 0.45 0.38 0.37 048 0.46 0.40 0.38 0.50 0.47 0.41 0.39
q12 6(2) 43 1.30 1.20 1.01 0.96 1.33 1.24 1.04 1.00 141 138 1.07 1.01
q1.3 8(2) 44 144 135 1.15 1.08 147 137 1.23 1.09 145 144 1.30 1.20
q2.1 6(2) 43 1.31 1.20 1.01 0.98 143 129 1.09 0.99 148 140 1.13 1.02
q22 T(2) 45 1.36 1.26 1.05 1.00 147 129 1.08 1.03 1.51 1.43 1.13 1.06
g2.3 7(3) 50 1.57 1.50 1.27 1.21 1.63 1.53 1.30 1.22 1.72 1.65 1.37 1.27
q55 7(3) 50 0.66 0.63 0.56 0.54 0.69 0.65 0.57 0.55 0.67 0.66 0.59 0.55
g2.4 5(2) 46 1.24 1.21 0.98 0.92 1.28 1.24 1.06 0.97 1.28 1.29 1.13 0.99
q25 T(3) 43 144 1.38 1.16 1.08 1.50 1.41 1.20 1.11 1.55 147 126 1.17
g31 5(2) 43 1.85 1.72 1.40 1.32 1.89 1.79 148 1.35 2.06 2.04 1.57 1.38
q32 5(3) 63 141 1.34 1.23 1.17 148 143 1.27 1.20 1.56 1.51 1.31 1.21
q33 12(5) 43 3.02 2.80 2.42 239 3.26 298 2.58 2.38 336 3.20 2.66 2.44

Table 2

Results (# in secs) for scenario with (I)ow, (m)edium, and (h)eavy traffic, where the * marks results from warm starts

for long-term traffic forecasting. For trajectory predic-
tion (F7), we have implemented a method based on a
simple linear path calculation. However, more accurate
trajectory predictions would be desired. Feature F§ is
covered by the atom march(y, z)[angle, 0,15], and F9
is partially covered by unions of CQs, but transitive
rules are out of scope for this work.

7.5. Summary of Expert Evaluation

Overall, the experts confirmed that (a) the extension
to time intervals and temporal relations, and (b) the
inclusion of prediction capabilities are important ex-
tensions of the initial spatial-stream OQA approach.
However, it turned out that the experts identified several
limitations and interesting extensions.

The first limitation regards the LDM ontology, which
should be aligned with the SSN ontology [28] to include
patterns such as Stimulus, Sensor, and Observation.
Furthermore, it should also capture 3D maps. The sec-
ond limitation regards the unclear definition of the
grammar of stream atoms, which should be clarified in
this work. The third limitation is more generic and cap-
tures the assumption that rules would be better suited to
capture the complex use cases, which is most apparent
in the traffic rules use case.

The first extension regards the Collective Perception
Messages (CPM) [24], which could be added as new
type of message to share local sensor data. The sec-
ond extension addresses Scenario 3, which could be ex-

tended with use cases that are taken from motion plan-
ing tasks in autonomous driving. The third extension
identifies Kalman filters [25] and top-k aggregates [29]
as more powerful aggregation functions. The fourth
extension is likely the furthest reaching, since the on-
tology and query language (with the underlying seman-
tics) could support uncertainty on the level of (a) data
items and (b) of TBox assertions, e.g., inclusion asser-
tions. The fifth extensions describes the handling of
data items inside windows, where adaptably forgetting
data items and extending their validity into future could
be added to have a more flexible query language. The
last extension is again more generic and captures the
use of LDMs in an autonomous agent-based scenario,
which would lead to the challenge of aligning different
LDMs to a global dynamic map.

8. Related Work and System Comparison

First, we give a general overview on related work,
and will discuss in-depth related systems in the sec-
tions afterwards, where we provide an qualitative and
quantitive comparison with selected systems.

8.1. Overview

Data stream management systems (DSMSs) such as
STREAM [38], Aurora [39], and TelegraphCQ [40]
were built supporting streaming applications by ex-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

B s S s s s D s W W W W W W W W W W NN NN R R R e R R R e e e
® J o s W NP O VW ® Jdo s W N R O W o de U s W N R O W o do U W N RO

49

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 19

tending RDBMS. More recently, RDF stream pro-
cessing engines, such as Streaming SPARQL [41], C-
SPARQL [6], SPARQLstream [42], and CQELS [7],
were proposed for processing RDF streams integrated
with other Linked Data sources and background KBs.
EP-SPARQL [43], resp., LARS [44] proposes a lan-
guage that extends SPARQL, resp., CQ with stream rea-
soning, but translate KBs into expressive (less efficient)
logic programs. Regarding spatio-temporal RDF stream
processing, a few SPARQL extensions were proposed,
such as SPARQL-ST [45] and st-SPARQL [46]. Closest
to this work are (i) [47], which extends CQELS and
supports spatial operators as well as aggregate functions
over temporal features (ii) [42], which allows the rewrit-
ing of SPARQL queries over stream RDBMS, and (iii)
[48], which extends SPARQL with aggregate functions
(using advanced statistics) evaluated over streamed and
ordered ABoxes. This work differs regarding (a) the
evaluation approach using EAQ with aggregates on the
query and not ontology level, (b) hypergraph-based
query decomposition, and (c) the main focus of query-
ing streams of spatial data in an OQA setting.

Our approach is situated in-between ‘“classical”
stream processing approaches that handle the streaming
data as bags in windows, and temporal QA over DL-
Lite using temporal operators like LTL in [49], which
are evaluated over a (two-sorted) model separating the
object and temporal domain. We believe that detempor-
alization with its bag semantics suffices for the C-ITS
case, since the order of V2X messages is not guaran-
teed, and for most of the normal as well as spatial ag-
gregates it can be ignored (e.g., sum) or is implicit in
the data (e.g., Euclidian distance of points). Besides
[49], similar temporal QA is investigated in [50] and
[51], which are all on the theoretical side and provide
no implementation yet. Finally, we build on the results
for EAQs in [33], but we introduce spatial streams and
more complex queries. Temporal QA is also investi-
gated in [49] and [50], both are on the theoretical side
and provide no implementation yet.

8.2. Comparison with Existing Systems

There is a wide range of systems for stream process-
ing, stream reasoning, and event detection available. For
a comparison with our approach, we focus on systems
that fulfill the following criteria:

- ability to deal with streaming or temporal data, either
by having a window operator, or supporting incremen-
tal updates;

- ability to provide reasoning, either based on ontology-

, rule-, or query rewriting-based methods;

- a maintained implementation of the system should be
available.

As commented in Section 3, we will not re-evaluate
the eight “standard” requirements of [16], and the three
entailment levels for stream reasoning systems of [17].
Still, this work overlaps on some features with the com-
prehensive study of Margara et al. [52], where the au-
thors compare systems according to the criteria:

- continuous queries (F2/F3),

- background data (F9),

- time model (F1),

- reasoning (F9), and

- temporal operators (F1).

The other criteria in [52], namely data transformation,
uncertainty management, historical data, quality of ser-
vice, and parallel/distributed processing are not investi-
gated in the context of this work.

The comparison in Table 3 shows the evaluation of
the selected systems on the generic features '/ (Time
model), F2 (Process paradigm), F3 (Query features),
and F9 (Advanced reasoning), as well as the ITS do-
main specific features F4 (Numerical aggregations), F5
(Spatial aggregations), F6 (Numerical predictions), F7
(Trajectory predictions), and F'8 (Spatial matching). We
separate the table into two groups, where the first group
represents query-based systems, and the second group
rule-based systems.

8.2.1. C-SPARQL

C-SPARQL was introduced by Della Valle et al. [6]
and was one of the first contributions in the area of
stream processing with reasoning extensions. The main
intention of this work lies in bridging the gap between
the world of stream processing systems, i.e., stream
DB systems, and the Semantic Web, i.e., RDF and
SPARQL. C-SPARQL includes (a) a language for con-
tinuous queries over streams of RDF data, (b) an eval-
uation engine for this language, whereby C-SPARQL
has the distinguishing features of (i) supporting times-
tamped RDF triples, (ii) supporting continuous queries
over streams, and (iii) defining of ad-hoc, explicit oper-
ators for data aggregation. The results of C-SPARQL
queries are continuously updated as new data items
appear on the stream, hence an efficient evaluation of
sliding windows is possible.

8.2.2. CQELS

Similar to C-SPARQL, CQELS [7] also offers a
query language and processing engine to answer queries
over a combination of static and stream RDF data.

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

System Fl F2 F3 ‘ F4 F5 F6 F7 F8 F9
. SPARQL +
C-SPARQL Point Pull i Yes Pre Pre Pre No RDFS
windows
. SPARQL +
CQELS Point Push Yes Pre Pre Pre No RDF
windows
. SPARQL +
INSTANS Point Push Yes Pre Pre Pre No RDEFS + Rete
event patterns
SPARQLst / SPARQL +
QLstream Point pun SPARQ Yes Pre Pre Pre No OWL2 QL
Morph-streams windows
. SPARQL +
ONTOP (DatalogMTL)* Point + MTL Pull K Yes Yes Yes Pre No DatalogMTL
windows
. SPARQL +
ONTOP (STARQL)* Point Pull . Yes Yes Yes Pre No OWL2 QL
windows
OWL2 EL
TrOWL Point Pull CQ Lmt Pre Pre Pre No or
approx. OWL2 DL
Clingo (Multi-shot ASP)* Point Pull Rules + ext. atoms Yes Ext Ext Ext Ext ASP
Interval + Rules or SPARQL
ETALIS (EP-SPARQL) . Push Yes Lmt Pre Pre No Prolog
full ATA + windows
Datalog / OWL2 RL
RDFox Point Pull Rules Yes Pre Pre Pre No .aaog
(incremental)
Laser (LARS)* Point + LTL Pull Rules + windows Yes Pre Pre Pre No Stratified LARS
Ticker (LARS)* Point + LTL Pull Rules + windows Yes Pre Pre Pre No LARS
R Point/Interval .
Spatial-stream OQA o Pull CQ + windows Yes Yes Yes Lmt Lmt OWL2 QL
with limited ATIA
Table 3

Qualitative comparison of F1 - F9 on selected systems (* indicates comments on systems, Ext, Pre, and Lmt means evaluation by external atoms,

preprocessing needed, and limited coverage)

While C-SPARQL adopts a “black box™ approach, i.e.
static and stream query elements are first divided and
sent to the respective underlying stream and RDF query
engines, CQELS, on the other hand, takes a “white
box” approach by natively implementing the required
query operators for the triple-based data model, both
for streams and static data. This native approach en-
ables better performance and can dynamically adapt to
changes in the input data.

Another difference is that CQELS takes an eager
query execution strategy: input data is processed as
soon as it arrives in the system, contrary to the periodic
evaluation of C-SPARQL which is triggered periodi-
cally, regardless of the input data throughput.

8.2.3. ETALIS with EP-SPARQL

The ETALIS system [43, 53] was applied to the ITS
domain and offers the combination of Datalog-style
rules with a background knowledge base. In ETALIS
a Prolog-based language is used to express complex
event patterns with predicates like during(eventl, 5) or
begins(eventl, event2). The background knowledge is
also encoded into the rule language, which in combina-
tion with the temporal and causal parts can be used for
query answering. The standard Prolog query evaluation
(based on a request-response paradigm) is altered to

an event-driven backward chaining (EDBC) of rules.
A standard Prolog system is then triggered to evaluate
a query and additional EDBC rules when new data is
arriving at the system. EP-SPARQL [43] is an approach
that extends ETALIS and introduces windows and the
handling of RDF streams for lifting the rule-engine to
a Semantic Web/Linked Data settings.

8.2.4. INSTANS

INSTANS [54] is an event processing engine based
on handling multiple interconnected SPARQL queries
with updates. It supports continuous evaluation of in-
coming RDF data using an encoding of SPARQL
queries into Rete-like structures. INSTANS supports
stateless/stateful filters using its internal memory, en-
richment, (de-)composition, aggregation and pattern
matching on the streamed events. The authors have im-
plemented their approach, where they provide a conver-
sion of the SPARQL queries to Rete rules, which then
are evaluated on the Rete [55] rule engine JESS [56].

8.2.5. SPARQLstream/Morph-streams
SPARQLstream [42] extends standards SPARQL
with time windows over streams similar to C-SPARQL,
but adds the relation-to-stream operator for dealing
with relational streams. SPARQLstream was further

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 21

extended to Morph-streams [57], where OBDA tech-
niques are applied to access the underlying streams,
which then are stored in a stream processing system
(SPS). R2RML mappings are used to create virtual
streams on-the-fly, which can be accessed in their
SPARQL extension. The authors implemented and
tested their query rewriting techniques for different SPS,
namely for SNEE, Esper, and Global Sensor Networks
(GSN).

8.2.6. Clingo with Multi-shot ASP

Multi-shot Answer Set Programming (ASP) is an
extension of existing ASP solving techniques, which
deals in a reactive fashion if new information arrives
at the logic program, instead of solving the program
from scratch. Clingo 4 [58] supports natively multi-shot
solving by offering high-level constructs and control
capacities via the scripting languages Lua and Python.
The authors introduced the #external directive, which
allows a flexible handling of undefined atoms. Addition-
ally, the solver needs to keep account for the sequence
of system states, which is defined using a simple opera-
tional semantics, where operations such as create, add,
or assignExternal can modify the states.

8.2.7. LARS with Ticker/Laser

The LARS framework [59] is a recent development
in stream reasoning that considers lifting of ASP to
streams with generic windows for capturing data snap-
shots, so as to generalize time-, tuple- and partition-
based window functions. To this end, the ASP syntax
is extended with window operators and with temporal
operators for evaluating truth at every, some, and a spe-
cific (exact) time point in a stream; variables ranging
over domain constants or time points are allowed in
rules. Semantically, answer sets of ASP programs are
naturally generalized to answer streams of LARS pro-
grams. Fragments of LARS programs have been imple-
mented in Ticker [60] and Laser [61], based on plain
LARS rules.

In Ticker,'? full negation is supported, with sliding
time-based and tuple-based windows. It comes with two
evaluation modes, viz. a static ASP encoding, which
employs Clingo for repeated solving, and an incremen-
tal ASP encoding, which performs model update by
truth maintenance techniques; the latter is usually faster.

Laser'# is geared towards high performance and thus
focuses on positive and stratified programs with sliding
windows. It aims at fast model update by efficient sub-

Bhttps:/github.com/hbeck/ticker
“https://github.com/karmaresearch/laser

stitution management, for which it extends semi-naive
evaluation of Datalog by incorporating the temporal di-
mension and tracks intervals of guaranteed formula va-
lidity. This avoids redundant re-derivations and allows
for efficient removal of expired derivations. Laser was
shown to outperform Ticker, C-SPARQL and CQELS
in micro-benchmarks.

8.2.8. ONTOP with STARQL and DatalogMTL

The STARQL framework of Ozgep et al. [62] is an
effort of streamifying ODBA by introducing an extensi-
ble query language, hence it is closely related to our ap-
proach. It uses a first-order logic fragment for temporal
reasoning over sequences of ABoxes. The framework
extends the first-order query rewriting of DL-Lite with
intra-ABox reasoning. In a second extension of ON-
TOP, the authors added Metric Temporal Logic (MTL)
to allow querying of log data using LTL operators that
are extended with time intervals [63, 64]. For this pur-
pose, they introduced datalogMTL, which combines
non-recursive Datalog with the MTL operators.

8.2.9. RDFox

RDFox [65] is the combination of a scalable main-
memory RDF store that supports materialisation
and parallel Datalog reasoning, which also includes
SPARQL query answering. The Datalog materialisa-
tion is based on a novel parallel reasoning algorithm
extending the well-known DRed algorithm, computing
incremental updates on its internal triple store.

8.2.10. TrOWL

TrOWL [66] is an incremental DL reasoner over the
expressive OWL2 DL language. It handles streams of
KBs instead of using fixed time windows over streams,
hence allowing to add and remove axioms from the KB
on-the-fly. The authors applied syntactic approxima-
tion to reduce the reasoning complexity, which guar-
antees soundness but looses completeness in certain
cases. TrOWL provides justifications for the following
entailments: atomic concept subsumption, atomic class
assertion and atomic object property assertion.

8.3. Feature Comparison

Based on the literature review and discussions with
the system developers, we conducted a feature eval-
uation of the above systems. In Table 3, we summa-
rized the reviews and discussions, where we use the
underlying specifications for the three levels of fulfill-
ment: basic, enhanced, and advanced. For F1, the ba-
sis level matches to a point-based time model, the en-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/hbeck/ticker
https://github.com/karmaresearch/laser

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

22 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

hanced level would relate to an interval-based model,
and the advanced level would include AIA over an
interval-based model. For F2, the basic level includes
pull-based, the enhanced level push-based queries, and
the advanced level the combination of pull- and push-
based queries. In F3 and F9, we list the query, rule, or
ontology language and the possibility to allow windows,
but do not classify the fulfillment level. For F4 to F8,
we evaluate how a specific feature is covered by the
basic fulfillment levels, since most systems are generic
reasoners, and are not intended to support I'TS-specific
features.

As shown in Table 3, for F1 the ONTOP- and LARS-
based systems offer similar or richer query- and on-
tology languages, since these systems allow the use
of LTL and MTL operators. For F2, our work is on a
par with most presented systems, except the two push-
based systems CQELS and INSTANS, which support a
higher reactiveness, since they support an eager query
execution strategy. For F4 and F5, our work covers the
widest range of numerical aggregation and prediction
functions, with the exception of STARQL, which cov-
ers similar functionalities. One of the motivation of this
work are the coverage of F6 to F8; hence our work is
the only approach that supports spatial aggregations
and predictions.

8.4. Performance Comparison

We conducted our experiments on a Mac OS X
10.14.4 system with an Intel Core i7 2.9GHz, 8GB of
RAM, and a 250GB SSD. We calculated the average
of 50 runs for query evaluation time with warm starts,
hence, we did not restart the systems over 50 runs in
each experiment.

For the experiments, we compared our prototype on
two selected queries with the state-of-the-art systems
C-SPARQL and CQELS, which support limit reasoning
but are designed to deal with high velocity and volume
streams. The comparison of all presented queries is not
feasible, since C-SPARQL and CQELS do not support
natively the features spatial/temporal relations, spatial
aggregation, and inline predictions. Hence, we selected
the two queries ¢1.1 and g2 3, where the first is our
baseline comparison and the second is our running ex-
ample. We pre-calculated the missing features such as
the spatial relations in the log player and materialized
the outcome as streamed data items. Furthermore, we
adapted our CQs to the SPARQL dialects of each sys-
tem; in Figure 6, we give the encoding of ¢; ; as an
example.

The results of our experiments are shown in Table
4 where t is the AET in seconds for different traffic
densities and update delays in ms. The baseline sys-
tems C-SPARQL and CQELS outperform our proto-
type in the range between 70ms in g;.; (C-SPARQL
on heavy traffic with 100ms delay) and 657ms in g2.3
(CQELS on light traffic with Sms delay). The results
are an important indicator for a lower bound of QA
over streams. Yet, the results are not fully comparable
since CQELS or C-SPARQ respectively, do not sup-
port RDFS or OWL2 QL, respectively; there is a trade-
off between performance and expressivity, where in
CQELS the full TBox is omitted, and in C-SPARQL
axioms with existentially-quantified variables on the
right-hand side of inclusion assertions are ignored lead-
ing to incomplete results. Furthermore, both systems do
not support directly spatial relations, aggregates, and
predictions, which amount to approx. 100ms evaluation
time, since these functions are precomputed by the log
player in the experiments, which is not reflected in the
AET. The results also indicate that by increasing traffic
density, the performance seems to align in g1 1, where
the grouping/aggregation might be the most demanding
operation for C-SPARQL and CQELS.

After profiling the runtime of our prototype, we no-
ticed that approx. 200ms are lost by establishing a con-
necting to PIPELINEDB, which could be mitigated by
pooling the connections using a persistent connection
pool such as provided by PG BOUNCER."

9. Conclusion and Future Work

This work was sparked by applying spatial-stream
query answering as an effort to integrate and access
streamed mobility data, e.g., vehicle movements, in
a spatial context over the complex C-ITS domain. In
[2] we have introduced simple aggregate queries over
streams, which often do not suffice to capture more
complex use cases. In this paper, we presented an exten-
sion with temporal relations and numerical/trajectory
predictions, which allows us to query complex mobility
patterns such as traffic statistics, or complex events such
as detecting (potential) accidents. Based on the newly
developed scenarios of traffic statistics, event detection,
and advanced driving assistance systems (ADAS), we
have defined a set of domain-specific features such as
trajectory computation, which are matched with the

IShttp://pgfoundry.org/projects/pgbouncer

O O d oy U W NP

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://pgfoundry.org/projects/pgbouncer

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 23

PREFIX :
SELECT

<http://www.kr.tuwien.ac.at/its/ldm/items#
?vehicle (AVG(2?vall) AS ?as) (MAX(?vall) AS ?ms)

FROM STREAM <http://www.kr.tuwien.ac.at/its/streams/vehicles>

[RANGE 10s STEP 1s]

WHERE { ?vehicle :observed ?obs . ?obs :speed ?vall .
?vehicle :vehicleMaker ?maker . FILTER
(regex(str(?maker), ’'BMW’, 'i’) |
regex (str(?maker), VW', 'i’)) }
GROUP BY ?vehicle

PREFIX : <http://www.kr.tuwien.ac.at/its/ldm/items#
SELECT ?vehicle (AVG(?vall) AS ?as) (MAX(?vall) AS ?ms)
WHERE {STREAM <ws://localhost:8124> [RANGE 10s]
{?vehicle :observed ?obs . ?obs :speed ?vall .
?vehicle :vehicleMaker ?maker .
FILTER (regex(str(?maker), ’'BMW’, "i’) ||
regex (str(?maker), VW', ’'i’)) } }
GROUP BY ?vehicle

Figure 6. C-SPARQL encoding (left) and CQELS encoding (right) of query g1.1

(1) with ms delay (m) with ms delay (h) with ms delay
Query System \ 5 10 50 100 | 5 10 50 100 | 5 10 50 100
q1.1
C-SPARQL 0.019 0.032 0.031 0.027 | 0.132 0.134 0.113 0.110 | 0252 0.347 0324 0314
CQELS 0.034 0.044 0.043 0.038 | 0.029 0.038 0.043 0.041 | 0.056 0.043 0.035 0.043
Spatial-stream QA | 0.464 0.446 0384 0370 | 0.480 0.463 0404 0376 | 0499 0474 0414 0.389
q2.3
C-SPARQL 0.045 0.025 0.058 0.070 | 0.050 0.090 0.048 0.077 | 0307 0.253 0.265 0.353
CQELS 0.001 0.003 0.013 0.034 | 0001 0.002 0.006 0.017 | 0.001 0.003 0.009 0.020

Spatial-stream QA 0.658 0.637 0.561 0.542

0.692 0.653 0.574 0.548 0.670 0.660 0.585 0.554

Table 4

Results (¢ in secs) for query ¢1.1 and g2 3 with the scenarios (1)ow, (m)edium, and (h)eavy traffic

scenarios/use cases to define the requirements. Given
the new features, we extended the LDM ontology, the
spatial-stream query language, and extended the meth-
ods used for query answering accordingly. We also re-
designed the architecture and optimized the system by
pre-compiling the static query elements and executing
stream atoms parallelly. The experimental evaluation
provides evidence for an improved performance of ap-
prox. 40% and an evaluation time below 700ms. This
indicates that potentially the feasibility and efficiency
of our approach in the mentioned scenarios is given.

Lessons Learned. The presented approach of spatial-
stream QA is well-suited for data integration and query
answering in the C-ITS domain. The concept of a LDM
was a good starting point, since it has been developed
and standardized by the C-ITS community and was
already extended by Netten et al. to an ontology-like
model [13]. In particular, Semantic Web Technologies
play to their strengths in easily modelling a complex
domain such as C-ITS, and allowing the (expert) user
to formulate powerful queries on top of the streams that
are integrated by the ontology. This can be seen by the
new scenario ADAS, where small modifications of the
ontology and new queries open up a new application
field. However, our approach of using OQA revealed
some limitations that are discussed in expert summary.

Using spatial-stream CQs for capturing the scenarios
worked out to our satisfaction in most of the use cases.
But as illustrated with use cases S2.4, S2.5, and S3.3,
our language reached its limits regarding “usability”

and also “expressivity”. If we have a larger set of rules
as in $3.3 (even without transitivity), the conversion
to unions of CQs becomes cumbersome and inefficient
(AET is between 2.46s and 3.34s), hence rule engines
such as in Ticker [60] or Laser [67] might be better
suited. In S7.3 and §2.5, we can see that qualitative
temporal relations like be fore are convenient, so we
can avoid the implicit encoding of temporal relation
using (fixed) shifted windows, and use the join oper-
ation to merge them. This solution needs an a-priory
definition of window sizes and reference of the sizes
to each other, which makes it inflexible and prone to
errors if the times between the window sizes change.
Furthermore, the usage of CQ with sub-queries can be
directly transferred to SPARQL queries, the underlying
evaluation system would have to be adjusted to deal
with the mobility-specific features.

Outlook. We believe that stream processing/reasoning
methods could well be applied to the mentioned C-ITS
scenarios, which was confirmed by the experts; they
also acknowledged that the new features time intervals
with temporal relations and prediction capabilities are
important extensions of the initial spatial-stream OQA
approach.

Nevertheless, the experts identified practical and the-
oretical extensions that should be addressed in future
research. On the practical side, they suggested that the
LDM ontology could be combined with the SSN on-
tology [28] , and Collective Perception Messages[24]
could be used to integrate local sensor data of other

=W N

w J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

51

24 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

vehicles. This could be further elaborated such that the
different LDMs (of each vehicle) could be aligned to
a single global dynamic map. Furthermore, the experts
suggested that we could integrate Kalman filters [25]
and top-k aggregates [29] to provide more powerful
aggregates. On the theoretical side, our methods could
be extended to capture uncertainty on the level of data
items and also of TBox assertions, which would lead to
a change in the underlying semantics and the computa-
tional properties. Furthermore, our methods could be
extended to handle windows in a more flexible manner
by flexibly forgetting data items or extending their va-
lidity into the future. Finally, the experts suggested that
Scenario 3 could be focuses more on motion planning
instead of ADAS.

In addition to the suggestions of the experts we be-
lieve that efforts on following issues would be benefi-
cial: (a) allowing the integration of external (domain-
specific) modules such as functions for advanced tra-
jectory prediction, which would be similar to exter-
nal atoms in ASP [22]; (b) the possibility of analytic
queries over longer periods, hence an extension with
a transient cache and variable window sizes would be
needed; (c) the full integration of OQA with IA rela-
tions, which would include the representation of IA
networks and the rewriting of subsets of the composi-
tion table; and (d) handling more complex queries and
rules while still maintaining scalability, which bring
our approach closer to Ticker [60] and Laser [61].

As discussed in the section above, ongoing and future
research should be directed to extend the languages,
methods, and the platform to fulfill the defined require-
ments, which will enable us to apply our approach and
prototype to more complex scenarios such as motion
planing.

Acknowledgements. This work has been supported by
the Austrian Research Promotion Agency project Loc-
TraffLog (FFG 5886550) and DynaCon (FFG 861263),
as well as by the European Commission through
IOTCrawler (H2020 contract 779852).

References

[1] L. Andreone, R. Brignolo, S. Damiani, F. Sommariva, G. Vivo
and S. Marco, SAFESPOT Final Report, Technical Report,
D8.1.1, 2010, Available online..

[2] T. Eiter, J.X. Parreira and P. Schneider, Spatial Ontology-
Mediated Query Answering over Mobility Streams, in: Proc. of
ESWC 2017,2017, pp. 219-237.

[3] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini and
R. Rosati, Tractable Reasoning and Efficient Query Answering
in Description Logics: The DL-Lite Family, J. Autom. Reason-
ing 39(3) (2007), 385-429.

R. Kontchakov, M. Rodriguez-Muro and M. Zakharyaschev,

Ontology-Based Data Access with Databases: A Short Course,

in: Reasoning Web. Semantic Technologies for Intelligent Data

Access - 9th International Summer School 2013, Mannheim,

Germany, July 30 - August 2, 2013. Proceedings, 2013, pp. 194—

229.

T. Eiter, J.X. Parreira and P. Schneider, Detecting Mobility

Patterns using Spatial Query Answering over Streams, in: Proc.

of Stream Reasoning Workshop 2017, 2017.

[6] D.F. Barbieri, D. Braga, S. Ceri, E.D. Valle and M. Gross-
niklaus, C-SPARQL: a Continuous Query Language for RDF
Data Streams, Int. J. Semantic Computing 4(1) (2010), 3-25.

[7] D. Le-Phuoc, M. Dao-Tran, J.X. Parreira and M. Hauswirth, A
Native and Adaptive Approach for Unified Processing of Linked
Streams and Linked Data, in: ISWC 2011, 2011, pp. 370-388.

[8] ETSI EN 302 637-2 (V1.3.2), Intelligent Transport Systems
(ITS); Vehicular Communications; Basic Set of Applications;
Part 2: Specification of Cooperative Awareness Basic Service,
Technical Report, ETSI, 2014.

[9] ETSI EN 302 637-3 (V1.2.2), Intelligent Transport Systems
(ITS); Vehicular Communications; Basic Set of Applications;
Part 3: Specifications of Decentralized Environmental Notifica-
tion Basic Service, Technical Report, ETSI, 2014.

[10] ETSI TS 103 191-3 (V1.1.1), Intelligent Transport Systems
(ITS); Testing; Conformance test specifications for Signal Phase
And Timing (SPAT) and Map (MAP); Part 3: Abstract Test
Suite (ATS) and Protocol Implementation eXtra Information for
Testing (PIXIT), Technical Report, ETSI, 2015.

[11] ETSITR 102 863 (V1.1.1), Intelligent Transport Systems (ITS);
Vehicular Communications; Basic Set of Applications; Local
Dynamic Map (LDM); Rationale for and Guidance on Standard-
ization, Technical Report, ETSI, 2011.

[12] ETSIEN 302 895 (V1.1.0), Intelligent transport systems - Ex-
tension of map database specifications for Local Dynamic Map
for applications of Cooperative ITS, Technical Report, ETSI,
2014.

[13] B. Netten, L. Kester, H. Wedemeijer, 1. Passchier and
B. Driessen, DynaMap: A Dynamic Map for road side ITS
stations, in: Proc. of ITS World Congress 2013, 2013.

[14] H. Shimada, A. Yamaguchi, H. Takada and K. Sato, Implemen-
tation and Evaluation of Local Dynamic Map in Safety Driving
Systems, J. Transportation Technologies 5(2) (2015), 102-112.

[15] L. Zhao, R. Ichise, Z. Liu, S. Mita and Y. Sasaki, Ontology-
Based Driving Decision Making: A Feasibility Study at Un-
controlled Intersections, IEICE Trans. 100-D(7) (2017), 1425-
1439.

[16] M. Stonebraker, U. Cetintemel and S.B. Zdonik, The 8 require-
ments of real-time stream processing, SIGMOD Record 34(4)
(2005), 42-47.

[17] D. Dell’ Aglio, E.D. Valle, F. van Harmelen and A. Bernstein,
Stream reasoning: A survey and outlook, Data Science, 10S
Press 1(1-2) (2017), 59-83.

[18] J.E. Allen, Maintaining Knowledge about Temporal Intervals,
Com. ACM 26(11) (1983), 832-843.

[19] D.A. Randell, Z. Cui and A.G. Cohn, A Spatial Logic based on
Regions and Connection, in: KR, 1992, pp. 165-176.

[4

=

[5

—

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios 25

[20] R.H. Giiting, Geo-Relational Algebra: A Model and Query
Language for Geometric Database Systems, in: EDBT 1988,
1988, pp. 506-527.

[21] R. Kontchakov and M. Zakharyaschev, An Introduction to De-
scription Logics and Query Rewriting, in: Reasoning Web. Rea-
soning on the Web in the Big Data Era - 10th International
Summer School 2014, Athens, Greece, September 8-13, 2014.
Proceedings, 2014, pp. 195-244.

[22] T. Eiter, G. Ianni and T. Krennwallner, Answer Set Program-
ming: A Primer, in: Reasoning Web. Semantic Technologies for
Information Systems, 5th International Summer School 2009,
Brixen-Bressanone, Italy, August 30 - September 4, 2009, Tuto-
rial Lectures, 2009, pp. 40-110.

[23] A. Bognerand, B. Littig and W. Menz, Das Experteninterview,
VS Verlag fiir Sozialwissenschaften, 2009. ISBN 978-3-531-
16259-1.

[24] A.Rauch, F. Klanner, R.H. Rasshofer and K. Dietmayer, Car2X-
based perception in a high-level fusion architecture for coop-
erative perception systems, in: 2012 IEEE Intelligent Vehicles
Symposium, IV 2012, Alcal de Henares, Madrid, Spain, June
3-7,2012, 2012, pp. 270-275.

[25] G. Welch and G. Bishop, An Introduction to the Kalman Filter,
Technical Report, 1995.

[26] D. Comer, Ubiquitous B-Tree, ACM Comput. Surv. 11(2)
(1979), 121-137.

[27] R.H. Giiting and M. Schneider, Moving Objects Databases,
Morgan Kaufmann, 2005. ISBN 0-12-088799-1.

[28] A. Haller, K. Janowicz, S.J.D. Cox, M. Lefrancois, K. Taylor,
D.L. Phuoc, J. Lieberman, R. Garcia-Castro, R. Atkinson and
C. Stadler, The modular SSN ontology: A joint W3C and OGC
standard specifying the semantics of sensors, observations, sam-
pling, and actuation, Semantic Web 10(1) (2019), 9-32.

[29] LF. Ilyas, W.G. Aref and A K. Elmagarmid, Supporting top-k
join queries in relational databases, The VLDB Journal 13(3)
(2004), 207-221.

[30] S. Brandt, E.G. Kalayci, R. Kontchakov, V. Ryzhikov, G. Xiao
and M. Zakharyaschev, Ontology-Based Data Access with a
Horn Fragment of Metric Temporal Logic, in: Proc. of AAAI
2017,2017, pp. 1070-1076.

[31] T. Eiter, T. Krennwallner and P. Schneider, Lightweight Spatial
Conjunctive Query Answering Using Keywords, in: Proc. of
ESWC 2013, 2013, pp. 243-258.

[32] A. Arasu, S. Babu and J. Widom, The CQL continuous query
language: semantic foundations and query execution, VLDB J.
15(2) (2006), 121-142.

[33] D. Calvanese, E. Kharlamov, W. Nutt and C. Thorne, Aggregate
queries over ontologies, in: Proc. of ONISW 2008, 2008, pp. 97—
104.

[34] D. Maier, The Theory of Relational Databases, Computer Sci-
ence Press, 1983.

[35] A. Dermaku, T. Ganzow, G. Gottlob, B.J. McMahan, N. Musliu
and M. Samer, Heuristic Methods for Hypertree Decomposition,
in: Proc. of MICAI 2008: Advances in Artificial Intelligence,
2008, pp. 1-11.

[36] M. Stocker and M. Smith, Owlgres: A Scalable OWL Reasoner,
in: Proc. of OWLED 2008, 2008.

[37] M. Rodriguez-Muro, R. Kontchakov and M. Zakharyaschev,
Ontology-Based Data Access: Ontop of Databases, in: Proc. of
ISWC 2013, 2013, pp. 558-573.

[38] A. Arasu, S. Babu and J. Widom, The CQL continuous query
language: semantic foundations and query execution, VLDB J.
15(2) (2006), 121-142.

[39] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul and S. Zdonik, Monitor-
ing streams: a new class of data management applications, in:
Proc. of VLDB 2002, 2002, pp. 215-226.

[40] S. Madden, M. Shah, J.M. Hellerstein and V. Raman, Continu-
ously adaptive continuous queries over streams, in: 2002 ACM
SIGMOD International Conference on Management of Data,
2002, pp. 49-60.

[41] A. Bolles, M. Grawunder and J. Jacobi, Streaming SPARQL
- Extending SPARQL to Process Data Streams, in: Proc. of
ESWC 2008, 2008, pp. 448—-462.

[42] J. Calbimonte, J. Mora and O. Corcho, Query Rewriting in RDF
Stream Processing, in: Proc. of ESWC 2016, 2016, pp. 486—
502.

[43] D. Anicic, P. Fodor, S. Rudolph and N. Stojanovic, EP-
SPARQL: a unified language for event processing and stream
reasoning, in: Proc. of WWW 2011, 2011, pp. 635-644.

[44] H. Beck, M. Dao-Tran, T. Eiter and M. Fink, LARS: A Logic-
Based Framework for Analyzing Reasoning over Streams, in:
Proc. of AAAI 2015, 2015, pp. 1431-1438.

[45] M. Perry, P. Jain and A.P. Sheth, SPARQL-ST: Extending
SPARQL to Support Spatiotemporal Queries, Geospatial Se-
mantics and the Semantic Web 12 (2011), 61-86.

[46] M. Koubarakis and K. Kyzirakos, Modeling and Querying Meta-
data in the Semantic Sensor Web: The Model stRDF and the
Query Language stSPARQL, in: ESWC 2010, 2010, pp. 425-
439.

[47] H.N.M. Quoc and D. Le Phuoc, An Elastic and Scalable Spa-
tiotemporal Query Processing for Linked Sensor Data, in: Proc.
of SEMANTICS 2015, ACM, 2015, pp. 17-24.

[48] O.L. Ozgep, R. Moller and C. Neuenstadt, Stream-Query Com-
pilation with Ontologies, in: Proc. of AI 2015, 2015, pp. 457—
463.

[49] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter
and M. Zakharyaschev, First-Order Rewritability of Temporal
Ontology-Mediated Queries, in: Proc. of IJCAI 2015, 2015,
pp- 2706-2712.

[50] S. Borgwardt, M. Lippmann and V. Thost, Temporalizing
rewritable query languages over knowledge bases, J. Web Sem.
33 (2015), 50-70.

[51] S. Klarman and T. Meyer, Querying Temporal Databases via
OWL 2 QL, in: Proc. of RR 2014, 2014, pp. 92-107.

[52] A.Margara, J. Urbani, F. van Harmelen and H.E. Bal, Streaming
the Web: Reasoning over dynamic data, J. Web Semant. 25
(2014), 24-44.

[53] D. Anicic, S. Rudolph, P. Fodor and N. Stojanovic, Stream
reasoning and complex event processing in ETALIS, Semantic
Web 3(4) (2012), 397-407.

[54] M. Rinne and E. Nuutila, Constructing Event Processing Sys-
tems of Layered and Heterogeneous Events with SPARQL, in:
On the Move to Meaningful Internet Systems: OTM 2014 Con-
ferences - Confederated International Conferences: Coopls,
and ODBASE 2014, Amantea, Italy, October 27-31, 2014, Pro-
ceedings, 2014, pp. 682-699.

[55] C.L. Forgy, Rete: A fast algorithm for the many pattern/many
object pattern match problem, Artificial Intelligence 19(1)
(1982), 17-37.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

26 T. Eiter et al. / Deploying Spatial-Stream Query Answering in C-ITS Scenarios

[56] E. Friedman-Hill, Jess in Action: Rule-Based Systems in Java,
Manning Publications, 2003. ISBN 978-1-930-11089-2.

[57] J.-P. Calbimonte, H. Jeung, 0. Corcho and K. Aberer, Enabling
Query Technologies for the Semantic Sensor Web, Int. J. Se-
mantic Web Inf. Syst. 8(1) (2012), 43-63.

[58] M. Gebser, R. Kaminski, B. Kaufmann and T. Schaub, Clingo =
ASP + Control: Preliminary Report, CoRR 1405.3694 (2014).

[59] H. Beck, M. Dao-Tran and T. Eiter, LARS: A Logic-based
framework for Analytic Reasoning over Streams, Artif. Intell.
261 (2018), 16-70.

[60] H. Beck, T. Eiter and C. Folie, Ticker: A system for incremental
ASP-based stream reasoning, TPLP 17(5-6) (2017), 744-763.

[61] H.R. Bazoobandi, H. Beck and J. Urbani, Expressive Stream
Reasoning with Laser, in: The Semantic Web - ISWC 2017 -
16th International Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part I, 2017, pp. 87-103.

[62] O.L. Ozgep, R. Méller and C. Neuenstadt, A Stream-Temporal
Query Language for Ontology Based Data Access, in: KI 2014:
Advances in Artificial Intelligence - 37th Annual German Con-
ference on Al Stuttgart, Germany, September 22-26, 2014. Pro-
ceedings, 2014, pp. 183-194.

[63] S. Brandt, E.G. Kalayci, R. Kontchakov, V. Ryzhikov, G. Xiao
and M. Zakharyaschev, Ontology-Based Data Access with a

[64]

[65]

[66]

[67]

Horn Fragment of Metric Temporal Logic, in: Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA., 2017,
pp- 1070-1076.

S. Brandt, E.G. Kalayci, V. Ryzhikov, G. Xiao and M. Za-
kharyaschev, Querying Log Data with Metric Temporal Logic,
J. Artif. Intell. Res. 62 (2018), 829-877.

Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu and J. Banerjee,
RDFox: A Highly-Scalable RDF Store, in: The Semantic Web
- ISWC 2015 - 14th International Semantic Web Conference,
Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part
11, 2015, pp. 3-20.

Y. Ren and J.Z. Pan, Optimising ontology stream reasoning
with truth maintenance system, in: Proceedings of the 20th
ACM Conference on Information and Knowledge Management,
CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011,
2011, pp. 831-836.

H.R. Bazoobandi, H. Beck and J. Urbani, Expressive Stream
Reasoning with Laser, in: The Semantic Web - ISWC 2017 -
16th International Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part I, 2017, pp. 87-103.

	Introduction
	 C-ITS Data Integration and Query Answering
	Local Dynamic Map
	Ontology-based LDM
	Spatial-Stream Query Answering

	Development of C-ITS Scenarios
	Scenario Description
	Features for Spatial-Stream QA
	Requirements

	Expert Interviews
	Approach for Spatial-Stream Query Answering
	Data Model and Knowledge Base
	Query Language
	Query Rewriting by Stream Aggregation
	Query Rewriting with Temporal Relations
	Query Evaluation by Hypertree Decomposition
	Stream Aggregation and Predictions

	Implementation
	Implementation Details

	Evaluation
	Scenario Data
	Queries for Experiments
	Results
	Feature Coverage
	Summary of Expert Evaluation

	Related Work and System Comparison
	Overview
	Comparison with Existing Systems
	C-SPARQL
	CQELS
	ETALIS with EP-SPARQL
	INSTANS
	SPARQLstream/Morph-streams
	Clingo with Multi-shot ASP
	LARS with Ticker/Laser
	ONTOP with STARQL and DatalogMTL
	RDFox
	TrOWL

	Feature Comparison
	Performance Comparison

	Conclusion and Future Work
	References

