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Abstract. Semantic similarity measures are used in several applications like link-predication, entity summarization,
knowledge-base completion, clustering. In this paper, we propose a new semantic similarity measure called Predicate
Semantic Similarity (PSS), specifically for predicates in linked data. Accounting for the apparent similarity between
a pair of inverse predicates such as influences and influenced− by is one of the motivations for the work. We exploit
implicit semantic information present in linked data to compute two quantities that capture context and (semantic)
proximity aspects of a given pair of predicates, respectively. We build on the Normalized Semantic Web Distance
(NSWD) and generalise it to predicates to take care of the context aspect. We also propose a novel measure based
on neighbourhood-formation computation on a bipartite graph of predicates and classes to capture the proximity
aspect. Thus we compute similarity along two semantic-facets namely context and proximity. A weighted sum of
these gives us the new measure PSS. Through experiments, we evaluate the performance of PSS against the existing
similarity measures including RDF2Vec. We find that including only one of context or proximity is insufficient. We
create ground-truths to facilitate a thorough evaluation. The results indicate that PSS improves over all the existing
measures for semantic similarity between predicates.

Keywords: Linked data, Context, Semantic similarity, Predicate Similarity

1. Introduction

A semantic similarity measure for entities is a
crucial component in several challenging prob-
lems like knowledge base completion and en-
tity linking [1], canonicalization of knowledge
bases [2], entity summarization [3], to name a few.
Existing predicate similarity measures in linked
data [4, 5] are driven by the expectation of find-
ing equivalent (or synonymous) and meronomic
(e.g isPartOf) predicates. For instance, a typi-
cal measure of predicate similarity would result
in a high similarity score for a predicate pairs
like dbo:citizenship and dbo:nationality which
are candidates for equivalence, but would have
a low similarity score for predicate pairs like
dbo:influenced and dbo:influencedBy. We know
that dbo:influenced and dbo:influencedBy are in-

verses of each other (as stated in DBpedia On-
tology1). As such, inverse pairs of predicates in
linked data can be considered semantically simi-
lar. We consider such predicate pairs to be simi-
lar as well, this is because a pair of inverse predi-
cates pi ,pj express similar semantics as the triples
〈s, pi , o〉 and 〈o, pj , s〉 convey the same semantic
information.

The importance of predicate similarity mea-
sures can be appreciated by their use in several
applications like finding equivalent predicates
[5], fusing knowledge cards across search engines
[6] and to identify similar concepts in an ontol-
ogy based on similar predicates [7]. To this end,

1http://downloads.dbpedia.org/2016-04/dbpedia_2016-
04.nt
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we propose a semantic similarity measure exclu-
sively for predicates in linked data called Predi-
cate Semantic Similarity (PSS).

Our Contributions
Our contributions in this paper involve com-

puting similarity between predicates along two
facets namely context and proximity. We propose
context and proximity based similarity between
predicates in linked data as follows:

– Context-based Similarity: We introduce
the notion of contexts for each predicate as
the set of distinct class-types of instances
that occur in the subject/object position of
triples containing the predicate and shared-
contexts for a pair of predicates in linked
data. It is based on the premise that: sim-
ilar predicates have a large amount of co-
occurrence of shared-contexts. To compute
the context similarity we adapt the Normal-
ized Semantic Web Distance (NSWD) based
similarity measure[8]. Note that NSWD com-
putes similarity between entities and not be-
tween predicates.

– Proximity-based similarity: We introduce
the notion of proximity based similarity
which involves computing pair-wise proxim-
ity scores for predicates in linked data. Hav-
ing computed the proximity scores for each
pair of predicate, we assert that similar pred-
icates have similar distribution of proximity
scores. To this end, we represent each predi-
cate as a vector such that the jth component
of the vector representation for predicate pi
represents its proximity to predicate pj . The
proximity scores are computed by Neigh-
bourhood Formation (NF) operation[9] on a
bipartite graph with classes and predicates
on either side.
We find that these measures used individu-
ally are not effective in capturing the simi-
larity of predicates. The proposed predicate
similarity measure (PSS) is a weighted sum of
the above measures.

The rest of the paper is structured as follows, in
Section 2 we discuss current similarity measures
for predicates in linked data. In Section 3 we dis-
cuss Normalized Semantic Web Distance (NSWD)
and Neighbourhood Formation (NF) as they are
necessary to understand this work. In Section 4

we formalize the meaning of contexts and explain
how semantic similarity can be computed along
different dimensions. In Section 5 we show the
evaluate the effectiveness of PSS through experi-
ments. We end the paper by discussing the con-
clusion and stating future extensions in section 6.

2. Related Work

Predicate similarity measures are a useful in
several applications that use linked data. Wang et
al. [6] use predicate similarity to align predicates
across knowledge cards and model it as a ontol-
ogy alignment task. The predicates are usually
checked for lexical and semantic similarity. The
WordNet based measures like WUP[10] are used
to determine semantic similarity between entities
and predicates alike. Such a measure depends on
the presence of the predicate in the taxonomy, but
since linked data often follows arbitrary naming
schemes, WordNet taxonomy based measures can
prove to be unreliable. For the same reason, sim-
ilarity measures that check for lexical similarity
are also unreliable. Also, such measures have no
provision to consider context of occurrence of a
predicate in the linked data.

Zhang et al. [5] introduce a unsupervised method
to determine local-clusters of equivalent predi-
cates specific to a concept or a class. As a result,
predicate pairs that are equivalent w.r.t one class,
may not be equivalent w.r.t some other class.

Fu et al. [4] present a semantic similarity mea-
sure based on overlap of instances in subject po-
sition and overlap of instances object position be-
tween the two predicates. In general this measure
fails to consistently identify similar predicates
under different contexts. We compare our ex-
perimental results against this measure. Seman-
tic similarity measures have also been developed
for finding semantically similar entities in text.
Harispe el al.[11] survey and compare the various
state-of-the-art semantic similarity and related-
ness measures for predicates in natural language
in detail.

RDF2Vec [12] adapts the Word2Vec [13] to rep-
resent the entities and predicates in linked data
as context-based feature vectors. Ristoski et al.[12]
propose performing random walks of fixed length
over the RDF graph to obtain graph sub-structures
resulting in a sequence of entities and predicates.
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These sequences are analogous to word sequences
used to train Word2Vec on natural language text.
Thus, RDF2Vec chooses to consider the entities
and predicates in RDF graph as labels to compute
the vector representations of the corresponding
entities and predicates in linked data.

Normalized Relevance Distance[14] (NRD) are
an adaptation of Normalized Google Distance
(NGD)[15]. NGD based distance-measures gen-
erally compute co-occurrence between objects
(these objects are terms in case of NRD, entities
in case of NSWD, predicates in case of SWPD).
However, at the heart of such measures lies a
frequency function to compute co-occurrence of
objects. NRD uses tf-idf scores as the frequency
function to compute term-relatedness over doc-
uments and interprets this tf-idf measure based
co-occurrence score as relevance. It is worth not-
ing that in semantic web, we work with things not
strings. As such, NSWD (similar to NRD) makes
no effort to exploit representation of entities as
things. To account for this linked data setting
and in order to leverage the class information
available in linked data, we introduce Proximity-
based similarity (PS) (as discussed in Section 4.2).
However, since we work with linked data and not
textual data, we do not compare NRD with PSS.

3. Preliminaries

In linked data, information is modeled as
triples of the form 〈s, p, o〉where s is the subject, o
the object and p the predicate. Excluding literals
(like strings, numeric data) in the object position,
each entity in the subject and object of a triple can
be an instance of one or several class types. The
set of all triples in a KB can also be visualized as
a graph where the entities in subject and object of
a triple are the nodes and the predicates are the
directed edges from the subject to the object.

In linguistics, the context of a word is the
words surrounding it and this context informa-
tion is used for disambiguating the sense of
words. However in linked data the disambigua-
tion is comparatively easier since each entity is
represented by a machine-interpretable resource
(URI). Moreover, the context information is also
be used as a feature to identify semantically sim-
ilar entities and predicates in linked data.

3.1. Normalized Semantic Web Distance (NSWD)

De Nies et al. [8] define the context of an entity
as the set of entities that share a predicate with
it. Based on this definition of context, they pro-
pose a distance measure called Normalized Se-
mantic Web Distance (NSWD) between two enti-
ties in the KB. NSWD is an adaptation of the Nor-
malized Web Distance (NWD) [16] for the linked
data setting. NWD is based on the intuition that
if two entities occur together (in web documents)
more often than they occur separately, they must
be similar. NSWD is also based on a similar prin-
ciple i.e, the more two instances share incoming
and outgoing edges as predicates, the more they
are similar. NSWD is computed as shown in equa-
tion 2 where λ ∈ {in,out,all}, I is the set of in-
stances in the KB and N = |I | i.e the count of all
instances in the KB.

Vin(x) = {v ∈ I | 〈v,p,x〉 ∈ KB}

Vout(x) = {v ∈ I | 〈x,p,v〉 ∈ KB}

Vall (x) = Vin(x)∪Vout

(1)

fλ(x) = |Vλ(x)| and fλ(x,y) = |Vλ(x)∩Vλ(y)|

NSWDλ(x,y) =
max{logfλ(x), logfλ(y)} − logfλ(x,y)
logN −min{logfλ(x), logfλ(x)}

(2)

In other words, NSWDλ(x,y) represents the
conditional probability of co-occurrence of in-
stances x and y in the KB. NSWD is a distance
measure and NSWD ∈ [0,∞). De Nies et al nor-
malize it to obtain SimNSWD [8], a similarity met-
ric such that SimNSWD ∈ [0,1] so that a pair simi-
lar predicates pi ,pj have a higher SimNSWD(pi ,pj )
score than the dissimilar predicates pi ,pk .

Note that NSWD determines similarity only for
pairs of instances and not pairs of predicates in
linked data. Since predicates are indispensable
to accurately representing knowledge, a semantic
similarity measure for predicates in linked data is
of significant utility. We build upon the definition
of NSWD to present a semantic similarity measure
for predicates in linked data in Section 4.1.
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3.2. Neighbourhood Formation (NF)

Given a bipartite graph G = 〈V1 ∪ V2, E〉 and a
node pi ∈ V1, the Neighbourhood Formation (NF)
operation[9] involves computing the proximity
scores of all nodes pj ∈ V1 w.r.t pi . E is the set
of edges in G from nodes in V1 to V2. NF opera-
tion involves computing neighbourhoods within
V1(or V2) such that the nodes within a neigh-
bourhood have high proximity scores. The prox-
imity scores are computed by performing random-
walks with restarts over the graphG. These walks
begin at node pi and during each walk we main-
tain the frequency of visiting a node pj ∈ V1 from
pj . The intuition is that the frequency of visiting
a node pj is proportional to its proximity w.r.t
pi . Thus, the proximity score for pj would simply
be the probability of visiting pj from pi . Subse-
quently, neighbourhoods of nodes in V1 can be
formed based on their pair-wise proximity scores.

The NF operation involves modelling the bipar-
tite graph as a k × n matrix M where k = |{V1}|,
n = |{V2}| such M(i, j) represents the weight of the
edge from a node pi ∈ V1 to a node cj ∈ V2. Sub-
sequently, an adjacency matrix MA is created us-
ing M as shown in equation (3) and MA is trans-
formed to a column normalized matrix NA such
that each column sums upto 1.

MA =
(
0n,k M
MT 0k,n

)
(3)

With this setup, we calculate the pair-wise
proximity score as shown in Algorithm 1. Here,
we represent any node a ∈ V1 as a (k + n) × 1 di-
mensional steady-state probability vector ~pi . Ini-
tially ~pi = ~qi . On iterative application of the trans-
formation in line4, we achieve the steady-state
probability vector ~pi . In the algorithm, r is the
restart probability for the random walks. Thus,
at the steady-state, ~pi(i : k) in line6 represents
the first k components of ~pi which contains the
proximity scores of all nodes pj ∈ V1 such that the
value ~pi(j) is the proximity score of pj w.r.t pi . Sun
et. al[9] propose more efficient and scalable vari-
ants of the Neighbourhood Formation algorithm
which we use in experiments.

Algorithm 1: Neighbourhood formation

Data: node ~pi , Bipartite graph M(k,n), restart
probability r, tolerant threshold ε

Result: Vector representation of node ~pi

1 initialize ~qi as a one-hot vector with ~qi(i) = 1 ;
2 Construct MA and NA matrices.
3 while |∆~pi | > ε do
4 ~pi = (1− r)NA~pi + r ~qi
5 end
6 return ~pi(1 : k)

4. Semantic Similarity

We propose Predicate Semantic Similarity (PSS),
a semantic similarity measure for predicates in
linked data. It has two facets, one to compute
the context-based similarity and other to com-
putes the proximity-based similarity between
two predicates. We formally define context and
describe the context-based similarity measure in
Section 4.1. In Section 4.2 we describe the prox-
imity based similarity measure. Together they
harness the semantic features of the linked data
such as the rdf:type of entities, the neighbour-
hood of predicates and implicit relationship be-
tween classes.

4.1. Context-based similarity

We define the context of a predicate as the set of
class types of instances in its subject, object. For a
predicate p, the sets Cs(p), Co(p) in equations (5)
represent the subject-side and object-side contexts
respectively and Cu(p) is the union of the two
context sets. Given a set of entities S, T ypes(S) in
equation (4) gives the set of distinct class types of
the entities in the set S and KB is the set of all
triples in linked dataset under consideration and
〈x rdf:type t〉 indicates that the entity x is an in-
stance of class type t.

T ypes(S) =
⋃
x∈S
{t |〈x rdf:type t〉 ∈ KB} (4)
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Cs(p) = T ypes({x |〈x,p,o〉 ∈ KB})

Co(p) = T ypes({x |〈s,p,x〉 ∈ KB})

Cu (p) = Cs(p) ∪ Co(p)

(5)

Similarly, given two predicates p, q their shared
contexts represents the co-occurrence of the con-
texts of p and q such that they share common en-
tities in the subject and object of the predicates
as shown in equation (6). Cf and Cr represent the
two ways in which p and q share contexts. We call
Cf the forward shared-context since the subject
of p is the subject of q while, Cr is called reverse
shared-context since the subject of p is the object
of q and vice-versa.

Cf (p,q) = T ypes({s |〈s,p,o〉 ∈ KB,〈s,q,o〉 ∈ KB})

∪ T ypes({o |〈s,p,o〉 ∈ KB,〈s,q,o〉 ∈ KB})

Cr (p,q) = T ypes({s |〈s,p,o〉 ∈ KB,〈o,q, s〉 ∈ KB})

∪ T ypes({o |〈s,p,o〉 ∈ KB,〈o,q, s〉 ∈ KB})

(6)

We use the context and shared context infor-
mation and propose an instance based similar-
ity measure called Semantic Web Predicate Dis-
tance (SWPD) as shown below. A very basic vari-
ant of the context-based similarity measure was
first proposed in [17].

4.1.1. Semantic Web Predicate Distance
(SWPD)

The Semantic Web Predicate Distance is based on
the intuition that similar predicates are used in
similar contexts. We model this intuition as a dis-
tance measure which is inspired by the Normal-
ized Semantic Web Distance (NSWD). As the name
suggests, SWPD measures the semantic distance
between two predicates, as shown in equations (7)
and (8). Here, T is the set of all class types in
the linked data. The SWPDf measures the seman-
tic distance between p, q in the forward direction
since it uses the forward shared-context to deter-
mine similarity. SWPD f expresses synonymous,
hierarchical relationship. SWPDr measures the se-
mantic distance in the reverse direction as it uses
the reverse shared-context. This helps to account
for the inverse relationship between the predi-
cates. In general, we may interpret the SWPD as

a measure of the co-occurrence of the contexts of
two predicates where SWPDf measures the con-
ventional distance while SWPDr measures the in-
verse distance between the two predicates.

SWPDf (p,q) =
max{ log |Cu (p) |, log |Cu (q) |} − log |Cf (p,q) |

log |T | −min{log |Cu (p) |, log |Cu (q) |}
(7)

SWPDr (p,q) =
max{ log |Cu (p) |, log |Cu (q) |} − log |Cr (p,q) |

log |T | −min{log |Cu (p) |, log |Cu (q) |}
(8)

Example 1. Given a graph G with |V | = 100, for
the subgraph of G shown in Figure 1, we calculate
the SWPDf (p, q) and SWPDr (p, q). Here, xi (∀i =
1, ..5) are nodes in the graph and p, q are edges, :a
is the rdf :type predicate while Ci (∀i = 1,2,3) are
classes/concepts in the linked data. From equa-
tions (4), (5) and (6) we get the following:

Cs(p) : Types({x1,x2,x4})
Co(p) : Types({x1,x2,x3,x5})
Cu(p) : {C1,C2,C3}

i.e we get Cs(p) = {C1,C2}, Co(p) = {C1,C2,C3}.
Similarly we get Cu(q) = {C1,C2}.

From equation (6) we get:

Cf (p,q) : {C1,C2}
Cr (p,q) : {C2}

Here, we obtain Cf since it is the union of
T ypes({x1,x2}) and T ypes({x3,x4}) similarly, we
obtain Cr because it is the union of T ypes({x2})
and T ypes({x4}).

Based on the context and shared context sets
computed above, from equations (7), (8) we get
SWPDf = 0.1036 and SWPDr = 0.2808.

SWPD is a distance measures, thus we expect
semantically similar predicates like dbo:influences,
dbo:influencedBy or dbo:nationality, dbo:citizenship
to be semantically closer to each other and as a
result the corresponding SWPDr or SWPDf for se-
mantically similar predicates will be small and
vice-versa. However, a similarity measure usu-
ally provides higher scores for similar predicates
so we recalibrate the SWPD so that semantically
similar predicates have higher score compared to
dissimilar predicates.
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x1

x2

x5

x4 x3

p

q

q p

p

q p

C1

: a

C2

: a

: a

: a

C3

: a

: a

Fig. 1. Example to illustrate SWPD scores for predicates p,q

Recalibrating SWPD
Theoretically, we may have SWPD > 1 when

Cf (or Cr = 0) and Cu(p) = Cu(q) = T (from
equation (7)(8)) as a result we have SWPD ∈
[0,SWPDmax]. Since similarity scores are generally
in [0,1] with higher scores for more similar pred-

icates (and vice-versa), we recalibrate so that the
resulting measure is also in the [0,1] range. The
details of this recalibration is as discussed in [8].
We call the result of this recalibration as Context
Similarity (CS) as shown in equation (9):

CSλ(p,q) =

1− SWPDλ × (1− 1
SWPDmax

) if SWPDλ ∈ [0,1]

(1− SWPDλ
SWPDmax

)× 1
SWPDmax

if SWPDλ ∈ (1,SWPDmax]
(9)

Here, λ = {f , r} which means the same re-
calibration applies to both SWPDf and SWPDr .

Also SWPDmax = log2( |T |2 + 1), an upper-bound on
SWPDλ (as shown in [8]). Post the recalibration
shown in equation (9) we get CS(p,q) ∈ [0,1]. We
get CSλ(p,q) = 0 when SWPDλ(p,q) = 1, imply-
ing that (p,q) are dissimilar as they do not share
any context. Similarly we have CSλ = 1 when
SWPDλ(p,q) = 0 which means that (p,q) have a
perfect overlap of contexts. Thus, for predicates
p,q we consider the maximum of CSf and CSr
similarity scores as the Context-based similarity
score where a higher CSr value implies the p,q are
inverse similar.

4.1.2. Discussion
Distance measures that are based on informa-

tion content, such as SWPD, NSWD and NWD re-
quire a function to calculate the co-occurrence
of terms (like predicates, entities or web-pages)
and thus compute the semantic distance between

terms. However these measures model the co-
occurrence simply as intersection of entities in
case of [8] terms in case of [16]) and classes in
case of SWPD as shown in Equation (6)). In do-
ing so, SWPD ignores the effect that implicit class
axioms (like subsumption, equivalence etc) can
have on predicate similarity. For instance, con-
sider the Example 1. In this case, if C1 ≡ C2 then
we have Cr (p,q) ≡ Cf (p,q). Similarly, if C2 v C3
then we could have Cu(p) ≡ Cu(q). Under these
changes to the context-sets, it would be reason-
able to assume that the corresponding SWPDf (or
SWPDr ) score will also be affected. This demon-
strates that implicit intra-class relationships (i.e
class axioms) influence the predicate-similarity.
Thus, we need to be aware of the implicit intra-
class relationships in a linked dataset while com-
puting predicate similarity.

Consequently, we propose a method to con-
sider the implicit relationship among the classes
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and predicates in Section 4.2. This method adapts
the Neighbourhood Formation approach [9].

4.2. Proximity-based Similarity (PS)

In the previous section we acknowledged that
context alone is not enough to compute similar-
ity between predicates, we need to be semanti-
cally aware and account for implicit intra-class
relationships between classes as well. We attempt
to account for these semantic artifacts by measur-
ing the semantic proximity between classes. We
hypothesize that two classes are in close seman-
tic proximity then they are likely to be implicitly-
related. Thus, we interpret the semantic proxim-
ity between classes in the context-sets of predi-
cates as a proxy for the implicit intra-class rela-
tions.

To compute proximity between classes, we con-
dense the linked dataset into two bipartite graphs.
Let P be the set of predicates, E the set of enti-
ties and C the set of classes in a linked dataset. E ,
C and P are mutually disjoint because an entity
cannot be a class or a predicate and vice-versa.
We use this fact to represent the relationship be-
tween predicates and their contexts as a bipartite
graph. The following definitions are needed to
precisely set-up the framework:

Definition 1. Consider a bipartite graph Gs = (P ∪
C,Ws) where P = {pi |1 6 i 6 k}, C = {cj |1 6 j 6 n}
are the set of predicates and classes in linked data
and form the vertices of Gs. Ws in Gs is the set of
weighted edges such that an edge from pi ∈ P to
cj ∈ C means that the class cj ∈ Cs(pi). We call Gs
as the "source-side bipartite graph" because the edges
in this bipartite graph are determined based on the
subject-side context of the predicate p.

The bipartite graphs Gs is stored as a k × n ma-
trix Ms, such that Ms(i, j) is the weight of the
edge pi ↔ cj . Similarly, we construct the bipar-
tite graph Go, the object-side bipartite graph which
utilizes the object-side contexts to construct the
edges in the bipartite graph. Thus, in this way we
have condensed the entire linked dataset into two
bipartite graphs Gs and Go.
The edge weight is the product of class fre-
quency(cf ) and inverse-class frequency(icf ). cf -icf is
similar to tf-idf in linguistics, we define cf and icf
as follows:

Definition 2. (class frequency) For a given edge
pi ↔ cj in Gs, the class frequency (cf) is the count
of triples where pi is the predicate and entity in the
subject is an instance of class cj .

Definition 3. (inverse class frequency) For a
given edge pi ↔ cj in Gs, the inverse-class frequency
for a class cj is the logarithmically scaled inverse
fraction of the number of predicates(pi) that have
cj in its context Cs(pi). We interpret icf as class-
specificity i.e a measure of how often a class appears
in the context of a predicate.

We similarly assign weights to edges in Go.

Proximity
Now that we have condensed a linked dataset

into bipartite graphs, we can compute the prox-
imity scores for predicate pairs. Consider the fol-
lowing operations on Gs.

1. Start at predicate pi ∈ P in Gs, perform
random-walks with restarts.

2. Note the frequency of visiting each node pj
from pi .

Perform the same operation for Go as well.
Based on this operation, we can now define prox-
imity as follows:

Definition 4. (Proximity): For predicates p, q,
proximity of p w.r.t to q is proportional to the proba-
bility of visiting q from p, while performing random
walks on Gs and Go.

Note that for predicates p,q, if the classes in their
context-sets are implicitly related to each other
(i.e they could be equivalent or could be in re-
lated hierarchically) then it is likely that the prob-
ability of visiting q from p would be high i.e
the intra-class relationships of the classes in the
context-sets of predicates p,q translates into a
higher probability of visiting q from p and vise-
versa. Thus, in-turn we can interpret that q has a
higher proximity w.r.t p.

We use the Neighbourhood Formation opera-
tion (cf. Section 3.2) to extract the proximity be-
tween predicates. Analogous to MA and NA in
Section 3.2, we create adjacency matrix MAs, NAs
using Ms, and MAo, NAo using Mo. We can now
apply the Neighbourhood Formation Algorithm
(Algorithm 1)) on both Gs and Go to obtain the
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Fig. 2. Bipartite Graphs for the subject-side and object side for predicates in linked data. Neighbourhood Formation operation is
performed on both the bipartite graphs to obtain proximity-scores.

pair-wise subject-side proximity and object-side
proximity-scores for all the predicates respec-
tively. The bipartite graph Gs is shown in Fig-
ure 2.

For a predicates p,q ∈ P , let the subject-side
steady state probability vectors computed from
Algorithm 1 be ~ps and ~qs respectively. Similarly ~po

and ~qo are the object-side steady-state probability
vectors for predicates p, q. Based on these vector
representations for predicates p,q we obtain the
proximity-based similarity as geometric-mean
of the cosine-similarity between the subject-side
and object-side vectors as shown in Equation 10

RS(p,q) =
√
sim(~ps, ~qs) ∗ sim( ~po, ~qo)

where, sim(~p,~q) =
~p • ~q
||~p|| ||~q||

(cosine-similarity)

(10)

Discussion The random walks with restarts
over the Gs and Go ensure that the proximity-
scores are influenced by the implicit relationships
between the classes in the context of a predi-
cate. This is because the (implicit) relationship
that exists between classes like equivalence, sub-
sumption manifests as in-coming edges from the
classes C to predicates P . For instance, consider
the sub-graph in Example 1. Let us assume that
C1 v C3, then under this setting, every predicate
pi ∈ Gs (or Go) with edge to C1 will most likely
have an edge to C3 as well and any predicate

pj ∈ Gs(P) (or Go(P)) will also have correspond-
ing edges to C1, C3 provided pi ,pj are similar. We
observe that implicit relationships among classes
like the one mentioned above essentially assist in
highlighting the similarity between predicates in
linked data.

4.3. Predicate Semantic Similarity (PSS)

The Context-based similarity (CS) and proximity-
based similarity (PS) complement each other be-
cause CS measures the similarity between pred-
icates based on the information content of their
contexts and shared-contexts while PS measures
the similarity based on the relationships that hold
between the classes in the context of predicates.
Thus, having computed CS and PS, the seman-
tic similarity between any two predicates is the
weighted sum of PSS and PS as shown in equa-
tion (11). For experiments we use α = 0.5, giving
equal importance to both CS and PS.

P SS(p,q) = αCS(p,q) + (1−α)PS(p,q) (11)

Thus, the average of CS and PS similarity scores
is called Predicate Semantic Similarity (PSS). We
compare PSS with other similarity measures in
Section5.

5. Evaluation

In this section we describe the datasets, ground-
truth, evaluation protocol. We also compare th
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performance of our work against a baseline and
several existing similarity measures. Finally, we
discuss the evaluation results in Section5.3 where
we also discuss the contribution of CS and PS to
PSS.

5.1. Dataset and Ground Truth

Dataset Used For experiments we use the DB-
pedia 2016-04 infobox properties, GeoSpecies
and Semantic Web DogFood (SWDF) linked datasets.
We have pre-processed these datasets so that
they contain only object-properties. The DBpedia
dataset contains entities belonging to the dbo2

namespace. The GeoSpecies and SWDF dataset
however contains entities from several names-
paces like foaf, swc, swrc, rdfs etc. The SWDF
dataset contains facts about several conferences
and workshops. Table1 contains dataset specific
information. Thus, from the sizes of the datasets,
it is clear that PSS as a similarity measure can
be applied to large, medium and small sized
datasets and is thus scalable.

Constructing the Ground Truth Due to lack of
publicly available resources, we manually con-
structed the ground-truth for each dataset. Ide-
ally, a ground-truth should contain a diverse sam-
ple of predicates pairs such that some pairs are
very similar while some are dissimilar. We con-
struct the ground-truth based on this principle.
We begin by clustering the set of predicates in
each dataset. The distance measure for cluster-
ing is the count of common 〈subject, object〉 pairs
shared between predicates. This means two pred-
icates will belong to a cluster if the count of
〈subject, object〉 pairs they share is above a cer-
tain threshold. Thus, applying clustering to the
set of predicates gave us several clusters of predi-
cates. Now, to construct the ground-truth, we se-
lect predicate pairs from within as well as across
the clusters. This ensures that predicate pairs that
belong to the same cluster are more likely to be
similar since they share a greater number of en-
tities while predicate pairs that belong to differ-
ent clusters are less likely to be similar. Accord-
ingly, the ground-truth contains dissimilar pred-
icate pairs as well.

Finally, having selected the predicate pairs, we
now need to assign similarity scores to each of
them. The task of assigning similarity scores was
performed by a group of 3 human-evaluators.

These evaluators were required to assign a sim-
ilarity score on the scale of 1 − 5 for each pred-
icate pair in the ground-truth. The final similar-
ity score for the predicate pairs in a ground-truth
is averaged over all evaluators. The ground-truth
for the datasets, human evaluations and other re-
sources are available online.3

5.2. Evaluation Protocol

In this section, we evaluate the accuracy and
the quality of the results generate by PSS. We
compare the accuracy of PSS against the exist-
ing similarity measure such as WUP[18] (a Word-
Net based similarity measure), Data-driven simi-
larity measures such as Jaccard Similarity which
measures the overlap of 〈subject,object〉 between
predicates and Fu et al[4]. We also compare com-
pare against RDF2Vec [12]. Since RDF2Vec pro-
vides latent representations of predicates in vec-
tor form, the similarity between two predicates
can be computed easily. To measure accuracy, we
take a random sample of predicate pairs from
the ground-truth for each dataset. The number
of predicate pairs in the sample for evaluation
for DBpedia, GeoSpecies and SWDF are 33,10
and 10 respectively. For each predicate pair in
the sample, each of the similarity measures pro-
vide a similarity score. We quantify the perfor-
mance of each similarity measure by comput-
ing the Pearson’s Correlation Coefficient w.r.t the
ground-truth. The correlation coefficient ranges
from −1 to 1 where a positive value implies a pos-
itive correlation and vice-versa. Thus, higher the
correlation scores better the performance of the
similarity measure under consideration.

We evaluate performance of PSS qualitatively
as well. This enables us to examine the quality of
the results generated by PSS. We do this by taking
a random sample of 5 predicates from DBpedia.
For each predicate in the sample, we generate the
top-k most-similar predicates based on the PSS
scores. For each predicate in the random sample,
a group of 3 experts each generate a ranked-list
of top-k most similar predicates. These ranked-
list of predicates form the basis of evaluating the
quality of PSS as a similarity measure. To quantify
the performance of this task, we use the Spear-

3https://bit.ly/2uPISpt
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Table 1

Details of datasets used in evaluation

Dataset #Properties #Classes #Entities #Triples

DBpedia 652 461 5461016 58437974

GeoSpecies 97 41 104756 1631504

SWDF 86 79 13522 89159

man’s Footrule metric[19]. This metric provides
the distance between two ranked-lists which con-
tain the same set of items. It is formally defined
in equation (12) where σj (i) represents the rank

of item i in list j. Fmax is n2

2 (when n is even) and
(n+1)̇(n−1)

2 (when n is odd).

F(σ1,σ2) = Σni=1|σ1(i)− σ2(i)|

FN = 1− F
Fmax

(Normalization)
(12)

F essentially measures the distance between
two ranked-lists. We get F = 0 for identical lists.
The F distance is normalized (equation (12)) so
that identical lists have FN = 1, doing so facili-
tates simpler evaluation. Thus, we can obtain FN
scores for each of the ranked-lists of top-k simi-
lar predicates generated by experts and compare
it against the top-k list produced using PSS.

Throughout the experiments, we set: the restart
probability r as 0.15, the tolerant-threshold for
random-walks ε as 0.01 and contribution of CS in
PSS α as 0.5.

5.3. Evaluation Results

Table 2 compares the Pearson correlation co-
efficient of several similarity measures w.r.t the
ground-truth. It is evident from the results that
context-based measures like PSS and RDF2Vec
perform the better than Data-driven and Word-
Net based measures. PSS performs better than
WordNet based measures since these measures
are primarily fine-tuned for computing similar-
ity between entities and not predicates in linked
data. Also. such measures employ naive tech-
niques to distinguish between entities and predi-
cates (using sense/parts-of-speech of a word) and
thus even though WordNet based measures uti-
lize semantics encoded data, they fail to perform
well in linked data-setting.

Like the WordNet based measures, data-driven
measure compute similarity with the expecta-
tion of determining equivalent (i.e synonymous)
or meronimic (is-part-of) predicates. Thus, be-
cause of this expectations, they fail to iden-
tify similarity between inverse predicates like
〈dbo:previousWork, dbo:nextWork〉.

We compare PSS against both the models of
RDF2Vec i.e Skip-gram (SG) and Continuous
Bag-of-words (CBOW). Ristoski et al [12] in RDF2Vec
capture the context of entity/predicates by per-
forming random walks of fixed lengths over RDF
graphs. Thus, this supports our claim that context
is critical in computing similarity between pred-
icates. Also, from Table2, Context-based similar-
ity (CS) performs as good as RDF2Vec. While both
CS and RDF2Vec capture the context of predi-
cates, CS being exclusively for predicates is able
to model the context-information better and thus
produces better results. Also, the embeddings of
entities/predicates in RDF2Vec do not leverage
the semantic information in the form of implicit
relationships that may exist among the classes
and predicates. From the results in Table2 it is
evident that when we augment a context-based
similarity measure (CS) with such information (i.e
complement it with proximity-based similarity
PS) the resulting PSS has better accuracy.

The entries for RDF2Vec corresponding to
GeoSpecies and SWDF are empty since we could
not generate the corresponding latent-representations
of entities and predicates in these datasets. Sim-
ilarly owing to the highly specialized domain of
GeoSpecies and SWDF, the WordNet based WUP
measures could not generate usable results, hence
the corresponding entries in Table2 are left blank.

Impact of PS Correlation scores in Table2 show
that the when PS is combined with CS in PSS,
the resulting performance improves. This hap-
pens despite the fact the PS has negative corre-
lation w.r.t the ground-truth in some cases. Such
an outcome is as expected because PS introduces
new information in the form of implicit relation-
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ships between the classes in the context of a pred-
icate, and we’ve seen that complementing CS with
such information leads to overall improvement in
performance. Thus, PS has a positive impact on
computing similarity between predicates.

Comparison with Baselines
We also compare PSS against two baselines. The

objective of this comparison is to emphasize the
capability of CS (context-based similarity) in mea-
suring similarity between predicates.

– In Baseline#1, to compute the pairwise simi-
larity between predicates, we represent each
predicate as (1×N ) dimensional vector where
N is the count of classes in a dataset. For a
predicate pj , the ith component of the corre-
sponding vector is the cf-icf product for the
class ci w.r.t pj . Thus, the similarity between
any two predicates is simply the cosine-
similarity between the corresponding vec-
tors.

– Baseline#2 augments Baseline#1 with context-
based similarity. Thus, Baseline#2 computes
the similarity between predicates as the av-
erage of the cosine-similarity and CS.

The accuracy values of the baselines in Table2
highlight the importance of CS. It is clear that on
augmenting Baseline#1 with CS, its performance
improves significantly. Even on its own, CS out-
performs both the two baselines as well as the
other similarity measures under consideration.
This suggests CS models the semantic informa-
tion as contexts and shared contexts effectively to
compute semantic similarity between predicates.

Qualitative Evaluation
Results in Table3 quantify the quality of PSS

on the DBpedia dataset. This evaluation attempts
to examine the extent to which the human-
perception of similarity resembles the similarity
modeled by PSS. This task involves comparing the
ranked-list (of sizes 1,5,10) of similar predicates
generated by PSS against that curated by experts
as explained in Section5.2. Table 3 shows the FN
averaged scores across experts. It is observed that
we obtain better FN scores @k = 10 than @k = 5.
This follows from the fact that @ k = 10 the differ-
ences among the experts evens-out. The results
@k = 1 indicate that the results of PSS were in
agreement with experts 13 out of 15 times. This
because result of each top-k list is evaluated by

3 experts and there are 5 predicates under eval-
uation. For P5 @k = 1, the most-similar predicate
we suggested matched with results of only one of
one experts.

Thus, based on the results in Table3, we con-
clude PSS does a decent job at modelling similar-
ity for predicates. Table4 compares the top-k re-
sults @k = 10 for dbo:draftTeam used in evalua-
tion.

6. Conclusion

In this paper, we proposed a semantic sim-
ilarity measure (PSS) exclusively for predicates
in linked data. We proposed that PSS should
be computed along two facets, namely context
and proximity. To this end we introduced the
context-based (CS) and proximity-based (PS) sim-
ilarity measures. To facilitate evaluation, we con-
structed ground-truths for DBpedia, GeoSpecies
and SWDF. Through experiments we show that
PSS out-performs existing similarity measures.
The results suggests that context-based measures
enriched with capability to leverage relationships
between predicates and classes are good at mod-
elling similarity for predicates. Finally, the qual-
itative evaluation suggests that the PSS is effec-
tive in computing similarity between predicates
in linked datasets.
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