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Abstract. Since the 2001 envisioning of the Semantic Web (SW) [1], the main research focus in SW reasoning has been on the
soundness and completeness of reasoners. While these reasoners assume the veracity of input data, the reality is that the Web
of data is inherently noisy. Although there has been recent work on noise-tolerant reasoning, it has focused on type inference
rather than full RDFS reasoning. Even though RDFS closure generation can be seen as a Knowledge Graph (KG) completion
problem, the problem setting is different— making KG embedding techniques that were designed for link prediction not suitable
for RDFS reasoning. This paper documents a novel approach that extends noise-tolerance in the SW to full RDFS reasoning. Our
embedding technique— that is tailored for RDFS reasoning— consists of layering RDF graphs and encoding them in the form
of 3D adjacency matrices where each layer layout forms a graph word. Each input graph and its entailments are then represented
as sequences of graph words, and RDFS inference can be formulated as translation of these graph words sequences, achieved
through neural machine translation. Our evaluation on LUBM1 synthetic dataset shows 97% validation accuracy and 87.76% on
a subset of DBpedia while demonstrating a noise-tolerance unavailable with rule-based reasoners.

Keywords: Deep learning, Semantic Web, RDFS reasoning, Noise-tolerance, Neural machine translation, Graph words

1. Introduction Named Entity Linking (NEL) or relation extraction
tools— whose accuracy is not perfect— they generate

The Web is inherently noisy and as such its exten- erroneous triples. Thus, the integrity of the inference

sion is noisy as well. This noise is as a result of in-
evitable human error when creating the content, de-
signing the tools that facilitate the data exchange, con-
ceptualizing the ontologies that allow machines to un-
derstand the data content, mapping concepts from dif-
ferent ontologies, etc. For instance, noise can be a con-
sequence of building Linked Open Data (LOD) from
semi-structured or non-structured data. When LOD
is built from non-structured data such as text using

IThe code, models and datasets for this paper are available at:
https://github.com/Bassem-Makni/NMT4RDFS

becomes questionable.

It is foolish to expect that the Web or the SW
will ever be free of noise. Many research efforts con-
centrate on noise detection and data cleansing in the
Web of data. Knowing that there will always be other
instances or types of noise that will be overlooked,
other research efforts focus on noise-tolerance instead.
Most of the current work in the latter category tar-
gets adding some noise-tolerant reasoning capabilities
without aiming for full semantic reasoning.

Humans are able to learn from very few examples
while providing explanations for their decision making
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process. In contrast, deep learning techniques- even
though robust to noise and very effective in general-
izing across a number of fields including machine vi-
sion, natural language understanding, speech recogni-
tion etc. - require large amounts of data and are un-
able to provide explanations for their decisions. At-
taining human-level robust reasoning requires com-
bining sound symbolic reasoning with robust connec-
tionist learning as outlined in [2]. “We argue that to
face this challenge one first needs a framework in
which inductive learning and logical reasoning can
be both expressed and their different natures recon-
ciled.” [2, 1] However, connectionist learning uses
low-level representations- such as embeddings- rather
than “symbolic representations used in knowledge rep-
resentation” [3, 18]. This challenge constitutes what is
referred to as the Neural-Symbolic gap. The aim of this
research is to provide a stepping stone towards bridg-
ing the Neural-Symbolic gap specifically in the SW
field and RDF Schema (RDFS) reasoning in particular.

This paper documents a novel approach that takes
previous research efforts on noise-tolerance to the next
level of full RDFS reasoning. The proposed approach
utilizes the recent advances in deep learning- that
showed robustness to noise in other machine learning
applications such as computer vision and natural lan-
guage understanding- for semantic reasoning. The first
step towards bridging the Neural-Symbolic gap for
RDFS reasoning is to represent Resource Description
Framework (RDF) graphs in a format that can be fed
to neural networks. The most intuitive representation
to use is graph representation. However, RDF graphs
differ from simple graphs as defined in the graph the-
ory in a number of ways. We examine in the litera-
ture different graph models for RDF from which we
conclude that the proposed models were neither de-
signed for RDFS reasoning requirements nor are they
suitable for neural network input. The proposed graph
model for RDF consists of layering RDF graphs and
encoding them in the form of 3D adjacency matrices.
Each layer layout in the 3D adjacency matrices forms
what we termed as a graph word. Every input graph
and its corresponding inference are then represented
as sequences of graph words. The RDFS inference be-
comes equivalent to the translation of graph words that
is achieved through neural network translation.

The evaluation confirms that deep learning can in
fact be used to learn RDFS rules from both synthetic
as well as real-world SW data while showing noise-
tolerance capabilities as opposed to rule-based reason-
ers.

1.1. Contributions and outline

The main contributions in this paper are:

— Noise Intolerance Conditions. In order to illus-
trate the intolerance of rule-based reasoners to
noise in SW data, a taxonomy for noise types in
SW data according to the impact of the noise on
the inference is drawn. Additionally, the neces-
sary conditions for a noise type to be propagable
(i.e affect the inference) by any RDFS rule is dis-
cerned.

— Layered Graph Model for RDF. Even though
the literature encompasses quite a few proposi-
tions for graph models for RDF, none of them
were designed for RDFS reasoning specifically.
We propose a layered graph model for RDF that
fulfills this requirement.

— Graph Words. Using the layered graph model,
we propose a novel way of representing RDF
graphs as a sequence of graph words. The main
observation that led to this design is that layers
of RDF graphs in a restricted domain are slightly
variable.

— Graph-to-Graph Learning. By representing RDF
graphs as a sequence of graph words, we were
able to use neural network translation techniques
for translation of graph words. This constitutes a
novel approach for graph-to-graph learning.

— Full RDFS reasoning with noise tolerance. Our
evaluation shows not only comparable results
with rule-based reasoners on intact data but also
exceptional noise-tolerance compared to them:
99% for the deep reasoner vs 0% (by design) for
Jena in the UGS 1 dataset.

In Section 2, we use three aspects to position our
research with respect to the related work. Section 3
draws a taxonomy for noise types in SW data and il-
lustrates the process of ground truthing and noise in-
duction for LUBM and a subset of DBpedia— that are
used as examples to describe the design of the overall
approach. We examine different graph models for RDF
and motivate the design of the layered graph model
for RDF in Section 4. Then the creation of the RDF
tensors and the RDF graph words as well as the de-
scription of the graph words translation are presented
respectively in Section 5 and Section 6. The results
of the experiments are described in the Section 7. In
Section 8, we review the related literature in terms of
noise-tolerance in the SW, deep learning and the SW
and graph embedding techniques— specifically KG
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embedding. Finally the learned lessons, main contribu-
tions and future work are illustrated in Section 9.

2. Background and Problem Statement

In this section we use three aspects to position our
research with respect to related work:

— Noise handling strategies: active vs adaptive

— Knowledge graph completion categories: schema-
guided vs data-driven

— Graph embedding output: Node/Edge embedding
vs whole-graph embedding.

2.1. Noise handling strategies

We classify the strategies of handling noise in SW
data into two categories:

— Active noise handling consists of detecting noise
and cleansing the data before performing any
tasks that might be affected by the presence of
noise

— Adaptive noise handling the previous category
provides solutions that are tailored to certain
types of noise as described in Section 8.1.1. Given
the unrealistic expectation of cleansing every type
of noise in SW data, adaptive noise handling ap-
proaches focus rather on building techniques that
are noise-tolerant. The research described in this
paper falls into this category as we are building a
noise-tolerant RDFS reasoner.

2.2. Knowledge graph completion categories

RDFS closure can be seen as a Knowledge Graph
Completion (KGC) problem— multi-relational link
prediction problem in particular— where each RDFS
rule (see Appendix A) generates different types of
links:

(a) links between TBox concepts (RDFSI10, RDFSI11)

(b) links between TBox properties (RDFSS5, RDFS6)

(c) links between ABox entities and TBox concepts
(RDFS2, RDFS3, RDFS9)

(d) links between ABox entities (RDFS7)

We refer to the RDFS closure computation as
schema-guided KGC because the links are generated
according to the ontology (TBox), unlike data-driven
KGC where the links are predicted based on the anal-
ysis of the existing links in the KG. Data-driven KGC

models “heavily rely on the connectivity of the existing
KG and are best able to predict relationships between
existing, well-connected entities” [4, 1]. The predicted
links from data-driven KGC might be seen as links be-
tween ABox entities and thus similar to the (d) case
in the schema-guided KGC. However, there is a cru-
cial difference: the generated relation (or link label) by
the RDFS7 rule is a super-property that might not be
seen in the initial KG as it is defined only in the TBox
as a node not even as a link type, whereas all the re-
lations generated by data-driven KGC are necessarily
seen before in the initial KG.

2.3. Graph embedding output

Graph embedding approaches can be classified us-
ing several criteria. One particular criterion of inter-
est in our survey of the state of the art (Section 8) is
the “problem setting” [5]. The problem setting uses the
type of graph input as well as the embedding output to
classify the embedding approach. For the input part of
the problem setting, the graph can be either:

— Homogeneous. Where all the nodes are of the
same type and all the edges are of the same type
as well.

— Heterogeneous where there are multiple types of
nodes and/or multiple types of edges. This is the
case for RDF graphs.

The majority of graph embedding approaches (detailed
in Section 8) yield node representation in a low dimen-
sional space. This is why graph embedding and node
embedding are often used interchangeably. However,
there are other types of graph embedding outputs such
as:

— Edge embedding. The output in this case is a
low dimensional representation of the edges. This
is particularly useful in the case of knowledge
graphs [6] where the type of edges between nodes
is crucial to determine their similarities.

— Whole graph embedding the output is a vec-
tor representation of the whole graph— not only
node or edge vectors. The embedding vectors of
similar graphs should be neighbors in the embed-
ding space. The embedding of RDF graphs— in
order to learn their inference— falls under this
category.
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2.4. Problem statement

For learning RDFS reasoning, the whole-graph em-
bedding is required because the input of the learning
algorithm is the input graph and the output is the infer-
ence graph. However, existing embedding techniques
for KGs were not designed for RDFS reasoning and
they raise two main challenges if they were to be used
for this task.

1. The first challenge is the need to check the valid-
ity of every possible triple using the scoring func-
tion f.(h,t) (described in Section 8) in order to
generate the full materialization.

2. The second challenge is the embedding of the re-
lations that are seen only in the inference as the
embeddings should be learned only from the in-
put graph and be used to generate the inference
graphs. For instance, when the property masters-
DegreeFrom in LUBM appears in the input graph,
its super-property degreeFrom appears in the in-
ference graph by applying the RDFS7 rule [7]. If
degreeFrom was not seen in the input graph then
its embedding was not learned.

The baseline experiments detailed in Section 7.3 illus-
trate these challenges empirically.

3. Ground Truthing and Noise Induction

For this research, the input is from one of two types
of datasets: a synthetic dataset from LUBM and a real-
world dataset from DBpedia [8]. The inferential target
for these datasets is set using a rule-based SW reasoner
(Jena [9]). Essentially, the goal for the deep reasoner
is to learn the mapping between input RDF graphs and
their entailed graphs in the presence of noise. Thus,
noise was induced in the synthetic dataset to test the
noise-tolerance of the deep reasoner.

3.1. Taxonomy of Semantic Web noise types

The literature contains a few taxonomies [10, 11] for
the types of noise that can impact RDF graphs; how-
ever they are not drawn with respect to the impact of
the noise on the inference. The taxonomy illustrated
in Fig. 1 serves this purpose. It should be noted that
the propagation of noise is dependent on the inference
rule.

TBox Noise is the type of noise that resides within
the ontology, such as in the class hierarchy or domain

Semantic Web noise

|
ABox noise
| |

Propagable noise Non-propagable
noise

TBox noise

Fig. 1. Semantic Web noise taxonomy

and range properties. This type of noise impacts in-
ference over the whole dataset. For example, in the
DBpedia ontology, the property dbo:field has domain
dbo:Artist which implies that every scientist in the DB-
pedia dataset who has a dbo:field property (such as
dbr:Artificial_intelligence or dbr:Semantic_Web) will
be labelled a dbo:Artist after inference. Reasoning
with tolerance to TBox noise is outside the scope of
this research for the following reason: the use of rule-
based reasoners for ground truthing with noise in the
TBox biases the whole ground truth, which makes
noisy inferences omnipresent and not just anomalies
that can be detected and fixed.

The following assumption is made in order to scope
this research within a manageable framework:

Assumption 1 (Noise locality). The noise is latent
only in the ABox, but the TBox is devoid of noise.

Definition 1 (Triple corruption). The process of mor-
phing an existing triple in an RDF graph by changing
one of the triples’ resources. This can result in either
propagable or non-propagable noise.

Definition 2 (Non-propagable noise). Any corrupted
triple in the input graph that does not have any impact
on the inference.

This can occur at least in these cases:

1. The original triple does not generate any infer-
ence nor does the corrupted triple.

2. The original triple does not generate any triple
but the corrupted triple generates an inference
that is generated also by another triple in the in-
put graph. (For example if the corrupted triple is
equal to another triple in the graph)

3. The original triple and the corrupted triple gener-
ate the exact same inference.

O 0 d oy U s W NP

Gr O s s s s R B R D D W W W W W W W W W W NN NN NN R B R B R R B e e
H O W I o U W NP O W W d oUW N R O WV o Jo U s W NP O VW W Jdo U s W NP O



@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Bassem Makni and James Hendler / Deep learning for noise-tolerant RDFS reasoning 5

Table 1
RDFS9 rule from [7]

RDFS rule If Then

x rdfs:subClassOf y .
z rdf:type x .

RDFS9 z rdf:type y .

4. The corrupted triple generates a set of triples that
is a proper subset of the set of triples generated
by the original triple. However the difference be-
tween the two sets is also generated by other input
triples.

Definition 3 (Propagable noise). Any corrupted triple
in the input graph that changes the inference.

In order to discern the necessary conditions for
RDFS rules to propagate noise, first the input patterns
of the premises of the RDFS rules ([7]) are classi-
fied as TBox pattern or ABox patterns (Appendix B).
The rules that have only TBox type patterns, such
as RDFS5 (which defines the properties hierarchy)
and RDFS11 (which defines the class hierarchy), are
excluded because any corruption of triples matching
these patterns will induce TBox noise. For the remain-
ing rules that have both TBox and ABox patterns (i.e.
RDFS2, RDFS3, RDFS7 and RDFS9), only the ABox
triple can be corrupted. In Table 2, the necessary con-
ditions for RDFS9 rule (Table 1) to generate a noisy in-
ference from a corrupted triple are identified. In plain
English, the RDFS9 rule will generate a noisy infer-
ence if and only if the corrupted type x’ has a super-
class y’ defined in the ontology and the original type x
either does not have a super-class or y’ is not a super-
class of x. The necessary conditions for the remaining
rules are listed in Appendix C.

3.1.1. Mapping to the DBpedia noise taxonomy
drawn in "User-driven Quality Evaluation of
DBpedia" [11]

In [11], the authors examine different types of noise
in the DBpedia instances. Thus all the categories
of noise presented are of type ABox noise. Every
category of noise can either be propagable or non-
propagable depending on the property in the noisy
triple. For example, in Object value is incorrectly ex-
tracted [11], the noise can be propagable if the corre-
sponding property has any super-properties defined in
the ontology and non-propagable otherwise— such as
in the following example provided in the paper:

DBpedia:Oregon_Route_238 dbpprop:map
"238.0"""http://DBpedia.org/datatype/second.

where the property dbpprop:map does not have any
super-properties in the DBpedia ontology.

3.2. Ground-Truthing in LUBM1

Lehigh University Benchmark (LUBM) [12] is a
benchmark for SW repositories. The LUBM ontol-
ogy conceptualizes 42 classes from the academic
domain and 28 properties describing these classes’
relationships. LUBMI1, an RDF graph of one hun-
dred thousand triples, was generated according to
this ontology, and contains 17,189 subject-resources
within 15 classes (for instance 5, 999 resources of type
ub:Publication and 15 resources of type ub: Department).
Let R be the set of these subject-resources. For each
resource r in R, a graph g is built by running the
SPARQL DESCRIBE query. Appendix D contains
the graph description of the resource GraduateStu-
dent9. Let G be the set of graphs g obtained after
this step. For each graph g in G, the RDFS infer-
ential closure is generated according to the LUBM
ontology using Jena. Let I be the set of inference

Propagable noise by rule-based RDFS reasoners for RDFSO rule

RDFS rule  Triple corruption Conditions Noisy inference
(x rdfs:subClassOf y’ .)
zrdfitypex. A (-3 y, x rdfs:subClassOf y ) V
-3y, x rdfs:subClass .
RDFS9 — y\ Y zrdf:type y’ .
(Vy, x rdfs:subClassOf y .
z rdf:type x’ . ,
= ~(y=y))
stul rdf:type ub:Student . L
ub:University rdfs:subClassOf stul rdf:type
Example —

ub:Organization .

stul rdf:type ub:University .

ub:Organization .
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graphs. Appendix E contains the inference graph of
the input graph in Listing 1. Finally, G and [ are split
into 60% training (G_train,I_train), 20% validation
(G_val, I_val) and 20% (G _test, I_test) testing sets us-
ing a stratified splitting technique where the resource
class is used as the label for the stratification. The goal
of the stratification is to have the required percentage
of each resource type in the training and test sets. Oth-
erwise there is a risk of having all the small classes
in the training set, which will mistakenly inflate the
accuracy. For instance, the stratified split leads to 9
graphs describing resources of type ub:Department in
the training set and 3 graphs describing resources of
the same type in validation and test sets respectively.
The input of the supervised learning algorithm is the
set of graphs G_train, the target is their corresponding
inference graphs I_train and the goal is to learn the
inference generation.

3.2.1. Noise Induction in LUBM1

In [13], a methodology for noise induction in
LUBM was proposed in which three datasets were
constructed by corrupting type assertions according to
a given noise level.

RATA Instances of type TeachingAssistant were cor-
rupted to be of type ResearchAssistant. This type
of noise is non-propagable because both con-
cepts, TeachingAssistant and ResearchAssistant,
are sub-classes of the concept Person.

UGS Instances of type GraduateStudent were cor-
rupted to be of type University. This type of noise
is propagable by the RDFS rule RDFS9 because
these concepts are not siblings. A rule reasoner
will generate a noisy inference by deducing that
the student instance is of type Organization which
is the super-class of University.

GCC Instances of type Course were corrupted to be of
type GraduateCourse. This type of noise is also
non-propagable.

As [13] focus only on noisy type assertions, two ad-
ditional datasets were created with noisy property as-
sertions for the purpose of this research.

TEPA The property publicationAuthor is corrupted to
be teachingAssistantOf. This noise is propagable
by the RDFS rules RDFS2 and RDFS3 as the two
properties have different domains and ranges.

WOAD The property advisor is corrupted to be works-
For. This noise is non-propagable as the prop-
erty worksFor does not have any domain or range
specification in the LUBM ontology, but by re-

Table 3
Number of resources per class in the scientists dataset
Class Number of resources
dbo:Scientist 25,760
dbo:Place 22,035
dbo:Educationallnstitution 6,048
dbo:Award 1,166

moving the property advisor the type inference
that was made about the student and advisor is
lost.

3.3. Ground Truthing the Scientist Dataset from
DBpedia

From DBpedia [14], a dataset of scientists’ descrip-
tions was built; 25,760 URIs for scientists’ descrip-
tions were retrieved. In order to diversify the types of
classes in the scientists dataset, a few other classes that
are related to the Scientist concept in DBpedia were
also collected, namely: Educationallnstitution, Place
and Award. Table 3 lists the number of resources per
class in the scientist dataset. The total number of triples
obtained in the scientists dataset is ~ 5.5 million. No
artificial noise was induced in this dataset as it al-
ready has pre-existing noise. An example of noisy type
assertion is the resource dbr:United_States being of
type dbo:Person. There are 1,761 resources in DBpe-
dia that are of types dbo:Person and dbo:Place simul-
taneously, which obviously indicates that one of them
is a noisy triple.

4. Layered Graph Model for RDF

Despite its effectiveness as a standardized “frame-
work for representing information in the Web”[15] and
as an essential building block for the SW, the graph
representation for the RDF model remains an open
question in the SW research community. Even though
the RDF conceptual model is designed as a graph,
it differs from the graph theory definition of graphs
in a number of ways. RDF graphs are heterogeneous
multigraphs. Moreover, an edge in the ABox can be
a node in the TBox (describing the properties hierar-
chy for example). Current research efforts to represent
the RDF model as graphs— based on a: bipartite graph
model [16], hypergraph model [17-19] or metagraph
models [20]— target different goals ranging from stor-
ing and querying RDF graphs to reducing space and
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time complexity to solving the reification and prove-
nance problem. Unfortunately, these goals do not co-
incide with RDFS reasoning. Moreover they use com-
plex graph models which are not suitable for neural
network input.

This paper describes a layered graph model that uses
simple directed graphs to achieve the goal of repre-
senting RDF graphs and their inference graphs accord-
ing to the RDFS rules. It is important to note that the
mapping between RDF to the proposed layered model
is irreversible— meaning that the reconstruction of the
original RDF graph is not guaranteed. Thus, the lay-
ered graph model is not suitable for storing and query-
ing RDF data.

4.1. Notations and Definitions

In Appendix B, the premises of RDFS rules were
classified into ABox patterns and TBox patterns.

Definition 4. TBox rule is a rule where its premises
are all of type TBox pattern.

The Thox rules in RDFS are:

1. RDFSS5: the subPropertyOf transitivity rule
2. RDFS6: the subPropertyOf reflexivity rule
3. RDFS11I: the subClassOf transitivity rule
4. RDFS10: the subClassOf reflexivity rule

As these rules’ patterns are present in the ontological
level and there is only one ontology per training set,
there are not enough samples to learn these rules. Thus,
it is assumed that there is a materialized version of
the ontology where the TBox rules are already applied.
This materialized version is inferred only once and is
part of the training input. Let:

O: be the materialized ontology.

P: be the set of properties in O.

Pt = P U {rdf:type}

np: be the size of the set P™

(P1. P2, - .-, Pnp): be a tuple of the elements of PT (It
is crucial to maintain the same order of elements
in this tuple throughout the training process)

SubjoObj(T): be the set of subject and object resources
of the RDF graph T (formally defined in Ap-
pendix F).

Definition S. A Layered directed graph is a graph that
has multiple sets of directed edges where each layer
has its own set of edges.

An n-layered directed graph is a layered directed graph
of n layers. More formally, an n-layered directed graph

is defined as:
G(V,(E1,Es,...E,)) where the edges part is a tuple
containing n sets of directed edges.

Definition 6. Layered directed graph for RDF :
An RDF graph T is represented by a layered di-
rected graph:
G(SubjoObj(T), (E1, Es, ... E,p)) Where:
(ei,pnej) €T

e; € Subjobj(T)
e; € SubjObj(T)

(ei,ej) € E} —

It is important to note that the transformation of an
RDF graph into its layered directed graph representa-
tion is not bijective as two non-isomorphic RDF graphs
can have the same layered directed graph representa-
tion.

Proof by construction. Let T be an RDF graph and
Ly be its layered directed graph representation ac-
cording to the ontology O and its tuple of prop-
erties (p1,p2,....pnp). If (s,p,0) ¢ T and p ¢
(P1, P2, .., pnp) then the RDF graph 77 = TU(s, p,0)
is not isomorphic to 7 but has the same representation
Lr. O

However this transformation guarantees that if two
RDF graphs have the same layered directed graph rep-
resentation then their RDFS inference graphs accord-
ing to the ontology O are isomorphic.

Appendix G lists two examples of layered RDF
graphs: one for the graph description of the resource
GraduateStudent9 and one for its corresponding infer-
ence graph.

5. RDF Tensors, and the Graph Words
Embedding

The way the generic methodology of supervised ma-
chine learning is applied in this work is depicted in
Figure 2, where the pair (input, target) is the input
graph and its corresponding inference. In a nutshell,
tensors representing the input graph g and its corre-
sponding inference i are created. The tensors of these
graphs are then used in the training phase. The algo-
rithm outputs the tensor of the graph and its encod-
ing dictionary that will be used in the decoding phase
to regenerate the original graph. In addition to prepar-
ing the RDF graph for input into a neural network, the
main goal of this phase is to capture the pattern sim-
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RDF:type
layer/ e 01 0 0
ub:publicationAuthor ,~ ‘ 00 00
. 1
layer . 1 0 0 1 .
ub:subOrganizationOf 7 ‘ 00 0 1 = e
0 - P
layer o1 1 0 - 0 . K
0 0 0 0 - | .. -
00 1 0 - =
0o 0 0 0 - .7

Fig. 3. 3D Adjacency matrix

ilarities between graphs in such a way that “similar”
graphs will have similar tensors. An example of “simi-
lar" graphs is: two graphs containing RDF descriptions
of two resources of the same type (such as two Publi-
cations’ descriptions in the LUBMI dataset).

5.1. Tensor Creation

The goal of this phase is to use the layered graph
model for RDF in creating RDF tensors. Each RDF
graph will be represented as a 3D adjacency matrix,
where each layer is the adjacency matrix relative to one
property (Fig. 3). An ID must be assigned to each re-
source in the RDF graph to allow it to be represented as
a 3D adjacency matrix. The process of assigning these

Encoding of g

o ]

Input m

RDF graph g E i
ncoding

dictionary of g

.4 Encoding 0111
Inference Encoding of i

RDF graph i

Trained model

.<I m Encoding of t

Test Input E

RDF graph t
Encoding

dictionary of t

Training
phase

IDs for the input graphs and their corresponding infer-
ence graphs must satisfy the following requirement:

It is mandatory that the encoding dictionary for
a given graph g contains all the possible resources
that might be used in its corresponding inference
graph i.

The proof for this requirement is detailed in Ap-
pendix H.

5.1.1. Simplified version

In the simplified version of the algorithm, two dic-
tionaries were created: one for the subject and ob-
ject IDs— which is split into a global and a lo-
cal dictionary— and one for the property IDs. The
global resources dictionary contains the subject and
object resources that are used throughout the G set
(which are basically the RDFS classes in the ontol-
ogy). The local_resources_dictionary is created incre-
mentally during the encoding routine for each graph
g in G. It holds the IDs of the resources that are not
present in the global_resources_dictionary. The lo-
cal_resources_dictionary is populated with an offset
equal to the length of global_resources_dictionary—
that is, 57 in the case of LUBM1. The largest ID in the
local_resources_dictionary for every graph in G is less
than 80. This value is used to initialize the size of the
3D adjacency matrix. These dictionaries are then used

Predicted inference
encoded

Decoding

Predicted inference
graph

Fig. 2. Encoding/decoding in training and inference phases
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Bassem Makni and James Hendler / Deep learning for noise-tolerant RDFS reasoning 9

in the encoding routine to transform a layered graph
representation into an RDF tensor and vice-versa in the
decoding routine. The details of the encoding/decod-
ing algorithms are in Appendix L.

The previously stated goal— capturing the pattern
similarities between graphs describing resources of the
same type— can be achieved by this simplified en-
coding technique when the cardinality of each prop-
erty is variable within a small range. For instance, in
LUBMI, students take more or less the same number
of courses, and a publication has between one to seven
authors. To get the full list of these statistics, the fol-
lowing SPARQL query is run:

select ?type ?property
(group_concat (?count) as ?
possible_values)
where {
select distinct ?type ?property
(count (?object) as ?count)
where {
?subject ?property ?object .
?subject a ?type .
}
group by ?type ?subject ?property
}
group by ?type ?subject ?property
order by ?type ?property

The inner query counts the number of objects per
property per class and the outer query concatenates
the possible values. Appendix M contains a sample of
these statistics in LUBM1.

Alas, this is not the case in real-world knowl-
edge graphs such as DBpedia, where even graphs
describing resources of the same type differ widely.
For example the DBpedia graph describing Professor
James Hendler [21] has 40 objects for the property
RDFt including owl:Thing, foaf:Person, dbo:Person,
dul:Agent, dbo:Agent, dbo:Scientist, schema:Person,
yago:Scholar1 10557854, etc. Out of these 40 ob-
jects, 12 are in the global_resources_dictionary be-
cause they are concepts in the DBpedia ontology
and the other 28 objects will populate the local_re-
sources_dictionary. In contrast, the DBpedia graph de-
scribing Professor Yoshua Bengio [22] has only 12
links for the property RDFt and all of the objects are
in global_resources_dictionary. This implies that the
RDFt layers in the 3D adjacency matrices for Pro-
fessor Hendler and Yoshua Bengio graphs will be
very different. In fact all the subsequent layers will
be very different. For instance, when encoding the
layer of the property dbo:almaMater for Professor

Hendler’s graph, the resources dbr:Brown_University,
dbr:Southern_Methodist_University and  dbr:Yale-
_University will have IDs 29, 30 and 31 respectively
as there is already 28 resources in the local_resources-
_dictionary. When encoding the same layer for Profes-
sor Bengio’s graph, the resource dbr:McGill_University
will have ID 1 as the corresponding local_resources-
_dictionary is still empty. Consequently, this has a
domino effect on the rest of the layers. To over-
come this limitation, a more advanced tensor creation
method was necessary to capture the patterns of real-
world knowledge graphs.

5.1.2. Advanced version

The main idea of the advanced encoding/decoding
technique is to create a local_resources_dictionary per
layer instead of a local_resources_dictionary for the
whole graph being encoded. While this may seem suf-
ficient to overcome the limitation of the simple encod-
ing technique, a few challenges in the encoding of the
inference graphs as well as in the decoding phase for
both the input and the inference graphs are encoun-
tered. The details of these challenges and the proposed
solutions for the advanced tensor creation technique
are detailed in Appendix J. When using the advanced
encoding technique, the number of properties is actu-
ally the number of “active" properties— where active
properties are the set of properties in the T-Box that
are used in the A-Box. This reduces the size of the 3D
adjacency matrices dramatically especially in the case
of the Scientists dataset where only a small subset of
the DBpedia properties are used.

5.2. Graph Words

At this stage, every RDF graph is represented as a
3D adjacency matrix of size: (number_of_properties,
max_number_of _resources, max_number_of _resources)
where each layer represents an adjacency matrix ac-
cording to one property.

In theory the maximum number of possible layer
layouts in a dataset of size dataset_size is:

min(2'"“x—”b-m”'” ces ,dataset_sizexnb_properties)

When encoding an RDF graph from the LUBM1
dataset— which contains /7,189 RDF graphs— a 3D
adjacency matrix of size (18 x 800 x 800) is ob-
tained. Where 18 is the size of active properties set in
LUBMI1 and 800 is the maximum number of resources
per graph. The maximum number of layer layouts is
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RDF:type

ub:takesCourse [~

ionAuth,

‘ 0 0 0
0 0 0 1 -
0 0 1 |
1.0 0 -

ubisubOrganizationOf

Layers catalog

0 0 0 0 -

(4.5,3,1,0,0)
Graph sentence
of graph words

Fig. 4. From a 3D adjacency matrix to a sentence of graph words

equal to:

minimum (280" ~ 10192659 18 x 17,189) = 309, 402
possible layouts. However, the actual number of lay-
outs when encoding LUBM1 is much smaller than this
theoretical bound (131 and 490 for the sets G and I re-
spectively). This observation is a good indication that
the encoding algorithm has achieved one of its major
goals of having similar encodings for “similar" graphs.
Let Catalogg and Catalog; be the layers’ catalogs for
the sets G and [ respectively where each layout is as-
signed an ID. The 3D adjacency matrix can now be
represented as a sequence of layouts’ IDs as shown in
Fig. 4. The layouts in the catalogs are termed “graph
words", as the sequence (or phrase) of graph words
represents a 3D adjacency matrix and thus an RDF
graph. Representing an RDF graph as a sequence of
graph words has two main advantages:

1. Reducing the size of the encoded dataset: only the
ID of the layer’s layout along with a catalog of
layouts is saved.

2. Exploitation of the research results in neural ma-
chine translation.

6. Graph Words Translation for RDFS Reasoning

At this stage, there is a parallel corpus of graph
words for the input and inference graphs. This repre-
sentation has the following drawbacks: difficulty han-
dling “unknown” graph words and insensitivity to
graph word similarities. Unknown graph words can be
encountered when a graph word is seen only in the
test set but not during the training phase; when induc-
ing noise, most of the graph words will be unknown.
A common technique in Natural Language Processing
(NLP) is to assign the same ID for unknown words,
which is not a significant deterrent to success in most

learning tasks involving natural language. However, in
our case if the same ID is assigned to every unknown
graph word, then the learning process will be com-
promised and will not generate the exact inference.
(Briefly, the proof by construction— that the use of the
same ID for every unknown graph word is deterrent
to learning the graph words translation— consists of
building two graphs having the same input representa-
tions but having different targets.)

By encoding an RDF graph as a sequence of lay-
ers where each layer contains an adjacency matrix of
a directed graph according to one property, homoge-
neous graph embedding algorithms can be used on
each layer. The High-Order Proximity preserved Em-
bedding (HOPE) algorithm [23] was used as it had the
best reconstruction accuracy when tested on the cata-
log of graph words. The graph words embedding also
solves the problem of capturing the similarities be-
tween graph words.

By representing the RDF graph input as well as
its corresponding inference graph by two sequences
of graph words, the RDFS inference becomes equiv-
alent to the translation of graph words. Thus, Neu-
ral Machine Translation (NMT) models can be applied
to learn the RDFS inference generation. NMT models
typical architecture consisted of [24] Recurrent Neural
Network (RNN) Encoder-Decoder where the encoder
RNN transforms the sequence of words from the input
sentence into a fixed-length hidden representation and
the decoder RNN generates the target sentence from
the hidden representation. More recent architectures
that used convolutional networks for NMT such as [25]
outperformed RNN based architectures in terms of ac-
curacy and training speed.

For designing the graph words translation model,
we used keras [26] with TensorFlow [27] backend. It
is basically a sequence-to-sequence model [28] with a
Bidirectional Recurrent Neural Network (BRNN) [29]
encoder. The overall architecture of the model is de-
picted in Fig. 5. The input layer consists of a ten-
sor of shape (18 x 3200) where 18 is the size of
the graph words’ sequence— which is the size of the
active properties set in LUBMI1. Each graph word
represents a layout for an adjacency matrix of size
(800 x 800). When embedding the adjacency matri-
ces using HOPE embedding technique, we chose an
embedding dimension of 4. Hence the second dimen-
sion in the tensor 3,200 = 800 * 4. The second layer
graph_input_dense is a densely-connected layer which
transforms each graph word embedding into a vector
of size 256. The gru_sequence_encoder is a Gated Re-
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input_graph_words_sequence_embedded: InputLayer

input: | (None, 18, 3200)
output: | (None, 18, 3200)

graph_input_dense: Dense

input: | (None, 18, 3200)

output: | (None, 18, 256)

graph_dropout 1: Dropout

input: | (None, 18, 256)

output: | (None, 18, 256)

bidirectional(gru_sequence_encoder): Bidirectional(CuDNNGRU)

input: | (None, 18, 256)

output: (None, 256)

graph_dropout2: Dropout

input: | (None, 256)

output: | (None, 256)

repeat_vector: RepeatVector

input: (None, 256)

output: | (None, 18, 256)

sequence_decoder: CuUDNNGR

input: | (None, 18, 256)
output: | (None, 18, 128)

output_dropout: Dropout

input: | (None, 18, 128)

output: | (None, 18, 128)

inference_graph_words_sequence(softmax_layer): TimeDistributed(Dense)

input: | (None, 18, 128)
output: | (None, 18, 490)

Fig. 5. Graph words translation model for LUBM1

current Unit (GRU) [30] that transforms the sequence
into the hidden representation of size 128. The bidirec-
tional layer feeds the sequence in positive and nega-
tive time direction to the GRU, hence the size 256. The
sequence_decoder layer decodes the hidden represen-
tation into a sequence of size 18. The softmax layer
is a densely-connected layer with softmax activation.
The output of this layer is of size 490 which is the size
of the inference graph words layers’ catalogue. The
TimeDistributed layer applies the softmax_layer on the
18 sequence elements of the previous layer to output a
sequence of 18 graph words. The dropout layers have
a dropout factor of 0.2 and are introduced in the model
architecture to prevent overfitting and improve gener-
alization.

For the training phase, we used Adam [31] optimizer—
with a learning rate of 0.001 a first moment decay rate
of 0.9 and a second moment decay rate of 0, 999— and
a categorical cross-entropy for the loss.

7. Evaluation
7.1. Hardware Setup

The training was done on a server, which has
four Tesla K40m NVIDIA Graphics Processing Unit
(GPU)s. Each GPU has 2880 Compute Unified Device
Architecture (CUDA) cores and 12GB of memory. The
models were trained using all the GPUs in parallel.
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rdf:type ub:memberOf

15
13766 540
2853

ub:degreeFrom

Fig. 6. The distribution of properties in LUBM1 inference
7.2. Data Analysis

In this section, we perform a statistical analysis on
the training data for both LUBM1 and the scientists’
dataset. This analysis is based on the relations’ distri-
bution across the training input and inference graphs.
The motive behind this analysis is to get an insight
to the performance of type prediction approaches on
these datasets in comparison with our proposed ap-
proach.

7.2.1. LUBMI Data Analysis

When we consider all the triples in the inference of
LUBMI across all the graphs, there are 130, 377 triples
with the property rdf:type which constitute 94.17%
of the total number of generated triples. The remain-
ing two properties in the inference ub:degreeFrom and
ub:memberOf materialize in 6, 988 triples (5.05%) and
1,080 triples (0.78%) respectively. However, when we
consider the distribution of these two properties among
the 17,189 graphs in the set G, it becomes appar-
ent that they are spread across a larger portion of the
graphs (19.84% of the inference graphs contain the
property ub:degreeFrom and/or ub:memberOf while
the remaining 80.1% graphs contain only triples with
the property rdf:type). The Venn diagram in Fig. 6 il-
lustrates the distribution of properties in LUBMI in-
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ub:researchinterest
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Fig. 7. Frequency of the properties in LUBM1 inference

ference. Such distribution is due to the frequency of the
properties in the inferred graphs. As shown in Fig. 7,
every graph in LUBMI inference contain at least 3
triples with the property rdf:type and more than 50%
of the graphs contain between 5 and 97 triples with
this property. On the other hand, 50% of the graphs
containing the property ub:degreeFrom have only one
triple with this property and 75% of the graphs con-
taining the property ub:memberOf have only one triple
with this property. Fig. 8 illustrates the frequency of
each property in the input and inference graphs of
LUBMI as well as the entailment rules that generated
the triples containing these properties.

Given these statistics about the frequency of proper-
ties in LUBMI inference, it can be concluded that the
upper bound of accuracy for type prediction systems
is around 80%. Meaning that the perfect type predictor
system can get a per-graph accuracy of 80% at most.
This is due to the fact that approximately 20% of the
inference graphs contain at least one property that is
not rdf:type— which is outside the scope of type pre-
diction systems. This percentage is even dramatically
higher in the Scientists dataset as presented in the fol-
lowing section.

N — ub:degreeFrom

- ub:memberOf

rdf:type

0 2500 5000 7500 10000 12500 15000 17500

rdfs7 rule
—>» rdfs9 rule
— rdfs2 (domain) or rdfs3 (range) rules

Properties distribution
in Inference Graphs

Fig. 8. Distribution of properties in input and inference graphs in LUBM
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Fig. 9. Frequency of the properties in the Scientists dataset inference

7.2.2. Scientists Dataset Analysis

The Scientist’s dataset contains more than fifty thou-
sands graphs. When considering all triples in the infer-
ence of these graphs, there are 3, 238, 260 triples with
the property rdf:type which constitutes 83.26%. The
remaining 651, 028 triples (16.74%) contain one of the
33 properties of the inference. Similarly to LUBMI,
the frequency of the triples with rdf:type across the
inference graphs is much higher than the other prop-
erties. For instance, more than 75% of the inference
graphs contain between 43 and 491 triples with the
property rdf:type while 75% of the inference graphs
contain in total less than 16 triples with the remaining
properties. However, unlike LUBM1, the dispersion of
the remaining properties across the inference graphs is
much higher— 96.74% of the inference graph contain
at least one triple with a property that is not rdf:type.
This analysis sets the upper bound limit for type pre-
diction systems at 3.26% per-graph accuracy for the
Scientists dataset.

7.3. Baseline Experiments

As discussed previously in 2.4, existing KG em-
bedding techniques that were designed for data-driven
Knowledge Graph Completion (KGC) are not suitable
for RDFS reasoning for the following reasons:

1. For learning RDFS reasoning, the whole-graph
embedding is required rather than node/edge em-
beddings.

2. The closure computation requires checking the
validity of every possible triple using the scoring
function.

3. More importantly, any relation that is seen only
in the inference (for instance generated by the
RDFS7 rule [7]) cannot be learned from the input
graph.

On the other hand, these techniques are more suitable
to learn from the whole KG at once and there is no
need to partition the KG into subgraphs containing re-
source descriptions as in our approach.

In order to set the baseline and provide empir-
ical evidence of the previous claims about using
KG embedding techniques for RDFS reasoning, we
run the following experiments: the embedding of
LUBM1(100, 867 triples containing 26, 454 resources
and 18 properties) is computed using 3 embedding
techniques— namely TransH [32], ComplEx [33]
and HolE [34] by utilizing the OpenKE toolkit [35].
OpenKE also provides a binary classifier to check the
validity of triples. In order to generate the full mate-
rialization of LUBMI using these techniques, the set
of all possible triples— containing 26, 454 18 ~ 12
billion triples— need to be generated. Then the classi-
fier can be used to check the validity of each possible
triple. To make the experiment more manageable, we
instead generate 100, 000 random negative triples that
are neither part of the input graph nor the inference
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Fig. 10. RDFS inference with KG embedding techniques?
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Table 4

Per-property precision and recall on LUBMI test set

Property True Positives ~ False Positives ~ False Negatives  Precision Recall
rdf:type 13,642 602 725 95.77%  94.95%
ub:degreeFrom 1,392 0 3 100%  99.78%
ub:memberOf 110 32 104 77.46% 51.4%
Overall 15,144 634 832 95.98%  94.79%
1 Noisy . Noisy
Best accuracy: 97.67% - 'Trai.ning loss type assertions 3 property assertions
—— Validation accuracy 100
=82 - g
0.8 =3 =y _ & 3 0
= © =
v 0.6 5 z o0 §
g 2 = g
g = C 24 <
< 0.4
20
02 = 0
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Fig. 11. Training results on intact LUBM1 data

graph and the classifier is used to check the validity
of these random triples as well as the LUBMI1 infer-
ence (31, 612 triples). The results of these experiments
are presented in Fig. 10 (the higher the better). Given
that our approach is generative— that generates the in-
ference graph from the input graph— rather than via
binary classification of valid triples, it assumes valid-
ity of the input graph and thus omitted from Fig. 10a.
The three embedding techniques were able to validate
the triples in the input training graph (Fig. 10a) and
to invalidate the negative triples (Fig. 10c), but were
not able to validate most of the triples in the inference
graph (Fig. 10b). HolE performs better than existing
KG embedding techniques at 48.51% but did not im-
prove with more training epochs (vs 97.7% for our ap-
proach on the test set).

7.4. Evaluation on Intact LUBM

Fig. 11 shows the training process on the LUBM1
dataset. After approximately 12 minutes of training,
98.8% training accuracy was achieved. When testing
the trained model on the intact LUBMI1 test set, an
overall per-graph accuracy of 97.7% was obtained.

Table 4 presents the overall per-triple precision
and recall as well as the breakdown of these met-
rics for each property in the inference. The precision
and recall are much higher for the properties rdf:type
and ub:degreeFrom compared with ub:memberOf.

‘DDPcr-graph accuracy 0D Per-triple precision 00 Per-triple recall ‘

Fig. 12. Macro and micro evaluation on noisy LUBM1 datasets

This can be explained by the fact that the property
ub:memberOf is much less frequent in the LUBM1
training set of— which contains only one university.

7.5. Evaluation on Noisy LUBM1 Data

In this experiment, the trained model was tested on
the noisy datasets created as described in Section 3.
Two metrics were designed:

— Macroscopic metric: Per-graph accuracy : In-
ferences in this metric (Depicted in Fig. 13) are
scored correct when dr and i are isomorphic—
in other words, when the deep reasoner inference
from the corrupted graph is isomorphic to the
Jena inference from the intact graph.

— Microscopic metric: Per-triple precision/re-
call. The previous metric overlooks the fact that
some triples, generated by the deep reasoner and
not by Jena, were in fact valid. In this metric,
three materialization graphs are generated:

1. Jena materialization from the intact graphs
)

2. The deep reasoner materialization from the
corrupted graphs (DR)

3. An OWL-RL [36] materialization of LUBM1
to check the validity of the false positives
from the deep reasoner.
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Let V be the set of valid false positive triples. The
quasi-confusion metric is computed as shown in
Fig. 14. The macro and micro evaluation on the 5
noisy datasets (Fig. 12) shows exceptional noise-
tolerance compared to rule-based reasoners: 99%
for the deep reasoner vs 0% (by design) for Jena
in the UGS 19¢ dataset.

It is counter-intuitive that our approach per-
forms better on propagable noise such as UGS
compared with non-propagable noise such as
GCC. This can be explained by the fact that
the propagable noise case is very unlikely and
there are no ‘“similar" graphs in the training
set. For instance, in UGS a ub:GraduateStudent
is corrupted to be of type University, which
makes the university take a course in the in-
put graph. Being more "similar" to students’
graphs, it is inferred to be of type ub:Person
rather than ub:Organizartion. This is not the
case for non-propagable noise such as GCC
where a ub:Course is corrupted to be of type
ub:GraduateCourse, which is likely— i.e. “simi-
lar" graphs can exist in the training set.

Corruption

Intact RDF graph g <o, Asvts Corrupted RDF graph ¢

Jena Inference Jena Inference Deep Reasoner

Inference graph i Inference graph i Inference graph dr

Fig. 13. Macroscopic metric: Per-graph accuracy

Deep reasoner inference

P n total

True positive: False negative:

p/ P/
(DRNJ)uV J\ DR
Jena
inference
False positive: True negative:
n’ N’
(DR\ J)\V -
total P N

Fig. 14. Refined confusion matrix

7.6. Evaluation on the Scientists Dataset

The model used for the scientists dataset is like
the LUBM1 model, except for the hyper-parameters.
Training to a validation accuracy of 87.76% takes over
16 hours (Fig. 15). The person-place examples were
used for noise-tolerance evaluation; out of the 1,761
noisy examples of person-place in DBpedia, the ‘sci-
entists’ dataset contains 94. Unlike the LUBM1 case—
where training was done on intact data and testing on
controlled noisy data— °‘scientists’ training data was
noisy. When an input graph has a resource of type
dbo:Person, Jena infers that it’s also of type dbo:Agent
since dbo:Person is a subclass of dbo:Agent. For the
person-place graphs, this constitutes noise propaga-
tion because dbo:Agent and dbo:Place are disjoint
classes. To evaluate noise-tolerance in the deep rea-
soner, a test is run to check whether it inferred that
a person-place is of type dbo:Agent. Of the 94 exam-
ples, 6 inferences only contain this noisy inference.
However, some of the remaining 88 inferences either
had false positives or missed valid triples inferred by
Jena. 38 inference graphs were perfect, containing ex-
actly the inference from Jena minus the noisy triple;
examples include: dbr:Socialist_Republic_of _Croatia,
dbr:Teylers_Museum and dbr:Meta_River. These make
up 40% of the noisy examples. For the remaining
person-place inferences, a few contain "false posi-
tive" triples not generated by Jena. For example, the
deep reasoner inference from the dbr:Big_Ben graph,
missed these two triples compared to Jena:

dbr:Big_Ben a dbo:Agent
dbr:Big_Ben dul:isDescribedBy
dbr:Gothic_Revival

(the first should be missed), and generated the follow-
ing extra triple:

dbr:Big_Ben a dbo:HistoricPlace

It should be noted that this information is not explic-
itly (i.e. embedded in the DBpedia graph of the the
resource dbr:Big_Ben) nor implicitly (i.e. can be in-
ferred). It is therefore counted as false positive even
though it “makes sense". The deep reasoner inferred
this information by capturing the generalization that
resources with similar links to dbr:Big_Ben are usually
of type dbo:HistoricPlace.
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71
— Training loss

100 | —— Validation accuracy

best accuracy: 87.76%

108
80

=Y
S

Accuracy
loss

0
Epochs

00:09:21 03:47:01 07:29:56 11:12:06 16:25:18 Time (min:sec)

Fig. 15. Training results on DBPpedia Scientists dataset

8. Related Work

In this section we review the state of the art in terms
of:

— Handling noise in SW data

— Graph embedding (KG embedding in particular)
— Approximate semantic reasoning

— Deep learning for semantic reasoning

8.1. Handling Noise in Semantic Web Data

The strategies for handling noise in SW data can ei-
ther be active or adaptive:

8.1.1. Active Noise Handling

Most of the work in this category focuses on de-
tecting and fixing noisy data in the LOD. LOD can
be created using structured, semi-structured or non
structured data. DBpedia [8], for example, is created
from semi-structured Wikipedia articles. Non struc-
tured texts can also feed NEL tools to create LOD.
These two methodologies are more likely to generate
noisy triples due to the non perfect accuracy of NEL
tools.

In [37], the authors describe two algorithms that
they designed to improve the quality of LOD. The SD-
Type algorithm falls into the category of adaptive noise
handling and will be described in the corresponding
section. SDValidate identifies wrong triples when there
is a large deviation between the resource types. The
main idea of this algorithm is to assign a relative pred-
icate frequency— describing the frequency of predi-
cate/object combinations— for every statement. Prob-
ability distributions are then used to decide if a state-
ment with low relative predicate frequency should be
considered erroneous. Both algorithms are validated

on DBpedia and Never-Ending Language Learning
(NELL) [38] knowledge bases.

In [13], the authors focus on detecting noisy type
assertions. They built a few synthetic noisy datasets
based on LUBM. Then a multi-class classifier is
trained to learn disjoint classes.

In [39, 40], the focus is on incorrect numerical data
in LOD datasets. [39] uses a two phase detection ap-
proach. In the first phase, outliers of numerical val-
ues are detected for every property and in the second
phase, the owl:sameAs property is used to confirm or
reject the outliers. [40] uses a few unsupervised learn-
ing techniques including Kernel Density Estimation
(KDE) [41] combined with semantic grouping to iden-
tify the outliers.

8.1.2. Adaptive Noise Handling

Given the unrealistic expectation of cleansing ev-
ery type of noise in SW data, adaptive noise handling
approaches focus rather on building techniques that
are noise-tolerant. In the SDType algorithm [37, 42],
the rdf:type inference uses information from the ABox
rather than ontological descriptions from the TBox.
For instance, instead of using the rdfs:domain and
rdfs:range of the properties to infer the resources’
types, which will propagate noise, a weighted voting
heuristic is used instead to determine the types of the
resources. The weights are generated from the statisti-
cal distribution between predicates and types. For ex-
ample, given that the property dbo:location is mostly
connected to objects of type dbo:Place, then this prop-
erty will have high weight to infer the type dbo:Place.

To the best of our knowledge, most of the previous
work in the literature about reasoning with noisy SW
data focuses on type inference. This research is the first
to aim at full RDFS reasoning with noise-tolerance ca-
pability.

8.2. Graph Embedding

This review is partially based on three recent sur-
veys of graph embedding techniques and their appli-
cations [5, 43, 44]. We update the latter survey by in-
cluding the work on RDF graph embedding. The au-
thors of [43] also provide an open source Python li-
brary (Graph Embedding Methods) for graph embed-
ding comparison that we used to compare the dis-
cussed embedding techniques on RDF graphs.

It is needless to stress the omnipresence of graph
based representations for research problems and real
world applications ranging from social network anal-
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ysis to recommendation systems to protein interaction
networks to knowledge graphs and SW graphs in par-
ticular. This can be considered as the main motive for
graph analytics research. Graph analytics tasks include
centrality analysis, nodes classification [45], link pre-
diction [46] etc. The latter is the closest to our research
because the inference RDF graph can be seen as the
link prediction applied to the input graph.

8.2.1. Why Embedding Graphs?

In performing the previous tasks of graph analytics,
two of the main challenges — especially when pro-
cessing large scale graphs— are size and time com-
plexity. One technique that tackles these challenges is
graph embedding. In a nutshell, the embedding con-
sists of finding a mapping from the original space to
a continuous vector space of lower dimension while
preserving certain required properties. In graph em-
bedding, the desired properties to be preserved can
be node proximity, node similarities or dissimilarities,
structural proximity etc.

8.2.2. How to Embed Graphs?

In order to briefly describe the embedding process,
a few preliminary notions from [43] should be intro-
duced. Let:

S be the adjacency matrix of the graph G(V,E)
where:

- 0 if the nodes v; and v; are not connected
" | w;j the weight of the edge e; ;

The first-order proximity between two nodes is de-
fined as the weight of their edge.

The second-order proximity between two nodes is de-
fined by the similarity between their respective
immediate neighbors. More formally, let s; and
s; be the i-th and j-th row vectors of the adja-
cency matrix respectively. These row vectors rep-
resent the first-order proximity between a given
node and all the other nodes of the graph. The
distance between s; and s; represents the second-
order proximity between the nodes v; and v;.

Similarly, higher order proximity can be defined using
the second-order proximity. Using these preliminary
notions, [43] defines graph embedding as:
Given a graph G = (V, E), a graph embedding is
a mapping f : v; — y; € R? Vi € [n] such that
d < |V| and the function f preserves some prox-
imity measure defined on graph G. [43, 2]

[n] denotes the set of indices {1,2,...n}.

8.2.3. Graph embedding methods

Based on the techniques used to compute such
embeddings, a taxonomy for graph embedding ap-
proaches can be drawn:

Matrix Factorization Methods Matrix factorization
consists of decomposing a matrix into two or more ma-
trices where their product regenerates the original ma-
trix. Graph embedding techniques using matrix factor-
ization start by generating a matrix representation of
the graph and then compute the factorization to obtain
the embedding. In its simplest form, the matrix repre-
sentation of the graph can just be the nodes’ adjacency
matrix S. Other matrix representations of the graph in-
clude the Laplacian matrix [47] and the Katz similar-
ity matrix [48], which measure the nodes’ centrality.
A few examples of graph embedding approaches us-
ing matrix factorization are: Locally Linear Embed-
ding [49], Graph factorization [50] and HOPE [51].
The authors of the HOPE algorithm aimed to pre-
serve the asymmetric transitivity property, which is an
important property in directed graphs. The feature of
preserving the asymmetric transitivity is desirable in
RDF graphs embedding as the rdfs:subPropertyOf and
rdfs:subClassOf are asymmetric transitive properties.
In order to speedup the matrix factorization of sparse
matrices, the authors of HOPE use singular-value de-
composition.

Random Walks Methods [52] defines random walks
on graphs by:

Given a graph and a starting point, we select a
neighbor of it at random, and move to this neigh-
bor; then we select a neighbor of this point at ran-
dom, and move to it etc. The (random) sequence of
points selected this way is a random walk on the
graph. [52, 1]

When the size of the graph is too large to traverse in a
reasonable time and space complexity, random walks
can be used to approximate the computation of certain
properties of the graph. In node2vec [53], the authors
compute biased-random walks to obtain a balanced
traversal between depth first and breadth first traversal.
Then they apply a similar technique to word2vec [54]
by considering the graph walks as sentences to com-
pute the embedding.

Graph Neural Network Models One of the earliest
work that proposes a framework for consuming graph
data by neural networks is GNN [55]. Deep autoen-
coders can be used for dimensionality reduction. Deep
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graph embedding techniques use this ability to reduce
the dimension of the matrix representing the graph.
The authors of [56] propose a Graph Convolutional
Network (GCN) model which is a variant of convo-
lutional neural networks that operates on graphs. [57]
applies variational autoencoders— where the encoder
part is a graph convolutional network— in order to
improve the embedding quality of unsupervised tech-
niques.

8.2.4. Embedding of Knowledge Graphs
[44] classifies the embedding approaches of KG
facts into:

— Translational distance models. In the transla-
tional model TransE [58], both the head of the fact
h (subject in RDF terminology) and the tail of the
fact ¢ (object in RDF terminology) are embedded
in the same vector space.
Let:

R?: be the embedding space where d is the em-
bedding dimension.

h: be the vector representation in R of the head
entity A.

t: be the vector representation in R? of the tail
entity z.

In these translational models, the relation r (pred-
icate in RDF terminology) is represented as a
translation vector r such that h + r ~ t. A
scoring function f,(h,t) is defined to assign a
plausibility score to the facts of the KG. The
TransE model [58] does not support facts with
1-N relations— such as a student taking many
courses— as all the courses in this case will have
very close embedding vectors. The literature con-
tains variations of the TransE model that sup-
port 1-N relations such as TransH [32] which
uses relation-specific hyperplanes, TransR [59]
and TransD [60]. Gaussian embeddings in this
class such as KG2E [61] aim to model uncertainty
in the entities and relations.

— Semantic matching models. In the semantic
matching models, the entities are represented by
their latent semantic attributes and their relations
“are encoded as bilinear operators on the entities
[62, 3]”. In other terms, each relation is denoted
as a matrix M, that represents the pairwise rela-
tions between the entities. The score of the fact
plausibility in these models is computed by this
bilinear map: f,(h,t) = h’M,t. This category
includes RESCAL [63], DistMul [64] where M,

is simplified to a diagonal matrix, ComplEx [65]
which extends DistMul by using complex valued
embedding in order to support asymmetric rela-
tions. HolE (Holographic Embeddings) [34] also
supports asymmetric relations through circular
correlations between the entities’ embeddings.

Neural Network Architectures for KG embedding
The network models proposed in the literature for
learning KG embeddings include:

— Semantic matching energy [66] which computes
the energy by matching the embedding of a left
hand side containing the head and the relation of
the triple and the embedding of the right hand side
containing the tail and the relation of the triple.

— Neural tensor network (NTN) [67] proposed an
end-to-end deep neural network model that is pa-
rameterized by a 3-way tensor representing the
relation in order to learn the plausibility of triples
in a KG.

— Relational Graph Convolutional Networks (R-
GCNs) [68] adapts GCN [56] to KGs by intro-
ducing transformations that are dependent on the
type and direction of the edges.

Embedding of RDF Graphs RDF embedding tech-
niques can be classified into:

— Graph kernels for RDF. One of the earliest
work in this class was [69] where the authors
apply general graph kernel methods on RDF
graphs and propose two kernels that are specific
to RDF, namely intersection graph kernels and
intersection tree kernels. In [70], the authors con-
sider state of the art graph kernels which are
Weisfeiler-Lehman graph kernels [71] and adapt
them to RDF graphs. [72] proposes an h-hop
neighborhood-based graph kernel for LOD and
they apply it in a linked data recommender sys-
tem.

— 2vec RDF embedding. These approaches use the
following generic method: generate sequences of
entities from the RDF graph using graph walks
or other graph kernels and then apply a technique
similar to word2vec [73]— where each entity in
the sequence is treated as a word in a sentence. In
RDF2Vec [74], the sequences are generated us-
ing graph walks and using the Weisfeiler-Lehman
adaptation to RDF graphs [70] mentioned previ-
ously. [75] improves RDF2Vec by using biased
graph walks to generate the entities’ sequences.
In order to explore the global patterns of the RDF
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graph instead of the local patterns as in RDF2Vec,
[76] substitute word2vec with a technique similar
to GloVe (Global Vectors) [77]. The authors re-
port similar embedding quality as RDF2Vec but
with the ability to incorporate larger portions of
the graph.

Knowledge graph completion One of the main appli-
cation of KG embedding is Knowledge Graph Com-
pletion (KGC). Data-driven KGC literature includes
[33, 78-82]. Logic Tensor Networks [81] allow the
definition of logical constraints to improve the KGC.
[82] aims not only at predicting missing relations in a
KG but also at inducing the logical rules from it.

8.3. Approximate semantic reasoning

In 2010, Hitzler and van Harmelen called in [83]
for questioning the model-theoretic semantic reason-
ing and investigation of machine learning (ML) for se-
mantic reasoning since ML techniques are more toler-
ant to noisy data.

8.3.1. Type Inference

Type inference consists of inferring the correspond-
ing classes from the TBox for resources in the ABox.
It can be considered as a main step towards full
RDFS reasoning as almost half of the rules in RDFS
- namely RDFSI, RDFS2, RDFS3, RDFS4a, RDFS4b
and RDFS9 [7]- generate type inference.

SDType algorithm [37, 42] (mentioned previously)
used a statistical distribution of types to predict the
type of object and subject in a triple given that they
are connected with a certain property. Their statistical
approach makes this type inference mechanism robust
to noise in RDF data. [84] targeted inferring the miss-
ing types in DBpedia resources through an inductive
and an abductive approach. In the inductive approach,
the k-Nearest Neighbors algorithm is used to deter-
mine the closest concepts from the DBpedia ontology
to which the resource should be linked. In the abduc-
tive approach, the Encyclopedia Knowledge Paths [85]
are used in a similarity metric.

8.3.2. Consistency Checking

In [86], the authors aimed to detect systematic er-
rors in DBpedia by aligning the DBpedia ontology and
the upper level ontology DOLCE-Zero [87]. By clus-
tering the reasoning results, they found that 40 clus-
ters cover 96% of the inconsistencies. This observation
was among the motivations that approximate seman-
tic reasoning can cover most of the use cases where

ontological reasoning is required. In order to speedup
the process of ABox consistency checking, [88] used
an approximate semantic reasoning approach based on
machine learning. The authors formalized the problem
as a binary classification problem where each classi-
fier C is trained for a specific TBox to decide if any
ABox is consistent or not with respect to the TBox. In
order to transform the RDF graphs into feature vectors,
graph walks [89] were used. The decision tree model
achieves 95% accuracy within 2% of the time required
by a semantic reasoner.

In [90], the authors extend the clash queries [91] for
DL-Lite [92] and caching to reduce the required calls
to a semantic reasoner in order to check ABox incon-
sistency. This approach had better running time and
empirical accuracy than [88].

8.4. Deep Learning for semantic reasoning

One of the closest research efforts to the scope of
this research is [93]. Besides the used neural network
model, the main difference between their approach and
ours is that they consider only learning from intact
data and do not focus on noise-tolerance capabilities.
In this work, Relational Tensor Networks (RTN) are
proposed as an adaptation of Recursive Neural Tensor
Networks (RNTN) [94] for relational learning. RNTN's
were originally designed by Socher to support learning
from tree-structured data such as sentences’ parse trees
and they were used successfully to improve sentiment
analysis results. In [93], the authors start by building
a Directed Acyclic Graph (DAG) representation of the
RDF input. Every resource in the graph is initially rep-
resented as an incidence vector that indicates the set
of rdf:type(s) of the resource. Then the embeddings of
the resources are computed using the RTN model that
takes into consideration the type or the relation that
each resource has. Two types of targets are considered:
a unary target for type prediction and a binary target for
predicate classification. The input for the binary tar-
gets are the embeddings of two resources— to which
the predicates are being classified.

9. Conclusions, Discussions and Future Work

The main contribution of this paper is the empirical
evidence that deep learning (neural networks transla-
tion in particular) can in fact be used to learn semantic
reasoning— RDFS rules specifically. The goal was not
to reinvent the wheel and design a Yet another Seman-
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tic Reasoner (YaSR) using a new technology; it was
rather to fill a gap that existing rule-based semantic
reasoners could not satisfy, which is noise-tolerance.

While the current approach proves empirically that
RDFS rules are learnable by sequence-to-sequence
models with noise-tolerant reasoning capabilities, it is
barely a scratch on the surface of noise-tolerant rea-
soning in general. This research can be extended in the
following directions:

9.1. Generative adversarial model for graph words

The experiments on controlled noisy datasets from
LUBMI1 showed that the noise-tolerance capability
of the deep reasoner depends on the type of noise—
specifically the noise-tolerance on noisy type as-
sertions is better than the noise-tolerance on noisy
property assertions. In the propagable noise cases—
where Jena or any rule-based reasoner generates noisy
inferences— the deep reasoner showed noise-tolerance
with varying degrees of accuracy (from 93% to 46%).
However, for the non-propagable noise cases— that do
not affect rule reasoners inference— Jena performed
better than the deep reasoner. For the special case of
WOAD noise, both Jena and the deep reasoner have
the worst accuracy of 0%. In these experiments, the
training was performed on intact data and noise was
seen only during the test phase. One way to improve
the noise-tolerance capability for these cases is to in-
duce a small percentage of noise in the training set as
well. Our previous experiments on the naive sequence-
to-sequence learning for RDFS reasoning [95] proved
that training with a small percentage of noise improves
the noise-tolerance capability dramatically. Instead of
generating noise of a specific type— which assumes
the prior knowledge of the type of noise encountered
during the test phase— we propose designing gener-
ative adversarial models for graph words. Generative
adversarial models, described in [96], are being used
successfully in other fields to add robustness to un-
known types of noise. In these models, two networks
were trained while competing with each other: the gen-
erator is trained to generate the most difficult sample
that can fool the discriminator into thinking that the
sample is not noisy, and the discriminator is trained
to distinguish between noisy and intact samples. The
deep reasoner will then learn from the ground truth
graph words as well as the corrupted graph words gen-
erated by the adversarial generator.

9.2. OWL Reasoning

In this work, we tackled the problem of noise-
tolerant RDFS reasoning. Web Ontology Language
(OWL) reasoning with noise-tolerant capability is also
a very promising research track that can find its appli-
cations in the biological and biomedical fields for ex-
ample. We investigated some use cases using ontolo-
gies from the Open Biological and Biomedical Ontol-
ogy (OBO) Foundry [97], specifically using the Hu-
man Disease Ontology [98]. In this use case, some pa-
tients’ descriptions would contain misdiagnoses and
the goal is to generate correct inferences with the pres-
ence of these misdiagnoses. The hurdle that we faced
in proceeding with this use case was ground truthing,
as we needed patients’ data with tagged noise. In this
context, tagged noise means that the misdiagnosed
cases are known. This is required to compare the infer-
ence from intact data versus the inference from noisy
data.

In [95], we tested the naive sequence-to-sequence
learning approach on a subset of OWL-RL rules.
This subset includes what we call generative rules
that generate inference triples and exclude the consis-
tency checking rules. The performance of the naive
sequence-to-sequence approach on OWL-RL rules
was comparable to its performance on RDFS rules.
This is a preliminary indication that the graph words
translation approach can also be applicable to learning
OWL-RL rules.

9.3. Training with multiple “ABoxes"

Another limitation to the current approach is that the
training is done on a dataset that uses only one ontol-
ogy for the inference. After training the graph-to-graph
model on the LUBMI1 dataset, we needed to adapt the
model hyperparameters for the scientists’ dataset and
start the training from scratch. We propose exploring
transfer learning: Instead of starting the training pro-
cess from scratch when training to infer using a new
ontology, the neural network weights from the previ-
ous training can be used to initialize the new model.
Transfer learning [99] aims to capitalize on the knowl-
edge learned from one domain and adapt it to a new
domain. The adaptation phase in neural networks con-
sists of tuning the model weights after initializing them
using the previous models’ weights. Research in this
direction looks promising especially when transferring
weights between models of different width. The width
of the model is determined by the length of the graph
words sequence.
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9.4. Towards the trust layer

In a recent positional paper titled “Semantic Web:
Learning from Machine Learning" [100], Brickley de-
scribes his vision of how deep learning and SW fields
can communicate and learn from each other. In this pa-
per, we initiated the communication in one direction
which is: deep learning for SW. The other direction,
SW for deep learning, is also equally important and
very promising with lots of opportunities for research
and subsequent discovery. One such research effort in
that direction is [101] where the authors use SW tech-
nologies to describe the inputs and outputs of neural
networks.

We believe that our deep learning for noise-tolerant
semantic reasoning contribution can be extended into
a hub where both fields can communicate and benefit
from each other. One way to create this hub is through
provenance-based reasoning. Imagine that the deep
reasoner will not only have access to the erroneous
triple in DBpedia but to the provenance of that triple
i.e. the person who originally edited the Wikipedia
page and input the wrong information. By detecting
that most of the triples provenant from that user causes
the reasoner to be in noise-tolerance mode, it should
not only ignore the triples generated by that user but
also assign a trust level to its “facts". This can be a step
towards the trust layer in the SW layers cake.
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Appendix A. RDEFS rules

Table 5
RDEFS rules (from [7])
Rule Premise Conclusion
RDFS1 any IRI aaa in D aaa RDF:type RDFS:Datatype .
aaa RDFS:domain xxx .
RDFS2 yyy RDF:type xxx .
yyy aaa zzz .
aaa RDFS:range xxx .
RDFS3 zzz rdf:type Xxx .
yyy aaa zzz .
RDFS4a  xxx aaayyy . xxx rdf:type RDFS:Resource .
RDFS4b  xxx aaayyy. yyy rdf:type RDFS:Resource .
RDFS:subPropertyOf .
RDFS5 o SUbTIOperly il yyy xxx RDFS:subPropertyOf zzz .
yyy RDFS:subPropertyOf zzz .
RDFS6 xxx rdf:type rdf:Property . xxx RDFS:subPropertyOf xxx .
aaa RDFS:subPropertyOf bbb .
RDFS7 XXX bbb yyy .
XXX aaa yyy .
RDFS8 xxx rdf:type RDFS:Class . xxx RDFS:subClassOf RDFS:Resource .
RDFS:subClassOf .
RDFS9 o SUbTAasSLYYY zzz rdf:type yyy .
zzz rdf:type xxx .
RDFS10  xxx rdf:type RDFS:Class . xxx RDFS:subClassOf xxx .
RDFS:subClassOf .
RDFSI1 ¢ SUbTIASSLYYY xxx RDFS:subClassOf 72z .
yyy RDFS:subClassOf zzz .
RDFS12  xxx rdf:type RDFS:ContainerMembershipProperty .  xxx RDFS:subPropertyOf RDFS:member .
RDFS13  xxx rdf:type RDFS:Datatype . xxx RDFS:subClassOf RDFS:Literal .
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Appendix B. Pattern types of RDFS rules’ premises

Table 6

Pattern types of RDFS rules’ premises

Rule Premise Pattern type
aaa RDFS:domain xxx . TBox
RDFS2
yyy aaa zzz . ABox
RDFS3 aaa RDFS:range xxx . TBox
Yyy aaa zzz . ABox
RDFSS xxx RDFS:subPropertyOf yyy .  TBox
yyy RDFES:subPropertyOf zzz.  TBox
RDFS6 xxx rdf:type rdf:Property . TBox
RDES7 aaa RDFS:subPropertyOf bbb.  TBox
XXX aaa yyy . ABox
RDFS8 xxx rdf:type RDFS:Class . TBox
RDFS9 xxx RDFS:subClassOf yyy . TBox
zzz rdf:type Xxx . ABox
RDFS10  xxx rdf:type RDFS:Class . TBox
xxx RDFS:subClassOf yyy . TBox
RDFS11
yyy RDFS:subClassOf zzz . TBox

Appendix C. Propagable noise by rule-based RDFS reasoners

Propagable noise by rule-based RDFS reasoners

Table 7

RDFS rule

Triple corruption

Conditions

Noisy inference

RDFS2

yyy aaa zzz .
%

yyy aaa’ zzz .

(aaa’ rdfs:domain xxx’ .)

A ((—3 xxx, aaa rdfs:domain xxx .)

\%
(Vxxx, aaa rdfs:domain xxx

= —(xxx = xxx’)))

yyy rdf:type xxx’ .

RDFS3

yyy aaa zzz .
%

yyy aaa’ zzz .

(aaa’ rdfs:range xxx’ .)

A ((—3 xxx, aaa rdfs:range xxx .)

V
(Vxxx, aaa rdfs:range xxx

= —(xxx = xxx")))

zzz rdf:type xxx’ .

RDFS7

XXX aaa yyy .
*>

xxx aaa’ yyy .

(aaa’ rdfs:subPropertyOf bbb’ .)

A ((—3 bbb, aaa rdfs:subPropertyOf bbb .)

\

(Vbbb, aaa rdfs:subPropertyOf bbb .

= —(bbb = bbb")))

xxx bbb’ yyy .
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Appendix D. Input graph g

Listing 1: Input graph g

Publication2 ub:publicationAuthor GraduateStudent9
Publication6 ub:publicationAuthor GraduateStudent9
Publicationl?7 ub:publicationAuthor GraduateStudent?9
Publicationll ub:publicationAuthor GraduateStudent9
Publicationl5 ub:publicationAuthor GraduateStudent9

GraduateStudent9 a ub:GraduateStudent ;
ub:advisor FullProfessor7 ;
ub:emailAddress
"GraduateStudent9@Department5.University0.edu" ;
ub:memberOf <http://www.Department5.University0.edu> ;
ub:name "GraduateStudent9"
ub:takesCourse GraduateCourse39 ;
ub:telephone "xxx-xxx-xxxx"
ub:undergraduateDegreeFrom
<http://www.University718.edu>

Appendix E. Inference graph of the input graph in Listing 1

Listing 2: Inference graph of the input graph in listing 1

Publication2 a ub:Publication
Publication6 a ub:Publication
Publicationl?7 a ub:Publication
Publicationll a ub:Publication
Publicationl5 a ub:Publication

FullProfessor7 a ub:Employee,
ub:Faculty,
ub:Professor

GraduateStudent9 a ub:Person ;
ub:degreeFrom <http://www.University718.edu>

<http://www.University718.edu> a ub:Organization,
ub:University

Appendix F. RDF Graph Formalism

An RDF graph can be defined using these formalisms from [17, 102, 103] (that is updated in this paper to conform
to the more recent RDF 1.1 recommendation [15]:
Let:

I be an infinite set of Internationalized Resource Identifier (IRI) (which is an extension of Uniform Resource
Identifier (URI) that supports Unicode characters).

B be an infinite set of Blank nodes

L be an infinite set of RDF literals

A tuple (s, p,0) € (IUB) x I x (IUBUL) is called an RDF triple where s denotes the triple’s subject, p denotes
its predicate and o denotes its object.

An RDF graph is a set of RDF triples.
T={(s,p.0)|(s,p,0) € {UB)xIx (IUBUL)}
Let:
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Subj(T) be the set of subjects from (I U B) that occur in the triples of 7'
Pred(T) be the set of predicates from I that occur in the triples of 7
Obj(T) be the set of objects from (1 U B U L) that occur in the triples of T
SubjObj(T) = Subj(T) U Obj(T)

Appendix G. Layered Graph Examples

Let the tuple of properties in P for LUBM have the following order: (rdf:type, ub:takesCourse, ub:advisor,
ub:emailAddress, ub:memberOf, ub:name, ub:telephone ,ub:undergraduateDegreeFrom, ub:publicationAuthor,
ub:degree).

The RDF graph in Listing 1 has the corresponding layered graph in Listing 3 and its inference graph has the layered
graph listed in Listing 4.

Listing 3: Layered graph (indented and commented for readability) of the RDF graph in Listing 1

((GraduateStudent9, ub:GraduateStudent)), #Layer of rdf:type

((GraduateStudent9, GraduateCourse39)), #Layer of ub:takesCourse

((GraduateStudent9, FullProfessor7)), #Layer of ub:advisor

((GraduateStudent9, GraduateStudent9@Department5.University0.edu)), #Layer of ub:emailAddress
((GraduateStudent9, http://www.Department5.University0.edu)), #Layer of ub:memberOf
((GraduateStudent9, "GraduateStudent9")), #Layer of ub:name

((GraduateStudent9, "xxx-xxx-xxxx")), #Layer of ub:telephone

((GraduateStudent9, http://www.University718.edu)), #Layer of ub:undergraduateDegreeFrom

((

Publicationll, GraduateStudent?9),
(Publicationl5, GraduateStudent?9),
(Publication2, GraduateStudent?9),
(Publicationl?7, GraduateStudent?9),
(Publication6, GraduateStudent9)), #Layer of ub:publicationAuthor
() #Layer of ub:degree

Listing 4: Layered graph of the inference graph in Listing 2

((GraduateStudent9, ub:Person),

Publication6, ub:Publication),

Publicationl7, ub:Publication),

Publicationll, ub:Publication),

Publicationl5, ub:Publication),

FullProfessor7, ub:Employee),

FullProfessor7, ub:Faculty),

FullProfessor7, ub:Professor),

http://www.University718.ed, ub:Organization),
(http://www.University718.ed, ub:University)), #Layer of rdf:type

, #Layer of ub:takesCourse

(
(
(
(
(
(
(
(

, #Layer of ub:advisor
, #Layer of ub:emailAddress

)
)
)
), #Layer of ub:memberOf
), #Layer of ub:name

), #Layer of ub:telephone

), #Layer of ub:undergraduateDegreeFrom
), #Layer of ub:publicationAuthor

(
(
(
(
(
(
(
(
((GraduateStudent9, http://www.University718.edu)) #Layer of ub:degree
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Appendix H. Proof of the Tensor Creation Requirement

Proposition 1. The encoding dictionaries of the input graph and its corresponding inference graph must be equal.

Proof by contradiction. Assuming that during the training phase the input graph and its corresponding inference
graph are encoded independently (allowing their encoding dictionaries to be different):

In the inference phase the test input graph is encoded then the trained model is used to predict the encoded version
of the inference graph. Because there is access to only one encoding dictionary— which is the input graph encoding
dictionary— it has to be used in the decoding algorithm to obtain the inference graph.

This proves that the encoding dictionary for the input graph and inference graph in the training phase must be the
same. O

Corollary 1. The encoding dictionary of the input graph should contain all the possible resources of the inference
graph.

Proof. For the encoding dictionaries of the input graph and the inference graph to be equal, the encoding algorithm
of the inference graph should only use lookups from the encoding dictionary without adding any new resources. This
means that all the resources of the inference graph were already added to the encoding dictionary when encoding
the input graph. O

Hence, it is mandatory that the encoding dictionary for a given graph g contains all the possible resources
that might be used in its corresponding inference graph i.

Appendix I. Tensor Creation Detailed Algorithms

In order to fulfill the requirement established in Proposition 1, it is mandatory that the global_resources_diction-
ary and the local_resources_dictionary for a given graph g contain all the possible resources that might be used in
its corresponding inference graph i. To create the properties dictionary Properties_dictionary, the list of properties
is collected using the following SPARQL Protocol and RDF Query Language (SPARQL) query:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
select distinct ?property where {

?property a rdf:Property .

?subject ?property ?object .
}

which returns all the properties in the ontology that were used at least once. An ID is then assigned to each property.
In the LUBM1 dataset, this query gives 32 properties, which means that the 3D adjacency matrix will have 32 layers.
For the global resources dictionary, the list of RDFS classes are collected from the ontology using this SPARQL

query:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
select distinct ?class where {

?class a rdfs:Class .

filter (isuri(?class))

}

A filter is used to eliminate blank nodes. In the LUBM1 dataset, this query returns 57 classes where each class is
assigned an ID in a global_resources_dictionary.

The local_resources_dictionary is created incrementally during the encoding routine for each graph g in G. It
holds the IDs of the resources that are not present in the global_resources_dictionary. The local_resources_dictionary
is populated with an offset equal to the length of global_resources_dictionary i.e. 57 in the case of LUBMI. The
largest ID in the local_resources_dictionary for every graph in G is less than 80. This value will be used to initialize
the size of the 3D adjacency matrix.
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L1. Encoding Algorithm

Once the properties_dictionary and the global_resources_dictionary are created, they are used in the encoding
routine listed in Algorithm 1. The function ZEROS in Algorithm 1 creates a 3D matrix of the desired shape filled with
zeros, and the function SORTEDTRIPLESB YPROPERTY lists the triples of the input graph sorted by the property
attribute. When encoding an RDF graph, the triples having a property not listed in the properties_dictionary are
ignored because they will not have any effect on the inference generation. Subsequent to encoding the input graph
g and creating the local_resources_dictionary, the latter is used to encode the corresponding inference graph i.
The inference graph encoding algorithm is very similar to the input graph encoding. It is crucial not to update the
local_resources_dictionary since all the resources in the inference graph should already be either in the global_re-
sources_dictionary or in the local_resources_dictionary.

Algorithm 1 Simplified encoding algorithm

Input: rdf graph, /* The RDF graph to be encoded */
properties_dictionary, /* A dictionary containing the IDs of the properties */
global_resources_dictionary, /* A dictionary containing the IDs of the subjects and objects resources in the

ontology */
local_resources_dictionary, /* If encoding an input graph, this dictionary is empty and will be filled during the
encoding, and if encoding an inference graph, this dictionary contains the IDs of the local subjects’ and objects’
resources */

Parameter: is_inference /* A boolean set to True if encoding the inference graph and to False otherwise */
max_local_dictionary_size /* The size of the biggest local_resources_dictionary */
Output: adjacency_matrix /* 3D adjacency matrix containing an encoded representation of the RDF graph */
local_resources_dictionary /* The filled local_resources_dictionary if encoding an input graph */
Begin:

number_of_properties <— SIZE(properties_dictionary)
max_size <— max_local_dictionary_size + SIZE(global_resources_dictionary)
adjacency_matrix <— ZEROS(number_of_properties, max_size, max_size)
function ADD_RESOURCE(resource)
‘ if resource in global_resources_dictionary
or resource in local_resources_dictionary then
‘ return
else
‘ ‘ local_resources_dictionary[resource] <—
SIZE(local_resources_dictionary) + SIZE(global_resources_dictionary)
/* We offset the IDs in the local_resources_dictionary with the size of the global_resources_dictionary so their
IDs do not overlap */
function LOOKUP_RESOURCE(resource)
if resource in global_resources_dictionary then
‘ return global_resources_dictionary[resource]
else if resource in local_resources_dictionary then
\ return local_resources_dictionary[resource]
else
| ERROR, EXIT

function ENCODE(rdf_graph, global_resources_dictionary, local_resources_dictionary, properties_dictionary,
is_inference)
for all (s,p,0) in SORTED_TRIPLES_BY_PROPERTY (rdf_graph) do
if p not in properties_dictionary then
‘ continue
p_id < properties_dictionary[p]
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if not is_inference then
ADD_RESOURCE(S)
ADD_RESOURCE(0)
s_id <~ LOOKUP_RESOURCE(S)
0_id <~ LOOKUP_RESOURCE(0)
adjacency_matrix[p_id, s_id, o_id] < 1
return adjacency_matrix, local_resources_dictionary

End

L2. Decoding Algorithm

The decoding algorithm takes a 3D adjacency matrix and the resources dictionaries as inputs, and regenerates the
original RDF graph. To be more precise, the decoding algorithm will regenerate the original RDF graph for every
graph i in 1. Nevertheless, the graphs in G can be different from their decoded graphs because the properties that are
not present in the properties_dictionary are disregarded during the encoding process. This is irrelevant to the process
of inference learning: both the regenerated graph and the original RDF graph should have the same inference graph
because the ignored properties are not from the ontology.

The NON_ZEROS routine in Algorithm 2 returns the list of 3-tuples containing the indices of the non-zeros values.
The INVERT method for dictionaries returns the dictionary with the values as keys and vice versa.

Algorithm 2 Simplified decoding algorithm

Input: adjacency_matrix, /* 3D adjacency matrix containing */
global_resources_dictionary, local_resources_dictionary, properties_dictionary
Output: rdf_graph
Begin:
rdf_graph <— GRAPH() /* Creating an empty RDF graph */
inverted_properties_dictionary <— INVERT(properties_dictionary)
inverted_global_resources_dictionary <— INVERT(global_resources_dictionary)
inverted_local_resources_dictionary <— INVERT(local_resources_dictionary)
function REVERSE_LOOKUP(resource_id)
if resource_id in inverted_global_resources_dictionary then
‘ return inverted_global_resources_dictionary[resource_id]
else if resource_id in inverted_local_resources_dictionary then
‘ return inverted_local_resources_dictionary[resource_id]
else
| ERROR, EXIT

function DECODE(adjacency_matrix, inverted_global_resources_dictionary, inverted_local_resources_dictionary,
inverted_properties_dictionary)
for all (p_id,s_id,o_id) in NON_ZEROS(adjacency_matrix) do
p < inverted_properties_dictionary[p_id]
S < REVERSE_LOOKUP(s_id)
0 < REVERSE_LOOKUP(0_id)
ADD_TRIPLE(rdf_graph, s, p, 0)
return rdf_graph
End

Appendix J. Advanced Tensor Creation Technique

According to Corollary 1, for the encoding dictionaries of the input graph and the inference graph to be equal,
the encoding algorithm of the inference graph should only use lookups from the encoding dictionary without adding
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any new resources. The simplified encoding technique achieved this because all the layers share the same local-
_resources_dictionary. However, by having a local_resources_dictionary per layer (i.e. per property) the following
issues arise:

J.1. Type Inference Challenges

When the type inference rule, RDFS9, is applied to this input graph:

dbo:Scientist rdfs:subClassOf dbo:Person .
dbr:James_Hendler a dbo:Scientist

it infers the following:

dbr:James_Hendler a dbo:Person .

The input graph contains the following subject-object resources: dbo:Scientist, dbo: Person and dbr:James_Hendler.

When encoding the input graph and populating the resources dictionaries, the first two resources will be already in
the global_resources_dictionary as they are concepts in the DBpedia ontology and the dbr:James_Hendler resource
will populate the local_resources_dictionary of the layer RDFt.

The inference graph has two subject-object resources: dbr:James_Hendler and dbo:Person. As they appear
in a triple with the property RDFt, first look into the global_resources_dictionary and find the ID of the re-
source dbo:Person then in the local_resources_dictionary of the property RDFt and find the ID of the resource
dbr:James_Hendler. In this case all the required resources when encoding the inference graph were inserted in the
corresponding dictionaries during the encoding of the input graph. However, this will not be the case for the rules
RDFS2 and RDFS3.

When the type inference rule RDFS3 is applied to this input graph:

dbo:almaMater rdfs:range dbo:EducationalInstitution .
dbr:James_Hendler dbo:almaMater dbr:Brown_University .
dbr:James_Hendler dbo:almaMater dbr:Southern_Methodist_University .
dbr:James_Hendler dbo:almaMater dbr:Yale_University .

it infers that:

dbr:Brown_University a dbo:EducationalInstitution .
dbr:Southern_Methodist_University a dbo:EducationalInstitution .
dbr:Yale_University a dbo:EducationalInstitution .

=W N

o 0 g o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

The input graph has the following subject-object resources: dbr:Brown_University, dbr:James_Hendler, dbo: Educational->"

Institution, dbr:Yale_University and dbr:Southern_Methodist_University. When encoding the input graph, the re-
source dbo:Educationallnstitution is found in the global_resources_dictionary and the rest of the resources are
added to the local_resources_dictionary of the layer dbo:almaMater. And when encoding the inference graph, in
the first triple, the resource dbr:Brown_University is looked-up in the local_resources_dictionary of the property
RDFt but it will not be found as this resource was only added to the layer of the property dbo:almaMater. The same
problem occurs with the RDFS2 rule.

Solution: Six out of the fourteen RDF'S rules are type inference rules i.e. infer a conclusion in the form:

yyy rdf:type xxx .

Consequently, there is a high chance that any resource 7 in the input graphs will be used in a triple with the pattern

r rdf:type xxx .
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in the inference graph.

The solution to this issue is to simply add all the local resources to the local_resources_dictionary of the RDFt
property. Whenever any resource is added to the local_resources_dictionary of any property when encoding the
input graphs, it should be added to the local_resources_dictionary of the RDFt property as well. This way, when
the corresponding inference graph is encoded, all the required resources will be found in the respective local_re-
sources_dictionary.

J.2. SubProperty Challenges

When a property appears only in the inference graph but not in the input graph, the local_resources_dictionary for
this property will be empty. As a result, all the resources seen in the inference graph will be unknown. For instance,
this can happen when the RDFS7 rule is applied. Consider the following input graph:

dbo:field rdfs:subPropertyOf dul:isDescribedBy .
dbr:James_Hendler dbo:field dbr:Artificial_intelligence .
dbr:James_Hendler dbo:field dbr:Semantic_web.

which has this inference:

dbr:James_Hendler dul:isDescribedBy dbr:Artificial_intelligence .
dbr:James_Hendler dul:isDescribedBy dbr:Semantic_web .

When encoding the input graph, the resources dbr:James_Hendler, dbr:Artificial_intelligence and dbr:Semantic_web
are added to the local_resources_dictionary of the layer dbo:field. Subsequently, when encoding the inference

graph, lookup these resources in the local_resources_dictionary of the layer dul:isDescribed By, but they will not

be found as its local_resources_dictionary is still empty and will not contain the required resources.

J.2.1. Solution:

The same fix used to solve the type inference case by adding all the resources to every local_resources_dictionary
results exactly in using the simplified version of the encoding/decoding technique and having a shared local_re-
sources_dictionary between all the properties; thus, this fix cannot be applied.

By analyzing the root cause of the issue at hand, it seems logical when encoding the inference graph gen-
erated by the RDFS7 rule to lookup the unknown resources in the local_resources_dictionary of the corre-
sponding sub-properties. For example, while encoding the inference graph in this section, when the resource
dbr:Artificial_intelligence is not found in the local_resources_dictionary of the layer dul:isDescribedBy, it is
looked-up in the local_resources_dictionary of its subProperty dbo:field. Nonetheless, the property in question can
have more than one subProperty, which makes the resources lookup process ambiguous. For instance, the property
dul:isDescribedBy has two sub-properties: dbo:field and dbo:knownFor. If a larger excerpt of Professor Hendler’s
DBpedia graph is considered:

dbr:James_Hendler dbo:field dbr:Artificial_intelligence .
dbr:James_Hendler dbo:field dbr:Semantic_web.
dbr:James_Hendler dbo:knownFor dbr:Semantic_Web .

it generates the inference:

dbr:James_Hendler dul:isDescribedBy dbr:Artificial_intelligence .
dbr:James_Hendler dul:isDescribedBy dbr:Semantic_web.
dbr:James_Hendler dul:isDescribedBy dbr:Semantic_Web.

When the input graph is encoded, the resource dbr:James_Hendler will have an ID in the local_resources_diction-
ary of the layers dbo:field and dbo:knownFor. When the inference graph is encoded and lookup of the resources’

=W N

©w 0 g o U

11
12
13
14
15
16
17
18
19
20
21

23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51



@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

Bassem Makni and James Hendler / Deep learning for noise-tolerant RDFS reasoning 31

IDs for the property dul:isDescribedBy is performed, if its sub-properties dictionaries were to be searched two sub-
properties dictionaries containing the resource in question probably having different IDs in each dictionary will be
found.

This attempt is obviously an unsuccessful fix that one can imagine improving in the following way:
Instead of having a local_resources_dictionary per property, the local_resources_dictionary can be shared between
sibling properties (i.e. properties having the same super-property) and their super-properties. In the previous exam-
ple, the properties dbo:field, dbo:knownFor and dul:isDescribedBy will share the same local_resources_dictionary.
Again, this is not a fix because some properties can have more than one super-property. For example, in the DBpedia
ontology, the property dbo:capital is a subPropertyOf dul:isLocationOf and dbo:administrativeHeadCity. In this
case the property dbo:capital will have to share its local_resources_dictionary with its sibling properties from the
super-property dul:isLocationOf and also from the super-property dbo:administrativeHeadCity.

When the network of the property rdfs:subPropertyOf is drawn as shown in Fig. 16, a set of disconnected sub-
graphs can be observed— where each subgraph contains the properties having a path connecting them.

By sharing the local_resources_dictionary between the properties of each subgraph, the issue at hand is solved.
This is because every subgraph contains sibling properties, their super-properties recursively and their sub-properties
recursively also. To get the list of these subgraphs, the following SPARQL query is run:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
select ?propertyl ?property2
where {

?propertyl rdfs:subPropertyOf ?property?2

filter (?propertyl != ?property2)

}

An undirected graph is then created using the Python library networkX [104]. Finally, the connected components of
the resultant graph are computed to get the subgraphs which were previously mentioned. In the DBpedia ontology
case, 53 connected components were found and in the LUBM ontology only 4 were found. The final working
solution for the advanced encoding challenges consists of having a separate local_resources_dictionary per group of
properties— these groups being the result of the connected components’ computation. If a property does not belong
to any group, it will automatically have its own local_resources_dictionary.

J.2.2. Scaling Challenge

Besides the preceding issues, which are inherent to the advanced encoding technique, scaling is a matter that
needs to be taken care of. When using the simplified encoding technique on small graphs and small ontologies, 3D
adjacency matrices can be created with the desired dimensions. On the other hand, when dealing with large ontolo-
gies with a big number of properties and a large set of subject and object resources, the size of the 3D adjacency ma-
trices becomes unmanageable. For example, the DBpedia ontology contains 3006 properties and 1576 subject and
object resources. Thus, even when encoding the smallest possible RDF graph with only one triple containing two
local resources, the total size of the matrix becomes 3006 * 1578 * 1578 which requires approximately 6 Gigabytes
of memory for a single RDF graph.
Solution: Even though a large ontology such as DBpedia contains a big number of properties, a smaller number of
these properties are usable in a restricted domain dataset such as the Scientists dataset. If the dataset is encoded with
the simplified encoding technique, most of the layers throughout the dataset in the 3D adjacency matrices will be
empty. The only thing this achieves is the slowing down of the training without having any impact on the training
results.

Instead of using a layer for each property from the ontology by utilizing the full properties_dictionary, a
dictionary of the usable properties needs to be maintained— denoted usable_properties_dictionary. The us-
able_properties_dictionary is populated while encoding the dataset. Similarly for the global_resources_dictionary,

not all the resources in this dictionary will be used in a restricted domain dataset. A usable_global_resources_dictionary

containing the resources from the global_resources_dictionary that are used in the dataset should be maintained.
In the simplified encoding technique, the size of the local_resources_dictionary should be known prior to encod-
ing the dataset, because this size should be used to offset the IDs in the local_resources_dictionary so that the IDs
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in both dictionaries do not overlap. However, as the usable_global_resources_dictionary is populated incremen-
tally while encoding the graphs in the dataset, the final size of the usable_global_resources_dictionary cannot be
known until the whole dataset is encoded. Thus, the IDs of the local_resources_dictionary cannot be offset during
the encoding in the same way they can be offset in the simplified encoding technique. Instead, the IDs of the local
resources dictionaries and the usable_global_resources_dictionary should be incremented in opposite directions.
For instance, whenever a new resource is added to the usable_global_resources_dictionary a positive value equal
to the size of usable_global_resources_dictionary should be assigned to it. When a new resource is added to the
local resources dictionary, a negative ID equal to minus the size of that local dictionary should be assigned to it.
After encoding the whole dataset, the IDs in the local resources dictionaries are adjusted using the final size of
usable_global_resources_dictionary so that no overlaps occur.

The final adjustment that should be applied to the simplified encoding technique to make it more scalable is to
apply sparse encoding: instead of creating huge sparse matrices, only the list of indices where these matrices contain
the value 1 are maintained.

J.2.3. Advanced Encoding Technique Algorithm
The full algorithm of the advanced encoding technique is detailed in Algorithm 3. The decoding algorithm for
the advanced version is very similar to the simplified decoding algorithm.

Appendix K. Advanced Encoding Algorithm

Algorithm 3 Advanced encoding algorithm

Input: rdf graph, properties_dictionary, properties_groups,
global_resources_dictionary, usable_properties_dictionary,
usable_global_resources_dictionary,
local_resources_dictionaries I* The list of local resources dictionaries that will be populated if encoding an
input graph */
Parameter: is_inference
Output: sparse_encoding,
local_resources_dictionaries /* Not modified if encoding an inference graph */
Begin:
function LOOKUP_RESOURCE(resource, property)
property_group <— properties_groups[property]
if resource in usable_global_resources_dictionary then
‘ return usable_global_resources_dictionary [resource]
else if resource in local_resources_dictionaries [property_group] then
\ return local_resources_dictionaries [property_group][resource]
else
| ERROR, EXIT

function ADD_RESOURCE(resource, property)
property_group <— properties_groups[property]
if resource in usable_global_resources_dictionary then
‘ return
else if resource in global_resources_dictionary then
‘ usable_global_resources_dictionary [resource]
< SIZE(usable_global_resources_dictionary)
else if resource not in local_resources_dictionaries [property_group] then
‘ local_resources_dictionaries [property_group][resource]
< —(S1zE(local_resources_dictionaries [property_group][resource]))
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for all (s,p,0) in SORTED_TRIPLES_BY_PROPERTY (rdf_graph) do

End

if p not in properties_dictionary then
| continue
else if p not in usable_properties_dictionary then
‘ usable_properties_dictionary[p] <— SIZE(usable_properties_dictionary)
p_id < usable_properties_dictionary[p]
if not is_inference then

ADD_RESOURCE(S,p)

ADD_RESOURCE(0,p)
s_id <~ LOOKUP_RESOURCE(Ss,p)
0_id - LOOKUP_RESOURCE(0,p)
APPEND(sparse_encoding, p_id, s_id, o_id)

33

Appendix L. Graph words creation algorithm

Algori

thm 4 From RDF dataset to graph words corpus

Input:
I

G, /* The set of input RDF graphs */
/* The set of inference RDF graphs */

global_resources_dictionary, properties_dictionary
Output: X,

Y?

G_Catalog,
I_Catalog,
Local_Resources_Dictionaries

Begin:

dataset_size < SIZE(G)

inde

x <0

X<+ []

Y« 1[]

G_Catalog <[]

I_Catalog [ ]
Local_Resources_Dictionaries < [ ]
while index < dataset_size do

rdf_input <— G[index]

inference < I[index]
local_resources_dictionary <— [ |
x_graph_sentence <+ [ ]
y_graph_sentence < [ ]

/* Input corpus */

/* Target corpus */

/* Layouts catalog of the input corpus */

I* Layouts catalog of the target corpus */

/* A list containing the local_resources_dictionary */

/* First we encode the input graph */

adjacency_matrix, local_resources_dictionary <—

ENCODE(rdf_input, global_resources_dictionary, local_resources_dictionary, properties_dictionary,
is_inference=False)

Local_Resources_Dictionaries[index] <— local_resources_dictionary
for all layer in adjacency_matrix do
if LAYoUT(layer) not in G_Catalog then
| APPEND(G_Catalog, LAYOUT(layer))
graph_word < G_Catalog[LAYOUT(layer)]
APPEND(x_graph_sentence, graph_word)

O O d oy U W NP
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‘ X[index] < x_graph_sentence

/* Then we encode the inference graph using local_resources_dictionary */

‘ adjacency_matrix, local_resources_dictionary <

ENCODE(inference, global_resources_dictionary, local_resources_dictionary, properties_dictionary,

is_inference=True)
for all layer in adjacency_matrix do
if LAYyouT(layer) not in I_Catalog then
| aPPEND(I_Catalog, LAYOUT(layer))
graph_word < I_Catalog[LAYOUT(layer)]
APPEND(y_graph_sentence, graph_word)
Y[index] < y_graph_sentence
index < index + 1
return X, Y, G_Catalog, I_Catalog, Local_Resources_Dictionaries
End

Appendix M. Possible Number of Links per Properties per Classes in LUBM1

Table 8
Possible number of links per properties per classes in LUBM1
Properties .

rdf:type | ub:advisor | ub:teacherOf | ub:researchlnterest
Classes
ub:GraduateStudent 1,2 1 0 0
ub:Publication 1 0 0 0
ub:TeachingAssistant 2 1 0 0
ub:ResearchAssistant 2 1 0 0
ub:AssistantProfessor 1 0 2,3,4 1
ub:AssociateProfessor 1 0 2,3,4 1
ub:Lecturer 1 0 2,3,4 0
ub:Course 1 0 0 0
ub:GraduateCourse 1 0 0 0
ub:FullProfessor 1 0 2,3,4 1
ub:ResearchGroup 1 0 0 0
ub:Department 1 0 0 0
ub:University 1 0 0 0

Appendix N. The network of the relation RDFS:subPropertyOf in the DBpedia ontology (depicted without

labels for visibility)
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