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Abstract. Both keys and their generalisation, link keys, may be used to perform data interlinking, i.e. finding identical resources
in different RDF datasets. However, the precise relationship between keys and link keys has not been fully determined yet. A
common formal framework encompassing both keys and link keys is necessary to ensure the correctness of data interlinking
tools based on them, and for determining their scope and possible overlapping. In this paper, we provide a semantics for keys
and link keys within description logics. We determine under which conditions they are legitimate to generate links. We provide
conditions under which link keys are logically equivalent to keys. In particular, we show that data interlinking with keys and
ontology alignments can be reduced to data interlinking with link keys, but not the other way around.
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1. Introduction

The linked data initiative has made possible the development of a continuously growing web of data
accessible to machines. Data is published using RDF, which enables describing web resources identified
by Internationalized Resource Identifiers (IRIs) in terms of property values [1].

Interoperability in the web of data largely relies on links between data from different RDF datasets and
especially links asserting the identity of resources bearing different IRIs, specified using the owl:sameAs
property. Since RDF datasets tend to be large, automatically discovering owl:sameAs links between RDF
datasets is an important and challenging task. This task is referred to as data interlinking and different
algorithms and tools for data interlinking have been proposed so far [2, 3].

Among the state-of-the-art approaches to data interlinking, some are based on finding keys [4-7] or
link keys [8, 9] across RDF datasets. Both keys and link keys are devices characterising what makes two
resources to be identical. Hence, it is natural to exploit them for discovering links across datasets. Even
though both techniques have been proven to be effective in data interlinking scenarios, their relationship
has not been formally established yet.

The objective of this paper is to clarify the relationship between keys and link keys. In order to do so,
we first provide the semantics of (RDF) keys and link keys. More specifically, we formalise how a key, in
its different versions, can be combined with an alignment between ontologies for data interlinking. Then,
we extend the current definition of a link key by defining the semantics of six kinds of link keys — weak,
plain and strong link keys, and their in- and eq-variants — and we logically ground the usage of link keys
for data interlinking. Finally, we establish the conditions under which link keys are equivalent to keys
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and show that data interlinking with keys and ontology alignments can be reduced to data interlinking
with link keys, but not the other way around.

In the remainder, Section 2 presents the context and related work of the paper. Section 3 introduces
the notations used throughout the paper. Section 4 recalls two different semantics of keys and Section 5
logically justifies their use for data interlinking. Section 6 defines link keys. Section 7 logically grounds
the use of link keys for data interlinking. The relations between keys and link keys are established in
Section 8, both with respect to their logical entailment and the links they produce. Section 9 concludes
the paper and discusses future work.

All definitions are illustrated with concrete examples taken from real-world datasets.

2. Context and Related Work

Data interlinking refers to the process of finding pairs of IRIs of different RDF datasets representing
the same entity [2, 3]. The result of this process is a set of same-as links, specified by the owl:sameAs
property. To decide whether two IRIs represent the same entity or not is mainly based on comparing
their values for a selected number of properties. Data interlinking is reminiscent of the task of record
linkage in databases [10] but it is applied to RDF data described with RDFS/OWL ontologies.

Link discovery frameworks such as SILK [11, 12] and LIMES [13] enable users to process link specifi-
cations to generate links. Link specifications express the properties to be used for generating owl:sameAs
links between two RDF datasets. They also specify the similarity measures to be used for comparing
datatype property values, aggregation functions to combine similarity values, and the similarity thresh-
olds beyond which two values are considered equal. Link specifications may be directly set by users or
built (semi-)automatically, for example, using machine learning techniques [14, 15].

A key is a set of (datatype or object) properties that uniquely identify the instances of a class within a
dataset. For example,

{creator, title} key Book

states that, if two instances of the class Book coincide on values for the properties hasCreator and
hasTitle, then the two instances are the same. Key-based approaches to data interlinking first extract
key candidates from RDF datasets and then select the most accurate candidates according to different
quality measures [4—7]. When the data of two RDF datasets are described using the same ontologies,
then keys, if available, can be directly used for interlinking the datasets, but if the data are described
using different ontologies then they need to be combined with ontology alignments [16] relating the
properties and classes of the data. For example, the previous key could be combined with the alignment
correspondences creator = auteur, title = titre and Book = Livre to interlink the books of English and
French libraries.

Keys can be used to build link specifications or can be translated into logical rules to perform data
interlinking. The latter allows to take advantage of logical reasoning [17—-19]. Key extraction algorithms
discover either S-keys [5-7] or F-keys [4, 20]. There are two kinds of keys since RDF properties are
multivalued contrary to relational attributes which are functional. If a set of properties form an S-key for
a class, it is enough that two instances of the class share one value for each of the properties of the key
to infer that they are the same (e.g. email property for the AssistantProfessor class). But if the properties
form an F-key then the instances must share all values (e.g. hasPoem property for the PoemAnthology
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class because two different poem anthologies may have a poem in common but will unlikely contain
exactly the same poems). Therefore, S-keys behave like owl:hasKey statements, while F-keys as keys in
relational databases.

When datasets are described with different ontologies, alignments must be used, either during the key
extraction process or later when performing data interlinking. For example, the approach proposed in
[5] searches in a source dataset for S-keys over classes which are equivalent to classes in a target dataset
and then selects among the discovered S-keys those composed of properties which are equivalent to
properties of the target dataset.

Link keys generalise the combination of keys and ontology alignments for data interlinking [8, 16].
A link key is a set of pairs of properties that uniquely identify the instances of two classes of two RDF
datasets. For example,

{(creator, auteur), (title, titre) } linkkey (Book, Livre)

states that, if an instance of Book has the same values for auteur and titre as an instance of Book has
for creator and title, the two instances are the same. Unlike the previous key, this link key could be used
directly to interlink the books of English and French libraries, without the need to involve any ontology
alignment.

The key-based approaches to data interlinking proposed in [6, 7] are different from [5] and closer to
link keys [8]. Indeed, their goal is to discover S-keys that hold in both source and target datasets. It is
assumed that both datasets are described using the same vocabulary, possibly resulting from merging
different ontologies using an alignment, again composed of equivalence correspondences only.

The formal semantics of S-keys and F-keys have been given in [21] using rules, but the combination
of S-keys and F-keys with ontology alignments for data interlinking is not formally addressed. In this
paper, we address it using description logics.

Different approaches to incorporate keys and functional dependencies in description logics have been
proposed. Keys may be treated as a new concept constructor [22, 23], or as global constraints in a
specific and separate key box (KBox) [24-27], which is the option that will be followed here. The main
goal of these approaches is to study decidability of reasoning with keys or functional dependencies in
description logics. Instead, we use description logics to provide the semantics of keys and link keys in
order to fully understand the relation between them in the context of data interlinking.

In this paper, we will use description logics to express the semantics of various types of keys and link
keys. This will allow to ground their legitimacy in generating links across RDF datasets. This will also
be used to compare the respective key and link key expressions on the basis of their entailments and the
links they generate.

3. Preliminaries

This section introduces minimal notions and notations used throughout the entire paper. We assume
that the reader is familiar with the basics of description logics (DL) [28].

In this paper, ontologies will be the combination of a schema and a dataset, and they will be modelled
as DL knowledge bases.

Definition 1 (Ontology). An ontology is a knowledge base O = (S, D) made up of a terminological
box (TBox) S and an assertional box (ABox) D. S and D will be referred to as the schema and dataset
of O.
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A schema is, thus, modelled as a set of terminological axioms, i.e. a set of subsumption, equivalence
and disjointness axioms between classes and properties: C1 R Cy and p1 Rgs with R € {C,J,=, 1 }.
A dataset is a set of assertional axioms between individuals: C(a) and p(ai, az2). Classes, properties and
individuals (C1, p1, ay, . . .) define the vocabulary of an ontology. The semantics of ontologies is inherited
from the model-theoretic semantics of knowledge bases using DL interpretations Z = (A7, 7).

Alignments relate entities — classes, properties and individuals — that belong to different ontolo-
gies [16]. Alignment relations between classes and properties are usually subsumption, equivalence and
disjointness. In the case of individuals, they are typically related by the owl:sameAs property, which
expresses equality of individuals. Alignment statements between classes and properties are referred to
as correspondences, whereas equality statements between individuals will be called links.

We will also model alignments as knowledge bases. The difference with ontologies is that, in the case
of an alignment, the TBox and ABox use two ontologies’ vocabularies. In addition, the ABox contains
equality assertions only, denoted a ~ b.

Definition 2 (Alignment). Let O = (S, D) and O' = (S', D’) be two ontologies. An alignment between
O and O' is a knowledge base Ap o = (Co.0r, Lo,or) where Co o is composed of class and property
axioms CRD and pRq with R € {C,J,=, L}, C and p are class and property expressions in O’s
vocabulary and D and q are class and property expressions in O"’s vocabulary, and Lo o is composed
of equality assertions a = b where a is an individual name in O’s vocabulary and b an individual name
in O'’s vocabulary. The axioms in Co o will be referred to as correspondences and the axioms in Lo o
as links. If no confusion arises, Ap o', Co,0 and Lo o will be replaced by A, C and L.

Different semantics for ontology alignments may be found in the literature [29, 30]. In this paper,
though, we will consider the axioms of two ontologies and the correspondences and links of an alignment
between them to be part of one single global ontology. Without loss of generality, we can assume that
the vocabularies of O and O’ are disjoint.

In what follows, given an ontology O, we will use the letters C, p, a and ¢ (possibly with sub- or
super-scripts) to denote class and property expressions and individual names of O, respectively, and,
in case another ontology O’ is considered, we will use D, g, b and d for 0'. In this way, C; R C2 and
p1 R p2 will be used as general axioms in O, while C' R D and p R ¢ as general correspondences in an
alignment between O and O’ (R € {C,3,=, L }).

4. Two Kinds of Keys in Description Logics

In order to compare keys and link keys, we start by reformulating the semantics of keys [21] as
description logic axioms. We distinguish between several types of keys which apply in this context.
Instead of S-keys and F-keys, we will speak of in-keys and eq-keys, respectively. The prefixes in- and
eq- are shortened forms of intersection and equality. These notations are related to the conditions (1) and
(2) in Definitions 3 and 4 given below.

4.1. Semantics of keys

In what follows, given a DL interpretation Z = (AZ,.), a property p, and a domain individual § €
AT, p(8) will denote the set of individuals related to § through p, i.e. p%(6) = {n € AT : (6,n) € p*}.
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Definition 3 (in-key). An in-key assertion, or simply an in-key, has the form

({p1.- .., pi} key;, C)

such that p1, ..., px are properties and C is a class.
An interpretation T satisfies ({p1,..., pi} keyy, C) iff, for any 6,8’ € CZ,

pi(&) N pi(8) #0,....pi(6) N pL(8) # 0 implies 5 = 6. (1)

Definition 4 (eq-key). An eq-key assertion, or simply an eq-key, has the form

({pl’ s ’pk} kequ C)

such that p1, ..., px are properties and C is a class.
An interpretation T satisfies ({p1, ..., pr} key, C) iff, for any 6, & e T,

pi(6) = pi(6) #0,....p{(8) = pi (8') # 0 implies 5 = &'. )

According to Definition 3, if two instances of a class share at least one value for each of the properties
of an in-key for the class, then we can infer that they are the same instance. This is formalised in
Proposition 1.

Proposition 1. The following holds:

C(a), {pila.c;)}imy
C(b), {pi(b, di)}iy
({p1,.-.. pe} key;, €)
{cord} EFarb 3)
Proof. This is a direct consequence of Definition 3: for any interpretation Z satisfying all the antecedent

axioms of the entailment, a” and b* will belong to C* and will share one value for each of the properties
of the in-key, hence a” will be equal to b*. [

On the other hand, according to Definition 4, given an eq-key for a class and two instances of the
class, we can infer that they are the same instance if they share all values (and at least one) for each of
the properties of the key. However, we need to be sure that all known values indeed are all values that
the instances may have. This is proved in Proposition 2.

Proposition 2. The following holds:
C(a), {pila.c;),.... pila.cf' )} iy

{{a} EVpidci. ...
C(b).Api(b.d;)..... pi(b.d) Hiy
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{{p} EVpidd}.....d" Y
({pl’ ce ’pk} keyeq C)
{ci~dl,....cimd} EFax~b %)

Proof. Let 7 be an interpretation that satisfies all the antecedent axioms of the above entailment. Let
us prove that Z satisfies a =~ b too. Since Z = p;(a,c!) then (c))? € pF(a®) fori = 1,...,k and
l=1,...,r. Also, since T |= {a} C Vp,.{c},...,c}'} then pf(a?) C {(c})2}/_,. Therefore, pf(at) =
{(HZ ;. Similarly, g7 (b)) = {(d))*}}_,. Now, since T |= ¢! ~ d! then (c})? = (d!)%, which implies
that pZ(at) = gF (b?). Furthermore, pZ(a’) = gF(b?) # 0 since r; > 1. Additionally, since Z |= C(a)
and Z |= C(b) then aZ, b’ € CZ. Finally, since Z = ({p1,...,pi} keye, C), and we have at, bt € c?
and pf(a®) = ¢ (b?) # B fori = 1...,k, then we can infer that a* = b%,ie. T Fa~b. O

Thus, in contrast to in-keys, eq-keys require some sort of local closed world assumption, which, even
though it is generally advised to avoid in the context of the semantic web and linked open data, it is also
expected to be made in certain controlled scenarios. The semantics of owl:hasKey in OWL2 corresponds
to the semantics of in-keys but restricted to being applied to named instances only (thus excluding blank
nodes).

Although in-keys and eq-keys have been introduced separately, it is also possible to consider a unified
notion of key.

Definition 5 (Generalised key). A key assertion, or simply a key, has the form

({p1,-- a1, qi} key C)

such that p1, ..., pxand q1, ..., q; are properties, and C is a class.
An interpretation T satisfies the key ({p1, ..., p}{q1,....q} key C) if, for any 6,6' € CZ,

pi(0) N pi(8) #0,....p¢(8) N pL(8') # 0 and
G (8) =i (8') #0,....q7 (5) = q[ (') # 0 implies 5 = &

From here on, an ontology O will be a triple O = (S, D, K) which, besides the schema S (TBox) and
dataset D (ABox), has as a third component a set of keys C (KBox).
Example 1 below provides examples of in-keys and eq-keys in real RDF datasets.

Example 1. Insee is the French institution in charge of collecting and publishing information about
French economy and society. Part of the Insee data is available in the form of RDF triples and can be
downloaded as an RDF dump or queried through a SPARQL endpoint.' Insee ontologies are available
too. In this example and Example 2, we only consider the Insee data related to administrative districts
(the COG dataset).

The Insee vocabulary comprises four class names for describing the main administrative divisions in
France: Commune, Arrondissement, Département and Région. Among the properties of these classes,
we find the datatype property nom (used to specify the name of an administrative division), the object

1http://rdf.insee.fr.
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property subdivisionDe (to specify that an administrative division is a subdivision of another one, for
example, that the commune of Grenoble is a subdivision of Isere department) and the datatype property
codeINSEE (which is an identifier for territories, including administrative divisions, and can be thought
of the key in the Insee database). The property subdivisionDe is declared to be transitive in the Insee
ontology.

No owl:hasKey axiom is declared in the Insee ontology. Nevertheless, we have checked the in-key and
eq-key conditions for the properties and classes mentioned before. We have done so in the RDF graph of
Insee extended with the transitivity of subdivisionDe. This generalises to the fully inferred graph as no
other axiom of the Insee ontology may have an impact on the satisfiability of the examined key axioms.

As one would expect, the codeINSEE property is an in-key for Commune, Arrondissement, Région
and Département. In symbols,

Tiiee = ({codeINSEE} key,, Commune)

T ee = ({codeINSEE} key,, Arrondissement)
T ee = ({codeINSEE} key, Département)

Tiee = ({codeINSEE} key,, Région)

where Z} .. is the natural DL interpretation of the inferred Insee graph.?

Concerning the property nom, it turns out to be an in-key for Région and Département, but neither for
Arrondissement nor Commune. Indeed, there exist different communes (and arrondissements) sharing
the same name. For instance, Bully may refer to three different communes: Bully in the department of
Loire, Bully in Rhone and Bully in Seine-Maritime. However, there is no pair of communes of the same
department sharing the same name. In fact, nom and subdivisionDe, when put together, form a key for
the class Commune. The property subdivisionDe, though, must be treated in the sense of eq-keys. This
is because, since subdivisionDe is a transitive property, all French communes share (at least) a value for
subdivisionDe, namely, the Insee entity representing the country France. The same holds for the class
Arrondissement. In symbols (note that we use unified keys):

Tiisee E ({nom} key,, Département)

IInbee ):

Insee ):
Tihsee = ({nom}{subdivisionDe} key Commune)

{nom} key;, Région)

(
(
({nom}{subdivisionDe} key Arrondissement)

(

From here on, we will use the shortcuts Reg, Dep, Arr and Com for the corresponding Insee classes.

4.2. Relations between the different types of keys

Compared to the semantics of S-keys and F-keys defined in [21], the semantics of in-keys corresponds
directly to the semantics of S-keys. This is not the case for eq-keys and F-keys. Every eq-key is an F-key

“More specifically, this is the interpretation whose domain is made up of all IRIs and literals of the Insee graph (there are no
blank nodes), it interprets domain individuals as themselves, and classes and properties as their extensions in the graph.
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but not the other way around. The equivalence would be established if condition (2) in Definition 4 were
replaced by

pi(6) = pi(&),..., pi(8) = pr (') implies 6 = &',

The prerequisite that the sets of property values must be non-empty enables to consider in-keys as a
subset of eq-keys (which does not hold between S-keys and F-keys). This result is stated in Proposition 3.

Proposition 3. ({p1,....pi} key;, C) = ({p1,-- .. pi} keyg, C)

Proof. Let Z be an interpretation such that Z = ({p1,...,pr} key,, C). We have to prove that Z =
({p1.-... i} keye, C). Let 6,6 € CT such that pf (6) = p/(6') # 0 (i = 1,...,k). We have to prove
that 6 = ¢'. Since pf () and pZ(&’) are equal and non-empty, then pZ(8) N pZ(&') # 0 (i = 1,...,k).
So we have 6,8’ € C* and pZ(6) N pZ(6') # 0 (i = 1,...,k). Since Z = ({p1,..., pi} key,, C), then
6=0. O

Conversely, an eq-key is an in-key if it is made up of functional properties. Notice that it is possible
to define a functional property as a property p such that for any interpretation Z = (AZ,-Z) and any
§ € AT then |p?(5)| < 1.

Proposition 4. If p1, ..., pi are functional, then

({p1,.... pe} keyeq ©) = ({p1,.- -, pi} key;, C)

Proof. Let 7 be an interpretation such that 7 |= ({p1,...,pi} key,, C). Let 5,8’ € C? such that
pE(6) N pE(&') # 0 (i = 1,...,k). Since p; is functional then |pF(8)| < 1 and |p?(6")| < 1, but since
their intersection is not empty then |p?(6)| = 1 and |p?(&’)| = 1, thus they are equal and not empty, i.e.
pi(©6) = pf (&) # 0 (i = 1,....k). Since T |= ({p1..... p} key,, C) then we can infer that 6 = &'.
This proves that Z = ({p1,...,px} key;, C). O

Proposition 5 shows basic properties of in-keys and eq-keys that will be later used in the proofs of
other theorems. In certain occasions, we will write ({p;}*_; key, C) instead of ({p1,..., pi} key, C)
(x € {in,eq}) to shorten too long expressions. Property (5) is a version of Armstrong’s augmentation
axiom for functional dependencies on relational databases. Properties (6), (7) and (8) specify how keys
behave with subsumption, intersection and union of classes, respectively. Properties (9) and (10) specify
how keys behave with subsumption and equivalence of properties. Interestingly, (9) does not hold for
eq-keys.

Proposition 5. The following holds:

({p1....p} key, C) = ({p1-... Pk: Pes1 } key, C) ®)
({p1....p} key, C),C I D= ({p1.... i} key, D) (6)
({p1.-..pc}t key, C) = ({p1.... pi} key, CT1D) (7)
({p1....pk} key, CUD) |= ({p1-.., pi} key, C) ()
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({p1-...o} keyy, C). {pi Daiti—1 E ({q1-- ..} key;, ©) )
{p1-...oi} key, O {pi =gty = ({a1 ..., ax} key, C) (10)

with x € {in,eq}.

Proof. Properties (5) and (6) follow directly from Definitions 3 and 4, and Properties (7) and (8) are
direct consequences of property (6).

Let us prove (9). Let Z be an arbitrary DL interpretation such that Z = ({p1,..., pi} key;, C) and
TE pidq (i =1,...,k). We have to prove that Z = ({q1,...,q} key;, C). Let 6,6 € CT such
that ¢£(3) N gZ(8') # 0 (i = 1,....k). Since T = p; 2 g; then g(5) C pL(6) and gZ(5') C pE(&'),
and, since g7 (6) N gZ(¢8') # 0, then pZ(6) N pZ(&') # O (i = 1,...,k). This together with Z =
({p1,....pi} key,, C) implies 6 = &'. Therefore, Z = ({q1,...,qx} key;, C).

Property (10) can be proven analogously. [J

In the following section, we establish when it is legitimate to combine in-keys and eq-keys with
alignments for data interlinking.

5. Data Interlinking with Keys and Alignments

So far, we have considered keys independently from their use for data interlinking. Keys are able to
identify duplicate resources within the same dataset and links between resources from different datasets
described using the same ontologies. But as soon as the datasets do not share the schemas, keys alone
are not enough for performing data interlinking, and alignments are required.

In this section, we uncover the implicit or explicit role of ontology alignments in the process of data
interlinking with keys. We show that data interlinking can be expressed as a direct logical consequence
of the semantics of keys and alignments. We also highlight the need for completion when interlinking
data with eq-keys.

Data interlinking can be formulated as an inference problem: for two given ontologies O = (S, D, K)
and O’ = (S, D', K') equipped with keys (possibly discovered with the help of key extraction tools) and
an alignment A = (C, L) between O and (', the problem is to check, for any pair of individual names a
and b of O and (0, respectively, if the following inference is valid:

0,0, A=a~b (11)

Of course, there is a specific case in which an alignment is not needed: this is when the two datasets use
the same schema, i.e. when S = S’. Such a case can be reduced to data deduplication in the ontology
(8, DUD,KUK'). It can be seen as a particular instance of (11) when A is the identity alignment.

In the following, we provide conditions on the schemas S and &, datasets D and T, set of class and
property correspondences C, and set of (known) links £, that, in the presence of a key in k € K, are
sufficient for inferring a (new) link a ~ b. These conditions change depending on whether « is an in-key
or an eq-key, as specified in Theorem 1 and Theorem 2 below. These two theorems provide the logical
grounds of data interlinking with keys and alignments.

Theorem 1. Let O = (S,D,K) and O' = (§', D', K') be two ontologies and A = (C, L) and alignment
between O and O' such that
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o {p1,...,pr} key,, C) € K and
e {COD}U{p T}, CC

Then, for any pair of individual names a and b of O and O, respectively, if

o {C(a)} U{pi(a,c;)}t_) D,
e {D(b)} U{qi(b.d))}'_y C D" and
o {cimdi}f, CL

then O,0', A= a =~ b.

Proof. Notice that C J D and D(b) entail C(b), and that p; 1 ¢; and ¢;(b, d;) entail p;(b,d;). Then, the
statement follows from Proposition 1. [

Theorem 1 provides the logical ground of data interlinking with in-keys and alignments: if we know
that the properties p1, ..., px constitute an in-key for a class C in O, and that, according to an alignment
A, C subsumes a class D of O’ and p1, ..., px pairwise subsume properties q1,...,q; of O, then, we
can infer that an instance a of C is equal to an instance b of D if a has for p; a value ¢; which is equal to
avalue d; that b has forg; (i = 1,...,k).

Theorem 2 provides the logical ground of data interlinking with eq-keys and alignments. Notice that,
unlike Theorem 1, p1,..., pr have to be pairwise equivalent to ¢y, . .., gx. Moreover, to infer a ~ b, we
need to know all the values that a and b may have for p; and g;, respectively, and that these values are
the same. This local completeness is expressed as axioms in the ontology schemas S and S’.

Theorem 2. Let O = (S,D,K) and O' = (S§',D',K') be two ontologies and A = (C, L) an alignment
between O and O’ such that

hd ({pl’--'apk} keyeq C) S ’C and
e {COD}U{pi=q}, CC.

Then, for any pair of individual names a and b of O and O, respectively, if

o (€@} U U plach)i, €D,
o {{a} SVpi{cl P €
« (W)} Ulab.d)}, € D,
o (b} CVgi{d), ... d" W, C S and
e Uld ¥, c L
then O,0', A l=a =~ b.
Proof. Notice that C J D and D(b) entail C(b), and that p; = ¢; entails p; J ¢;, which along with

qi(b,d’), entails p;(b,d!). Also, p; = g¢; entails p; C g;, which along with {b} T Vg,.{d},...,d"},
entails {b} C Vp;.{d},...,d"}. Then, the statement follows from Proposition 2. [J
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Notice that in both theorems we only address the case when property values are individuals, i.e. when
keys are composed of object properties only. The case when property values are literals, i.e. keys with
datatype properties, does not make a difference for our purpose (although, in this case, the comparison
of property values is based on equality and not on an initial set of known same-as links £).

Another interesting remark on Theorems 1 and 2 is that only one key of O and no key from O’
is needed to infer links. Actually, under the assumptions of the theorem, by Proposition 5, {g}*_; is
guaranteed to be an in-key (in Theorem 1) or an eq-key (in Theorem 2) for the class D.

Even though Theorems 1 and 2 are not difficult to prove, they highlight some peculiarities of data
interlinking with keys and alignments that have not received attention in the literature: the fact that
equivalence of properties is not required for interlinking with in-keys, and that local completeness is
necessary for interlinking with eq-keys.

Finally, it is possible to provide semantic versions of Theorems 1 and 2 in which the antecedent
axioms are not asserted in the ontologies and alignments but are inferred from them (e.g. O, 0', A =
({p1,...,px} key;, C) instead of ({p1,..., p} key;, C) € K). We have decided to present the asserted
versions to stress the nature of each axiom (mapping, data, schema knowledge or links).

We finish this section with the definition of the link set generated by a key.

Definition 6 (Link set generated by a key). Let O and O' be two ontologies. Let A be an alignment
between O and O'. Let k be a key. The set of links between O and O’ generated by k under A is defined
as

LEOA ={amb: 0,0, AkFarband 0,0, Al ar b}

In the following sections, we will introduce link keys and formalise data interlinking with link keys
in the same manner. We will then show that data interlinking with link keys is more general than data
interlinking with keys and alignments.

6. Link Keys

To be compared with keys, link keys require a precise semantics. Here we formalise and extend the
semantics introduced in [9] to other link keys that are useful in practice. This semantics generalises the
semantics of keys to the case of different RDF datasets.

6.1. Semantics of link keys

The semantics of link keys considered in [9] is reproduced in Definition 7. It is natural to extend this
semantics to eq-keys too, and we do so in Definition 8. These kinds of link keys will be referred to as
weak link keys.

Definition 7 (Weak in-link key). A weak in-link key assertion, or simply a weak in-link key, has the form

({{p1-q1),---.{Px-qx)} linkkeyj: (C,D))

such that p1, ..., pr and q1,. .., qx are properties and C and D are classes.
An interpretation T satisfies ({{p1,q1), ..., {(pw,qi)} linkkeyY (C, D)) iff. for any § € C* andn € D?,

pi(6) Ngi(n) # 0.....pi(6) Vi (n) # O implies 5 = n.
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Weak eq-link keys are defined below.

Definition 8 (Weak eq-link key). A weak eq-link key assertion, or simply a weak eq-link key, has the
form

({{p1,q1), -+ (P qu) } linkkeyg, (C, D))

such that p1, ..., pr and q1, . .., qx are properties and C and D are classes.
An interpretation T satisfies ({{p1,q1), ..., (P, qi)} linkkeyY (C, D)) iff. for any § € C* andn € D%,

pi(6) =qi(m) #0,....p{ (5) = g (n) # O implies 5 = 1.

Interestingly, every key ({pi,...,px} key, C) can be expressed as an equivalent weak link key
({(p1,P1)s- -+ (pr> Pi) } linkkey?} (C,C)), with x € {in,eq}.

Weak link keys are called weak because they are not necessarily composed of keys. We introduce
strong link keys, which embed two keys. Because of this, they will facilitate the comparison with keys
in Section 8. We only give the definition of strong in-link keys, as strong eq-link keys can be defined
analogously.

Definition 9 (Strong in-link key). A strong in-link key assertion, or simply a strong in-link key, has the
form

({{p1,91)-- - (P qi)} linkkey}, (C, D))

such that p1, ..., prx and q1,. .., qx are properties and C and D are classes.
An interpretation T satisfies ({{p1,q1), ..., (Pr-qx) } linkkey;, (C, D)) iff

(1) TE ({{p1.q1)s---»{pr-qi)} linkkey}; (C, D))
(2) T ({p1,-..,p} key;, C)
(3) T = ({q1,---.qx} key;, D)

In the definitions above, it is not specified to which ontology vocabulary the classes and properties
of a link key belong. In practice, the classes C and D, and properties {p;}*_; and {g;}*_; of a link key
will belong to different ontology schemas, and the instances of C and D to different datasets. This will
become explicit in Section 7 when we formalise data interlinking with link keys. Link keys, thus, are the
natural generalisation of keys to different datasets, possibly described using different ontologies.

Both strong and weak link keys enable finding links between two different datasets, but strong link
keys do more. Indeed, since the properties of a strong link key are keys for the classes separately then
they can be used to find same-as links within the datasets, i.e. to identify duplicates.

Finally, we introduce plain link keys, which are intermediate between weak and strong link keys. A
set of property pairs is a plain link key for a pair of classes if it is a weak link key, and, although the
properties may not be keys for the classes separately, the key conditions must hold for the instances that
will be linked. As before, we only give the definition of a plain in-link key, since plain eq-link keys are
defined similarly. Figure 1 illustrates the differences between weak, plain and strong in-link keys.
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Definition 10 (Plain in-link key). A plain in-link key assertion, or simply a plain in-link key, has the
form

({{p1.q1).. ... (Pr. qu) } linkkey}, (C, D))

such that p1, ..., pr and q1, ..., qy are properties and C and D are classes.
An interpretation T satisfies ({{p1,q1), ., {pr,qi)} linkkey? (C, D)) iff, forany 6 € C* andn € D?,

pi(0) Nai(m) #0.....pE(6) Ngi (n) # O implies
(1)6=n
(2) for any &' € C!, p¥(5) ﬂpl L") # 0,

pE)N 43 L(8") # 0 implies 6 = &'
(3) for anyn € D'.q5 (n) N gt (') # 0,

( )N gt (') # 0 impliesn = 1

D o0 —" a4 D
P : : q
as a ——————— b
is-a  is-a X 1: *
p 2 A /
| : : /
: ¢ |
~ § c3 C o) : = ~ ds ~
/ v:.' L \
P P, \
is-a  is-a v 3 v
ag a9 b

Fig. 1. Two datasets and links generated depending on the type of link keys (double=weak, dashed=plain, waved=strong)

Figure 1 illustrates the differences between the types of link keys on two data sets D and D’

D = {p(a1,c1), p(a1,c2),C(ar), p(az, c2),C(az), C(as), p(as, c3), C(as), plas, c3)}
"= {q(b1,d1),q(b1,d2),D(b1), q(b2,da), D(b2), D(b3), q(b3,d3), D(bs), q(bs, d3)}

with the initial set of links:

E: {Cl %dl}

Considering an in-link key: ({(p, ¢)} linkkey:, (C, D)), depending on the value of y, it will generate:
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weak: a; ~ by (double-line arrow),
plain: additionally a; = as and by =~ b2 (dashed arrows),
strong: additionally as ~ a4 and b3 ~ by (wave arrows).

As we have done for keys in Definition 5, it is possible to define unified versions of weak, plain and
strong link keys, bringing together the in- and eq-conditions:

({(pirai) Yz {(rj> 5j) Yj=1 linkkey” (C, D))

withy € {w,p,s}.

Alignments may be naturally extended to include a set of link keys. From here on, given two ontologies
O and O’ equipped with keys, an alignment .4 between O and O’ will be a triple A = (C, L, LK) which,
in addition to a set of class and property correspondences C and a link set £, has a set L of link keys
between the vocabularies of O and O’ as a third component.

Below we give examples of link keys in real datasets.

Example 2. The Insee dataset includes links to the IGN dataset (French National Geographic Institute).’
There exist owl:sameAs links between the resources representing the French communes, arrondisse-
ments, departments and regions, gathered together in the two datasets using the same class names.
These links can be found by comparing the Insee codes, which are declared in both datasets — using the
ins:codeINSEE property in the Insee dataset and ign:numinsee in the IGN dataset.*

We have extracted the different link key conditions for the property pair (ins:codeINSEE, ign:numlInsee)
on the union of Insee and IGN datasets taking into account the existing owl:sameAs links. There happen
to be strong in-link keys for the class pairs (ins:Com, ign:Com), (ins:Arr,ign:Arr), (ins:Dép, ign:Dép) and
(ins:Rég, ign:Rég). In symbols:

" = (

ins:codeINSEE, ign:numinsee) } linkkey;, (ins:Com, ign:Com))

{
{

( ) (i
Z* = ({(ins:codeINSEE, ign:numlinsee) } linkkey;, (ins:Arr, ign:Arr))
Z* = ({(ins:codeINSEE, ign:numinsee) } linkkey;, (ins:Dép, ign:Dép))
Z* = ({(ins:codeINSEE, ign:numinsee) } linkkey;, (ins:Rég, ign:Rég))

where Z* is a canonical interpretation of the RDF graph resulting from the union of the Insee and IGN
datasets whose linked individuals are merged.

Let us consider the other properties of Example 1. The property rdfs:label is used in the IGN dataset
in the same way as ins:nom is used in the Insee dataset. Instead of ins:subdivisionDe, however, IGN
uses the three properties ign:arr, ign:dpt and ign:region to declare the arrondissement, department and
region an administrative unit belongs to. We have extracted the different link key conditions for the
combinations of these properties in the scope of the class pairs (ins:Com, ign:Com), (ins:Arr, ign:Arr),
(ins:Dép, ign:Dép) and (ins:Rég, ign:Rég). This has been performed in the graph resulting from the
union of the Insee graph, extended by transitivity of subdivisionDe, and the IGN graph, and again con-
sidering the owl:sameAs links. This generalises to the fully inferred RDF graph, as no other axiom of

3http://data,ign.fr
“The ign prefix denotes the namespace http://data.ign.fr/def/geofla#.
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neither the Insee ontology nor the IGN ontology may have an impact on the satisfiability of the exam-
ined link key axioms. As one would expect, the property pair (ins:nom, rdfs:label) is a strong in-link
key for (ins:Dép,ign:Dép) and (ins:Rég, ign:Rég). The property pairs (ins:subdivisionDe, ign:arr) and
(ins:subdivisionDe, ign:dpt) together with (ins:nom, rdfs:label) constitute weak (and plain) in-link keys
for the class pairs (ins:Com, ign:Com) and (ins:Arr, ign:Arr), respectively. They are not strong link keys
because, as explained in Example 1, subdivisionDe must be used as an eq-key. And they are not eq-link
keys because ign:arr (as well as ign:dpt) refers to a single administrative unit, though subdivisionDe refers
to several administrative units due to transitivity. In symbols,

= ({(ins:nom, rdfs:label), (ins:subdivisionDe, ign:arr) } linkkey:" (ins:Com, ign:Com))

T = ({{ )
VA {(ins:nom, rdfs:label), (ins:subdivisionDe, ign:dpt) } linkkey;: (ins:Arr,ign:Arr))
Z* = ({(ins:nom, rdfs:label) } linkkey;, (ins:Dép,ign:Dép))
T = ({( )

= ({(ins:nom, rdfs:label) } linkkey: (ins:Rég,ign:Rég))

where Z* is a canonical interpretation of the aforementioned RDF graph whose linked individuals are
merged.
Obviously, the above link keys could be used for rediscovering the links.

6.2. Relations between different link keys

In what follows, we provide theoretical results stating the relations between the different kinds of link
keys. Propositions 6 and 7 are the counterparts of Propositions 3 and 4 for link keys and can be proven
similarly.

Proposition 6. The following holds:

({(pi qi) Yz linkkeys, (C. D)) = ({{pi. 4i) Hy linkkey?, (C,D))
withy € {w,p,s}.
Proposition 7. If p1,..., pr and q1,. .., qx are functional then

({{pi» i) Yi=1 linkkeyz, (C. D)) = ({{pi i)}y linkkey}, (C, D))
withy € {w,p,s}.

Proposition 8 shows the relations between weak link keys, plain link keys and strong link keys: a
strong link key is always a plain link key, which is always a weak link key. Interestingly, there is no
distinction between weak eq-link keys and plain eq-link keys. This is due to the transitivity of equality.

Proposition 8. The following holds:
({{pi»gi) Y= linkkey', (C, D)) | ({{pi, i)}y linkkey? (C, D))
({{pi» @i} }i=1 linkkey? (C, D)) |= ({(pi. 4i) }i= linkkeyY (C, D))
({{pis @i} Yi=1 linkkeygq (C. D)) = ({(pi, qi) Y1 linkkeyE, (C, D))
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with x € {in,eq}.

Proof. The first two propositions follow direclty from the definitions of link keys. We prove the validity
of the third one Let Z be a DL interpretation such that Z = ({{pi, q:) }*_; linkkeyg, (C, D)), and let us
prove that Z |= ({(pi ¢;) }i_, linkkey?, (C,D)).Leté € C* andn € D* be such that p} (6) = g7 (17) # 0
(i=1,....k). Since T = ({{pi,qi)}._, linkkeyy, (C,D)), then 6 = n. Now, let §' € C* with p} (6) =
pE(8) A0 =1,...,k). From p?(8) = gF () # 0 and pF (6) = pF (') # 0, we can infer that p? (§') =
qt(n) # 0 (i = 1,....k). This together with &' € C*,n € D* and T |= ({(pi» q:) Y'_; linkkeyy, (C.D))
implies &' = 5, and, since 6 = n, then § = ¢. The last condition of plain eq-link keys can be proven
analogously. [J

In the following section, we establish when it is legitimate to use link keys for data interlinking.

7. Data interlinking with link keys

Theorems 3 and 4 give the logical grounds of data interlinking with weak in-link keys and eq-link
keys, respectively. Their proofs follow the same ideas and techniques of the proofs of Theorems 1 and 2
and are omitted.

Theorem 3. Ler O = (S,D,K) and O' = (S§',D',K') be two ontologies. Let A = (C, L, LK) be an
alignment between O and O’ such that

e ({{p1.q1),---. (P> qx) } linkkeyj; (C,D)) € LK.

Then, for any pair of individual names a and b of O and O, respectively, if

o {C(a)} U{pi(a,ci)}i=; €D,
e {D(b)} U{qi(b.d))}}_y C D" and
o {imdi}lCL

then O,0', A = a ~ b.
The counterpart of Theorem 3 for weak eq-link keys is Theorem 4:

Theorem 4. Let O = (S,D,K) and O = (S',D',K') be two ontologies. Let A = (C, L, LK) be an
alignment between O and O’ such that

o ({(p1.g1).- - (i)} linkkeyY, (C.D)) € LK.

Then, for any pair of individual names a and b of O and O, respectively, if
k o
e {C(a)} U .Ql{Pi(“’ )} €D,
o {{a} CVpifci,....qf 1 €S,
k o
e {D(b)}U ‘Ql{q,-(b, &)}, €1,
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1 riy 1k /
o {({b} CVq{d;,....d"}} | CS and
k . .
J ~ I
b .Ul{ci ~ d }j:l cL
=

then O,0', A = a ~ b.

Theorems 3 and 4 prove that weak link keys are enough and do not need mappings between classes
and properties to perform data interlinking.

Notice that, by Proposition 8, any plain or strong link key is a weak link key, so Theorems 3 and 4
also hold for them. Plain and strong link keys can be used in the same way to infer equality statements
between individuals of the same dataset.

We finish this section with the definition of the link set generated by a link key.

Definition 11 (Link set generated by a link key). Let O and O’ be two ontologies. Let A be an alignment
between O and O'. Let A be a link key. The set of links between O and O’ generated by A under A is
defined as

LOOA={axb: 0,0, AdFaxband 0,0, AlEax b}

In the following section, we compare data interlinking with link keys with data interlinking with keys
and alignments as described in Section 5.

8. Relation between Keys and Link Keys

Keys and link keys are data interlinking devices that we have developed so far in a parallel manner.
One then may expect that their application always results in the generation of the same links. We are
now able to formally establish the relation between keys and link keys, and to show that, although there
may be data interlinking scenarios in which they will return the same links, this will not always be the
case.

This section starts by studying the relation between keys and link keys as description logic axioms
(§8.1). Theorem 5 states the correspondence between strong link keys and keys and alignments. This
correspondence no longer holds for weak link keys (Theorem 6). We also study the impact of these
results on the generation of links (§8.2): Theorems 8 and 9 show that the links generated by a strong
link key are the same as the links generated by its corresponding keys and proper alignments. There are
cases, though, in which it is possible to generate links with weak link keys while it is not possible with
keys and alignments.

8.1. Logical relations between keys and link keys

The theorems presented here are consequences of stronger results included in Appendix A. We have
decided to not include the latter in this section because the former are more directly related to data
interlinking with keys and link keys.

Theorem 5 states the correspondence between strong link keys and keys and alignments: (12) says
that strong link keys entail keys; (13) and (14) express conditions at which the converse of (12) holds.
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Theorem 5. The following holds:

({{pi»qi) Y=y linkkey’, (C, D)) = ({pi}iz key, C) (12)
({pi¥i key,, ©).C 3 D {p; D qi}i=1 = ({{piq:)}i linkkey, (C,D)) (13)
({piYici keyo, €).C 3D, {pi = q:}izy = ({{pi-qi) }i=y linkkey}, (C, D)) (14)

with x € {in, eq}.

Proof. (12) is a direct consequence of the definition of strong link keys (Definition 9). (13) and (14) are
consequences of Proposition 11 in Appendix A. [

Given the symmetry of the link key definitions, (12), (13) and (14) hold for the right-hand side of the
link key too (with reversed subsumption relations).

Theorem 5 states that it is possible to infer keys from strong link keys. This is not surprising because
strong link keys are composed of keys by definition. We call these keys the side keys associated with a
strong link key. More interestingly, Theorem 5 also states that strong link keys can be inferred from keys
and proper alignments. Note that one key is enough to entail the strong link key as long as the alignment
holds (these alignments are different depending on whether in-link keys or eq-link keys are considered).

The converses of (13) and (14) are only partly true: strong link keys entail keys, but strong link keys
(nor plain or weak link keys) do not necessarily entail an alignment between their properties and classes.
This refutes the idea that link keys embed alignments. Link keys do not assert alignments, but express
conditions for identifying individuals. A link key between two classes C and D does not assert that C and
D are equivalent, nor that one of the classes subsumes the other, it just specifies how to link individuals
that are described as instances of C and D, but there may be individuals in both classes that do not belong
to the other class. For example, there may exist a link key between the classes AdministrativeCentre and
Town, although no equivalence, nor subsumption holds between them (some administrative centres are
towns, others are cities; some towns are administrative centres, others not).

Is Theorem 5 still valid for weak and plain link keys? (13) and (14) hold, but (12) does not. In other
words: keys and proper alignments entail weak and plain link keys (Corollary 5.1); however, the side
components of neither weak nor plain link keys are necessarily keys (Theorem 6).

Corollary 5.1. The following holds:
({pi}izi keyy, ©),C 3D, {p; D qi}iey = ({{pi»qi) }izy linkkeyy, (C, D)) (15)
({pi}iz1 keye, ©),C 2 D, {pi = ai}i—y E ({(pi»q:) }i=y linkkey, (C, D)) (16)
withy € {w,p}.

Proof. This is a direct consequence of Theorem 5 since, by Proposition 8, any strong link key is also a
plain and a weak link key. [

Unlike strong link keys, the side components of neither weak nor plain link keys are necessarily
keys. The proof of Theorem 6 provides two ontologies that are consistent with a weak link key but are
inconsistent with any of its side components.
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Theorem 6. There exist ontologies that are consistent with a weak link key but inconsistent with each
of its side components.

Proof. Consider the following ontologies:

O o
C(u1), C(uz), C(u3), C(ua), Cl(ul) C’(M’z),c'(ué),c'(uﬁ;),

p(u1,v1), p(uz, va), p(us, v1), p(us, v2), p'(uy,v1),p (”2"’2) p'(uz,v1), p'(us, v1),
q(ur, w1), q(uz, wi), q(us, wa), q(us, w1), ¢ (uy,w1),q (uhy, w1), q' (us, wh), ¢’ (), wh)

) w
Uy % u # uz % uy uy % uh % uly U

It can be checked that

A= {{p.p').(a.4")} linkkey}; (C,C"))

is consistent with O U O'. Notice that A together with O and O’ entails the link u; ~ u].
However, the side components of 4, i.e.

k=({p.qtkey, C©) K =({p.q} key, C')

are inconsistent with O and (0, respectively. Indeed, O U {«} |= us ~ uy4 because uy and uy share one
value for p (namely, v2) and g (w1). Also, O U {k} = us % uy because us % uy belongs to O. This
means that O U {«} is inconsistent. In the same way, it can shown that «’ is inconsistent with O’. [

It is noteworthy that not a single useful key (i.e. a key that can be used to generate links) can be found
in the ontologies of the proof of Theorem 6: ({p} key,, C) and ({¢} key;, C) are both inconsistent with
O, and ({p'} key,, C) and ({¢'} key,, C) with O’. As a consequence, in this example, data interlinking
is possible with link keys (4 allows to find u; & u}) but not with keys.

Example 3 makes clear in the context of a realistic data interlinking scenario that the converse of (12)
of Theorem 5 does not hold for weak link keys.

Example 3. The following statement of Example 2:
Z* = ({(ins:nom, rdfs:label), (ins:subdivisionDe, ign:arr) } linkkey:; (ins:Com,ign:Com))

expresses a weak in-link key satisfied by Z*, the canonical interpretation of the RDF graphs of Example 2
whose linked individuals are merged.
Let us consider the side components of the above weak link key:

({ins:nom, ins:subdivisionDe} key,, ins:Com) ({rdfs:label, ign:arr} key,, ign:Com)
However, as explained in Example 2, ({ins:nom, ins:subdivisionDe} key,, ins:Com) is not satisfied by
T* due to the transitivity of the property ins:subdivisionDe.

One may think that data interlinking is still possible with ({rdfs:label, ign:arr} key;, ign:Com), which

is indeed satisfied by Z*. This would require the following alignment correspondences to hold

ins:nom I rdfs:label ins:subdivisionDe  ign:arr
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However, Z* does not satisfy ins:nom 1 rdfs:label but the reversed subsumption ins:nom C rdfs:label.

Even though the side components of a weak link key are not necessarily keys for the ontologies
separately, every weak link key entails one key in the vocabulary of the ontologies together, as stated
by Theorem 7 below. Unfortunately, this link key is of very limited use in practice because the inferred
key holds for the intersection of the classes that we actually want to interlink (it is not known in advance
which individuals belong to both classes).

Theorem 7. The following holds:
({{pi> i) Yi=y linkkeyY (C, D)) = ({pi M g}z keyy CT1D)
with x € {in,eq}.
Proof. This is a consequence of Proposition 9 in Appendix A. [
8.2. Relations between generated link sets

The difference between using link keys for data interlinking instead of keys and ontology alignments
becomes evident when comparing Theorem 1 with Theorem 3 and Theorem 2 with Theorem 4. In both
cases, knowledge about keys and alignments is replaced by knowledge about link keys. Theorem 8 shows
that the generated link sets are exactly the same.

Theorem 8. Ler O and O’ be two ontologies. Let A = (C,L,LK) be an alignment between
O and O such that {C 3 D} U {p; C g}, C C. Let k = ({pi}*; key,, C) and 1 =

({{pi @i }_, linkkey}, (C, D)). Then LOO"A = £,

Proof. The result follows from Definitions 6 and 11 and the fact that, since {C J D}U{p; C q,-}ﬁ-‘:1 ccC
then, by clause (13) of Theorem 5, we have O, O’, A, «x = 4, and also O,0', A, A =«x. O

The same holds for eq-keys and eq-link keys.

Theorem 9. Let O and O’ be two ontologies. Let A = (C,L,LK) be an alignment between
O and O such that {C 3 D} U {p; = qi}*_; C C. Let « = ({pi}*_; key;, C) and 1 =

({{pi» q:) }*_, linkkey;, (C,D)). Then 590/,,4 _ 539,(9/,4

Proof. The result follows from Definitions 6 and 11 and the fact that, since {C 3 D}U{p; = ¢;}_; CC
then, by clause (14) of Theorem 5, we have O, O’, A, = 4, and also O,0', A, A =«x. O

The lesson from Theorems 8 and 9 is that, for interlinking two datasets, if there is a key for one dataset
and a proper alignment from the key to the vocabulary of the other dataset, then using the key or the
strong link key entailed by the key and the alignment is strictly equivalent.

However, as explained in the previous section, weak link keys may exist even when keys and proper
alignments do not exist. As a conclusion, in general, link keys are more suitable than keys for data
interlinking. Thus, data interlinking algorithms are justified in discovering link keys rather than keys and
alignments.
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9. Conclusions and Further Work

The relation between keys and link keys is much more subtle than one may think at first sight, and
one may not be replaced by the other without care. In particular, we have shown that data interlinking
with keys requires (a) a proper alignment (Theorems 1 and 2), and (b) completion in the case of eq-keys
(Theorem 2). Data interlinking with link keys, in turn, does not need alignments (Theorems 3 and 4) but
needs anyway completion in the case of eq-link keys (Theorem 4).

Strong link keys entail keys by definition, and we have proven that keys with proper alignments entail
strong link keys (Theorem 5). In this case, the links generated by a strong link key are the same as the
links generated by their associated side keys and alignments (Theorems 8 and 9).

Neither strong nor weak link keys require ontology alignments for data interlinking but weak link keys
are not associated with keys in the ontologies separately (Theorem 6; if they are, then they are strong
link keys), and yet they may be useful for interlinking datasets.

These results provide a clear picture of the key-inspired devices available for data interlinking. They
can be easily integrated within the generalised notions of a key and a link key.

The work presented in this paper contributes grounding data interlinking methods based on keys and
link keys. In particular, it justifies the work for directly extracting weak link keys [8] instead of searching
for keys with matching alignments. Link key extraction directly focuses on what may be used for data
interlinking instead of generating keys and alignments that may not be possible to exploit. Also, when
no strong link key exists, it may find a suitable weak link key, though key extraction would not return
useful keys.

The clarification of the semantics of link keys tackled in this paper should also lead to more powerful
data interlinking methods. For instance, using the formal semantics of link keys, reasoners may derive
link keys. Such entailed link keys could be exploited by extended versions of reasoning-based data
interlinking tools. This should also enable breaking the extraction+interlinking process by reasoning on
link keys before interlinking in order to provide more accurate links, eventually more efficiently.
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Appendix A. Proofs of Section 8.1

This appendix describes the relations between keys and link keys in a more precise way than it was
done in Section 8.1. Some of the results of Section 8.1 are synthetic consequences of the ones presented
here.

Proposition 9. The following holds:

({{pi»qi) Yzt linkkey}y (C. D)), {pi C qi}iz1 = ({pi}izy key;, CM1 D)
({(pi»qi) Y=y linkkey} (C, D)), {p; 3 q:i}i=y = ({ai}i=1 key,, C1D)
({{pi» i) Yizy linkkeyy, (C. D)), {pi = qi}i—1 = ({pi}i=1 key,, C 1 D)

Proof. Let us prove the first entailment. Let Z such that Z = ({{pi,¢:)}*_; linkkey!: (C,D)) and
IEpiCq(i=1,....k),andletus prove that T = ({p:}*_, key,, C1 D). Let 6,8 € (C 1 D) such
that pZ (6) NpE(6") #0 (i = 1,...,k). Since 6,8’ € (CM1 D). = CTND? then 5,6’ € CT and 6,8" € D7.
In particular, § € C* and & € D*. Now, since Z = p; C g;, then, p¥(&') C ¢*(¢8') (i = 1,...,k). From
this and the fact that pf(6) N pZ(6") # ), we can infer that p?(6) N ¢*(6') # 0 (i = 1,...,k). Since
T = ({{pi»qi)}*_, linkkey? (C,D)) and 6 € CT and §' € D?, then 6 = &'. The second entailment can
be proven analogously.

Let us prove the third entailment. Let Z such that Z = ({(pi¢i)}/—; linkkeyy, (C,D)) and
TkEpi=qi (i =1,...,k),and let us prove that 7 |= ({pi}/_; key,, C M D). Let 6,6’ € (C T D)t
such that pZ(6) = pF(6') # 0 (i = 1,...,k). Since 6,8’ € (C M D) then 6 € CT and & € D”.
Now, since Z |= p; = g;, then, we have p7(6') = ¢Z(¢8') (i = 1,...,k). From this and the fact that
pL(6) = pE(8') # 0, we can infer that pf(6) = ¢Z(8') # 0 (i = 1,...,k). Finally, since § € C and
¢ € DY and T |= ({(pi, qi) }., linkkeyy, (C, D)) then it mustbe § = &'. [

Proposition 10 is the counterpart of Proposition 9 for strong link keys. Notice that this time the con-
sequent is a key in the union of classes, and not only in the intersection.
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Proposition 10. The following holds:

({(pi- i) }i= linkkey}, (C,D)),{p; C q:}i=y = ({pi}i=; key;, CUD)
({(pi»qi) Yizy linkkey}, (C. D)) {p: 2 q:i}i=y E ({gi}i=; key;, CLUD)
({{pi- i) Yiz linkkeys, (C. D)), {p; = qi}i=; = ({pi}i=; key,, C LU D)

Proof. We only prove the first entailment. Let Z such that Z = ({{pi,q:)}*_, linkkey}, (C,D)) and
TE=piCq(i=1,...,k),and let us prove that T |= ({p;}*_, key,, CU D). Let 6,8’ € (C U D) such
that pZ (6)Npt(6') # D (i =1,...,k). Wehave 5,8’ € (CUD)? = CTUD?. Let us consider three cases:
(1) 6,6 € C,(2) 6,6’ € DY and (3) § € CT and &' € D? (the case &' € CT and 6 € D? is equivalent to
this last one).

(1) Assume that 6,6' € CZ. Since T |= ({{p:,qi)}*_; linkkey:, (C,D)) then T = ({p:}*_, key,, C).
From this and the fact that 6,8’ € CZ and pZ(6)NpE (&) # 0 (i = 1,...,k), we can conclude that § = &'.

(2) Assume that 5,8’ € DZ. Since Z |= ({{pi» ¢:)}*_; linkkey;, (C,D)) then Z = ({¢:}*_; key;, D).
Now, we also have that Z = p; C ¢;. Thus, p?(6) C ¢F(6) and pZ(6') C ¢ (6') (i = 1,...,k). From
this, and pZ(8) N pF(8') # 0, we can infer that g7 (6) N g (6') # 0 (i = 1,...,k). This along with the
fact that 6,68’ € DT and T = ({g;}*_, key,, D) implies § = &'.

(3) Assume that § € CZ, & € DZ. Since T = ({{pq))}’, linkkey;, (C,D)) then T |=
({{pi»q:) }*_, linkkey?, (C, D)). It is possible to proceed like in the proof of the first statement of Theo-
rem 9 to conclude that § = ¢'.

The other two statements can be proven similarly. [

Proposition 11 is the converse of Proposition 10. Notice, however, that, in the case of in-link keys,
the subsumptions are inverted, i.e. they are the subsuming and not the subsumed properties the ones that
must form an in-key in the union of classes.

Proposition 11. The following holds:

({pi}ie1 key,, CUD), {p; 3 q:}i=y E ({{pi»qi)}i=1 linkkey}, (C,D))
({gitiey key,, CUD), {p: C gi}i—1 E ({{pi-q:)}._, linkkey}, (C, D))
({piYicy key, CUD). {pi = qi}i=y E ({{pi»q:)}i=, linkkey}, (C,D))

Proof. We only prove the first inference. Let Z be an interpretation such that Z = ({p;}*_, key,, C U D)
and 7 ): Pi | qi (l = 1,k)

Since Z = ({pi}*_; key,, C U D), by (8) of Proposition 5, we have that Z = ({p;}*_; key,, C).

Let us prove Z = ({g:}%_ key,, D). Since Z = ({p:}*_, key,, CLU D), by (8) of Proposition 5,
we have 7 = ({p:}*_, key,, D), and, since Z |= p; 3 ¢;, by (9) of Proposition 5, we also have that
T = ({giti= key, D).

Finally, let us prove that Z = ({(p;, ¢:)}*_, linkkeyY (C,D)). Let§ € C and §' € D* with pZ(6) N
qgf(§") #0 (G = 1,...,k). From § € C* and & € D we have 6,8’ € CT U D* = (C U D). Since
T = pi 3 qi, we have ¢Z(8') C p*(&') (i = 1,...,k). From this and p?(6) N ¢Z(8') # O we infer
pE(6) N pr(8') # 0 (i = 1,...,k). This together with 6,6’ € (C U D) and Z |= ({p:}*_, key;, C U D)
implies 6 = ¢'.
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The second entailment can be proven analogously. The third entailment can be proven analogously
too, but will use (10) of Proposition 5. [J
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