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Abstract. The proliferation of knowledge graphs and recent advances in Artificial Intelligence have raised great expectations
related to the combination of symbolic and distributional semantics in cognitive tasks. This is particularly the case of knowledge-
based approaches to natural language processing as near-human symbolic understanding relies on expressive, structured knowl-
edge representations. Engineered by humans, such knowledge graphs are frequently well curated and of high quality, but at the
same time can be labor-intensive, brittle or biased. The work reported in this paper aims to address such limitations, bringing
together bottom-up, corpus-based knowledge and top-down, structured knowledge graphs by capturing as embeddings in a joint
space the semantics of both words and concepts from large document corpora. To evaluate our results, we perform the largest and
most comprehensive empirical study around this topic that we are aware of, analyzing and comparing the quality of the resulting
embeddings over competing approaches. We include a detailed ablation study on the different strategies and components our
approach comprises and show that our method outperforms the previous state of the art according to standard benchmarks.
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benchmarking

1. Introduction

The history of Artificial Intelligence is a quest for
the perfect combination of reasoning performance and
the ability to capture knowledge in machine-actionable
formats. Early AI systems developed during the ’70s
like MYCIN [1] already proved it was possible to ef-
fectively emulate human reasoning in tasks like clas-
sification or diagnosis through artificial means. How-
ever, the acquisition of expert knowledge from humans
soon proved to be a challenging task, resulting in what
was known ever after as the knowledge acquisition bot-
tleneck [2].

Indeed, in an attempt to address this challenge and
work at the knowledge level [3], knowledge acquisi-
tion eventually became a modeling activity rather than
a task focused on extracting knowledge from the mind
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of an expert. Along the knowledge level path came
ontologies, semantic networks and eventually knowl-
edge graphs (henceforth, KGs), which provide rich,
expressive and actionable descriptions of the domain
of interest and support logical explanations of reason-
ing outcomes. However, KGs can be costly to pro-
duce and scale since a considerable amount of well-
trained human labor [4] is needed to manually en-
code high-quality knowledge in the required formats.
Furthermore, the design decisions made by knowl-
edge engineers can also have an impact in terms of
depth, breadth and focus, which may result in biased
and/or brittle knowledge representations, hence requir-
ing continuous supervision and curation.

In parallel, the last decade has witnessed a notice-
able shift from knowledge-based, human-engineered
methods to statistical ones due to the increasing avail-
ability of raw data and cheaper computing power, fa-
cilitating the training of increasingly effective models
in areas of AI like natural language processing (NLP).
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2 Vecsigrafo: corpus-based word-concept embeddings

Recent results in the field of distributional semantics
e.g. word2vec [5] are particularly promising ways to
capture the meaning of words in document corpora as a
vector in a dense, low-dimensional space. Among their
applications, word embeddings have proved to be use-
ful in term similarity, analogy and relatedness, as well
as many NLP downstream tasks including e.g. classifi-
cation [6], question answering [7–9] or machine trans-
lation [10–13]. However, the knowledge thus captured
is generally hard to interpret, let alone matched to ex-
isting concepts and relations [14], i.e. the main arti-
facts (explicitly) represented in a KG.

In the intersection of knowledge-based and statisti-
cal approaches to NLP, many argue [15–17] that KGs
can enhance both expressivity and reasoning power,
and advocate for a hybrid approach leveraging the best
of both worlds. This is particularly the case in situa-
tions where there is a lack of sufficient data or an ad-
equate methodology to learn the nuances associated
to the concepts and the relationships between them,
which on the other hand can be explicitly (and exten-
sively) represented in existing KGs.

Furthermore, recent contributions [18–21] show ev-
idence that it is possible to learn meaning exclusively
from text through NLP tasks such as language model-
ing and textual entailment, capturing not only lower-
level aspects of the text like syntactic information but
also showing a certain abstraction capability in the
form of context-dependent aspects of word meaning
that can be used e.g. for word-sense disambiguation.
A different line of research, focused on the pragmat-
ics of language [22, 23], on the contrary argues that
effectively capturing meaning requires not only taking
into account the form of the text but also other aspects
like the particular context in which such form is used
or the intent or cognitive state of the speaker, suggest-
ing that the text needs to be enriched in order to actu-
ally convey the required meaning to a learner. For NLP
to scale beyond partial, task-specific solutions, it must
be informed by what is known about how humans use
language.

In this paper, we take a step further and argue that
the application of structured knowledge contained in
KGs can provide such necessary guidance to extract
actual meaning from text. In doing so, we produce dis-
ambiguated, joint word and concept embeddings that
follow a hybrid knowledge formalism involving statis-
tic and symbolic knowledge representations. Also, we
argue that the resulting representations are richer and
more expressive than those produced through existing

approaches based on word-only, KG and hybrid word-
concept embeddings.

To support our claims we run a comprehensive set
of experiments with different learning algorithms over
a selection of document corpora in varying sizes and
forms and evaluate our results over several NLP tasks,
both intrinsic (semantic similarity, relatedness) and ex-
trinsic (word-concept and relation prediction). We con-
duct an ablation study1 that takes into account differ-
ent disambiguation strategies and variations of our ap-
proach, providing a deeper insight on the different as-
pects our method comprises and illustrating how the
quality of the resulting embeddings evolves over the
different strategies followed to generate them and the
size of the training corpus. We study the effects of fil-
tering over raw text based on grammatical information,
entities and other criteria, the effects of (and differ-
ent approaches to) lemmatization, the impact of jointly
training lexical and semantic embeddings, and the ef-
fects of applying different disambiguation strategies.
Finally, we propose a number of mechanisms to mea-
sure the quality and properties of the resulting em-
beddings, including word and concept prediction plots
and inter-embedding agreement. Our results show that
our approach consistently outperforms word-only and
knowledge graph embeddings, as well as most of the
hybrid baselines.

The paper is structured as follows. Next section pro-
vides an overview of the research context relevant to
our work in areas including word, graph and sense em-
bedding. Section 3 describes our approach to capture
as embeddings the semantics of both words and con-
cepts in large document corpora. Section 4 goes on to
evaluate our results over different datasets and tasks,
comparing to the approaches described in section 2,
including a comparative study and an ablation study.
Next, section 5 reflects on our findings and provides
additional insight and interpretation of the evaluation
results. Finally, section 6 concludes the paper and ad-
vances next steps in our research.

2. Related work

This work is among the first few to study the joint
learning of embeddings for words and concepts from
a large disambiguated corpus. The idea itself is not

1Systematically removing some of the information fed to our em-
bedding learning system to determine individual contributions to the
overall performance.
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novel, as Camacho-Colladas et al. [24] points out, but
performing a practical study is difficult due to the lack
of manually sense-annotated datasets. The largest such
dataset is SemCor [25] (version 3.0), a corpus of 537K
tokens, 274K of which are annotated with senses from
WordNet. Although this dataset could be used with
our approach to generate embeddings for the WordNet
senses, results from work on word-embeddings show
that the size of the corpus greatly affects the quality of
the learned embeddings and that corpora in the order
of billion tokens are required. In this paper we use an
automatic approach for generating word-concept an-
notations, which makes it possible to use large corpora
to learn good quality concept and word embeddings as
our studies and results in section 4 show.

Below, we discuss several similar approaches vary-
ing from those learning plain word-embeddings, to
those learning sense and concept embeddings from
corpora and semantic networks, and those which do
not use corpora at all, but instead attempt to learn con-
cept embeddings directly from a knowledge graph.

2.1. Word embeddings

Learning word embeddings2 has a relatively long
history [26], with earlier works focused on deriving
embeddings from co-occurrence matrices and more
recent work focusing on training models to predict
words based on their context [27]. Both approaches are
roughly equivalent as long as design choices and hy-
perparameter optimization are taken into account [28].

Most of the recent work in this area was triggered
by the word2vec algorithm proposed in [5] which pro-
vided an efficient way to learn word embeddings by
predicting words based on their context words3 and us-
ing negative sampling. Recent improvements on this
family of algorithms [29] also take into account (i) sub-
word information by learning embeddings for 3 to 6
character n-grams, (ii) multi-words by pre-processing
the corpus and combining n-grams of words with high
mutual information like “New_York_City” and (iii)
learning a weighting scheme (rather than predefining
it) to give more weight to context words depending
on their relative position to the center word4. These
advances are available via the FastText implementa-
tion and pretrained embeddings. Algorithms based on

2Also called the Vector Space Model in the literature.
3or viceversa, respectively called continuous bag-of-words

(cbow) and skip-gram architectures.
4Sometimes also called "target" or "focus" word in the literature.

word co-occurrences are also available. GloVe [30]
and Swivel [31] are two algorithms which learn em-
beddings directly from a sparse co-occurrence matrix
that can be derived from a corpus; they do this by cal-
culating relational probabilities between words based
on their co-occurrence and total counts in the corpus.

These approaches have been shown to learn lexi-
cal and semantic relations. However, since they stay
at the level of words, they suffer from issues regard-
ing word ambiguity. And since most words are poly-
semic, the learned embeddings must either try to cap-
ture the meaning of the different senses or encode only
the meaning of the most frequent sense. In the oppo-
site direction, the resulting embedding space only pro-
vides an embedding for each word, which makes it dif-
ficult to derive an embedding for the concept based on
the various words which can be used to refer to that
concept.

The approach described in this paper is an exten-
sion that can be applied to both word2vec style algo-
rithms and to co-occurrence algorithms. In this paper
we only applied this extension to Swivel, although ap-
plying it to GloVe and the standard word2vec imple-
mentations should be straightforward. Applying it to
FastText would be more complicated, especially when
taking into account the sub-word information, since
words can be subdivided into character n-grams, but
concepts cannot.

2.2. Sense and concept embeddings

A few approaches have been proposed to produce
sense and concept embeddings from corpora. One ap-
proach to resolve this is to generate sense embed-
dings [32], whereby the corpus is disambiguated using
Babelfy and then word2vec is applied over the disam-
biguated version of the corpus. Since plain word2vec is
applied, only vectors for senses are generated. Jointly
learning both words and senses was proposed by Chen
et al. [33] and Rothe et al. [34] via multi-step ap-
proaches where the system first learns word embed-
dings, then applies disambiguation based on WordNet
and then learns the joint embeddings. While this ad-
dresses ambiguity of individual words, the resulting
embeddings focus on synonymous word-sense pairs5,
rather than on KG concepts.

5E.g. word-sense pairs appleN2 and Malus_pumilaN1 have sep-
arate embeddings, but the concept for apple tree they represent has
no embedding.
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Another approach for learning embeddings for con-
cepts based on a corpus without requiring word-
sense disambiguation is NASARI [24], which uses
lexical specificity to learn concept embeddings from
Wikipedia subcorpora. These embeddings have as their
dimensions, the lexical specificity of words in the
subcorpus, hence they are sparse and harder to ap-
ply than low-dimensional embeddings such as those
produced by word2vec. For this reason, NASARI
also proposes to generate “embedded vectors” which
are weighted averaged vectors from a conventional
word2vec embedding space. This approach only works
for Wikipedia and BabelNet, since you need a way
to create a subcorpus that is relevant to entities in the
knowledge base. Furthermore, although this approach
should support concept embeddings for all types of
words, the pre-trained embeddings we found only pro-
vided embeddings for noun concepts6.

Finally, the work that is closest to our work is
SW2V (Senses and Words to Vectors) [35] which pro-
poses a lightweight word-disambiguation algorithm
and extends the Continuous Bag of Words architec-
ture of word2vec to take into account both words
and senses. Our approach is essentially the same, al-
though there are various implementational differences:
(i) we use our proprietary disambiguator; (ii) we im-
plemented our learning algorithm as a variation of
correlation-based algorithms as a consequence; and
(iii) we take into account the distance of context words
and concepts to the center word. In terms of evalu-
ation, Mancini et al. [35] only reports results for 2
word-similarity datasets while we provide an exten-
sive analysis on 14 datasets. We further analyze the im-
pact of different corpus sizes and look into the inter-
agreement between different vector spaces (a measure
of how similar two vector spaces are based on the pre-
dicted distances between a set of word pairs).

2.2.1. Graph embeddings
Several approaches have been proposed to cre-

ate concept embeddings directly from knowledge
graphs, such as TransE [36], HolE [37], ProjE [38],
RDF2Vec [39] and Graph Convolutions [40]. The
main goal of such concept embeddings is typically
graph completion. In our opinion, these approaches all
have the same drawback: they encode the knowledge
(including biases) explicitly contained in the source
knowledge graph, which is typically already a con-

6See Section 4.4.1 for a description of and a link to the pre-trained
embeddings we used.

densed and filtered version of the real world data. Even
large knowledge graphs only provide a fraction of the
data that can be gleaned from raw datasets such as
Wikipedia and other web-based corpora; i.e. these em-
beddings cannot learn from raw data as it appears in
the real-world. In our evaluation we have used HolE
to compare how such word and concept embeddings
compare to those derived from large text corpora.

3. Corpus-based joint concept-word embeddings

In order to build hybrid systems which can use both
bottom-up (corpus-based) embeddings and top-down
(KG) knowledge, we propose to generate embeddings
which share the same vocabulary as the KGs. This
means generating embeddings for knowledge items
represented in the KG such as concepts and surface
forms (words and expressions) associated to the con-
cepts in the KG7.

3.1. Notation and preliminaries

Let T be the set of tokens that can occur in text after
some tokenization is applied; this means tokens may
include words (“running”), punctuation marks (“;”),
multi-word expressions (“United States of America”)
or combinations of words with punctuation marks
(“However,”, “–”). Let L be the set of lemmas: base
forms of words (i.e. without morphological or con-
jugational variations). Note that L ⊂ T .8 We also
use the term lexical entry –or simply word– to re-
fer to a token or a lemma. Let C be the set of con-
cept identifiers in some KG, we use the term seman-
tic entry –or simply concept– to refer to elements in
C. Let V ⊂ T ∪ C be the set of lexical and seman-
tic entries for which we want to derive embeddings,
also called the vocabulary. A corpus is a sequence
of tokens ti ∈ T ; we follow and extend the defini-
tion of context around a token (used in e.g. word2vec,
GloVe and Swivel) as a W-sized sliding window over
the sequence of tokens. Therefore we say that tokens
ti−W , ..., ti−1, ti+1, ..., ti+W are in the context of center
token ti in the context at position i in the corpus. Each

7In RDF, this typically means values for rdfs:label
properties, or words and expressions encoded as
ontolex:LexicalEntry instances using the lexicon model for
ontologies (see https://www.w3.org/2016/05/ontolex/).

8We assume lemmatization correctly strips away punctuation
marks (e.g. lemma of “However,” is “however” and lemma of “Dr.”
is “Dr.”)

https://www.w3.org/2016/05/ontolex/
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context can be represented as a collection of center-
context pairs of the form (ti, t j), where ti ∈ T and
t j ∈ T . We extend this to take into account lemmas
and concepts: let D be the collection of center-context
entry pairs (xi, x j) observed in a corpus, where xi ∈ V
and x j ∈ V .9 We use notation #(xi, x j) to refer to the
number of times the center entry xi co-occurred with
context entry x j in D. We also define p(xi, x j) as the set
of positions in the corpus where xi is the center word
and x j is a context word. Similarly #(x) is the num-
ber of times entry x occurred in D as a center word.
Finally, let d be the dimension of the vector space, so
that for each entry x in V , has two corresponding vec-
tors ~xC and ~xF ∈ Rd, which correspond to the vector
representation of x as a context or as a center entry,
respectively.

3.2. Formal definition

The overall process for learning joint word and con-
cept embeddings in what we call a Vecsigrafo (derived
from the term Sensigrafo, Expert System’s KG10) is
depicted in Figure 3.2. We start with a text corpus on
which we apply tokenization and word sense disam-
biguation (WSD). Tokenization on its own results in a
sequence of tokens. WSD further results in a disam-
biguated corpus, an enriched form of the sequence of
tokens, whereby there are additional sequences aligned
to the initial sequence of tokens. In this work we use
the following additional sequences: lemmas, concepts
and grammar types. The grammar type assigns a part-
of-speech identifier to each token (e.g. article, adjec-
tive, adverb, noun, proper noun, punctuation mark);
we use these for filtering, but not for generating em-
beddings. Since some tokens may have no associated
lemma or concept, we pad these sequences with ∅L

and ∅C , which are never included in the vocabulary V .
The disambiguated corpus can optionally be mod-

ified or filtered in different ways. In our evalua-
tion, we experiment with a filter whereby we (i)
remove elements from the sequences if they have
grammar type article, punctuation mark or
auxiliary verbs and (ii) generalize tokens with

9In principle, we could define two vocabularies, one for the center
entries and another for the context entries; however in this paper
we assume both vocabularies are equal, hence we do not make a
distinction.

10 Sensigrafo, Expert System’s knowledge graph: https:
//www.expertsystem.com/products/cogito-cognitive-technology/
semantic-technology/knowledge-graph

grammar type entity or person proper noun,
which replaces the original token with special to-
kens grammar#ENT and grammar#NPH respec-
tively. The intuition behind this filter is that it pro-
duces sequences where each element is more semanti-
cally meaningful, since articles, punctuation marks and
auxiliary verbs are binding words which should not
contribute much meaning to their co-occurring words.
Similarly, in many cases, we are not interested in deriv-
ing embeddings for entities (names of people, places or
organizations); furthermore, many entity names may
only occur a few times in a corpus and may refer to
different real world individuals.

To generate embeddings for both semantic and lex-
ical entries, we iterate through the disambiguated cor-
pus to decide on a vocabulary V and calculate a rep-
resentation of D called a co-occurrence matrix M,
which is a |V| × |V| matrix, where each element xi j =
#(xi, x j). We follow word2vec, GloVe and Swivel in
using a dynamic context window [28], whereby co-
occurrence counts are weighted according to the dis-
tance between the center and the context entry using
the harmonic function. More formally, we use

#δ(xi, x j) =
∑

c∈p(xi,x j)

W − δc(xi, x j) + 1

W
(1)

where δc(xi, x j) is the distance, in token positions,
between the center entry xi and the context entry x j in
a particular context at position c in the corpus. W is the
window size as presented in section 3.1.

In standard word embedding algorithms, there is
only one sequence of tokens; hence 1 <= δc(xi, x j) <=
W. In our case we have three aligned sequences: to-
kens, lemmas and concepts. Hence δ(xi, x j) may also
be 0, e.g. when xi is a lemma and x j is its dis-
ambiguated concept. Hence, in this work, we use a
slightly modified version:

δ′c(xi, x j) =

{
δc(xi, x j) if δc(xi, x j) > 0

1 if δc(xi, x j) = 0
(2)

This gives us #δ′(xix j) and, based on the co-
occurrence matrix M we thus apply the training phase
of a slightly modified version of the Swivel algorithm
to learn the embeddings for the vocabulary. The origi-
nal Swivel loss function is given by:

https://www.expertsystem.com/products/cogito-cognitive-technology/semantic-technology/knowledge-graph
https://www.expertsystem.com/products/cogito-cognitive-technology/semantic-technology/knowledge-graph
https://www.expertsystem.com/products/cogito-cognitive-technology/semantic-technology/knowledge-graph
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Fig. 1. Process for Vecsigrafo generation from a text corpus.

LS =

{
L1 if #(xi, x j) > 0

L0 if #(xi, x j) = 0, where

L1 =
1

2
#(xi, x j)

1/2(~xi
>
~x j − log

#(xi, x j)|D|
#(xi)#(x j)

)

L0 = log[1 + exp(~xi
>
~x j − log

|D|
#(xi)#(x j)

)]

Our modifications are: using #δ′(xi, x j) instead of
the default definition and the addition of a vector reg-
ularization term as suggested by Duong et al. [41]
(equation 3) which aims to reduce the distance be-
tween the column and row (i.e. center and context)
vectors for all vocabulary elements, i.e.

L = LS + γ
∑
x∈V

‖~xF − ~xC‖22 (3)

This modification is useful in our case, when the row
and column vocabularies are the same; where in the
end you would typically take the sum or the average of
both vectors as your final embeddings.

3.3. Implementation

We have used Expert System’s proprietary Cogito
pipeline to tokenize and disambiguate the corpora dis-
cussed in this paper. The disambiguation algorithm is
proprietary; however, internal evaluations show high
accuracy on small test corpora. Expert System uses a
proprietary KG called Sensigrafo, which is similar to
WordNet, but larger and tightly coupled to the Cog-
ito disambiguator (i.e. the disambiguator uses intricate
heuristic rules based on lexical, domain and semantic
rules to do its job). More specifically, we have used
version 14.2 of Sensigrafo, which contains about 400K
lemmas and 300K concepts (called syncons in Sensi-
grafo) interlinked via 61 relation types. Sensigrafo pro-

vides a glossa –a human readable textual definition–
for each concept, which is only intended for facilitating
the inspection and curation of the KG. In the evalua-
tions below, we study the effect of applying alternative
disambiguation algorithms11 for comparison. We im-
plemented three disambiguation methods: (i) the Shal-
low Connectivity disambiguation (scd) algorithm in-
troduced by [35], which essentially chooses the candi-
date concepts that are better connected to other candi-
date concepts according to the underlying KG; (ii) the
most frequent disambiguation (mostfreqd), which
chooses the most frequent concept associated to each
lemma encountered in the corpus and (iii) the random
concept candidate disambiguation (rndd), which se-
lects a random concept for each lemma encountered in
the corpus. Note that rndd is not completely random,
it still assigns a plausible concept to each lemma, since
the choice is made out of the set of all concepts asso-
ciated to the lemma.

To implement our approach, we extend the matrix
construction phase of the Swivel [31] algorithm12 to
generate a co-occurrence matrix which can include
both lexical and semantic entries as part of the vocab-
ulary. Table 1 provides an example of different tok-
enizations and disambiguations for a context window
derived from the same original text. To get a feel-
ing for concepts and the effect of different disam-
biguators, notice that Cogito assigns concept #82073
(with glossa appropriate for a condition or occasion
and synonyms suitable, right) to "proper", while scd
and mostfreqd have assigned concept #91937 (with
glossa marked by suitability or rightness or appro-
priateness and synonyms kosher). The rndd disam-
biguation has assigned an incorrect concept #189906
from mathematics (with glossa distinguished from a
weaker relation by excluding...).

11See [42] for a comprehensive survey on the topic.
12As implemented in https://github.com/tensorflow/models/tree/

master/research/swivel

https://github.com/tensorflow/models/tree/master/research/swivel
https://github.com/tensorflow/models/tree/master/research/swivel
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Table 1
Example tokenizations for the first window of size W = 3 for sentence: “With regard to enforcement, proper agreements must also be concluded
with the Eastern European countries...”. First we show standard swivel tokenization, next we show the standard Cogito tokenization with se-
quences for plain text, lemmas, syncons and grammar type; next we show alternative disambiguation syncons for the same tokenization. Finally,
we show cogito tokenization after applying filtering

context ti−3 ti−2 ti−1 ti ti+1 ti+2 ti+3

tswivel With regard to enforcement, proper agreements must also

t with regard to enforcement , proper agreements must also be
l with regard to enforcement ∅ proper agreement must also be
s en#216081 en#4652 ∅ en#82073 en#191513 ∅ en#192047 ∅
g PRE NOU PNT ADJ NOU AUX ADV AUX

smostfreqd en#216081 en#4652 ∅ en#91937 en#191513 en#77903 en#191320 en#77408
sscd en#216081 en#4652 ∅ en#91937 en#191513 en#239961 en#191320 en#134549
srndd en#216081 en#4652 ∅ en#189906 en#191513 en#101756782 en#191320 en#77445

t_f with regard to enforcement proper agreements also concluded eastern european
l_f with regard to enforcement proper agreement also conclude eastern European
s_f en#216081 en#4652 en#82073 en#191513 en#192047 en#150286 en#85866 en#98025
g_f PRE NOU ADJ NOU ADV VERB ADJ ADJ

Table 1 also introduces notation we will use through-
out the paper to identify embedding variations. We will
use t to refer to plain text tokens and assume Cogito-
based tokenization, if a different tokenization is meant,
we will add a suffix like in the table to show that swivel
tokenization has been used. Similarly, we use l to refer
to lemmas and s to refer to concept identifiers (we as-
sume syncons since most of our experiments use Sen-
sigrafo, although in some cases this may refer to other
concept identifiers in other KGs such as BabelNet). As
described above, the source sequences may be com-
bined, which in this paper means combinations ts or
ls. Finally we use suffix _f to show that the original
sequence was filtered based on grammar type informa-
tion as described above.

4. Evaluation

Our approach requires a few changes to conven-
tional algorithms for learning word embeddings, in
particular the tokenization and lemmatization required
to perform disambiguation affects the vocabulary. Fur-
thermore, the introduction of concepts in the same vec-
tor space can affect the quality of word embeddings.
Obviously the whole point of such a hybrid approach is
to be able to learn both high quality word and concept
embeddings. Hence, we posit the following research
questions:

– RQ1 What is the optimal configuration for gen-
erating Vecsigrafo embeddings for a specific cor-

pus size? In particular, which tokenization, dis-
ambiguation and filtering combination is likely to
result in better embeddings?

– RQ2 How does Vecsigrafo compare to conven-
tional word embeddings? More specifically:

∗ RQ2.1 Does inclusion of concepts in the same
space affect the quality of the word embed-
dings?

∗ RQ2.2 We know that corpus size affects the
quality of word embeddings, does this effect
change for Vecsigrafo-based embeddings?

∗ RQ2.3 How does Vecsigrafo (based on Swivel)
compare to other word-embedding algorithms

– RQ3 How do corpus-based derived embeddings
compare to other concept-embeddings such as
KG-derived embeddings and lexical specificity-
derived embeddings?

In an attempt to find answers to the research ques-
tions, we performed two studies on the resulting em-
beddings: an ablation study to determine the effect of
different choices in our algorithm , as well as of key
components like the underlying KG and disambigua-
tor (i.e. RQ1 and RQ2.2), and a comparative study
to compare Vecsigrafo to other word-embedding algo-
rithms (i.e. RQ2 and RQ3). In both studies, we rely on
several tasks that provide an indication about the qual-
ity of the embeddings:

– Word similarity: We analyze results for 14
word-similarity datasets for word and concept
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relatedness. Besides testing on the embedding
agreement with human-labeled gold standards,
we also check inter-agreement between embed-
dings generated via different methods, which is
a good indicator that the resulting embeddings
are converging. Inter-agreement also provides ev-
idence about how much the resulting word em-
beddings learned in Vecsigrafo differ from con-
ventional word embeddings.

– Word prediction: We use a test corpus to model
how well the resulting embeddings predict a word
based on its context words, essentially recreating
the word2vec loss function on a test corpus un-
seen during training. This task provides insight
into the quality of the resulting embeddings. Also,
since this task provides information about a sub-
set of the vocabulary, it can be used to generate
plots which provide an overview of possible dis-
parities in the quality of common and uncommon
words.

– Relation prediction: While word-similarity and
word-prediction tasks are intrinsic evaluations,
ultimately the goal of learning hybrid concept
embeddings is to be able to refine knowledge rep-
resentations. One such refinement is the predic-
tion of specific relations in a knowledge graph.

4.1. Sources: corpora and knowledge graphs

For better comparability, we have tried to generate
embeddings using available code and the same input
corpus whenever possible, although in some cases we
have relied on pretrained word embeddings. In this
section, we first describe the corpora we have used as
well as those third parties have reported using for gen-
erating pretrained embeddings. Then, we also describe
how we have generated embeddings, including rele-
vant metadata and training parameters.

Table 2 provides an overview of the corpora used
for generating embeddings. To study the effect of the
corpus size (and domain of the input corpus), we have
used the United Nations corpus [43] as an example
of a medium sized corpus that is domain specific.
This corpus consists of transcriptions of sessions at the
United Nations, hence the contents are domain spe-
cific with topics in politics, economics and diplomacy
being predominant. We have used the English part of
the corpus that is aligned with Spanish13. As an ex-

13Cross-lingual applications of the embeddings is not in the scope
of this paper, although we discuss some initial applications in [44].

Table 2
Evaluation corpora

Corpus tokens unique freq

europarlv7 en-es en 51.8M
UNv1.0 en-es en 517M 2.7M 469K
wiki-en-20180120 2.89B 49M 5M
UMBC 2.95B
CommonCrawl 840B

ample of a larger corpus, we have used the dump of
the English Wikipedia from January 2,018. Embed-
dings provided by third parties include the UMBC cor-
pus [45], a web-corpus of roughly the same dimen-
sions as the Wikipedia corpus. To compare our em-
beddings to those trained on a very large corpus, we
use pretrained GloVe embeddings that were trained on
CommonCrawl14.

Besides the text corpora, the tested embeddings
contain references to concepts defined in two KGs.
The first KG is a vanilla version of Sensigrafo, our
proprietary semantic network, released with Cogito
Studio 14.215), which contains around 400K lemmas
and 300K concepts (syncons). Sensigrafo is similar to
WordNet, being the result of person-decades of contin-
uous curation by a team of linguists. Like WordNet, the
core relation between concepts is that of hypernymy,
and both include various other lexical and semantic
relations (categorical, meronymy, synonymy and con-
ceptual similarity), although these are organized dif-
ferently. One difference is that Sensigrafo contains
a larger number of relation types (61 instead of 27
for WordNet 3.0) and contains several positional and
prepositional relations which do not have an equiv-
alent in WordNet. Another difference with WordNet
is that Sensigrafo has explicit identifiers for concepts,
while WordNet has no such identifiers; instead, Word-
Net uses a set of synonyms (each of which is a word
sense) which refer to the same concept. The second se-
mantic network we use in our experiments is BabelNet
3.0, which has about 14 million concepts (7 million of
which are named entities). We have not trained embed-
dings on top of BabelNet, although we have included
BabelNet derived embeddings [24, 35] in our studies.

14http://commoncrawl.org
15http://www.expertsystem.com/products/cogito-cognitive-

technology

http://commoncrawl.org
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4.2. Instruments: word similarity tasks and datasets

Word similarity tasks using human judgment, as
originally introduced by Resnik [46] for structured
knowledge, are one of the most common intrinsic eval-
uations that are used to evaluate the quality of embed-
dings [27]. Although there are issues with these types
of tasks [47, 48], they tend to provide insights into how
well learned embeddings capture the perceived seman-
tic relatedness between words. One of our hypotheses
is that introducing concepts to the vector space should
help to learn embeddings that better capture word sim-
ilarities; hence this type of evaluation should prove
useful. Furthermore, it is possible to extend the de-
fault word-similarity task –whereby the cosine similar-
ity between the vectors of a pair of words is compared
to a human-rated similarity measure– by calculating a
concept-based word similarity measure: in this case,
we select the maximum similarity between the con-
cepts associated to the initial pair of words. This intu-
itively makes sense since, presumably, when a pair of
words is related, human raters naturally disambiguate
the senses that are closest rather than taking into ac-
count all the possible senses of the words. As a mat-
ter of notation, we will append a suffix _c to the em-
bedding identifier when we present word similarity re-
sults that have been derived using this concept-based
similarity measure.

When using word similarity datasets, there are a few
details that are often not explicitly mentioned, but that
can have a big effect on the results. First, there is the
issue of pre-processing word pairs: some evaluation
implementations will normalize the words, for exam-
ple by lower-casing all words; in our studies we do
not apply such normalizations, since different words
in the vocabulary may match such normalized words
and it is not clear which vector should then be used.
A second related detail pertains handling missing val-
ues. Some implementations (especially vectorized im-
plementations) will assign a default vector to words in
the dataset which are not included in the vocabulary.
This obviously will tend to degrade the results of em-
beddings where the vocabulary is small since they are
no longer comparing the intended word pairs. On the
other hand, it is more accurate to only include word
pairs where both words are also in the vocabulary;
however this means we also have to report how many
of the word pairs have been used to produce a result, in
order to be able to compare results with each other. For
an example of how much this can impact results, see
Figure 2, where the curves are vectorised results which

use a default embedding for missing words and the
horizontal lines are the non-vectorised results which
ignore pairs with missing words. The figure shows that
as the coverage percentage drops, the results suffer
greatly when using the vectorised evaluation method.

We next describe the 14 word similarity datasets that
we are using in our evaluations as well as a syncon
similarity dataset we generated. Results will be pre-
sented in the study sections below.

4.2.1. Word-similarity datasets
The RG-65 dataset [49] was the first one generated

in order to test the distributional hypothesis. Although
it only has 65 pairs, the human ratings are the average
of 51 raters. MC-30 [50] is a subset of RG-65, which
we include in our studies in order to facilitate com-
parison with other embedding methods. The pairs are
mostly nouns.

Another classic word similarity dataset is WS-353-
ALL [51] which contains 353 word pairs. 153 of these
were rated by 13 human raters and the remaining 200
by 16 subjects. The pairs are mostly nouns, but also in-
clude some proper names (people, organizations, days
of the week). Since the dataset mixes similarity and
relatedness, [52] used WordNet to split the dataset
into a WS-353-REL and WS-353-SIM containing 252
and 203 word pairs respectively (some unrelated word
pairs are included in both subsets).

YP-130 [53] was the first dataset focusing on pairs
of verbs. The 130 pairs were rated by 6 human sub-
jects. Another dataset for verbs is VERB-143 [54]
which contains verbs in different conjugated forms
(gerunds, third person singular, etc.) rated by 10 hu-
man subjects. The most comprehensive dataset for
verbs is SIMVERB3500 [55] consisting of 3,500 pairs
of verbs (all of which are lemmatized), which were
rated via crowdsourcing by 843 raters and each pair
was rated by at least 10 subjects (over 65K individual
ratings).

MTurk-287 [56] is another crowdsourced dataset fo-
cusing on word and entity relatedness. The 287 word
pairs include plurals and proper nouns and each pair
was rated on average by 23 workers. MTurk-771 [57]
also focuses on word relatedness and was crowd-
sourced with an average of 20 ratings per word pair.
It contains pairs of nouns and rare words were not in-
cluded in this dataset.

MEN-TR-3K [58] is another crowd-sourced dataset
which combines word similarity and relatedness. As
opposed to previous datasets, where raters gave an ex-
plicit score for pair similarity, in this case raters had to
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make comparative judgments between two pairs. Each
pair was rated against 50 other pairs by the workers.
The dataset contains mostly nouns (about 81%), but
also includes adjectives (about 13%) and verbs (about
7%), where a single pair can mix nouns and adjectives
or verbs. The selected words do not include rare words.

SIMLEX-999 [59] is a crowd-sourced dataset that
explicitly focuses on word similarity and contains
(non-mixed) pairs of nouns (666), adjectives (111) and
verbs (222). This dataset also provides a score of the
level of abstractness of the words. Since raters were
explicitly asked about similarity and not relatedness,
pairs of related –but not similar– words, receive a low
score. The 500 raters each rated 119 pairs and each pair
was rated by around 50 subjects.

RW-STANFORD [60] is a dataset that focuses on
rare (infrequent) words. Words still appear in Word-
Net (to ensure they are English words as opposed to
foreign words). Each of the 2,034 pairs was rated by
10 crowd-sourced workers. The dataset contains a mix
of nouns (many of which are plurals), verbs (including
conjugated forms) and adjectives.

Finally, SEMEVAL17 (English part of task 2) [61]
provides 500 word pairs, selected to include named
entities, multi-words and to cover different domains.
They were rated in such a way that different types of
relations (synonymy, similarity, relatedness, topical as-
sociation and unrelatedness) align to the scoring scale.
The gold-standard similarity score was provided by
three annotators.

4.2.2. Syncon-similarity dataset
Using concept-based evaluation, we can re-use

the similarity rankings provided by word-similarity
datasets to evaluate the quality of concepts. However,
it would be better to have a dataset specifically of syn-
con pairs that have been ranked for similarity. Unfor-
tunately, such a dataset would be KG-specific and we
do not have a human rated dataset for Sensigrafo syn-
cons. To still be able to generate such a dataset, we
have chosen to use embeddings learned using HolE
and Sensigrafo 14.2 (see section 4.4.1 for details about
how the HolE embeddings were generated). The ratio-
nale is that such embeddings reflect information en-
coded in the KG; i.e. vectors for syncons which are
connected to each other will be close in the embedding
space. We initially tried sampling random pairs; how-
ever, we noticed that most pairs had a cosine similarity
of around 0. This is because most syncons pairs are
not directly related via KG relations, hence HolE does
not assign them a specific similarity score. In order to

have a meaningful dataset, instead we devised a way
to generate pairs which are somehow related to each
other. The resulting dataset is called syn-sim-802
and consists of 802 pairs of syncons which HolE con-
siders to be closely related. The 802 pairs were se-
lected as follows:

– 300 pairs were randomly generated from the
wiki_s vocab, as long as HolE gave them a co-
sine similarity score of at least 0.3. This should
include various relationship types (not necessar-
ily hypernymy).

– 200 pairs were generated by randomly picking
one syncon and searching its neighbourhood for
syncons with a HolE score of at least 0.4. Again,
this should include various relationship types.

– 100 pairs were generated as in the previous
method, but now for a HolE score of at least 0.5.

– 25 pairs were chosen from known hypernym pairs
between verb concepts, as long as HolE rates
them higher than 0.6.

– 25 pairs were chosen from known hypernym pairs
between nouns concepts, as long as HolE rates
them higher than 0.7.

– 25 pairs were chosen from known hypernym
pairs between nouns, with HolE cosine similarity
higher than 0.6.

– 140 pairs were hypernym pairs between nouns,
with HolE cosine similarity scores between 0.3
and 0.4

The resulting dataset provides pairs of syncons
which are similar to each other. The notion of simi-
larity that is captured may also include other relation-
ships in addition to hypernymy. 13 of the 815 pairs
generated were duplicates; hence the final pair count.

4.3. Ablation study

In this part of the evaluation, we study how varia-
tions to Vecsigrafo-based embeddings affect the qual-
ity of the lexical and semantic embeddings. We do this
by analyzing the various results using word-similarity
tasks, which we extend to also take into account
concept-similarity as discussed above.

By evaluating the word similarity datasets during
the training process, we saw how the results improved
during the first iterations and how the results stabilized
towards the end of the training, see fig 2.16 One of the

16Since some embeddings have smaller vocabularies, they were
trained for less iterations overall, though in all cases we checked that
training was long enough for results to converge.
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things we noticed by doing this is that several of the
word similarity datasets are very unstable and have a
relatively high standard deviation for the same embed-
dings at different stages in the training. The most stable
datasets were SIMVERB, SIMLEX, MEN, MTurk-
771, RW, SEMEVAL and WS-353-ALL, with standard
deviations ranging from .007 to .017. In the analysis
below, we take into account this standard deviation σ
to predict the statistical significance of any measured
difference, focusing on those cases where this differ-
ence is statistically significant; i.e. we only report on
differences which are bigger than 2.58σ, since this cor-
responds to a confidence values of 99%. 17
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un_ls_f 372 74%
eu_ls_f 259 51%

Fig. 2. Word-similarity evaluation results. The x-axis are the thou-
sands of training steps, the y-axis are the spearman’s ρ results. The
lighter color curves are the actual values measured during training,
while the darker color curves are smoothed values. The curves are
the metrics gathered during training using a vectorized implementa-
tion. The horizontal lines are the non-vectorized results derived from
the final embeddings and which do not take into account missing
words from the vocabulary.

4.3.1. Vecsigrafo variations
For the ablation study, we used only variations of

Vecsigrafo embeddings. We chose a relatively large
maximum vocabulary size of 1.5M and all embed-
dings were generated with 160 dimensions. We gener-
ated embeddings for the following corpora: Europarl-
v7 (eu), UNv1.0 (un) and Wikipedia (wiki), and for
filtered and non-filtered variations: text (t), lemmas
(l), concepts (s), text and concepts (ts) and lemmas
and concepts (ls). In terms of vocabulary sizes, the
eu embeddings had between 35K and 51K lexical em-

17Additional materials, including result data for the abla-
tion study, are available at: https://github.com/HybridNLP2018/
vecsigrafo-paper

Table 3
Selection of statistically significant ablation differences showing ef-
fect of filtering and lemmatizing

corpus dataset case base ρ ∆

wiki MEN t vs t_f .614 .072
MTurk-771 t vs t_f .489 .045
SEMEVAL17 t vs t_f .518 .102

eu MEN t vs l .545 .116
t f vs l_f .438 .119
ts vs ls .494 .077

wiki MEN t vs l .61 .06
MTurk-771 t vs l .49 .06
SEMEVAL17 t vs l .518 .081

beddings and around 42 ± 1K semantic embeddings;
the un embeddings had between 22K and 32K lexical
embeddings and around 80±2K semantic embeddings
(with outliers for mostfreqd with 54K and rndd
with 99K); finally the wiki embeddings had 1.5M
lexical embeddings when no concepts were including
and about 1.3M when they were included embeddings
based on the cogito disambiguator had between 190K
and 230K concepts, while alternative disambiguation
methods resulted in 174K (scd), 141K (mostfreqd)
and 215K (rndd).

Besides varying the filtering and combinations of
sequences, we also used alternative disambiguation
methods, described below.

4.3.2. Effect of filtering
For Europarl and the UN corpus, we could not

measure any statistically significant differences be-
tween filtered and non-filtered embeddings. However,
for Wikipedia, we measured an increased performance
for t_f compared to t in MEN, MTurk-771 and SE-
MEVAL17 as shown in table 3. Although we also
found some other statistically significant cases, these
were on small or partial datasets (e.g. adjective or noun
parts of SIMLEX-999); in all of these, filtering re-
sulted in higher quality embeddings.

Based on these results, we can state that:

– filtering the initial sequence by removing or re-
placing tokens based on grammar type is helpful

– filtering is especially helpful for large corpora and
when taking the plain text in the tokens (i.e. when
not applying lemmatization).

– when tokens are lemmatized, filtering yields no
(or statistically insignificant) improvement in the
resulting embeddings.

https://github.com/HybridNLP2018/vecsigrafo-paper
https://github.com/HybridNLP2018/vecsigrafo-paper
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Table 4
Selection of statistically significant ablation differences showing ef-
fect of joint lexico-semantic training

corpus dataset case base ρ ∆

eu MEN t vs ts .45 .04
t_f vs ts_f .44 .07
s_f_c vs ls_f_c .48 .03

un MEN t vs ts .50 .03
l vs ls .56 .04
s_c vs ts_c .56 -.04
s_c vs ls_c .56 -.03

wiki MEN t vs ts .61 .09
l vs ls .67 .04
s_c vs ts_c .75 -.04
s_c vs ls_c .75 -.03

4.3.3. Effect of lemmatizing
In all three corpora, we see that using lemmas (l)

rather than using the original text (t) results in bet-
ter lexical (but not concept) embeddings, see Table 3.
For Europarl, we measured statistically significant im-
provements in MEN and SEMEVAL17: l_f vs t_f
and ls vs ts. For the UN corpus, we see similar im-
provements and for the Wikipedia corpus, we see again
statistically significant improvements, but only for the
case l vs t in MEN, MTurk-771 and SEMEVAL. This
data shows evidence that:

– lemmatizing the tokens produces better lexical
embeddings.

– lemmatization is especially important in small
and medium corpora, but can have a positive im-
pact even in large corpora.

– using lemmas instead of plain text for co-training
concepts does not have a significant impact on the
resulting concept embeddings.

4.3.4. Effect of joint lexico-semantic entry training
Co-training lexical and semantic embeddings al-

ways has a positive effect on lexical embeddings.
However, co-training has a negative effect on con-
cept embeddings for medium and large corpora, at
least when measuring quality using the word-similarity
datasets.

For the Europarl corpus, we measured improve-
ments across all variants when comparing results of
co-training vs. results from only lexical or semantic
embeddings. For example, see the results in table 4
for the MEN dataset. We see similar improvements
for other datasets such as SEMEVAL (only concept-
based), SIMLEX and SIMVERB.

For the UN corpus, we start to see a divide: co-
trained lexical embeddings always perform better than
lexical embeddings trained without concept informa-
tion, but concept-based word similarity tests tend to
be worse for concept embeddings co-trained with lex-
ical entries than for concept embeddings trained on
their own. For example, see again table 4 for MEN.
The table also shows that for the same dataset, we
see some decreases for concept-based embeddings.
We measured similar results for RW-STANFORD, SE-
MEVAL17 and SIMVERB3500.

Finally, in addition to an overall improvement due
to the larger size of the corpus, for Wikipedia we see a
similar trend as for the UN corpus. For MEN, we see
lexical embedding improvements and concept-based
semantic embedding declines as shown in table 4. We
again see similar patterns for other datasets such as
RW-STANFORD, SEMEVAL17 (mostly for concept-
based results) and SIMVERB3500.

These results suggest that co-training lexical and
concept embeddings (using a corpus):

– results in better lexical embeddings (when using
a good quality disambiguator, although see be-
low for a discussion about the effect of the disam-
biguation strategy)

– results in poor concept embeddings for medium
to large corpora, when compared to concept em-
beddings trained on the same corpus, but without
co-training. One caveat is that this negative result
for concept embeddings may be due to the evalu-
ation method, since we are evaluating the concept
embeddings using a concept-based adaptation for
the word-similarity datasets. See also the section
below, where we use a concept similarity dataset
specifically generated to better assess the quality
of concept similarity as described in the KG, as
opposed to some word-similarity measure that is
extended to concepts.

4.3.5. Effect of disambiguation algorithm
In this subsection, we study the effect of the Cog-

ito disambiguator by comparing the results with em-
beddings generated using alternative disambiguation
methods.

To get a sense of how different the results are for the
alternative disambiguation algorithms, we annotated a
subset of 5,000 lines of Wikipedia with the Cogito
disambiguator and with the alternative disambiguators
(all using Sensigrafo 14.2). Taking the Cogito disam-
biguator annotations as a "standard", the Shallow Con-
nectivity disambiguator with parameter delta 100 (as
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Table 5
Selection of statistically significant ablation differences showing ef-
fect alternative disambiguation methods

corpus dataset case base ρ ∆

wiki SEMEVAL17 ls_f_c vs scd .71 -0.04
MEN ls_f vs mfd .719 -.013

ls_f_c vs mfd .71 -.02
ls_f vs rndd .719 .021
ls_f_c vs rndd .711 .039

suggested in [35]) achieved 44.4 precision, 76.8 re-
call and 56.3 f1. Similarly, mostfreqd resulted in
47.9 precision, 100 recall and 64.8 f1. Finally, rndd
achieved 29.1 precision, 100 recall and 45.1 f1. These
results shows the alternative disambiguations are quite
different.

Based on the word-similarity datasets and the wiki
corpus, we see that scd has no significant effect on the
lexical embeddings, compared to cogito disambigua-
tion. scd has a slightly detrimental effect on concept
embeddings, but we only measured a significant result
on RW-STANFORD and SEMEVAL, as shown in ta-
ble 5.

The most-frequent concept disambiguation (mfd)
has a detrimental effect on both lexical and concept
embeddings as shown for MEN in table 5. Surpris-
ingly, rndd-based embeddings resulted in better lexi-
cal and concept embeddings as shown in the same ta-
ble for the MEN dataset. For concept-based embed-
dings we also saw improvements for MTurk-771 and
SIMVERB3500.

To have a better understanding of the quality of the
concept embeddings, we also evaluated them using the
syn-sim-802 dataset. Table 6 shows how various
embeddings correlate to this dataset. Recall that for
this dataset the HolE embeddings trained on Sensi-
grafo serve as the baseline. We see that Cogito disam-
biguation results in higher correlation with HolE-based
syncon embeddings, i.e. they correlate better to rela-
tions in Sensigrafo. All Cogito-based disambiguation
embeddings manage to keep about 80% or more of the
syncons in the vocabulary, providing good coverage of
the concepts. All the alternative disambiguation meth-
ods studied (mostfreqd, rndd and scd [35]) re-
sulted in worse correlation with the HolE-based syn-
con embeddings and also worse coverage of the syn-
con vocabulary.

The vectors derived from Shallow Connectivity dis-
ambiguation are not far behind in terms of correlation
with HolE-based embeddings (we do not have any sig-
nificance metrics, though); this is not surprising, since

Table 6
syn-sim-802 results

emb pearson perc of pairs

HolE 1.000 100.000

wiki_ls_f 0.550 83.915
wiki_ls 0.539 77.307
umbc_ls_f 0.532 78.055
wiki_s_f 0.527 98.130
wiki_ts 0.524 80.673
wiki_ts_f 0.510 86.160
wiki_s 0.508 100.000

wiki_scd_ls_f 0.507 70.698
wiki_mostfreqd_ls_f 0.486 44.140
wiki_rndd_ls_f 0.402 86.658

scd uses graph relations to perform disambiguation,
hence it makes sense that the vecsigrafo algorithm em-
beds this information. However, note that only about
70% of the syncon pairs in the original dataset could
be found. An explanation for this could be that scd
never chooses syncons which are less well connected
to other syncons in the KG. Also, scd only uses di-
rect relations in the KG, while the Cogito disambigua-
tor also uses certain multi-hop relations such as those
relating syncons with common domains.

Disambiguation by selecting the most frequent syn-
con for each lemma still manages to produce relatively
good correlation with HolE-based embeddings. How-
ever, coverage suffers greatly, which was to be ex-
pected, since only one syncon is chosen per lemma.

Finally, disambiguation using a random syncon
(rndd) from the list of available syncons for a given
lemma produces the worst syncon embeddings, al-
though coverage is maintained.

Overall, these results show –somewhat surprisingly–
that:

– a good disambiguation method is not essential to
get good quality lexical embeddings.

– using simple disambiguation methods such as
scd or even rndd has a similar (positive) effect
on the lexical embeddings as more intricate dis-
ambiguation methods such as Cogito.

– the effect of disambiguation methods on the qual-
ity of concept embeddings depends on the evalu-
ation method. Better disambiguation methods re-
sult in better concept embeddings when evaluat-
ing them using a concept similarity dataset. No
such effect could be seen using a word-similarity
dataset adapted to assess concepts, suggesting
such evaluation tools may be inappropriate.
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4.3.6. Effect of corpus
It is well-known that larger corpora result in better

word embeddings. When comparing Europarl, UN and
Wikipedia embeddings, we see a confirmation of this
pattern also for Vecsigrafo-based embeddings. How-
ever, we also see some differences in terms of lexical
and semantic embeddings.

When going from a small corpus (Europarl) to a
medium corpus (UN), we measured mostly improve-
ments. However, we only saw significant improve-
ments for lexical embeddings in a few datasets, while
we saw significant improvements for semantic embed-
dings in more cases. In MEN, we saw improvements
for both lexical embeddings (on average .024) and se-
mantic embeddings (on average .036). In WS-353 and
RW we only saw significant improvements for seman-
tic embeddings (on average .06 and .05 respectively).
In SEMEVAL17 we saw improvements for semantic
embeddings (on average .02), but decline for lexical
embeddings (on average -0.02). In SIMLEX, we only
saw decline for lexical embeddings (on average -0.02).

When going from the UN corpus to Wikipedia, we
saw improvements across the board. The contrast is es-
pecially clear in larger word similarity datasets such as
MEN, where all variants were significantly better, both
statistically and in terms of absolute values, with an
average increase of .15. Concept embeddings improve
more (on average .18) than lexical embeddings (on av-
erage .13). We see similar patterns in MTurk-771, RG-
65, SEMEVAL17 and WS-353. Interestingly, for some
datasets, we see a decline in lexical embedding qual-
ity. This is the case for SIMLEX-999, SIMVERB3500
and RW.

For SIMLEX, the trend is clear: results are best for
Europarl, then decline as the corpus size grows. We
think this is due to the fact that SIMLEX gives a low
rating to pairs of words which are related but not simi-
lar. word2vec algorithms, in particular Swivel, are bet-
ter at learning similarity for small corpora, but as the
corpus grows, the embeddings start incorporating more
(semantic) relatedness, which causes the performance
for this particular dataset to decrease. We note that the
results are not tainted by coverage issues, since even
the Europarl ls embeddings have a coverage of 92%
of the 999 pairs.

For RW, we think the results are due to the cover-
age of the pairs in the dataset. As can be expected,
small corpora will not include enough examples of rare
words, hence they are not included in the vocabulary.
For the ls variants, the Europarl has 23% coverage,
the UN has 40% and Wikipedia has 67%.

For SIMVERB3500, the issue is general poor per-
formance of Vecsigrafo-based embeddings with spear-
man’s ρ scores around or below 0.2. We think this may
be due to the fact that many verbs in the dataset can
also refer to nouns or adjectives, which may be adding
noise to the word embedding.

We also generated ls_f embeddings for UMBC,
which allowed us to compare two large corpora with
each other. Our results show that UMBC results in bet-
ter lexical and semantic embeddings than Wikipedia,
suggesting that corpus size is not the only relevant
factor. We measured statistically significant lexical
embedding improvements only for RW-STANFORD
(.420 vs .377) and SIMVERB (.209 vs .188). For
concept-based word similarity we measured improve-
ments in MEN (.742 vs .711), MTurk-771 (.586 vs
.550), RW (.375 vs .341) and SIMVERB (.311 vs
.291).

To sum up:

– Training on a medium corpus instead of a small
corpus, improves both lexical and concept em-
beddings; concept embeddings improve more
than lexical embeddings.

– Training on a large corpus instead of a medium
corpus greatly improves both lexical and concept
embeddings. Again concept embeddings show a
higher improvement than lexical embeddings. A
caveat here is that the larger corpus also increased
the range of language and topics covered.

– Different large corpora also affect the embed-
dings, probably due to variance of topics and lan-
guage style.

4.4. Comparative study

In this part of the evaluation, we study how Vecsigrafo-
based embeddings compare to lexical and semantic
embeddings produced by other algorithms.

4.4.1. Embeddings
Table 7 shows an overview of the embeddings used

during the evaluations. We used five main methods to
generate these. In general, we tried to use embeddings
with 300 dimensions, although in some cases we had
to deviate. In general, as can be seen in the Table, when
the vocabulary size is small (due to corpus size and
tokenization), we required a larger number of epochs
to let the learning algorithm converge.

– Vecsigrafo based embeddings were first tok-
enized and word-disambiguated using Cogito. We
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explored two basic tokenization variants. The first
is lemma-concept with filtered tokens (“ls fil-
tered”), whereby we only keep lemmas and con-
cept ids for the corpus. Lemmatization uses the
known lemmas in Sensigrafo to combine com-
pound words as a single token. The filtering step
removes various types of words: dates, numbers,
punctuation marks, articles, proper names (enti-
ties), auxiliary verbs, proper nouns and pronouns
which are not bound to a concept. The main idea
of this filtering step is to remove tokens from the
corpus which are not semantically relevant. We
also trained a few embeddings without lemmati-
zation and filtering. In such cases, we have kept
the original surface form bound to the concept
(including morphological variants) and we did
not remove the tokens described above. For all
the embeddings, we have used a minimum fre-
quency of 5 and a window size of 5 words around
the center word. We also used a harmonic weight-
ing scheme (we experimented with linear and uni-
form weighting schemes but results did not differ
substantially).

– Swivel18 based embeddings using either a basic
white-space tokenization of the input corpus, or
a lemma-based tokenization performed by Cog-
ito. We have used the default parameters defined
by the open-source project. For the Wikipedia
corpus, we had to reduce the number of dimen-
sions to 256, since otherwise, the main Swivel al-
gorithm would run out of GPU memory during
training. We also imposed a limit of 1M for the
vocabulary for the same reason.

– GloVe embeddings trained by us were derived us-
ing the master branch on its GitHub repository19

and we used the default hyper-parameters defined
therein.

– FastText embeddings trained by us were derived
using the master branch on its GitHub reposi-
tory20 and we used the default hyper-parameters
defined therein.

– HolE embeddings were trained by us using the
code on GitHub21 after we exported the Sensi-

18https://github.com/tensorflow/models/tree/master/research/
swivel

19https://github.com/stanfordnlp/GloVe
20https://github.com/facebookresearch/fastText/commit/

3872afadb3a9f30de7c7792ff2ff1bda64242097
21https://github.com/mnick/holographic-embeddings/commit/

c2db6e1554e671ab8e6acace78ec1fd91d6a4b90

grafo to create a training set of 2.5M triples in-
cluding covering over 800K lemmas and syncons
and 93 relations, including hypernymy relations,
but also hasLemma relations between concepts
and lemmas (We also tried to apply ProjE22, but
various errors and slow performance made it im-
possible to apply it to our Sensigrafo corpus.).
We trained HolE for 500 epochs using 150 di-
mensions and the default hyper-parameters. The
final evaluation after training reported an MRR
of 0.13, a mean rank of 85,279 and Hits@10 of
19.48%.

Besides the embeddings trained by us, we also in-
clude, as part of our study, several pretrained embed-
dings, notably the GloVe embeddings for Common-
Crawl –code glove_840B provided by Stanford23–
, FastText embeddings based on a Wikipedia dump
from 2,017 –code ft_en24, as well as the embeddings
for BabelNet concepts (NASARI25 and SW2V) since
these require direct access to BabelNet indices. In Ta-
ble 7, we share the details that are reported by the em-
bedding providers.

4.4.2. Word similarity results
Table 8 shows the Spearman correlation scores for

the 14 word similarity datasets and the various embed-
dings generated based on the UN corpus. The last col-
umn in the table shows the average coverage of the
pairs for each dataset. Since the UN corpus is medium
sized and focused on specific domains, many words
are not included in the learned embeddings, hence the
scores are only calculated based on a subset of the
pairs.

Table 9 shows the results for the embeddings trained
on larger corpora and directly on the Sensigrafo. We
have not included results for vectors trained with
NASARI (concept-based) and SW2V on UMBC, since
these perform considerably worse than the remaining
embeddings (e.g. NASARI scored 0.487 on MEN-TR-
3k and SW2V scored 0.209 for the same dataset, and
see Table 10 for the overall average score). We have
also not included word2vec on UMBC since it does not
achieve the best score for any of the reported datasets;
however, overall it performs a bit better than swivel

22https://github.com/bxshi/ProjE
23http://nlp.stanford.edu/data/glove.840B.300d.zip
24https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.

vec
25http://lcl.uniroma1.it/nasari/files/NASARIembed+UMBC_

w2v.zip

https://github.com/tensorflow/models/tree/master/research/swivel
https://github.com/tensorflow/models/tree/master/research/swivel
https://github.com/stanfordnlp/GloVe
https://github.com/facebookresearch/fastText/commit/3872afadb3a9f30de7c7792ff2ff1bda64242097
https://github.com/facebookresearch/fastText/commit/3872afadb3a9f30de7c7792ff2ff1bda64242097
https://github.com/mnick/holographic-embeddings/commit/c2db6e1554e671ab8e6acace78ec1fd91d6a4b90
https://github.com/mnick/holographic-embeddings/commit/c2db6e1554e671ab8e6acace78ec1fd91d6a4b90
https://github.com/bxshi/ProjE
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.vec
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.vec
http://lcl.uniroma1.it/nasari/files/NASARIembed+UMBC_w2v.zip
http://lcl.uniroma1.it/nasari/files/NASARIembed+UMBC_w2v.zip
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Table 7
Evaluated embeddings

Code Corpus Method Tokenization Epochs Vocab Concepts

UN vecsi ls filtered 80 147K 76K
UN swivel ws 8 467K 0
UN glove ? 15 541K 0
UN vecsi ts 8 401K 83K
UN fastText ? 15 541K 0
wiki glove ? 25 2.4M 0
wiki swivel ws 8 1.0M 0
wiki vecsi ls filtered 10 824K 209K

ft_en wiki fastText ? 8 2.4M 0
UMBC w2v ? ? 1.3M 0
wiki/UMBC nasari ? ? 5.7M 4.4M
Sensigrafo HolE n/a 500 825K 423K
wiki’ fastText ? ? 2.5M 0

glove_cc CommonCrawl GloVe ? ? 2.2M 0

Table 8
Spearman correlations for word similarity datasets and UN-based embeddings. The column names refer to the method used to train the em-
beddings, the tokenization of the corpus (lemma, syncon and or text and whether the tokens were filtered), and whether concept-based word
similarity was used instead of the usual word-based similarity

dataset ft glove swivel swivel l f vecsi ls f vecsi ls f c vecsi ts vecsi ts c avgperc

MC-30 0.602 0.431 0.531 0.572 0.527 0.405 0.481 0.684 82.5
MEN-TR-3k 0.535 0.383 0.509 0.603 0.642 0.525 0.558 0.562 82.0
MTurk-287 0.607 0.438 0.519 0.559 0.608 0.578 0.500 0.540 69.3
MTurk-771 0.473 0.398 0.416 0.539 0.599 0.497 0.520 0.520 94.6
RG-65 0.502 0.378 0.443 0.585 0.614 0.441 0.515 0.664 74.6
RW-STANFORD 0.492 0.263 0.356 0.444 0.503 0.439 0.419 0.353 49.2
SEMEVAL17 0.541 0.395 0.490 0.595 0.635 0.508 0.573 0.610 63.0
SIMLEX-999 0.308 0.253 0.226 0.303 0.382 0.349 0.288 0.369 96.1
SIMLEX-999-Adj 0.532 0.267 0.307 0.490 0.601 0.559 0.490 0.532 96.6
SIMLEX-999-Nou 0.286 0.272 0.258 0.337 0.394 0.325 0.292 0.384 94.7
SIMLEX-999-Ver 0.253 0.193 0.109 0.186 0.287 0.288 0.196 0.219 100.0
SIMVERB3500 0.233 0.164 0.155 0.231 0.306 0.328 0.197 0.318 94.4
VERB-143 0.382 0.226 0.116 0.162 0.085 -0.089 0.234 0.019 76.2
WS-353-ALL 0.545 0.468 0.516 0.537 0.588 0.404 0.502 0.532 91.9
WS-353-REL 0.469 0.434 0.465 0.478 0.516 0.359 0.447 0.469 93.4
WS-353-SIM 0.656 0.553 0.629 0.642 0.699 0.454 0.619 0.617 91.5
YP-130 0.432 0.350 0.383 0.456 0.546 0.514 0.402 0.521 96.7

but worse than vecsigrafo. For example, it achieves a
score of 0.737 for MEN-TR-3k).

Table 10 shows the aggregate results. Since some
of the word similarity datasets overlap —SIMLEX-
999 and WS-353-ALL were split into its subsets,
MC-30 is a subset of RG-65— and other datasets
—RW-STANFORD, SEMEVAL17, VERB-143 and
MTURK-287— have non-lemmatized words (plurals
and conjugated verb forms) which penalize embed-
dings that use some form of lemmatization during to-

kenization, we take the average Spearman score over
the remaining datasets. We discuss the lessons we can
extract from these results in Section 5.

4.4.3. Inter-embedding agreement
The word similarity datasets are typically used to

assess the correlation between the similarity of word
pairs assigned by embeddings and a gold standard de-
fined by human annotators. However, we can also use
the word similarity datasets to assess how similar two
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Table 9
Spearman correlations for word similarity datasets on large corpora (UMBC, Wikipedia and CommonCrawl)

corpus sensi umbc wiki17 wiki18 cc
dataset HolE HolE c sw2v c ft en ft glove swivel vecsi ls f vecsi ls f c glove avgperc

MC-30 0.655 0.825 0.822 0.812 0.798 0.565 0.768 0.776 0.814 0.786 100.0
MEN-TR-3k 0.410 0.641 0.731 0.764 0.760 0.607 0.717 0.785 0.773 0.802 99.9
MTurk-287 0.272 0.534 0.633 0.679 0.651 0.473 0.687 0.675 0.634 0.693 85.6
MTurk-771 0.434 0.577 0.583 0.669 0.649 0.504 0.587 0.685 0.578 0.715 99.9
RG-65 0.589 0.798 0.771 0.797 0.770 0.639 0.733 0.803 0.836 0.762 100.0
RW-STANFORD 0.216 0.256 0.395 0.487 0.492 0.124 0.393 0.463 0.399 0.462 81.9
SEMEVAL17 0.475 0.655 0.753 0.719 0.728 0.546 0.683 0.723 0.692 0.711 81.8
SIMLEX-999 0.310 0.380 0.488 0.380 0.368 0.268 0.278 0.374 0.420 0.408 99.4
SIMLEX-999-Adj 0.246 0.201 0.556 0.508 0.523 0.380 0.323 0.488 0.564 0.622 99.5
SIMLEX-999-Nou 0.403 0.484 0.493 0.410 0.383 0.321 0.331 0.422 0.464 0.428 100.0
SIMLEX-999-Ver 0.063 0.133 0.416 0.231 0.233 0.105 0.103 0.219 0.163 0.196 97.7
SIMVERB3500 0.227 0.318 0.417 0.258 0.288 0.131 0.182 0.271 0.331 0.283 98.8
VERB-143 0.131 -0.074 -0.084 0.397 0.452 0.228 0.335 0.207 0.133 0.341 75.0
WS-353-ALL 0.380 0.643 0.597 0.732 0.743 0.493 0.692 0.708 0.685 0.738 98.5
WS-353-REL 0.258 0.539 0.445 0.668 0.702 0.407 0.652 0.649 0.609 0.688 98.2
WS-353-SIM 0.504 0.726 0.748 0.782 0.805 0.615 0.765 0.775 0.767 0.803 99.1
YP-130 0.315 0.550 0.736 0.533 0.562 0.334 0.422 0.610 0.661 0.571 98.3

embedding spaces are. We do this by collecting all the
similarity scores predicted for all the pairs in the var-
ious datasets and calculating the Spearman’s ρ met-
ric between the various embedding spaces. We present
the results in Figure 3; darker colors represent higher
inter-agreement between embeddings. E.g. we see that
wiki17 ft has high inter-agreement with ft and
very low with HolE c. We discuss these results in
sections 5.2 and 5.3.

4.4.4. Word-concept prediction
One of the disadvantages of word similarity (and

relatedness) datasets is that they only provide a sin-
gle metric per dataset. In [44] we introduced Word-
prediction plots, a way to visualize the quality of em-
beddings by performing a task that is very similar to
the loss objective of word2vec. Given a test corpus
(ideally different from the corpus used to train the em-
beddings), iterate through the sequence of tokens us-
ing a context window. For each center word, take the
(weighted) average of the embeddings for the context
tokens and compare it to the embedding for the center
word using cosine similarity. If the cosine similarity is
close to 1, this essentially correctly predicts the cen-
ter word based on its context. By aggregating all such
cosine similarities for all tokens in the corpus we can
(i) plot the average cosine similarity for each term in
the vocabulary that appears in the test corpus and (ii)
get an overall score for the test corpus by calculating

the (weighted by token frequency) average over all the
words in the vocabulary.

Table 11 provides an overview of the test corpora we
have chosen to generate word and concept prediction
scores and plots. The corpora are:

– webtext [62] is a topic-diverse corpus of con-
temporary text fragments (support fora, movie
scripts, ads) from publicly accessible websites,
popular as training data for NLP applications.

– NLTK gutenberg selections26 contains a sample
of public-domain literary texts by well-known au-
thors (Shakespeare, Jane Austen, Walt Whitman,
etc.) from Project Gutenberg.

– Europarl-10k. We have created a test dataset
based on the Europarl [63] v7 dataset. We used
the English file that has been parallelized with
Spanish, removed the empty lines and kept only
the first 10K lines. We expect Europarl to be rel-
atively similar to the UN corpus since they both
provide transcriptions of proceedings in similar
domains.

Figure 4 shows the word prediction plots for various
embeddings and the three test corpora. Table 12 shows
(i) the token coverage relative to the embedding vocab-

26https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/
packages/corpora/gutenberg.zip

https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/gutenberg.zip
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/gutenberg.zip
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Fig. 3. Inter-embedding agreement for the word similarity datasets in the same order as Table 10. Embeddings that do not mention a corpus, were
trained on Wikipedia 2,018.

ulary (i.e. the percentage of the embedding vocabulary
found in the tokenized test corpus); (ii) the weighted
average score, this is the average cosine similarity per
prediction made (however, since frequent words are
predicted more often, this may skew the overall result
if infrequent words have worse predictions.); (iii) the
"token average" score, this is the average of the aver-
age score per token. This gives an indication of how
likely it is to predict a token (word or concept) given
its context if a token is selected from the embedding
vocabulary at random, i.e. without taking into account
its frequency in general texts. As with previous results,
we will draw conclusions about these results in sec-
tion 5.

4.4.5. Relation prediction
Word (and concept) similarity and prediction tasks

are good for getting a sense of the embedding qual-
ity. However, ultimately the relevant quality metric for
embeddings is whether they can be used to improve
the performance of systems that perform more com-
plex tasks such as document categorization or knowl-
edge graph completion. For this reason we include an
evaluation for predicting specific types of relations in
a knowledge graph between pairs of words, following
recent work in the area [64–66]. At Expert System,
such a system would help our team of knowledge en-
gineers and linguists to curate the Sensigrafo.

To minimize introducing bias, rather than using Sen-
sigrafo as our knowledge graph, we have chosen to use



Vecsigrafo: corpus-based word-concept embeddings 19

Fig. 4. Word and Concept prediction plots. The horizontal axis contains the word ids sorted by frequency on the training corpus; although
different embeddings have different vocabulary sizes, we have fixed the plotted vocabulary size to 2M tokens to facilitate comparison. Since
HolE is not trained on a corpus, hence the frequencies are unknown, the vocabulary is sorted alphabetically. The vertical axis contains the average
cosine similarity between the weighted context vector and the center word or concept.

WordNet since we have not used it to train HolE em-
beddings and it is different from Sensigrafo (hence any
knowledge used during disambiguation should not af-
fect the results). For this experiment, we chose the fol-
lowing relations.

– verb group, relating similar verbs to each
other, e.g "shift"-"change" and "keep"-"prevent".

– entailment, which describes entailment re-
lations between verbs, e.g. "peak"-"go up" and
"tally"-"count".

Datasets We built a dataset for each relation by (i)
starting with the vocabulary of UN vecsi ls f
(the smallest vocabulary for the embeddings we are
studying) and look up all the synsets in WordNet for
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Table 10
Aggregated word similarity results

method corpus avg ρ avg coverage %

glove cc 0.629 100.0
vecsi ls f c 25e wiki 0.622 99.6
vecsi ls f 25e wiki 0.619 98.6
sw2v c umbc 0.615 99.9
ft 8e wiki 0.613 100.0
vecsi ls f c 10e wiki 0.609 99.6
ft wiki17 0.606 98.9

HolE c 500e sensi 0.566 99.6
w2v umbc 0.566 98.9
swivel 8e wiki 0.542 99.9
vecsi ls f 80e UN 0.538 93.1
vecsi ts c 8e UN 0.505 97.9
swivel l f UN 0.480 92.9
ft 15e UN 0.451 88.6
vecsi ts 8e UN 0.443 91.0
glove 25e wiki 0.438 100.0
vecsi ls f c 80e UN 0.433 83.4
swivel 8e UN 0.403 87.9
HolE 500e sensi 0.381 99.6
glove 15e UN 0.364 88.6
nasari c umbc 0.360 94.0
sw2v umbc 0.125 100.0

Table 11
Overview - test corpora used to gather word and concept prediction
data

tokens
corpus text lemmas concepts

webtext 300K 209K 198K
gutenberg 1.2M 868K 832K
Europarl-10k 255K 148K 143K

the lemmas. Then we (ii) searched for all the con-
nections to other synsets using the selected relations,
which gives us a list of positive examples. Finally, (iii)
we generate negative pairs based on the list of positive
examples for the same relation (this negative switch-
ing strategy has been recommended in order to avoid
models simply memorizing words associated to posi-
tive pairs [28]). This resulted in a dataset of 3,039 en-
tailment pairs (1,519 positive) and 9,889 verb group
pairs (4,944 positive).

Training Next, we trained a neural net with 2 fully-
connected hidden layers on each dataset, using a 90
% training, 5 validation, 5 test split. The neural nets
received as their input the concatenated embeddings
for the input pairs (if the input verb was a multi-word

like "go up", we took the average embedding of the
constituent words when using word embeddings rather
than lemma embeddings). Therefore, for embeddings
with 300 dimensions, the input layer had 600 nodes,
while the two hidden layers had 750 and 400 nodes.
The output node has 2 one-hot-encoded nodes. For the
HolE embeddings, the input layer had 300 nodes and
the hidden layers had 400 and 150 nodes. We used
dropout (0.5) between the hidden nodes and an Adam
optimizer to train the models for 12 epochs on the verb
group dataset and 24 epochs on the entailment dataset.
Also, to further avoid the neural net to memorize par-
ticular words, we include a random embedding pertur-
bation factor, which we add to each input embedding;
the idea is that the model should learn to categorize
the input based on the difference between the pair of
word embeddings. Since different embedding spaces
have different values, the perturbation takes into ac-
count the minimum and maximum values of the origi-
nal embeddings.

Results Table 13 shows the results of training various
of the embeddings: cc glove, wiki ft27, HolE,
UN vecsi ls f and wiki vecsi ls f. Since
constructing such datasets is not straightforward [28],
we also include a set of random embeddings. The idea
is that, if the dataset is well constructed, models trained
with the random embeddings should have an accuracy
of 0.5, since no relational information should be en-
coded in the random embeddings (as opposed to the
trained embeddings).

The main finding was that the vecsigrafo-based em-
beddings learnt from the medium-sized UN corpus
outperform the rest at the prediction of both target rela-
tions. Surprisingly the vecsigrafo UN embeddings also
outperformed the Wikipedia-based embeddings; a pos-
sible explanation for this is the greater specificity of
the UN corpus compared to Wikipedia, which spans
across a large variety of topics. This could provide a
stronger signal for the relation prediction task since
there are less potentially ambiguous entries and the
model can better leverage the relational knowledge ex-
plicitly described in the KG.

27For GloVe and FastText only the optimal results, based on the
larger corpus (cc, wiki) , are shown.
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Table 12
Aggregate word prediction values. The coverage refers to the percentage of tokens (words and concepts) in the embedding vocabulary that were
found in the test corpus. The "w avg" is the average cosim weighted by token frequency and "t avg" is the average cosine similarity for all the
token predictions regardless of their frequency in the corpus

test corpus webtext gutenberg europarl-10k
emb coverage w avg t avg coverage w avg t avg coverage w avg t avg

cc glove 0.007 0.855 0.742 0.016 0.859 0.684 0.005 0.868 0.764

wiki swivel 0.013 0.657 0.703 0.027 0.664 0.718 0.010 0.654 0.666
UN vecsi ts 0.069 0.688 0.703 0.103 0.701 0.715 0.062 0.700 0.717
wiki ft 0.006 0.684 0.702 0.013 0.702 0.712 0.004 0.702 0.700
umbc w2v 0.012 0.592 0.638 0.030 0.574 0.662 0.008 0.566 0.649
UN vecsi ls f 0.138 0.630 0.617 0.214 0.652 0.628 0.128 0.681 0.636
wiki vecsi ls 0.037 0.603 0.593 0.057 0.606 0.604 0.026 0.601 0.588
HolE ls 0.035 0.414 0.416 0.056 0.424 0.424 0.026 0.400 0.398
wiki glove 0.006 0.515 0.474 0.013 0.483 0.408 0.004 0.468 0.566

Table 13
Entailment and Verb Group average prediction accuracy and stan-
dard deviation over 5 training runs

entailment verb group

ft_wikip .630 ± .022 .661 ± .021

glove_cc .606 ± .008 .628 ± .013

holE_sensi .603 ± .011 .558 ± .009

vecsi_un .684 ± .003 .708 ± .009

vecsi_wiki .608 ± .009 .587 ± .032

rand_en .566 ± .011 .572 ± .003

5. Discussion

Based on the data gathered and presented in the pre-
vious section, we now revisit our research questions
and discuss the results.

5.1. Optimal configuration for learning Vecsigrafo
embeddings

The ablation study presented in the previous section,
produced various insights into how various options af-
fect the quality of the resulting embeddings. Filtering
the input sequences by grammar type is optional in
terms of quality of the embeddings: it never hurt the
measured quality of embeddings, although improve-
ments were only clearly significant when learning
plain text tokens. However, for large corpora, filter-
ing has a positive effect on the coverage of concepts
that are included in the vocabulary: wiki_ts_f has
about 12K more concepts than the ts version and
wiki_ls_f has about 14K more concepts than the
ls version.

Lemmatizing produces better results than using
plain text tokens; this effect is bigger for small cor-
pora, but is still noticeable for large corpora.

Joint lexico-semantic training always improves
the lexical embeddings, but results are ambiguous
for the concept embeddings. The concept-based word-
similarity results from table 4 suggest concept embed-
dings are worse when co-training, compared to learn-
ing concept embeddings directly from the s sequence.
However, evaluation on the syn-sim-802 dataset
suggests, that at least the ls variants capture semantic
relations from the KG (slightly) better than the s vari-
ants. Another consideration in this regard is the cover-
age of concepts in the KG that needs to be achieved:
s achieve the best coverage of concepts and joint-
training results in fewer concepts being included in the
vocabulary.

Overall, the results show that the ls_f tokeniza-
tion offers the best compromise in terms of result-
ing quality of both lexical and semantic embeddings
as well as coverage.

Obviously, since Cogito and Sensigrafo are propri-
etary technology, they are not available to the wider
community. However, the results from table 5 suggest
that most of the benefits of the Cogito disambiguator
can still be retained using alternative disambiguation
methods such as scd and baselines like rndd.

5.1.1. On evaluating embeddings
Our results show that evaluating lexical embed-

dings is fairly straightforward given the large num-
ber of word-similarity datasets which are available.
Our results show that not all word similarity datasets
are equally reliable, but MEN, MTurk-771, SE-
MEVAL17, RW provide fairly stable results. To a
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lesser extent this is also the case for SIMLEX-999,
SIMVERB and WS-353, although their ranking sys-
tem and ambiguity may cause problems when using
special tokenizations and filtering. We found the re-
maining word similarity datasets less useful in our
evaluations; mostly because of their limited size which
results in a large standard deviation in the results.

Evaluating concept embeddings is not as straight-
forward as the lexical counterpart. We used concept-
based evaluation using existing word-similarity datasets,
but such derived datasets failed to measure differences
in concept embedding quality. This may be due to
breaking assumptions of word-similarity datasets. For
example, SIMVERB assumes the words are verbs, but
some words can refer to both verbs and nouns, which
are represented in KGs by different concepts. Fur-
thermore, our results indicate that word ambiguity is
not appropriately captured in existing word similar-
ity benchmarks, similarly to the conclusions obtained
in recent studies on polysemy [67]. In order to ob-
tain a non degraded measure, we introduced a new
dataset for concept-based word-similarity evaluation.
Our results with syn-sim-802 show it is possible
to build concept similarity datasets that provide a dif-
ferent perspective on the quality of concept embed-
dings. However, it would be better to assign human
ratings to these concept pairs, rather than our approxi-
mation using HolE embeddings. Also, we think it may
be more profitable for the community if such effort
is performed based on publicly available KGs such as
WordNet.

5.2. Vecsigrafo (and sw2v) compared to conventional
word embeddings

From tables 8 and 10 we can draw the conclusion
that, for the UN corpus (a medium sized corpus):

– co-training lemmas and concepts produces
better embeddings than training them using
conventional word embedding methods. In par-
ticular we see that: ρvecsils f > ρswivell ' ρ f t �
ρvecsits � ρswivel ' ρglove Where > means that the
difference is statistically significant (t-test p <
0.01), � means slightly significance (p < 0.05)
and ' means difference is not statistically sig-
nificant. As in the ablation study, we see that for
the same tokenization strategy, adding concepts
significantly improves the quality of the word
embeddings. The comparative study furthemore
shows that just lemmatizing and filtering achieves

a similar quality as that of FastText (which also
performs pre-processing and uses sub-word infor-
mation as discussed in section 2.1).

For larger corpora such as Wikipedia and UMBC:

– there is no statistically significant difference
between FastText, Vecsigrafo28 or SW2V29.
Similarly, GloVe performs at roughly the same
level as these other embeddings but requires
a very large corpus such as CommonCrawl to
match them.

– FastText, Vecsigrafo and SW2V significantly
outperform Standard Swivel and GloVe.

– both lemma and concept embeddings are of
high quality for Vecsigrafo based embeddings.
For SW2V-based embeddings, concept embed-
dings are of high quality, but the co-trained word
embeddings are of poor quality. Since both meth-
ods are similar, it is not clear why this is the case.

We were surprised to see how NASARI concept
embeddings (based on lexical specificity) compare
poorly to the other embeddings. This was unexpected,
since results in [24] were very good for similar word-
similarity tests, although restricted to a few of the
smaller (and thus less stable) datasets. We note that
the pre-trained embeddings we used only provide em-
beddings for concepts which are nouns even though
the method should support concepts for verbs and
other grammar types. However, even for noun-based
datasets we could not reproduce the results reported
in [24]: for MC-30 we measured 0.68 ρ vs 0.78 re-
ported, for SIMLEX-999-Nou we measured 0.38 in-
stead of 0.46 and WS-353-SIM it was 0.61 instead of
0.68. An explanation for the different results may be
that we do not apply any filtering by POS, as this is not
specified in the concept-based word-similarity evalua-
tion method. Instead, we find all the concepts matching
the words in the word pair and return the maximum co-
sine similarity, regardless of whether the concepts are
nouns or verbs. Also, since we do not have access to
the full BabelNet, we used the REST API to download
a mapping from words to BabelNet concepts. It may
be the case that [24] used an internal API which per-
forms a more thorough mapping between words and
concepts, which affects the results.

In terms of inter-embedding agreement, from Fig-
ure 3 we see that, even if those concepts are derived

28Either concept-based or lemma-based similarity.
29Concept-based only.
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from a different semantic net (BabelNet and Sensi-
grafo), concept-based embeddings tend to have a
higher agreement with other concept-based embed-
dings. Similarly, word and lemma based embed-
dings tend to be aligned with other word-based em-
beddings. Since both types of embeddings achieve
high scores for word-similarity (against the gold stan-
dard), this suggests that a hybrid word-similarity
evaluation approach could yield better results.

Furthermore, we clearly see that for the medium
sized corpus, all lexical embeddings tend to have
a high inter-agreement with each other, but less so
with lexical embeddings trained on larger corpora. For
larger corpora, both lexical and concept embeddings
show high inter-agreement with other similar embed-
dings even when trained with other corpora. For such
large corpora, we see that the method used to train the
embeddings (Vecsigrafo, FastText, SW2V, etc.) or the
method used to predict word similarity (word-based vs
concept-based) have a higher impact on the measured
inter-agreement.

From the word prediction plots (Figure 4) and re-
sults (table 12, we see very different learning patterns
for the various word embedding algorithms:

– GloVe tends to produce skewed predictions ex-
celling at predicting very high-frequency words
(with little variance), but as words become less
frequent the average prediction accuracy drops
and variance increases. This patterns is particu-
larly clear for GloVe trained on Common Crawl.
The same pattern applies for wiki glove,
however, the plot shows that for most words (ex-
cept the most frequent ones) these embeddings
barely perform better than random (average co-
sine similarity is close to 0). This suggests that
there is an issue with the default hyperparame-
ters, or that GloVe requires a much higher number
of epochs compared to other algorithms (note we
initially trained most of the embeddings with 8
epochs, but due to poor performance we increased
the presented GloVe embeddings for Wikipedia
to 25 epochs).

– FastText produces very consistent results: predic-
tion quality does not change depending on word
frequency.

– word2vec applied to UMBC has a pattern in be-
tween that of FastText and GloVe. It shows a high
variance in prediction results, especially for very
high-frequency words and shows a linearly de-

clining performance as words become less fre-
quent.

– Swivel with standard tokenization also shows
mostly consistent predictions; however very fre-
quent words show a higher variance in prediction
quality which is almost the opposite of GloVe:
some high-frequency words tend to have a poor
prediction score, but the average score for less
frequent words tends to be higher. The same pat-
tern applies to Vecsigrafo (based on swivel), al-
though it is less clear for wiki vecsi ls. Due
to the relatively small vocabulary sizes for the
studied vecsigrafos trained on the UN corpus, it is
hard to identify a learning pattern when normal-
izing the vocabulary to 2M words.

By comparing the word-prediction results between
wiki swivel and the three Vecsigrafo-based em-
beddings we can see a few counter-intuitive results.

– First, on average word prediction quality de-
creases by using Vecsigrafo, which is surpris-
ing (especially since word embedding quality im-
proves significantly based on the word-similarity
results as discussed above). One possible reason
for this is that the context vector for Vecsigrafo-
based predictions will typically be the average of
twice as many context tokens (since it will in-
clude both lemmas and concepts). However, the
results for UN vecsi ts would suffer from the
same issue, but this is not the case. In fact, UN
vecsi ts performs as well as wiki swivel
at this task.

– Second, both UN-based Vecsigrafo embeddings
outperform the wiki-based Vecsigrafo embedding
for this task. When comparing UN vecsi ls
f and wiki vecsi ls, we see that due to
the vocabulary size, the UN-based embeddings
had to perform fewer predictions for fewer to-
kens; hence maybe less frequent words are in-
troducing noise when performing word predic-
tion. Further studies are needed in order to explain
these results. For now, the results indicate that,
for the word-prediction task, Vecsigrafo embed-
dings based on smaller corpora outperform those
trained on larger corpora. This is especially rel-
evant for tasks such as Vecsigrafo-based disam-
biguation, for which standard word embeddings
would not be useful.

Other results from the word-prediction study are:
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– Most embeddings perform better for the guten-
berg test corpus than for webtext. The only excep-
tions are cc glove and wiki glove. This
may be a result of the size of the test cor-
pus (gutenberg is an order or magnitude larger
than webtext) or the formality of the language.
We assume that webtext contains more infor-
mal language, which is not represented in either
Wikipedia or the UN corpus, but could be repre-
sented in CommonCrawl. Since the average dif-
ferences are quite small, we would have to per-
form further studies to validate these new hy-
potheses.

– The training and test corpora matter: for most
embeddings we see that the token average for
Europarl is similar or worse than for webtext
(and hence worse than for Gutenberg). However,
this does not hold for the embeddings that were
trained on the UN corpus, which we expect to
have a similar language and vocabulary as Eu-
roparl. For these embeddings –UN vecsi ts
and Un vecsi ls f– the Europarl predictions
are better than for the Gutenberg dataset. Here
again, the GloVe-based embeddings do not con-
form to this pattern. Since the wiki glove em-
beddings are of poor quality, this is not that sur-
prising. For cc glove, it is unclear why results
would be better than for both webtext and guten-
berg.

– Finally and unsurprisingly, lemmatization clearly
has a compacting effect on the vocabulary size.
This effect can provide practical advantages: for
example, instead of having to search for the top-
k neighbours in a vocabulary of 2.5M words, we
can limit our search to 600K lemmas (and avoid
finding many morphological variants for the same
word).

From the verb relation prediction results in Fig-
ure 13, we see that, once again, UN vecsi ls
f outperforms other embeddings, including wiki
vecsi ls f. The fact that the random embeddings
result in an average accuracy of around 0.55 indicates
that the dataset are well formed and the results are in-
dicative of how well the trained models would perform
for new pairs of words. We can see that both tasks are
relatively challenging, with the models performing at
most at around 70% accuracy.

5.3. Vecsigrafo compared to KG embeddings

Table 10 shows that for KG-based embeddings, the
lemma embeddings (HolE 500e) perform poorly,
while the concept-based similarity embeddings per-
form relatively well (HolE c 500e). However, the
concept embeddings learned using HolE perform
significantly worse than those based on the top-
performing word embedding methods (FastText on
wiki and GloVe on CommonCrawl) and concept-
embedding methods (SW2V and Vecsigrafo). This
result supports our hypothesis that corpus-based
concept-embeddings improve on graph-based em-
beddings since they can refine the concept repre-
sentations by taking into account tacit knowledge
from the training corpus, which is not explicitly cap-
tured in a knowledge graph. In particular, and unsur-
prisingly, lemma embeddings derived from KGs are of
much poorer quality than those derived from (disam-
biguated) text corpora.

The inter-embedding agreement results from Fig-
ure 3 show that HolE embeddings have a relatively low
agreement with other embeddings, especially conven-
tional word-embeddings. Concept-based HolE simi-
larity results have a relatively high agreement with
other concept-based similarities (Vecsigrafo, sw2v and
NASARI).

Results from the word-prediction task are consistent
with those of the word-similarity task. HolE embed-
dings perform poorly when applied to predicting a cen-
ter word or concept from context tokens.

In Figure 4 we see that the first 175K words in the
HolE vocabulary are not represented in the corpus.
The reason for this is that these are quoted words or
words referring to entities (hence capitalized names
for places, people) which have been filtered out due
to the ls f tokenization applied to the test corpus.
Also, we see a jump in token prediction quality around
word 245K which is maintained until word 670K. This
corresponds to the band of concept tokens, which are
encoded as en#concept-id. Hence words between
175K and 245K are lemmas starting from "a" to "en"
and words after 670K are lemmas from "en" to "z".
This again indicates that HolE is better at learning em-
beddings for concepts rather than lemmas (leaf nodes
in the Sensigrafo KG).

6. Conclusions and future work

In this paper we presented Vecsigrafo, a novel ap-
proach to produce corpus-based, joint word-concept
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embeddings from large disambiguated corpora. Vecsi-
grafo brings together statistical and symbolic knowl-
edge representations in a single, unified formalism for
NLP. Our results, based on the largest and most com-
prehensive empirical study in the area that we are
aware of, show that our approach consistently out-
performs word-only, graph and other hybrid embed-
ding approaches with a medium size and large training
corpora, leveling out with sub-word approaches (Fast-
Text) only in the presence of much larger corpora.

Word embeddings have shown to learn lexical and
semantic relations but, staying at the level of words,
they suffer from word ambiguity and brittleness when
it comes to capture the different senses in a word.
As a consequence, these methods usually require very
large amounts of training text. Previous lemmatization
and word-sense disambiguation of the training cor-
pora enables Vecsigrafo to capture each sense much
more efficiently, requiring considerably smaller cor-
pora while producing higher quality embeddings. In
the case of graph embeddings, these approaches are
limited to the knowledge explicitly described in the
knowledge graph, which is just a condensed interpreta-
tion of the domain according to a knowledge engineer.
Vecsigrafo, on the other hand, learns from the way
language is used in actual text and uses this knowl-
edge to complement and extend the knowledge graph.
Compared to previous semantic embeddings, Vecsi-
grafo explicitly provides embeddings for knowledge
graph concepts, can be used with different knowledge
graphs, and covers not only nouns but also all the lexi-
cal entries that are semantically relevant.

In this paper we have provided a detailed insight on
our approach and the different aspects it comprises, in-
cluding an ablation study that drills down on the ef-
fects of filtering over raw text based on grammatical
information, entities and other criteria, the effects of
(and different approaches to) lemmatization, the im-
pact of jointly training lexical and semantic embed-
dings, the effects of applying different disambiguation
strategies and the impact of training corpora of dif-
ferent sizes and characteristics. As the ablation study
showed, looking at the improvements obtained in each
specific word similarity benchmark over the different
ablations confirmed that in general larger training cor-
pus size would produce better lexical and semantic em-
beddings. However, the embeddings produced by large
corpora like Wikipedia were outperformed by those
obtained from UMBC, which is similarly sized but has
a different structure, suggesting that corpus size is an
important factor to consider but not the only one when

it comes to balance the quality of lexico-semantic em-
beddings. The study also showed that jointly learning
embeddings for words and concepts contributed to im-
prove the quality of both compared to each individ-
ual case. A detailed analysis for each individual word
similarity benchmark and their properties, e.g. in terms
of number of contributors and similarity/relatedness
pairs, contributed to identify the nuances of these con-
clusions, as discussed in the paper.

We also proposed two mechanisms that have proved
useful to provide a deeper understanding on the qual-
ity of the resulting embeddings. Word (and concept)
prediction plots allow overcoming some of the main
limitation of word similarity benchmarks, which only
provide a single metric per dataset, by using the em-
beddings to predict a word based on its context in
three additional test corpora. On the other hand, inter-
embedding agreement leverage the results from the
word similarity benchmarks to assess how similar two
embedding spaces are, allowing to identify trends over
the different algorithms and corpora.

Our ongoing research seeks to enrich, validate and
extend the coverage of existing knowledge graphs for
NLP, as well as to explore cross-lingual, cross-modal
scenarios that span across related areas of AI, with a
focus on multimodal machine comprehension [68]. At
Expert System we are currently applying Vecsigrafo
in different tasks aimed at optimizing Cogito, assist-
ing our team of knowledge engineers and linguists in
increasingly cost-efficient ways. Some examples in-
clude the increasingly automated extension and cura-
tion of our knowledge graph, Sensigrafo, extending
cross-lingual capabilities over more than 14 languages
currently supported by Cogito, and enhancing the dis-
ambiguation algorithm with evidence captured from
document corpora.

We hope that the algorithms and analysis reported
in this paper, as well as the resources that we gener-
ated in doing so, will inspire further research to better
understand and leverage the interplay between knowl-
edge graphs and distributional semantics in cognitive
tasks, supporting a new breed of hybrid methods for
knowledge-based NLP. To assist this purpose, we have
also created a tutorial, 30 which provides practical in-
sight on the topics discussed herein. The tutorial fol-
lows a highly hands-on approach, with freely available
sample data, teaching materials and exercises consist-
ing of Jupyter notebooks executable online.

30Tutorial on Hybrid Techniques for Knowledge-based NLP,
available at: http://expertsystemlab.com/hybridNLP18/

http://expertsystemlab.com/hybridNLP18/
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