
Undefined 1 (2009) 1–5 1
IOS Press

EDR: A Generic Approach for the Dynamic
Distribution of Rule-Based Reasoning in a
Cloud-Fog continuum
Nicolas Seydoux a,b, Khalil Drira b Nathalie Hernandez a and Thierry Monteil b
a IRIT,
Maison de la Recherche, Univ. Toulouse Jean Jaurès,
5 allées Antonio Machado, F-31000 Toulouse
email: {name.surname}@irit.fr
b LAAS-CNRS,
Université de Toulouse, CNRS, INSA, Toulouse, France
email: {name.surname}@laas.fr

Abstract. The successful deployment of the Semantic Web of Things (SWoT) requires the adaptation of the Semantic Web
principles and technologies to the constraints of the IoT domain, which is the challenging research direction we address here.
In this context we promote distributed reasoning approaches in IoT systems by implementing a hybrid deployment of reasoning
rules relying on the complementarity of Cloud and Fog computing. Our solution benefits from the remote powerful Cloud
computation resources, essential to the deployment of scalable IoT applications while avoiding low-latency decision making by
including the local distributed constrained Fog computation resources, close to data producers. Moreover, IoT networks being
open and composed of potentially mobile nodes, the computation should be dynamically distributed across Fog nodes according
to the evolution of the network topology. For this purpose, we propose the Emergent Distributed Reasoning (EDR) approach,
implementing a dynamic distributed deployment of reasoning rules in a Cloud-Fog IoT architecture. We elaborated mechanisms
enabling the genericity and the dynamicity of EDR. We evaluated its scalability and applicability in a simulated smart factory
use-case. The complementarity between Fog and Cloud in this context is assessed based on the conducted experimentation.

Keywords: Distributed reasoning, SWoT, Semantic Fog computing, SHACL rules

1. Introduction

The maturity of Internet of Things (IoT) communi-
cation technologies is fostering a wide variety of in-
dustrial and societal applications, including home au-
tomation and industry 4.0 scenarios. However, the het-
erogeneity of IoT data and use cases raises interoper-
ability issues constituting hurdles for the development
of cross-domain IoT service platforms, leading to iso-
lated application silos. The Semantic Web (SW) tech-
nologies and principles constitute an interoperability
enabler providing expressive vocabularies to describe
data and manipulate information. The domain at the
interface between the SW and the IoT is called the Se-

mantic Web Of Things (SWoT), and it emergence is
not trivial. Even though the SWoT has been envisioned
as soon as the fundamental article of the SW [3], where
smart agents interact with devices in the user’s en-
vironment, practical SWoT achievements where pro-
posed in recent years only[25]. In particular, a core
challenge the SWoT is facing is the deployment of SW
technologies, which are resource-consuming, into IoT
networks, characterized by constrained devices.

The integration of the SW stack to an IoT ar-
chitecture is often centered on remote and powerful
machines as in [9] or [40]. IoT data is centralized
on such machines before being processed using SW

0000-0000/09/$00.00 c© 2009 – IOS Press and the authors. All rights reserved

2 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

technologies, in a Cloud computing approach [21].
SWoT deployment architectures consider pervasively
distributed devices, with potentially limited compu-
tation and communication capabilities. Transporting
data from these local devices to remote Cloud servers
relies on multiple middle nodes. It introduces a delay
in data processing, and can degrade applications’ re-
sponsivity.

Distributing the SW stack among the multiple mid-
dle nodes between the Cloud servers and the IoT de-
vices allows the SWoT architecture to avoid the draw-
backs of a Cloud-centered processing. By doing so
the architectures to evolve towards the Fog comput-
ing paradigm [1] that promotes data storage and pro-
cessing at the edge of the network[23]. However, Fog
computing is not introduced as a paradigm meant to
replace Cloud computing: its limited computing capa-
bilities, as well as the locality of the scale of its de-
ployments, are not suited to support Cloud computing
use cases. Cloud and Fog computing are two com-
plementary approaches that, when associated, enable
the deployment of complex SWoT applications [27].

In the scope on this paper, the purpose of seman-
tic processing is, thanks to knowledge captured in on-
tologies, to process data in order to produce mean-
ingful business information. One can suppose that
knowledge about the deployed IoT system and its en-
vironment modeled beforehand by the system admin-
istrators. However, business-specific knowledge needs
may not have been identified when the IoT system is
designed and might need to be injected into to rea-
soning system at runtine. Business-specific knowledge
must therefore be modeled as self-contained bundles,
and inserted into the system at when needed runtime.
Moreover, when considering a distributed approach,
all of the business knowledge might not be relevant in
the context of all the nodes. If packaged into bundles
that can be moved from node to node, business knowl-
edge may be opportunistically distributed in the net-
work. Inspired from the application bursting approach
introduced in [5], we propose to consider modular ap-
plications to enable the distribution of some of their
modules. Rules are a common way to capture business-
level logic: a rule is a self-contained representation of
a logical process. Following these considerations, the
contribution in this article considers rule-based reason-
ing: rules are used as representation of business logic,
applied in a Knowledge base (KB) capturing the envi-
ronment of the node.

The contribution in this paper is a generic approach
to the dynamic distribution of rule-based reasoning

in a Cloud-Fog IoT architecture, called Emergent
Distributed Reasoning (EDR). EDR aims at harnessing
scalability and latency issues by distributing reason-
ing rules among Fog nodes, while benefiting from the
Cloud stability and permanent availability. Strategies
for rule distribution are often application-dependent,
with a wide variety of requirements due to the het-
erogeneity of glsiot application domains. That is why
EDR is a generic approach, that can be specialized de-
pending on the desired rule distribution strategy. The
work presented in this paper completes and extends
two conference articles, [30] and [31], where some
aspects of EDR and its refinements have been intro-
duced. Novel work include a more extensive presen-
tation of related work, the detailed presentation of the
vocabulary enabling the genericity of EDR and the de-
scription of the usage of the Linked Open Rules [16]
principles. Complementary evaluations regarding the
impact of distribution, and the impact of the execution
of EDR on a constrained hardware are included, lead-
ing to a discussion analyzing the light shed by the ob-
tained results on the Cloud-Fog complementarity. The
scientific challenge we faced considers three character-
istics of the distributed reasoning system: scalability,
responsiveness, and dynamicity. These characteristics
are presented in detail in Section §2. In Section §3, ex-
isting work is introduced, to identify the added value of
the present contribution. The core contribution is de-
tailed in Section §4 and Section §5, and it is evaluated
in Section §6. This paper is concluded in Section §7.

2. Desirable characteristics for the proposed
solution

In order to capture the main characteristics of the
contribution presented in §4 and §5, an illustrative in-
dustry 4.0 use case is introduced. This use case is also
the drive for the evaluations in Section §6. The differ-
ent elements considered in the use case are then gen-
eralized to extract the main desirable characteristics of
the proposed approach.

2.1. Illustrative smart factory use case

Let us consider a production plant divided into two
floors, processing different kind of products. These
floors are modular: the structure described thereafter
is subject to change in order to adapt to new produc-
tions. Each floor is equipped with conveyor belts carry-
ing products from machine to machine for transforma-

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 3

Fig. 1. Fog-enabled smart factory

tion. Devices are organized hierarchically: machines
are connected to conveyors that are connected to the
floor gateway, that collects and delivers data to the fac-
tory datacenter. The factory is equipped with sensors
in order to ensure the safety of workers: each floor is
equipped with presence, luminosity particle and tem-
perature sensors, and the workers are equipped with
wearables communicating with nearby conveyors. Ob-
servations from the different sensors are used in or-
der to identify potentially harmful situations, and then
notify the control center, where actions can be taken
remotely. Unsafe situations are described with deduc-
tion rules, based on the semantic description of ob-
servations and of the environment. For instance, “The
presence of a worker near an operating conveyor in
a low luminosity environment is a personal security
hazard” is a potential rule. Some rules are also dedi-
cated to quality insurance: sensors available in the fac-
tory, such as temperature sensors, or sensors integrated
to machines and to the conveyor, enable the continu-
ous control of production quality. Some operations are
temperature-sensitive, and a quality insurance rule is
“The detection of a temperature above a certain thresh-
old while machines are operating is a break in the cold
chain”. Safety and quality insurance are time-sensitive
applications, which is why the processing of the rules
should be as fast as possible. Moreover, the mobility
of some sensors (e.g., worker wearables), combined to
the modularity of the factory floors, create a dynamic
network topology that evolves over time.

2.2. Scalability

Due to the modularity of the factory, the number of
devices in the environment is not bounded a priori. In
the specific industry 4.0 use case, this device count is
unlikely to increase by multiple order of magnitudes,
but from a more general point of view, application do-
mains of the IoT include smart cities or connected ve-
hicles, where large volumes of devices are involved.

Therefore, scalability is an important characteristic
for a SWoT system, and the decentralization of rea-
soning is an enabler of such scalability [20]. However,
the difference of computing power between Cloud and
Fog nodes should not be neglected: Cloud architec-
tures’ intrinsic capabilities enable a resource upscale
impossible for Fog architectures. Moreover, Cloud in-
frastructures provide a stability that is complementary
to the dynamic nature of Fog architectures. Therefore,
we propose to leverage both the distributed nature of
Fog computing and the permanent, powerful nature of
Cloud computing by adopting a mixed approach.

2.3. Responsivity

In the proposed use case, the rules deployed in the
system are used to detect potentially harmful situa-
tions, requiring the inferred notifications to be received
by the control center as soon as possible. The proposed
system should be able to reduce as much as possible
the time from the appearance of an undesirable situa-
tion, and the moment where the control center is no-
tified of such situation. Therefore, responsivity is an-
other desirable characteristic for our contribution.

Fog-enabled architectures trade computational power
for proximity with data sources, which is interest-
ing for situations where increasing the proximity with
data sources decreases the complexity of reasoning.
When decentralizing processing, the individual com-
putational load is reduced for each node compared to
a centralized approach, which can yield better perfor-
mances [35]. Instead of funneling all the data towards
the Cloud before inferring higher level information,
combining Fog computing and direct communication
between Fog nodes and applications should enable a
faster notification delivery.

2.4. Dynamicity

IoT systems are dynamic by nature: they are open
systems, where devices can appear and disappear, as
well as move from one point to the other. In the smart

4 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

factory use case we introduced, the modularity of the
factory floors might lead to changes in the network.
More frequently, failures might happen, disconnect-
ing a device. For energy saving purposes, all the ma-
chines might also not be powered permanently. More-
over, some devices are attached to workers that are mo-
bile: they will be connected to different machines over
time, leading to a dynamic network topology.

Therefore, the placement of rules in the network
should adapt to the evolution of topology: the last char-
acteristic that we want for EDR is dynamicity. De-
pending on the devices available at a given moment on
a given node of the network, all the applicative rules
will not necessarily be relevant to this node. If a rule
requires observations from a sensor that disconnects,
carrying on applying this rule is a waste of resources.
Applications are also subject to change, and adapting
the rule distribution strategy depending on the applica-
tions is also an aspect of dynamicity we consider.

3. Related work for rules deployment in SWoT
architectures

As the concern of the proposed approach is to
deploy reasoning rules among Fog nodes to enable
deducing application-dedicated information from IoT
data, state-of-the-art work dealing with logical rules
for the IoT, distributed reasoning and processing on
constrained nodes is presented.

3.1. Rules for the SWoT

Rules are logical twofold elements, composed of
preconditions and postconditions. Preconditions repre-
sent a state of the world such that the rule should be
applied in order to generate its post conditions, which
represent a new state of the world. In our literature
search, we identified two main types of rules associ-
ated to the SWoT [4]:

– Production rules, or deduction rules, in which
preconditions are expressed as a logical expres-
sion, and postconditions are new knowledge
which are the logical consequence of precondi-
tions.

– Event-Condition-Action (ECA) rules, in which
preconditions are the association of a logical ex-
pression and an event triggering its evaluation,
and the postconditions are actions to be executed
if the preconditions are matched. Such actions are

not limited to knowledge inference: they can be
instantiated by running a piece of code.

Production rules being explicit deduction represen-
tations, they have been considered in IoT networks to
express and share the correlation between sensor ob-
servations and high-level symptoms since early work
on the SWoT [33]. [32] lists numerous works using
rules for context-awareness in the IoT.

With the goal of facilitating rule reuse, Linked
Rules principles have been proposed [16]. They ap-
ply to rules the basic principles of Linked Open Data
and Linked Open Vocabularies: rules are designated
by dereferencable International Resource Identifier
(IRI)s, expressed in W3C-compliant standards, and
they can be linked to each other. Inspired from the
Linked Rules, the Sensor-based Linked Open Rules
(S-LOR)[9] is dedicated to rules re-usability for de-
ductions based on sensor observations. Production
rules are a mechanism similar to Complex Event Pro-
cessing (CEP) approaches, used for instance in [18],
but the rule representation shifts from an ad-hoc rule
format in CEP to a unified format in the SWoT.

[36] proposes a classification of production rules for
the IoT, in order to identify recurring patterns. The au-
thors distinguish rules enabling deductions from rela-
tions between nodes, and from relation between events
(i.e. changes of the environment). In our contribution,
we want to go further than this distinction by manip-
ulating hybrid rules: their preconditions may both rely
on conditions expressed on the nodes of the network,
or on their environment.

3.2. Centralizing rule processing on Cloud nodes

In most existing approaches, i.e. [18], [9] or [41],
production rules are handled by Cloud nodes. An ex-
ample of Industrial IoT (IIoT) use case enabled by
Cloud-based semantic rules processing is presented in
[40]. This paper proposes a self-configuring smart fac-
tory in which conveyors and machines produce data
which is processed on a Cloud node where user rules
are used to make reconfiguration decisions. Rules are
expressed in SWRL. The same formalism is used in
[26], where production rules are computed in a cen-
tral Cloud node in order to dynamically reconfigure
the communication network topology between devices
and the Cloud node. The inferred deductions are con-
verted into network reconfiguration actions by ad-hoc
agents. A similar hybrid approach is used in [8]: rules
are expressed as production rules, but their postcondi-

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 5

tions may include ad-hoc properties dedicated to the
triggering of actions.

In [15], a multi-agent blackboard approach is cho-
sen to dynamically manage rules in a smart home. Ob-
servations are published to a central node, the Do-
motic Status Board (DSB), where they are checked
against rules in order to trigger inferences and reac-
tions: the rules considered combine properties of pro-
duction rules and ECA rules. Rules are expressed in
the Jena formalism1, and an interface also allows users
to control the system based on controlled grammar
sentences. In this system, rules may be injected or
deactivate at runtime. ECA rules are also used in a
smart home use case in [19]: the authors propose an
autonomic-like approach, where collected data is used
to trigger actions of the system based on rules. The au-
thors make a distinction between two types of actions
stored in the KB. High-level actions, which are poli-
cies chosen by the user, and low-level actions, which
are the actual implementations of the former, built by
domain experts to hide the complexity of the system to
the end-user. User preferences are expressed through a
GUI, and converted from the GUI to KB individuals.
During this conversion, appropriate low-level actions
are selected to implement user-generated policies. The
actual deployment topology is not presented, but the
absence of any element indicating a distribution of the
underlying platform leads to the conclusion that it is
executed on a central node.

Production rules are used for context-awareness in
a smart user space in [11]. Location information are
combined to business knowledge, and to observations
of the state of the user’s environment, in order to make
assumptions on the context. For instance, the following
is a rule introduced by the authors: “IF the user is in
an airport lounge with a low luminosity and the drapes
closed THEN the user is sleeping”. Such deduction is
then used by context-aware services to adapt their be-
havior, materialized by ECA rules. Data required for
the deductions are gathered into a central hub before
being processed, and deductions are then sent to re-
mote nodes.

Rules are deported on Cloud nodes rather than ex-
ecuted in Fog nodes when used to achieve context-
awareness, such as in [8] or [11], in order to obtain
a global execution context. However, in [26] for in-
stance, some reconfigurations decisions could be taken

1https://jena.apache.org/documentation/
inference/#rules

only considering a local context. In this case, rules
could be executed directly on Fog nodes.

3.3. Distributing rule processing on Fog nodes

The centralized architecture of the previously de-
scribed papers raises issues, such as the cost of se-
mantic reasoning that increases rapidly with the size of
the KB [20]. Fog computing offers a low-latency, re-
silient alternative for rule processing, even though the
constrained nature of Fog nodes (compared to Cloud
nodes) must be taken into account: processing power
or bandwidth are critical resources. Centralization also
requires all the content collected by IoT devices to
be processed in the same place, while Fog comput-
ing makes computing power available closer to IoT de-
vices. Fog computing enables to process content with
rules where it is produced, rather than requiring it to
be transported to a remote node to be processed by
Cloud computing. That is why rule placement in Fog
architectures is a topic of interest for the SWoT

Most approaches for processing on constrained
nodes focus on optimizations enabling such process-
ing for a single node without considering the other.
When considering a distributed execution composed
of several Fog nodes, processing placement is not dy-
namic: all nodes execute the same rules, or each a pre-
defined rule set statically assigned. For instance, even
though it is not directly targeted at SWoT applications,
the RETE algorithm proposed in [39] is dedicated to
constrained nodes. RETE aims at reducing the mem-
ory requirements for production rules processing. This
is a very interesting optimization, but it is dedicated
to a single Fog node and does not consider distributed
processing. [7] shows how gateways are Fog nodes ca-
pable of enriching data: observations are initially pro-
duced by legacy devices in ad-hoc formats. It is the
gateway, communicating with devices using protocols
adapted to constrained environments, such as CoAP,
that enriches the data before forwarding it towards a
Cloud node. Therefore, observations are enriched on
the edge of the network, and only the Fog nodes in di-
rect contact with legacy devices have to perform data
enrichment. [17] or [13] propose to execute ECA in
Fog architectures, used to automate the response of
the system to a stimulus. However, both authors only
consider one gateway executing the rules, and the ad-
hoc rule format is not suited for rule exchange. The
contribution introduced in [6] uses ECA rules associ-
ated to SW formalisms, namely SWRL and SPARQL.
The authors use the Wiselib RDF provider [10], as

https://jena.apache.org/documentation/inference/#rules
https://jena.apache.org/documentation/inference/#rules

6 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

well as CoAP and 6LowPan communication, in order
to enable semantic processing directly on constrained
nodes. How rules are distributed in the network is not
discussed by the authors.

Regarding processing distribution in existing work,
the dynamic nature of IoT networks should be con-
sidered. The topology of a network evolves as devices
connect, disconnect, or move geographically. There-
fore, a viable distribution of rules at a given moment
is not guaranteed to remain optimal in the future, and
the distribution strategy should be adapted to the
evolution of the network topology. [20] does not de-
tail the mobility strategy used for its mobile nodes, and
each node applies all the rules regardless of their rele-
vance to the content it aggregates. In [35], rule place-
ment is static, in either Cloud or Fog nodes. [38] fo-
cuses on resource placement in a Fog-enabled IoT.
The authors compute optimal deployment of applica-
tion modules based on the representation of available
resources in the Fog architecture compared to require-
ments expressed by applications. Module positions are
static, and computed at the time of deployment. Rules
are deployed on gateways in an IIoT context in [14].
The rules themselves are not expressed using SW for-
malisms, but they are combined to a semantic engine
proposed in [12] in order to consume enriched data.
The placement of rule in the Fog architecture is not
dynamic, however ad-hoc mechanisms enable rule up-
date at runtime.

EDR differs from previous proposals by different
aspects in order to comply with the requirements de-
scribed in Section §2:

– The locality of the knowledge involved in the rule
deployment: each node only considers its own KB
when propagating a rule.

– The dynamicity of rule deployment in the SWoT
system at runtime, constantly adapting to the state
of the topology in an event-driven behavior.

– The genericity of the approach, enabling its adap-
tation to various application-level strategies.

4. EDR, a generic approach to dynamically
distributed rule-based reasoning

In this section, EDR, a generic approach to dynami-
cally distributed rule-based reasoning supported by se-
mantic Fog computing, is introduced. EDR is based on
architectural assumptions that are presented in Section
§4.1. EDR’s functional overview is depicted in Sec-

tion §4.2, before presenting the vocabulary used to de-
scribe EDR core functionalities in Section §4.3. Mod-
ular rules are at the core of EDR, the formalisms used
to represent them and the roles of their modules is de-
scribed in Section §4.4.

4.1. Assumptions on the underlying architecture

EDR is based on the hypothesis of a hierarchi-
cal network topology: nodes are organized in a tree-
like structure, and only communicate with neighbor-
ing nodes, i.e. Cloud node and semantic-computing-
enabled Fog nodes. This assumption is made because
such topologies are frequent in IoT networks, repre-
sented in studies such as [26], [42], [2] (based on the
oneM2M standard), [37], or [35].

Applications are not deployed on a Cloud node be-
longing to the IoT topology: they are executed re-
motely on personal devices such as smartphones or
laptops. Rules represent applicative needs: when de-
ductions from sensor observations are required by an
application, it injects the rule in the network in order
to be provided directly with the deductions, instead of
being forwarded raw data by the network and applying
the rules itself.

It is therefore assumed that Fog nodes can commu-
nicate with applications directly. Rules are initially
submitted by applications to the Cloud node, so it is the
only node they know a priori. The Cloud infrastruc-
ture provides a unique permanent interface to the net-
work, the dynamic Fog topology underneath is there-
fore transparent for applications.

4.2. Overview of the EDR approach

In order to ensure decentralization, the algorithm of
the EDR approach is executed in parallel on each node
able to perform reasoning in the topology. EDR con-
siders a neighbor-to-neighbor rule and data propaga-
tion, enabling a reduction the nodes’ knowledge of the
topology to a limited subset of the complete deploy-
ment. Thus, consistency of the knowledge only has to
be maintained with immediate neighbors, which limits
required knowledge-related exchanges between nodes,
and improves scalability. Due to the potential mobility
and variable availability of Fog nodes, EDR is meant
to foster decision making in a local context for each
node, leading at a large scale to the emergence of a
desirable behavior.

A parent node propagates a rule to its child if the
parent considers that the child is empowered to apply

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 7

the rule. This decision is made by the parent based on
a deployment strategy embedded in the rule, as well
as on the knowledge it has of its child. The deployment
strategy captures the criteria required for a node to
process a rule, and therefore characterizes if a child
node is suitable to be forwarded said rule. In order to
enable rule deployment, nodes exchange messages de-
scribing their capabilities, e.g., their location, the type
of data they observe, or the type of data they are inter-
ested in. When a node makes a new deduction based
on a rule, it sends the result to all the nodes interested,
including the application that submitted the rule.

The EDR approach itself is agnostic to the de-
ployment strategy, which is defined by the rule im-
plementer: that is why we qualify EDR as generic. The
present section §4 is dedicated to the EDR approach,
which defines the characteristics of a deployment strat-
egy without implementing them. Such implementation
is described with a refinement of EDR, EDRT , intro-
duced in Section §5.

A functional representation of an EDR node is pro-
vided in Fig. 2: each node has a local KB, where
knowledge necessary to the execution of EDR is
stored. This knowledge is used to drive the basic func-
tionalities of the node, and rules are used by the infer-
ence engine to update the KB.

Featured knowledge includes:

– the knowledge the node has of its own character-
istics and capabilities,

– the knowledge it has about its neighbors,
– the knowledge it has about the static organization

of the environment such as the geographic or in-
door location, or the relationship between the sur-
rounding elements,

– the value of the last observations depicting the
current state of the dynamic features of the envi-
ronment,

– the rules that it has received from either applica-
tions or other nodes.

This knowledge is used to control the behavior of
the node, composed of simple functionalities. A node
is able to:

– Send of a piece of data, typically a sensor obser-
vation, to a remote node,

– Propagate a rule to a remote node,
– Apply a rule on its knowledge base,
– Announce a description of its own capabilities to

a remote node,

– Deliver a deduction obtained by processing a rule
to a remote node,

How these node functionalities are related to the KB
in the core EDR mechanism to enable the propaga-
tion of observations and rules is described in Section
§4.3. The modular rule representation embedding the
deployment strategy, and the updates of the KB they
trigger, are detailed in Section §4.4.

4.3. A vocabulary driving the deployment mechanism

Nodes behavior is made on purpose quite simple,
in order to decorrelate the rule-specific deployment
strategy from the core algorithm on which EDR is
based. Rule deployment strategies are dedicated to a
particular purpose, e.g., response time reduction or pri-
vacy enforcement, while EDR is generic.In order sup-
port the genericity of EDR with a knowledge-driven
method, nodes functionalities are based on a dedicated
vocabulary, used to describe knowledge in the node’s
KB.

For instance, this vocabulary captures the hier-
archical nature of the topology. Let the parent of
a node n be noted Upper(n), and its children re-
ferred to as Lower(n). The relation between a node
np and any nc ∈ Lower(n) is expressed with the
triplet <np,lmu:hasDownstreamNode,nc>23, based
on a nomenclature presented in [29]. The inverse rela-
tion exists, to express the connection between a node
nc and its parent np ∈ Upper(n): <nc,lmu:has-
UpstreamNode,np>.

A description of all the functionalities of the nodes,
and of the vocabulary that drives them, is provided
in Section §4.3.1. Further details about the announce-
ment functionality are provided in Section §4.3.2, es-
pecially with regard to the consumption of data. Fi-
nally, the scope of the announces is studied in Section
§4.3.3.

4.3.1. Basic node functionalities
Each functionality relies on dedicated triplets, and

a node implements its behavior based on the descrip-
tion held in its KB. How this triplets are inferred from
the deployment strategy is described in the next section
§4.4. Before detailing how the strategy triggers nodes
functionalities, let us examine the vocabulary describ-
ing said node functionalities.

2Namespaces are available on http://prefix.cc
3Individuals such as np and nc are identified with an IRI in the

triplets

http://prefix.cc

8 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

Fig. 2. EDR node-centric functional overview

Announce self-description: When a node connects,
disconnects or changes capabilities, it notifies its
neighbors of it self-representation. Since a notification
is sent at each update of the state of the node, the per-
ception of a node by its neighbors remains consistent
with its evolution over time. Two mechanisms support
this announce:

– a partial update, in which a node adds statements
to its description already held by the target

– a complete update, in which the representation of
the node is completely erased by the target before
being updated.

These mechanisms allow to add information about a
node by exchanging light messages containing par-
tial representations, while enabling to remove outdated
statements with the complete update. A particular node
characteristic that is declared in the announce func-
tionality is the type of data in which a node is inter-
ested, captured with the predicate edr:isInterestedIn,
which is used in the data sending functionality. The
announce functionality is extended by the mechanisms
described in Section §4.3.2 to control which character-
istics of the node are propagated, and the scope of this
propagation in Section §4.3.3.

Apply rules: When a node n receives a new obser-
vation, either from its own sensors or lower nodes, n
executes the rules r stored in its KB if the description
of r contains <r,edr:isRuleActive,true>.

Deliver deduction: If the processing of an observa-
tion with rule r by node n leads to a deduction δ, δ
is sent to each node belonging to

⋃
nconsumer where

<nconsumer,edr:consumesResult,r> is in the KB of
n. Especially, the application that submitted the rule r
to the network is known as the rule originator o, and
is represented by the triplet <r,edr:ruleOriginated-
From,o>. The originator of a rule is considered as a
consumer of rule results, in order to enable deduction
delivery to applications. The deduction delivery func-

tionality is separated from the interest notification part
of the announce functionality for flexibility.

Send data: When node n receives an observation of
type ρt, if np ∈ Upper(n) has declared its interest for
this type, the observation is forwarded toward np. Ob-
servations are exchanged lazily: if a node n receives an
observation of type ρt, and knows no other node inter-
est in such type, the observation is not forwarded. Such
interest is represented in node n KB with the triplet
<np,edr:isInterestedIn,ρt>. The notification of the in-
terest is considered as a characteristic of the node,
managed in the announce functionality.

Propagate rule: A node sends a rule to one of its
neighbor if it considers that this neighbor is capable
of applying the rule, such consideration being part of
the rule deployment strategy. In the case where rule
r should be propagated towards node ntarget by n,
the triplet <r,edr:transferableTo,ntarget> is present
in n’s KB.

4.3.2. Controlling nodes’ characteristics propagation
The EDR algorithm depends on the exchanges be-

tween neighboring nodes of their mutual descriptions.
The announcement functionality is dedicated to the ex-
change of such descriptions. However, presupposing
of the nodes characteristics relevant to any deployment
strategy that will be implemented to refine EDR is not
possible. In order to remain agnostic to the deployment
strategy, EDR relies on a dedicated vocabulary used to
describe which of each node’s characteristics should
be announced to its neighbors. A node has two types
of neighbors: its parents, and its children, and since the
parent is unique (according to our assumptions) while
the children are potentially many, two approaches are
devised.

Announcing characteristics to a node’s parent: Let
us consider a node n, with a characteristic repre-
sented by a property hasCharacteristic and cap-
tured in its knowledge base such that <n,hasCharac-

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 9

teristic,ν>, with ν either a literal or an individ-
ual denoting the value of the characteristic for n.
When announcing its characteristics to its parent, n
searches its KB for all the triples where it is the subject,
and the predicate is a predicate types as edr:Parent-
AnnouncedProperty. If the property hasCharacteris-
tic is such that <hasCharacteristic,rdf:type,edr:-
ParentAnnouncedProperty>, then the triple <n,has-
Characteristic,ν> is part of the self description sent
by the node n to its parent because hasCharacteris-
tic is considered a relevant characteristic of n.

Announcing characteristic to a node’s children: The
announce mechanism from parent to children is quite
similar to the one from children to parent, with the dif-
ference that children may be many. Therefore, the class
edr:ChildrenAnnouncedProperty has two subclasses to
distinguish two possible cases:

– edr:AllChildrenAnnouncedProperty denotes a char-
acteristic that is systematically announced to all
the node’s children.

– edr:SomeChildrenAnnouncedProperty denotes a
characteristic that should only be announced to a
subset of the node’s children.

This distinction is made to give flexibility to the de-
ployment strategy designers.

In the case of a characteristic captured by a pred-
icate of type edr:SomeChildrenAnnouncedProperty,
each child eligible to be proxyied the new char-
acteristic must be represented explicitly with the
predicate edr:announceTo, which requires the reifi-
cation of the announced characteristic. In order to
be announced towards child node nchild, the triple
<nparent,hasCharacteristic,ν> is transformed into
the following reified statement: statement rdf :subject
nchild; rdf :predicate c; rdf :object ν; edr:announceTo
nchild. The choice of the children to which the char-
acteristic should be announced is application-specific,
and is therefore part of the deployment strategy. As the
rest of the deployment strategy, it is embedded in rules
as it is described in Section §4.4.

The interest of a node for a type of data, denoted
by the predicate edr:isInterestedIn, is managed as a
node characteristic. Therefore, depending on the de-
ployment strategy, the interest of nodes is classified
as one of the subclasses of edr:ChildrenAnnounced-
Property. More details about this particular predicate
is provided in Section §5, with the instantiation of a
concrete deployment strategy.

4.3.3. Propagating knowledge beyond neighbors
The basic functionalities only enable the communi-

cation of a node with its direct neighbors in the hi-
erarchy, either parents or children (with the exception
of deduction delivery). This enforces the neighbor-to-
neighbor nature of the propagation enabled by EDR.
However, such design may hamper the propagation of
rules, by preventing the diffusion of knowledge re-
quired by the deployment strategy to make decisions
so as to where the rules should be placed. If the char-
acteristics of a node nchild ∈ Lower(n) makes it ad-
equate to apply a rule which is held by nparent ∈
Upper(n), but n cannot apply the rule, nparent will
not propagate the rule to n, preventing its eventual
propagation to nchild. A complementary functional-
ity is thus described by the EDR vocabulary to enable
such diffusion of knowledge describing nodes capabil-
ities: proxying.

The proxying mechanism implemented in EDR is
inspired from [22], where reasoning nodes act as proxy
for the capabilities of legacy nodes unable to process
enriched data. In EDR, each reasoning-enabled node
has a similar role, and proxies capabilities of its neigh-
bors. Such proxying is bidirectional: the capabilities of
a nodes parent are proxied towards its children, and the
other way around. Specifically, node n proxying a ca-
pability of nparent ∈ Upper(n) towards any nchild ∈
Lower(n) means that n announces such capability to
nchild as if it were its own. An example of proxied
node characteristics, detailed in Section §5.2.2, is the
interest of a node for a data type, briefly introduced
here for the sake of illustration. If a node n wants to be
notified whenever a temperature observation is avail-
able, it notifies its children nchild ∈ Lower(n)of such
interest. If any child nchild collects temperature ob-
servations, it will forward such observation towards
n. Moreover, each nchild will in turn notify that it
is itself interested in temperature observations to any
node n′child ∈ Lower(nchild). Any node n′child col-
lecting a temperature observation will therefore send it
to nchild, which will itself send such observation to n.
The characteristic of the initial node n (here, the inter-
est in temperature) has indeed been proxied to n′child
by nchild: n′child only has knowledge of nchild, and
communication is kept strictly between direct neigh-
bors. To support this mechanism, two classes of prop-
erties are defined in the EDR vocabulary: edr:Parent-
ProxiedProperty, and edr:ChildrenProxiedProperty.

Characteristics proxied from children to parent: Let
us assume that node n has a child nchild, and that

10 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

nchild has a characteristic expressed by the triplet
<nchild,hasCharacteristic,ν>, that should be prox-
ied towards nparent ∈ Upper(n). Such information
about the predicate ν is materialized by the triplet
<hasCharacteristic,rdf:type,edr:ParentProxiedProperty>.
When receiving description of nchild, n checks for the
presence of properties classified as edr:ParentProxied-
Property. Since hasCharacteristic is such a prop-
erty, the node n updates its own representation towards
its parents by sending the triple <n,hasCharacteri-
stic,ν>, therefore proxying the capacity of nchild.

Characteristics proxied from parent to children: The
proxying mechanism from parent to children is simi-
lar to the one from children to parent. Contrarily to the
case of the announcement functionality, the multiplic-
ity of children is not considered: all the children are
proxied any received parent characteristic. Such policy
is made necessary by the locality of decision-making
enforced by EDR. On the one hand, a node n receiving
a characteristic to proxy from its parent nparent does
not have the contextual knowledge that lead nparent
to announce this particular characteristic to n. On the
other hand, the node nparent does not have a detailed
knowledge of the topology below its child n, and there-
fore cannot make any assumptions about to which chil-
dren in particular n should proxy the characteristic of
nparent.

It is possible that the proxying mechanism and the
announcement mechanism lead to conflicting behav-
iors. In particular, a node may have chosen not to an-
nounce a characteristic of its own to some of its chil-
dren, but be required to proxy the same characteristic
in the stead of one of its parent. In this case, the prox-
ying mechanism supersedes the announcement mech-
anism, and any proxied characteristic is processed as a
edr:AllChildrenAnnouncedProperty. For instance, if a
node n did not announce its interest for a data type ρt
to its child nchild, n will nonetheless announce such
interest to nchild if the parent of n, nparent, notifies n
of its own interest for ρt, and requires n to proxy such
interest.

4.4. Rule representation and deployment

4.4.1. Rule modular structure
EDR rules are composed of several modules, as it is

represented on Fig. 3. Each of these modules enables
some node functionalities:

– The Activation module triggers the rule applica-
tion, the data consumption and the result delivery
functionalities.

Fig. 3. Rule modules

ex:ruleEnvelope

ex:ruleTransferShape

ex:resultDeliveryShape

ex:activationShape

ex:deductionShape

ex:ruleTransferRule

ex:resultDeliveryRule

ex:activationRule

ex:deductionRule

edr:hasTransferShape

edr:hasDeliveryShape

edr:hasTransferShape

edr:hasDeductionShape

sh:condition

sh:condition

sh:condition

sh:condition

Rule propagation module

Result delivery module

Activation module

Rule core module

sh:NodeShape sh:SPARQLRule

rdf:type rdf:type

– The Deduction delivery module triggers the result
delivery functionality

– The Rule transfer module triggers the rule for-
warding functionality

Therefore, the intelligence regarding rule deploy-
ment is located in the rules, and not hard-coded into
EDR or statically attached to nodes. The behavior of
the algorithm at a global scale can thus be parame-
terized at a fine granularity, for each rule. Rules are
represented in SHACL, and the modules are based
on SHACL advances functionality named “SHACL
rules”. Each module is composed of two parts: a
SHACL rule, that inserts deductions into the KB, and
a SHACL shape that determines whether the rule is ap-
plied or not. An example rule is provided online 4. In
the remainder of this section, a generic description of
these rule modules and their roles is given. An imple-
mentation is proposed in Section §5, where specific be-
haviors dedicated to a particular strategy are described.

In order to associate all the modules to a rule rep-
resented as a single individual in a node’s KB, we in-
troduce the notion of rule envelope as a reification
mechanism. The envelope of an EDR rule is an indi-
vidual subject of triples which predicates are edr:has-
TransferShape, edr:hasApplyShape, edr:hasDelivery-
Shape and edr:hasDeductionShape. The rule envelope
is especially useful in the rule deployment process,
when all the modules of a given rule must be collected
for the rule to be propagated to a remote node.

4.4.2. Rule modules
Core module The operational part of the rule, con-
taining the application-dedicated inference, is referred

4https://w3id.org/laas-iot/edr/iiot/r1.ttl

https://w3id.org/laas-iot/edr/iiot/r1.ttl

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 11

to as the rule core module. The core module is based
on a predicate logic rule used to deduce high-level in-
formation, similar to the rules introduced in the use
case in Section §2.1. Let rcore be such a rule core mod-
ule, noted as rcore : Γ1 ∧ ... ∧ Γn → ∆1 ∧ ... ∧∆m,
where Γ1∧...∧Γn, designated as the body of rcore, is a
conjunction of conditions and ∆1∧...∧∆m, designated
as the head of rcore, is a conjunction of deductions.
The rule core module only encompasses applicative
deduction logic: it is unrelated to the deployment of
the rule. This module is only evaluated when the rule
has been declared active on a node in the deployment
process, i.e. if the triple <r,edr:isRuleActive,true> is
in the node’s KB.

Rule transfer module The rule transfer module de-
termines on which remote nodes the rule may be de-
ployed, according to a rule-specific deployment strat-
egy. This condition is expressed as a SPARQL query
embedded in the SHACL rule being the conditional
part of the rule transfer module. The deduction part
of the module infers the triple <r,edr:transferable-
To,n′>, enabling the rule forwarding mechanism of
the node (c.f. Section §4.3.1). The transfer module of
a rule r is denoted rtransfer.

Rule activation module The activation module de-
tects if the current node is suitable to apply the rule
itself. If the conditional part of rule r activation mod-
ule determines that the current node is suitable to ap-
ply r, the activation of rule r is made explicit by the
triplet <r,edr:isRuleActive,true>. In the case where
some node characteristics are conditionally proxied
towards children (edr:SomeChildrenProxiedProperty),
the rule activation module may infer reified statements
as described in Section §4.3.3. This case is illustrated
in more details in Section §5.3. The activation module
of a rule r is denoted ractivation.

Result delivery module The result transfer module
enables the forwarding of deductions to other nodes
that are not the originator of the rule, such as the par-
ent n′ of a node n if n′ applies a rule r′ that con-
sumes the deductions made by a rule r applied by n.
By default, the originator o of a rule r is assumed to
be interested in the results of r, denoted with <o,edr:-
consumesResult,r>. If a remote node n′ is interested
in the deductions made by rule r, the result transfer
module infers that <n′,edr:consumesResult,r>.

4.4.3. Dynamically managing modules activation
The rule core must be computed each time a new ob-

servation is received by the node, in order to check if

new deductions may be inferred. However, it is worth
noting that the other rule modules only need to be eval-
uated when the rule is received, or when the topology
evolves, e.g., with new productions by children, new
consumptions by parents, or nodes connecting/discon-
necting.

The SHACL standard is so that by default, when
reasoning on a KB containing SHACL shapes and
rules, all of them are considered. In order to reduce
the computation load, and to only process rule mod-
ules when needed, a SHACL functionality is used: the
reasoner does not consider shapes or rules r such that
<r,sh:deactivated,true>. The modules of a rule r are
therefore only activated for a reasoning step when r is
received, or when the topology evolves.

The appropriate modules, i.e. all except the core
module, are classified as edr:NodeSensitiveComponent
(as opposed to what would be a “Content sensitive
component”). Therefore, a unique query activates or
deactivates rule modules related to deployment, for all
the rules stored in a node’s KB.

Deployment modules management is represented on
Fig. 4, in an overview of the algorithm. When a rule
is initially received, all of its modules are active. That
is why no activation is required when receiving a new
rule, marker (1) on Fig. 4. The rule deployment update,
marker (3) on Fig. 4, is performed by the reasoner.
Since no other rule deployment modules has been acti-
vated since the new rule has been received, and by de-
fault these modules are deactivated, only the deploy-
ment of the newly received rule is computed.

In the case where the node receives an information
about a topology update, such as the connection or dis-
connection of a node or the change of capability of
a known node, it is possible that the rule deployment
should be updated accordingly. That is why, for all the
rules stored in the node’s KB, the deployment mod-
ules are activated upon the reception of a topology up-
date, as seen in marker (2) on Fig. 4. The received
change is then integrated in the KB, and if necessary
the new topology is propagated to parent nodes, before
performing a reasoning step computing the deploy-
ment rule modules. If the placement rule needs to be
updated due to the topology change, the new deploy-
ment is enforced by activating or propagating rules in
compliance with the deductions and the EDR vocab-
ulary, before deactivating the rules deployment mod-
ules, marker (4) on Fig. 4.

If the received message is an observation, no rule de-
ployment update is required. The only active rule mod-
ules are the core modules for rule that the node should

12 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

Fig. 4. EDR algorithmic overview
Message reception

Is the message
an observation ?

Is the mes-
sage a rule ?

All rules modules
activation (2)

Update topology
representation

Propagate
new topology

Update rule
deployment (3)

All rules modules
deactivation (4)

Reasoning

Mark data (5)

Data and deduc-
tion propagation

No

No (the message is a
topology update)

Yes (1)

Yes

process, and they are used by the reasoner to test if new
inferences are possible. The marking and propagation
of deductions is discussed in Section §4.4.4.

4.4.4. Leveraging the unique identification of rules
EDR rules are compliant with the Linked Rules

principles [16], and in particular they are uniquely
identified by an IRI. The identification of rules being
shared among all nodes, provenance can be traced for
a given deduction. Two purposes have been identified
for this traceability: the avoidance of redundant com-
putation, and the update of rules at runtime.

Preventing redundant computation With the rules
being uniquely identified among all nodes, it is pos-
sible to mark observations when they have been pro-
cessed with a rule, successfully leading to a deduction
or not. After an observation o has been involved in a
reasoning step with rule r, a new triple is added to the
observation description: <o,edr:usedForDeduction-
By,r>. This marking prevents an observation to be
processed multiple times with the same rule when it
is propagated from one node to another. Considering
this marking or not is up to the rule implementers: for
instance, the strategy presented in Section §5 takes it
into account, so that each observation is at most pro-
cessed once by each rule for performance issues. De-
pending on the propagation strategy, it may be neces-
sary to process the same piece of data with the same
rule in multiple contexts, in which case the marking
may be ignored. The marking of observations with the
edr:usedForDeductionBy property is shown on Fig. 4,
marker (5).

If a rule is submitted by multiple applications to the
topology, the uniqueness of the identifier also enables
to avoid redundant processing. In a node’s KB, each
rule can be associated to several originators, indicating
that the deduction should be sent to several applica-
tions. Expressed in an application-specific namespace,
two identical rules would be applied twice, leading to
a waste of resources.

Updating rules at runtime The use of a unique deref-
erencable identifier also allows to incrementally mod-
ify rules at runtime, so that the operation of the moni-
tored system is not interrupted. Modifying rules allow
applications to fine-tune their behavior according to a
feedback loop that considers either previous responses
to inputs, or external factors (e.g., seasonal change, or
regulation evolution). When a rule r is received by a
node n, if r’s IRI is already known by n, all the triples
describing the rule are compared to the triples stored
in the node’s KB.

If the newly received version of the rule is different
from the version held by the node, then the rule rep-
resentation is updated in the KB, and the rule is pro-
cessed as if it were a new rule. However, it is possible
that the new representation of the rule is no longer ap-
plicable by children of the current node, to which the
former version of the rule had been previously prop-
agated. In the regular EDR algorithm, the rule would
not be forwarded to such children, but in this case this
is an issue: two different mutually exclusive versions
of the rule are executed in the topology.

To tackle this issue, an object property is used: when
a node n transfers a rule r to nchild ∈ Lower(n),
it adds the triple <r,edr:transferredTo,nchild> to the
rule description stored in its KB. When a node updates
a rule representation, it transfers the new rule version
towards the children which received the former version
by searching for this property. If said children are not
able to apply the new version of the rule (as determined
by the application module of the rule), updating their
rule representation enforces the consistency of the rule
across the network. The same process is carried on re-
cursively from parent to child node in order to ensure
that all the nodes of the topology eventually have an
up-to-date representation of the rule.

This approach however leaves a consistency issue
unsolved: during the propagation of the new rule ver-
sion, the two mutually exclusive versions of the same
rule are both active. There is no guarantee that the lat-
est version of the rule has been propagated success-
fully at any point in time after its injection in the net-

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 13

work. A way to solve this issue is to attach a version
number to the rule with the owl:versioninfo annotation
property. This version information is then attached to
deductions made with the rule, so that applications are
aware of the version of the rule that lead to any deduc-
tion.

5. Refining EDR with EDRT

As it has been said in the previous section §4,
EDR is a generic approach to rule deployment among
semantic-enabled Fog nodes, agnostic to the criteria
according to which rules are propagated in the topol-
ogy. In order to demonstrate the applicability of EDR,
the present section is dedicated to EDRT , an ap-
proach refining EDR by implementing a deploy-
ment strategy.

After introducing the EDRT core principle in Sec-
tion §5.1, the knowledge required by nodes executing
EDRT is described in Section §5.2. How EDRT is im-
plemented in rule modules is discussed in Section §5.3.
The behavior of nodes executing EDRT is detailed in
Section §5.4, in order to capture the complete deploy-
ment process.

5.1. Implementing a deployment strategy based on
property types with EDRT

The purpose of EDRT is to bring rules as deep
as possible in the topology, in order for them to be
processed as soon as possible, while limiting unnec-
essary message exchanges. Therefore, EDRT is meant
to reduce the delay between the moment observations
able to trigger a deduction by a rule are produced by
devices, and the moment said deduction is received by
the rule originator. Due to the assumed hierarchical na-
ture of the network, the deeper a node is in the topol-
ogy, the fewer descendants it has. A node processing
a rule deeper in the hierarchy will thus apply said rule
less often, on a smaller KB, since it should receive
less updates from its descendants. Since reasoning on a
smaller KB yields better performances [20], propagat-
ing rules as deep as possible among reasoning nodes
reduces computing complexity. Therefore, in EDRT , a
node receiving a rule propagates said rule to any of its
children able to process it.

EDRT implements a deployment strategy driven by
the types of properties produced by nodes. These
properties can be either environmental properties cap-
tured by sensor observations (e.g., luminosity) or

higher level properties deduced by other rules (e.g.,
comfort). Nodes characteristics capturing these pro-
ductions are exchanged between neighbors in order
to identify the lowest possible node able to process
the rule. These characteristics are captured in the rule
modules to enable the deployment process. The con-
ditional shape of rule modules is based on both prop-
erty types consumed by the rule and property types
produced by neighboring nodes to infer the node be-
havior.

To manipulate these property types in the follow-
ing, the body and head notations introduced in Sec-
tion §4.4.2 are extended. We introduce bodyt(rx) =
{γ1, ..., γn′} and headt(rx) = {δ1, ..., δm′} where γi
designates the property type of Γi, and δj the property
type of the deduction ∆j . It should be noted that not
all Γi or ∆j used in the rule are relevant to the EDRT
approach.

Let us considerRV isibility andRColdChain, illustra-
tive rules provided in natural language in Section §2.1.
A translation of RV isibility in based on description
logic is: Location(?l) ∧ Presence(?l, ?o1)∧?o1 =
True ∧ Luminosity(?l, ?o2)∧?o2 < 300L ∧ Ma-
chine(?m) ∧ Activity(?m, ?o3)∧?o3 = True ∧
locatedIn(?m, ?l)→ LowMachineV isibility(?m).
For this rule, the defined predicates behave as fol-
lows: for the conditions, bodyt(RV isibility) = {Pre-
sence, Luminosity,Activity}, and for the deduc-
tions, headt(RV isibility) = {LowMachineV isibi-
lity}. Location is a property type that is not con-
sidered by the deployment strategy implemented by
EDRT . For RColdChain, represented in description
logic in Section §6.3, bodyt(RColdChain) = {Tempe-
rature,Activity}, and headt(Rconveyor) = {Cold-
ChainBroken}.

The deployment of RV isibility and RColdChain by
EDRT in an extract of the simulation topology is
shown on Fig. 5. Both rules are submitted by the con-
trol center application to the Cloud node, and are de-
ployed among Fog nodes. Nodes applying the rules
(e.g., machines M111 and M112 for RV isibility) di-
rectly provide the control center with deductions,
which is not represented on the figure for the sake of
legibility.

5.2. Node characteristics at stake in EDRT

5.2.1. Node’s knowledge on itself
A node n has in its KB information about the

property types of the data it produces, denoted by
the predicate own_productions(n). Data produced

14 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

Fig. 5. Example of EDRT deployments

Factory
datacenter

F100

C110

M111 M112

C120

M121 M122

RV : RV isibility

RC : RColdChain

: Applies rule

: Propagates rule

: Propagates data

Control
center

Registers RV , RC

RV , RC

RV
RV , RC

RV RVRV RV

RV , RC

, ,

by node n is either collected by sensors to which
n is directly connected, or obtained as deductions
when n applies a rule. When a reasoning-enabled
node is connected to a sensor, it enriches the raw
observation, and propagates the enriched observa-
tion on the network, which ensures that the obser-
vation is only enriched once. In the topology dis-
played on Fig. 5, the Fog node M111 is connected
to a three sensors: own_productions(M111) =
{Presence, Luminosity, Activity}. An example of
enriched observation is available online5. Observations
and devices are described in each node’s KB using the
IoT-O[28] ontology for our experiments (c.f. Section
§6), but the proposed approach does not depend on the
ontology used to describe data, as long as the same on-
tology is used to express the rules and their metadata.
The production of observations by node n for a prop-
erty type ρt is denoted <n,edr:producesDataOn,ρt>.

5.2.2. Node’s knowledge on the topology
A node n knows its parent in the network tree-like

hierarchy. On Fig. 5,Lower(C110) = {M111,M112},
and Upper(C110) = {F100}. The node communi-
cates its characteristics to these neighbors to support
the deployment strategy implemented by EDRT . Such
characteristics include the types of the data produced
by the node, as well as the types of data consumed.

Announcing productions: The transmission of rules
among nodes organized by EDRT is driven by the
knowledge each node has on the network around

5https://w3id.org/laas-iot/rules/
observations/enriched_data.ttl

itself. Productions are propagated from children to
parents, denoted by the triple <edr:producesData-
On,rdf:type,edr:ParentAnnouncedProperty>. There-
fore, when a child node connects to its parent, it in-
cludes the triplets denoting its productions in its self-
description.

In order to enable the propagation of rules towards
nodes that are not direct neighbors, the proxying mech-
anism introduced in Section §4.3.3 is implemented
for property types productions: <edr:producesData-
On,rdf:type,edr:ParentProxiedProperty>. This mech-
anism makes a node aware of the types of proper-
ties produced by any node below its lower nodes
while communicating only with its lower nodes, there-
fore ensuring the locality of its decisions. To il-
lustrate the proxying in more details, let us define
productions(n) = own_productions(n)∪
productions(Lower(n)). Node n announces itself
to its parent nparent as a producer of ρit,∀ρit ∈
productions(n), ρit being the type of data produced
by one of the sensors or lower nodes connected to
n. For instance, on Fig. 5, productions(C120) =
{Activity, Temperature}, with
own_productions(C120) = {Temperature}. If
the parent node nparent was not a producer of the
property type ρt, it includes a new triplet in its KB
<nparent,edr:producesDataOn,ρt>, and forwards this
triplet to its own parent. If node nparent was already a
producer for rhot, its capabilities remain unchanged,
and the information propagation stops.

Announcing consumptions: As it has been discussed
in Section §4.3.1, in order to limit unnecessary ex-
changes, data is exchanged lazily based on the node
consumption announcement functionality. A node n
has to explicitly advertise its interest for a property
type ρt to each node belonging to Lower(n) in or-
der to be notified when new observations are re-
ceived or new deductions are made. In particular, a
node is interested in a property type ρt when it is
in charge of applying a rule whose body includes
ρt. Identifying if ρt ∈ bodyt(r) is based on IRI
comparisons. The interest of a node n for a prop-
erty type ρt is represented in the KB by the triplet
<np,edr:isInterestedIn,ρt>, and <edr:isInterested-
In,rdf:type,edr:SomeChildrenAnnouncedProperty>. In-
deed, when a node applies a rule r and is thus inter-
ested in the properties ρt ∈ headt(r), it does not nec-
essarily notify this interest to all of its children.

The interest of n for ρt is only announced to chil-
dren of n that are producers of ρt. Moreover, if some

https://w3id.org/laas-iot/rules/observations/enriched_data.ttl
https://w3id.org/laas-iot/rules/observations/enriched_data.ttl

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 15

nodes nichild ∈ Lower(n) are able to apply the rule
r themselves, node n will forward r to nichild, rather
than notifying nichild of its interest. The details of the
rule deployment strategy are provided in Section §5.3.
In Fig. 5, M121 announced to C120 that it produced
Activity, and C120 notified M121 of its interest for
Activity in order to receive future observations.

Nodes interests are proxied towards children:<edr:-
isInterestedIn,rdf:type,edr:ChildrenProxiedProperty>.
When a node n receives a message from its parent
nparent containing a triple <nparent,edr:isInterested-
In,ρt>, n announces to its children nchild ∈ Lower(n)
that <n,edr:isInterestedIn,ρt>. Therefore, when one
of the children produces a data of type ρt, n is notified,
and itself propagates the received data to nparent. The
knowledge of nodes about their environment is thus
limited to their neighborhood, enabling purely local
decisions.

5.2.3. Exploiting the contextual locality of IoT data
The rule deployment strategy supported by EDRT is

based on the assumption that the correlation between
pieces of data is embedded in the network topol-
ogy. IoT data is strongly bound to a spatio-temporal
context [24], and the distribution of Fog nodes re-
flects the distribution of features observed by sensors.
From this hypothesis, it can be inferred that the con-
text of a node is a subset of the context of its par-
ent. To illustrate this claim with RColdChain previ-
ously introduced, it means that if it is possible to ap-
plyRColdChain with activity and temperature observa-
tions collected by the same gateway, it is not necessary
to compare the same activity observations with tem-
perature observations collected elsewhere. IoT data be-
ing highly contextual, applications do not necessarily
need to reason over a complete KB to get relevant re-
sults. EDR is therefore suitable for rules exploiting this
context by correlating data sharing an identical con-
text, e.g., the correlation of temperature and luminosity
in the context of a single room for RColdChain.

The relation between the spatio-temporal context
and the topology is represented in Fig. 6, where each
gray area represents the context of a Fog node. The as-
sumption we make entails that, since both M111 and
M112 contexts contain enough information to process
ruleRV isibility, the luminosity from M111 context and
the temperature from M112 context will never be pro-
cessed together by RV isibility.

In the case of the C120 context, since neither M121
nor M122 produce the information necessary to pro-
cess RColdChain or RV isibility, both nodes send their

Fig. 6. Illustration of observations spatio-temporal context

M111 context
M112 context

M121 context M122 context

C120 context

Factory
datacenter

F100

C110

M111 M112

C120

M121 M122

observations to C120. The fact that C120 is the par-
ent of both M121 and M122 is considered a hint that
the context of M122 is closer to the context of M121
than, for instance, to the context of M112. The proxim-
ity of context is associated to the distance of the clos-
est common ancestor: M121 and M122 share a parent,
while the closest common ancestor to M121 and M112
is F100, at a distance of 2 hops from both nodes. Since
M121 and M122 are closer to each other than M122
and M112, there is a higher chance for the luminosity
observation from M122 to lead to a deduction based on
RV isibility when processed with presence from M121
rather than M112.

In a similar manner as context proximity, context in-
clusion is impacted by the hierarchy. A context A is
considered included in a context B if the elements of
context A are also available in context B. On Fig. 6,
the C120 context includes the M121 and M122 con-
texts, since activity, presence and luminosity values are
propagated to C120. Since C120 applies RColdChain,
M121 and M122 provide it with activity observations,
which it processes with its own temperature value ob-
servations.

If, as in our case, the scope of rules is not broader
than the context in which they are applied, applying
rules deeper in the hierarchy does not impact the com-
pleteness of the result. However, if the rules are not
adapted to the topology in which they are deployed
with EDRT , some deductions will be inferred in a cen-
tralized approach that would be missed when data is
processed in a decentralized manner. For instance, let
us consider two sensors producing respectively obser-
vations of types ρ1 and ρ2, connected to the same node
n, and a rule r consuming ρ1 and ρ2. EDRT will even-

16 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

tually deploy r on n, and none of the observations of
type ρ1 and ρ2 produced by n will be processed by r
outside of the context of n. This is the intended be-
havior of EDRT , but it limits its applications so some
types of rules, such as rules performing the aggrega-
tion of several values of the same type. For instance,
a rule that sums electrical consumptions and compares
the total to a fixed value cannot be executed success-
fully by EDRT , because its scope will be larger than
the contexts in which it will be distributed, that is any
node producing electrical consumption observations.

This behavior is adapted to rules supporting deduc-
tions for time-sensitive applications, which is the fo-
cus of the present contribution, and cannot be applied
to aggregation rules, where time series or multiple in-
stances of the same property types are considered. This
choice is motivated by the assumption that aggregation
rules are more likely to be used in applications support-
ing long-term reporting and decision support, where
the time constraint is not strong, and thus outside the
scope of this contribution. The EDR approach and its
refinements (such as EDRT) do not aim at replacing
semantic Cloud computing, but seek to complement
its capabilities with semantic Fog computing. That is a
second reason not to support aggregation rules.

To ensure decidability, only DL-safe rules are con-
sidered, and EDR is only suitable for stratified rule
sets. Cyclic dependencies between rules are not re-
solved. When a node applies rule r, it is considered
as producer of the headt(r), and this production infor-
mation is used for the deployment of any rule r′ such
as bodyt(r′) ∩ headt(r) 6= ∅. However, a non strat-
ified rule set where rules r and r′ coexist such that
bodyt(r

′) ⊆ headt(r) and bodyt(r) ⊆ headt(r
′) can-

not be processed successfully by EDR, and neither r
nor r′ will be propagated or applied.

5.3. Implementation of EDRT in rule modules

The behavior of a node implementing EDRT is em-
bedded in the modules of EDRT -compliant rule. For
now, these rules are built manually: the property types
feature in the rule body and head of the rule are iden-
tified when the rule is written, and the modules are
built accordingly. The knowledge required for the pro-
cessing of each module is local to the node perform-
ing the reasoning process. For the sake of legibility, the

Listing 1: rtransferColdChain shape

SELECT $this WHERE {
FILTER NOT EXISTS {
$this a lmu:Node ;
edr:producesDataOn adr:Temperature,
adr:MachineState ;

lmu:hasUpstreamNode [a lmu:HostNode;].
FILTER NOT EXISTS {
{ex:coldChainRule
edr:transferredTo $this.}

UNION
{ex:coldChainRule
edr:transferableTo $this.}}}}

SHACL representation of the rules is not reproduced
in the present paper, and they are available online6.

5.3.1. Rule Transfer module
The purpose of EDRT is to transfer each rule to

the lowest possible node in the architecture, to be
applied as early as possible. The propagation of a rule
rx from node n to node n′ is considered relevant if
n′ ∈ Lower(n) ∧ bodyt(rx) ⊂ productions(n′),
which brings it closer to sensors.

This condition is expressed in Lst. 1, an extract of
the SHACL shape constituting rtransferColdChain.

Since it is assumed that rules are initially submit-
ted to the Cloud node, the neighbor-to-neighbor prop-
agation is only considered downwards in the topology.
Each node that handles the rule in the deployment pro-
cess keeps its representation in its KB. Therefore, it is
not necessary to re-propagate a rule upwards: if a node
ceases to be able to apply a rule, the change should be
considered by the activation module of the rule held by
its ancestors, as it is detailed in Section §5.4.

Incrementally, the rule r will converge toward nodes
such that, for any node n of them:

– n can no longer propagate r, i.e. ∀n′ ∈ Lo-
wer(n), bodyt(rx) 6⊂ productions(n′),

– n is able to apply the rule r, i.e. bodyt(rx) ⊂
productions(n).

These are the nodes able to apply the rule that are the
closest to the original data producing: propagating the
rule lower in the hierarchy is not necessary. Such a
node is represented on Fig. 5 with gray dashes con-
nected to RV isibility and RColdChain.

6https://w3id.org/laas-iot/edr/iiot/
visibility.ttl, https://w3id.org/laas-iot/edr/
iiot/coldchain.ttl

https://w3id.org/laas-iot/edr/iiot/visibility.ttl
https://w3id.org/laas-iot/edr/iiot/visibility.ttl
https://w3id.org/laas-iot/edr/iiot/coldchain.ttl
https://w3id.org/laas-iot/edr/iiot/coldchain.ttl

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 17

Listing 2: ractivationColdChain shape

SELECT $this WHERE {
FILTER NOT EXISTS {

$this a lmu:HostNode.
$this lmu:hasDownstreamNode ?tempProvider,
?activityProvider.
?tempProvider edr:producesDataOn
adr:Temperature.

?activityProvider edr:producesDataOn
adr:MachineState.

FILTER EXISTS {
$this lmu:hasDownstreamNode ?lowerNode.
FILTER(

?lowerNode = ?activityProvider
|| ?lowerNode = ?tempProvider)

FILTER NOT EXISTS {
?lowerNode edr:producesDataOn

adr:Temperature, adr:MachineState.}}}}}

5.3.2. Activation module
In order to apply a rule r, a node n must be the

lowest common ancestor to the producers of prop-
erty types in the rule body. Such node has a set
P of children (either sensors or other Fog nodes)
partially producing the rule head. Individually, none
of the children produce all the elements of the rule
head, but combined, their productions enable the pro-
cessing of the rule. It is characterized as such: ∃P ,
such as ∀nc ∈ P , <n,lmu:hasDownstreamNode,nc>
and ∃{ρt, ρ′t} ⊆ body(r), <nc,edr:producesData-
On,ρt> and ¬∃ <nc,edr:producesDataOn,ρ′t>, and
∀ρt ∈ body(r),∃nc ∈ P,<nc,edr:producesData-
On,ρt>. Lst. 2 gives a SPARQL implementation of
these conditions applied to ractivationColdChain.

If the conditional part of rule r activation mod-
ule determines that the current node is suitable to
apply r, some deductions are inferred. The activity
of rule r is made explicit by the triplet <r,edr:-
isRuleActive,true>, and the nodes n′ ∈ P are iden-
tified as providers of the data type which r now con-
sumes. The interest of n for the consumption of the
nodes n′ ∈ P is announced, as it is captured by
the <?interest,edr:announceTo,?partialDataProvider>
triple in the SHACL rule. The object of the interest,
represented as a reified statement, will be bound to
any partial production of the rule head by a child of
n. The interest of the rule originator o is also denoted
with<o,edr:consumesResult,r>. These inferences en-
able both the rule application and the rule result for-
warding mechanisms as described in Section §4.3.
The SPARQL CONSTRUCT embedded in the SHACL
rule for the ractivationColdChain module is provided in Lst. 3.
The focus of the SHACL shape, materialized by the

Listing 3: ractivationColdChain rule

CONSTRUCT {
$this edr:isInterestedIn adr:MachineState,
adr:Temperature.

$this edr:producesDataOn ex:ColdChainBroken.
?interest a rdf:Statement;
rdf:subject $this;
rdf:predicate edr:isInterestedIn;
rdf:object ?partialProduction;
edr:announceTo ?partialDataProvider.
ex:coldChainRule edr:isRuleActive
"true"^^xsd:boolean.

?originator edr:consumesResult ex:coldChainRule.
} WHERE {
$this a lmu:HostNode.
{
$this lmu:hasDownstreamNode
?partialDataProvider.

?partialDataProvider edr:producesDataOn
?partialProduction.

FILTER NOT EXISTS {
?partialDataProvider edr:producesDataOn
adr:MachineState, adr:Temperature.

}
} UNION {
ex:coldChainRule edr:isRuleActivable
"true"^^xsd:boolean.

}
ex:R1 edr:ruleOriginatedFrom ?originator.
BIND(STRAFTER(str(?partialProduction), "#")
AS ?productionName)

BIND(URI(CONCAT(str($this), ?productionName,
"Interest")) AS ?interest)}

$this variable, captures the IRI of the node apply-
ing the rule in its own KB. It is defined in the SHACL
documentation as the only element shared natively be-
tween the SHACL conditional shape and the SHACL
rule said shape conditions: the $this captures the
node violating the shape defined in the condition. That
is why some elements characterizing the child nodes of
the current node need to be recaptured in the WHERE
clause of the ractivationColdChain rule, while the $this is al-
ready bound to the current node.

5.3.3. Result delivery module
In EDRT , the condition of the result delivery mod-

ule checks if a node expressed interest for the type of
deductions yielded by the rule. If there exists a triple
<n′,edr:interestedIn,ρt>, with n′ a remote node and
ρt an element of the rule r’s head head(r), then the
result transfer module infers that <n′,edr:consumes-
Result,r>.

5.4. Unraveling the main steps of EDRT

Nodes executing the EDR algorithm maintain a co-
herent view of their neighborhood, and deploy rules
with respect to this perception of their environment ac-

18 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

cording to the strategy implemented by EDRT . The
neighborhood of a node is modified when a new node
connects or a known node disconnects, and when the
productions or consumptions of a node are modified.
The main events impacting the exchanges of a node
with its neighbors are therefore: when its capabilities
are changed (which includes startup and disconnec-
tion), when receiving a new rule, and when receiving
a new piece of data. In the following, the behavior of
EDRT for each of these events is described to refine
the high-level description given on Fig. 4.

When changing capability Sensors are the primary
source of data for the network. The data they produce
is collected by their reasoning-enabled parent. When
semantic computing-enabled nodes start, they try to
connect to their sensors children of which they have a
priori knowledge. How nodes discover and gather in-
formation about sensors can be a process tightly re-
lated to the underlying technology, or hard-coded in
the node KB.

Nodes connected to sensors announce the prop-
erty types they produce to their parent node, accord-
ing to the announcement functionality captured in
the triple <edr:producesDataOn,rdf:type,edr:Parent-
AnnouncedProperty>. As explained in Section §5.2.2,
nodes propagate production information by proxying
their children productions. Similarly, when a sensor or
a lower node providing data of type ρi to node n dis-
connects, n announces its updated capabilities if they
have been transformed, i.e. if the disconnected node
was the sole producer of ρi.

In the case when the node already held some rules,
their placement might need to be updated according to
the new topology denoted by the received message. In
order to adjust the rule deployment accordingly, rule
modules dedicated to such deployment, namely appli-
cation, transfer and delivery modules, are activated,
processed in a reasoning step, before being deactivated
again as detailed in Fig. 4. The deductions yielded by
this reasoning step, based on the edr vocabulary, are
used to control the node behavior as described previ-
ously. The use of these modules is similar when a new
rule is received, as it is described in the next section.
A part of the propagation of rV isibility in the illustra-
tive deployment provided in Fig. 5 is represented as a
sequence diagram on Fig. 7.

When receiving a rule When node n receives a new
rule r, n evaluates whether it can apply r directly,
and/or if it should propagate r to some of its children
by performing a reasoning step with all modules of r

activated. Based on the deductions produced by this
reasoning step, some node functionalities are activated
if necessary:

– If the rule r is applicable by the current node,
the productions of n are updated by ractivationx . n
notifies its parent of its new productions, i.e. the
head of r. Being able to produce the deductions
of a rule is processed like a capability change,
described in the previous section. If the applica-
bility of rule r is enabled by the productions of
some children of node n, the interest of n for their
productions has been added in the KB, as well as
the necessity for their notification of such interest.
Node n thus notifies these children of its interest
for these properties.

– The rule r is propagated to child nodes marked
suitable by the rule transfer module. Local meta-
data is added to rule r in order to keep track of the
lower nodes to which it has been transmitted with
the predicate edr:ruleTransmittedTo. Such meta-
data is not added by the rule transfer module, but
by the node after the completion of the propaga-
tion to the target.

When receiving new data Different kinds of data can
be received by node n:

– raw observations directly produced by a sensor
connected to n

– enriched observation or deduction sent to n by
node nc ∈ Lower(n)

If the received observation is raw, node n enriches it
by annotating it with an ontology before its process-
ing as a new enriched observation. If the piece of data
is either an enriched observation or a deduction, it is
directly integrated to its KB and processed.

The data, of property type ρi, is in the first place
sent to Upper(n) if it is a consumer of ρi. Then, node
n checks if new deductions can be obtained by apply-
ing the rules it has marked up as active. When receiv-
ing new data, a node does not need to activate the rule
modules for activation, transfer or delivery: only the
core of the rule is relevant. If the rule body matches the
KB of node n, and postconditions of type δj are de-
duced, these deductions are propagated to Upper(n)
if it is consumer of δj . Since rules are applied on the
local KB of node n, there is no impact of data distribu-
tion on reasoning complexity. A new reasoning loop is
simply applied each time new data is received. The de-
ductions yielded by rule r are also directly sent to r’s
originator(s). Therefore, applications are notified con-

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 19

Fig. 7. Propagation of rColdChain

Announces ,

production Announces ,
Proxies ,

production
Proxies , ,

productions

Processes
rC modules

Propagate rC

Processes
rC modules

Propagate rC

Processes
rC modules

Announces
consumption

DatacenterF100C120M121

tinuously by the nodes as those nodes apply the rules,
instead of being notified by a restricted set of central
nodes.

6. Experimentation

EDR being a generic approach, it cannot be sub-
jected to a quantitative evaluation by itself: it must be
refined by a concrete approach implementing a deploy-
ment strategy. Therefore, the evaluations presented in
this section are dedicated to EDRT , refining EDR with
a a deployment strategy aiming at reducing the de-
duction delivery delay.

In order to compare the proposed contribution to a
panel of baselines, different delivery mechanisms are
introduced in Section §6.1. By default, EDRT deliv-
ers deductions directly to applications. The proposed
alternative delivery mechanisms implement variations
of this approach, by propagating deliveries differently
across the network. A centralized deduction baseline is
also introduced.

The setup in which the evaluations were performed
is described in Section §6.2, along with the references
to the code used for running the experiments. Two
characteristics of EDRT are then assessed: its scala-
bility in Section §6.4, and its responsivity in Section
§6.5.

6.1. Deductions delivery mechanisms

The purpose of the evaluations presented in this
section is to compare the performances of centralized
Cloud-based and decentralized Fog-based approaches
to reasoning. It aims at distributing reasoning among
Fog nodes in order to perform computation as close
as possible to the sensors producing observations. The
baseline to which EDRT should be compared is a
centralized approach, where raw data is sent up to a
Cloud node to be processed by rules. Since the prop-
agation of rules for semantic Fog computing is per-
formed neighbor-to-neighbor, it seems logical that raw
data is propagated in the same way back to the Cloud
node. However, such comparison would be biased by
the necessity for each piece of data to transit through
multiple hops from Fog to Cloud nodes. In order to
limit the impact of transfer time, and focus on pro-
cessing time, new hypotheses are considered: in some
configurations, Fog nodes will deliver deductions to
Cloud nodes, instead of communicating directly with
applications. Similarly, for centralized processing, Fog
nodes should be able to deliver raw data to Cloud
nodes, instead of an indirect propagation. These differ-
ent configurations are referred to as “Deductions de-
livery mechanisms”.

Unlike rule deployment strategies, deductions deliv-
ery mechanisms are decorrelated from the rules: they

20 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

are variations of the “Deduction delivery” functional-
ity described in Section §4.3.1. Therefore, the propa-
gation of rules, the deductions they yielded and data
is described as intended according to ad-hoc strategies
(here, EDRT) through the EDR vocabulary, but for ex-
perimental purpose this propagation can be altered at
the node level, preventing rule deployment or rerout-
ing deduction delivery. Five deduction delivery mech-
anisms are compared in our experiments:

– Cloud-Indirect-Raw (CIR) is the baseline ap-
proach: the rules are only kept in the top Cloud
node, and raw observations are forwarded neighbor-
to-neighbor from the nodes that collect them to-
ward the central node. The Cloud then delivers
deductions to applications. Applications are noti-
fied by the Cloud node, and not by Fog nodes, in
all delivery mechanisms except the last one.

– Cloud-Direct-Raw (CDR) is also an approach
where rules are not deployed, and only processed
in the central Cloud node. In this configuration,
the observation producers directly send raw ob-
servations to the Cloud node, where they are used
for rule-based deductions. Such delivery mecha-
nism enables to measure the impact of transfer
time on deduction delay when centralizing raw
data for processing. To implement this configura-
tion, the interest proxying mechanism presented
in Section §5.2.2 is altered. Nodes that are not the
upper node in the hierarchy propagate the inter-
ests they receive without proxying them.

– Cloud-Indirect-Processed (CIP) is a hybrid de-
livery mechanism: rules are deployed among
Fog nodes according to EDRT , and deductions
are propagated neighbor-to-neighbor towards the
Cloud node before being delivered to applica-
tions. CIP mirrors the delivery mechanism of
CIR, with a decentralized reasoning. The purpose
of CIP is to measure the performance gain when
distributing reasoning even when communication
is only possible neighbor-to-neighbor in the Fog
infrastructure. To modify the result delivery be-
havior, whenever a node propagates a rule, it de-
clares itself as the originator of said rule instead
of the previously registered originator. Processing
rules based on semantic Fog computing means
that the propagation of observations is limited to
the Fog nodes applying rules consuming such ob-
servations, instead of going all the way up the
Cloud node.

Table 1
Delivery mechanisms summary

Approach Rules
propagation

Neighbor-
to-Neighbor

content delivery

Fog-App
communication

CIR 7 For data 3 7

CDR 7 For data 7 7

CIP 3 For deductions 3 7

CDP 3 For deductions 7 7

ADP 3 For deductions 7 3

– Cloud-Direct-Processed (CDP) is a another hy-
brid mechanism where rules are processed by Fog
nodes, but deductions are delivered directly to the
Cloud node instead of applications. It is the Cloud
node that performs the delivery to applications. In
this case, the purpose is to measure the impact of
centralized delivery in a decentralized reasoning
context. To implement CDP, when forwarding a
rule it has received, the Cloud node declares itself
as the originator instead of the application. De-
ductions can also be propagated among Fog nodes
if a node explicitly expressed its interest.

– Application-Direct-Processed (ADP) is the purely
decentralized strategy that we propose for EDRT ,
where rules are processed based on semantic Fog
computing and deductions are delivered directly
to applications. In this case only, a deduction
that has been inferred in the network will not be
hosted by the Cloud node before being delivered.

The characteristics of the different delivery mecha-
nisms are summarized in Tab. 1, where their important
features are highlighted:

– whether rules are propagated among Fog nodes or
not,

– whether deductions are propagated neighbor-to-
neighbor or directly delivered,

– whether Fog nodes communicate with the Cloud
node or directly with applications.

All these characteristics are illustrated in an exam-
ple and illustrated on Fig. 8, where the propagation of
raw data and deductions according to the different de-
livery mechanisms is represented. In the case of deduc-
tions delivery, it is assumed for the sake of clarity that
deductions are made in the lowest Fog nodes. The ma-
nipulation of the EDR behavior by implementing dif-
ferent delivery mechanisms enables the comparison of
centralized (CIR and CDR) and distributed approaches
(CIP, CDP, ADP), and the comparison of approaches
based on direct (CDP, CDR) and indirect (CIR, CIP)
communication with the Cloud node.

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 21

Fig. 8. Delivery mechanisms

Factory
datacenter

F100

C110

M111 M112

C120

M121 M122

Delivered content:
: Raw data
: Deductions

Mechanism:
: CIR
: CDR
: CIP
: CDP
: ADP

Control
center

Table 2
Experimental setup

RAM Cores CPU
Server 32GB 32 3.0GHz

Laptop 16GB 8 2.6GHz

RPi 3 1GB 4 1.4GHz

RPi 2 1GB 4 900MHz

6.2. Experimental setup and implementation

6.2.1. Hardware setup
In order to assess the distributed nature of the ap-

proach, and its suitability for constrained Fog nodes,
the experimental setup includes a Raspberry Pi 2 and a
Raspberry Pi 3, a laptop and a server, described in Tab.
2.

In order to measure the tradeoff between decentral-
ization and the loss of computing power when reason-
ing on Fog nodes, experiments are run twice, in two
different environments:

– In the first case, the complete topology is em-
ulated on the same server, each node being run
as an individual process. This environment is re-
ferred to as “single-host execution”. Such execu-
tion environment eases tests.

– In the second case, the topology is distributed
across different machines listed on Tab. 2. This
environment is referred to as “multi-host execu-
tion”. Such execution environment is more real-
istic than single-host execution, since it includes
constrained nodes. However, the feasibility of

large scale experimentation on such decentralized
environments is limited, since it requires multiple
machines. The necessity to run the experiments
on multiple machines at the same time also cre-
ates technical issues making the testing process
more complex.

6.2.2. Software setup
The use case topology is simulated for the experi-

ments. Simulated nodes are organized in a tree-like hi-
erarchy, with a Cloud node at the root, sensors at the
leaves, and Fog nodes in between. Each sensor pushes
a random observation to its parent every two seconds.
Each physical machine running the simulation hosts
multiple virtual nodes, composed of an HTTP server,
a KB, a SPARQL engine, and a code base7.

Experiments are run by simulating a building setup
with sensors generating raw data. To enable the de-
ployment on multiple machines, each node is imple-
mented as a standalone Java process, and inter-process
communication is performed over HTTP. To enable
scalable experiments, sensors are implemented as mul-
tiple threads of one process, otherwise the RAM over-
head for having an HTTP stack deployed for each sen-
sor prevents from deploying large topologies. There-
fore, to enable replaying exactly the same sequence of
observations, it would have been necessary to synchro-
nize more than 400 threads since the order in which ob-
servations are received impacts the obtained result. We
were not able to ensure such synchronization without
reducing the rate at which observations are produced
by sensors. That is why all the results are collected on
simulated topologies.

6.2.3. Measured results
Two aspects of EDR have been evaluated:

– the validity of our hypothesis, namely that the dis-
tribution of rules increases responsiveness,

– the scalability of the proposed approach

To measure the responsiveness of applications en-
abled by EDR, the delay between the moment ob-
servations are captured by sensors and the delivery
of the deduction these observation triggered is mea-
sured. Precisely, the delay for the processing of a rule
is characterized as the time difference between the mo-
ment when the most recent data used in the body of
the rule is produced, and the moment when the rule
head is received by the application. A dedicated times-

7The code is available at https://framagit.org/
nseydoux/edr

https://framagit.org/nseydoux/edr
https://framagit.org/nseydoux/edr

22 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

tamp is associated to each observation once it has been
enriched, in order to avoid any impact of the enrich-
ment process on the measure. For instance, if a lumi-
nosity observation observed at t1 and a temperature
observation observed at t2 match rcomfort and trigger
a deduction that is delivered to the application at t3,
the delivery delay for this particular deduction will be
t3 −max(t1, t2). The clock of all the machines used
for the experiment are synchronized to a local server
using Network Time Protocol (NTP)8, in order to en-
sure a minimal time difference between the different
distributed nodes.

Experimental measures showed that, for each sim-
ulation, the number of deductions is consistent be-
tween centralized and distributed approaches: there is
no knowledge loss when applying EDRT under our
assumptions of bound between the Fog topology and
the correlation between data.

In order to analyze closely the cause for the in-
creased delay, the journey of a message has been bro-
ken down in discrete timestamped events. The first
event related to a message is its construction, either
by enrichment of an observation or by achieving a de-
duction. In order to be propagated in the network, a
message might be sent from a node n to another node
n′, which is identified as two events: the sending from
node n, and the reception by node n′.

Multiple hops are registered, from the first node re-
sponsible for the message creation toward any node
that is interested in the message content for deduction.
When a message is received by a node n, n starts a
reasoning step where it tries to make new deductions
based on the rules in its knowledge base. Events are
logged at the beginning and at the end of reasoning. In
order to detail the delay for each deduction, the journey
of the most recent observation leading to the deduction
is reconstructed. This journey is built by identifying all
consecutive events related to the piece of data leading
to the deduction, from its initial enrichment to its pro-
cessing leading to the deduction, and the delivery of
said deduction to the application.

Three components of delay have been identified:

– Transfer delays, measured between the emission
and the reception of a message. This delay is both
impacted by the quality of the network link be-
tween two nodes, but also by the processing speed
of the recipient: the transfer is considered com-
pleted when the recipient declares the reception

8http://www.ntp.org/

at the software level, and it is not measured at the
network layer. When the message is transferred
through multiple hops, the delays are summed.

– Reasoning delays, measured between the begin-
ning and the end of a reasoning step. Reasoning
delays are summed if the same message is pro-
cessed with different rules across the topology.

– Idle delays, measured between the reception of a
message and its processing, or between the rea-
soning step and the propagation of deductions.

6.3. Use case details

The use case considered for the evaluation is the in-
dustry 4.0 scenario introduced in Section §2.1. Table
3 summarizes the rules driving the scenario. All the
rules’ SHACL representation are available online9.

6.4. Scalability of the proposed approach

6.4.1. Simulation topologies
In order to assess the scalability of the proposed

strategy for EDR, performances have been measured
on three topologies, denoted s0, s1 and s210, and col-
lectively as s*, as represented on Fig. 9. All s* topolo-
gies mimic the use case architecture presented in Fig.
1, with variations in the number of floors. A floor is
constituted of two conveyors, each of which supports
two machines, with sensors distributed as shown on a
JSON blueprint provided online11, leading to a total
of 30 nodes (including both reasoning nodes and sen-
sors). The rules described in Section §6.3 are used. The
number of nodes is increased by duplicating floors: s0
has one, s1 two, and s2 three floors, for a total num-
ber of respectively 31, 61 and 91 nodes (as summa-
rized on Tab. 4). Fig. 10 shows results for centralized
approaches, and Fig. 11 for distributed reasoning, both
showing single-host and multi-host execution.

6.4.2. Results
Due to scaling issues, results are separated in several

figures:

9https://w3id.org/laas-iot/edr/iiot/iiot.
tar.gz

10Topology representations are available at https:
//w3id.org/laas-iot/edr/iiot/scala_syndream/
clone_f_<0,1,2>.ttl respectively

11https://w3id.org/laas-iot/edr/iiot/clone_
f_0_blueprint.json

http://www.ntp.org/
https://w3id.org/laas-iot/edr/iiot/iiot.tar.gz
https://w3id.org/laas-iot/edr/iiot/iiot.tar.gz
https://w3id.org/laas-iot/edr/iiot/scala_syndream/clone_f_<0,1,2>.ttl
https://w3id.org/laas-iot/edr/iiot/scala_syndream/clone_f_<0,1,2>.ttl
https://w3id.org/laas-iot/edr/iiot/scala_syndream/clone_f_<0,1,2>.ttl
https://w3id.org/laas-iot/edr/iiot/clone_f_0_blueprint.json
https://w3id.org/laas-iot/edr/iiot/clone_f_0_blueprint.json

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 23

Rule ID Rule core

R1: Low Ma-
chine Visibility

Location(?l) ∧ Presence(?l, ?o1)∧?o1 = True ∧ Luminosity(?l, ?o2)∧?o2 < 300L ∧Machine(?m)
∧Activity(?m, ?o3)∧?o3 = True ∧ locatedIn(?m, ?l)→ LowMachineV isibility(?m)

R2: Low Con-
veyor Visibility

Location(?l) ∧ Presence(?l, ?o1)∧?o1 = True ∧ Luminosity(?l, ?o2)∧?o2 < 300L ∧ Conveyor(?c)

∧Activity(?c, ?o3)∧?o3 = True ∧ locatedIn(?c, ?l)→ LowConveyorV isibility(?c)

R3: No supervi-
sion

Location(?l) ∧ Presence(?l, ?o1)∧?o1 = False ∧ Conveyor(?c) ∧Activity(?c, ?o3)∧?o3 = True

∧locatedIn(?c, ?l) ∧ SupervisorPost(?s) ∧ supervises(?s, ?c)→ NoSupervision(?c)

R4: Fire hazard
Location(?l) ∧ ParticleLevel(?l, ?o1)∧?o1 > 25% ∧ SparkMachine(?m) ∧Activity(?m, ?o3)∧
?o3 = True ∧ locatedIn(?m, ?l)→ Firehazard(?m)

R5: Cold chain
broken

Location(?l) ∧ Temperature(?l, ?o1)∧?o1 > 6oC ∧ TemperatureSensitiveMachine(?m)∧
Activity(?m, ?o3)∧?o3 = True ∧ locatedIn(?l, ?m)→ ColdChainBroken(?m)

R6: Conveyor too
fast

Conveyor(?c) ∧Machine(?m) ∧ onConveyor(?m, ?c) ∧MachineSpeed(?m, ?sm)∧
ConveyorSpeed(?c, ?sc)∧?sc >?sm → ConveyorTooFast(?c)

R7: Low quality
product

Machine(?m) ∧ ProductQuality(?m, ?o1)∧?o1 < 98.5→ LowQualityProduct(?m)

Table 3
Safety and quality rules

Table 4
s* topologies

Topology s0 s1 s2

Nodes 31 61 91

Fig. 9. Simulation topology s*

Factory floor

Factory datacenter

Floor

Conveyor

Machine Machine

Conveyor

Machine Machine

Factory floor Factory floor

s0
s1

s2

Table 5
Machines hosts for scalability experiments

Virtual node Datacenter Floor Conveyor Machine

Physical host Server Raspberry Pi Server Laptop

– Results for centralized deduction delivery mech-
anisms (i.e. CIR and CDR) are shown on Fig.
10a for single-host execution, and on Fig. 11a for
multi-host execution.

– Results for distributed deduction delivery mech-
anisms (i.e. CIP, CDP and ADP), are shown on
Fig. 10b for single-host execution, and on Fig.
12a and 12b for multi-host execution.

The gain in scalability provided by the decentral-
ized approaches appears in the results. In topology s0,
the discrepancy between delivery delay for distributed
and centralized reasoning approaches is reduced, espe-
cially in the single-host execution setting, with a me-

dian around 0.65s for CIR and CDR, and 0.065s for
CDP, CIP and ADP.

However, in topologies s1 and s2, the gap between
centralized and distributed approaches increases dra-
matically. The deduction time is multiplied by more
than 20 from s0 to s2, while the relative share of rea-
soning time contributing to the delay decreases, as
shown on Fig. 13. The transit times are the ones to
increase relatively the most, which denotes a network
overflow over a computing saturation on the central-
ized reasoning node.

An delay increase is also observed for distributed
delivery strategies in the single-host execution envi-
ronment, but it is much smaller, as seen on Fig. 10b.
In the multi-host execution environment, there is a per-
formance difference between direct and indirect deliv-
ery mechanisms. Even though overall the increase in
the number of node has little impact on the measured
delays, the delays measured in the CIP configurations
are much longer than in CDP or ADP.

An explanation for this observation is the fact that,
due to their location, the Raspberry Pis are a bottleneck
for communication only in this configuration. In CIP,
they must both forward observations and deductions
towards a Cloud node, as well as performing reason-
ing, while they only have to process rules with the CDP
and ADP strategies. This conclusion is also strengthen
by the fact that, if the Raspberry Pis 3 are replaced
by Raspberry Pis 2, which have a lower computing
power, that same profile is observed, with longer de-
lays, as seen on Fig. 12c for CIP for instance. On
Fig. 13, among the three decentralized delivery mech-
anisms, CIP has the least important relative transfer
time dedicated to reasoning. This is coherent with the

24 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

Fig. 10. Scalability measures, single-host execution

(a) Centralized reasoning

s0
cir

s1
cir

s2
cir

s0
cdr

s1
cdr

s2
cdr

0
5

10
15
20
25
30
35
40
45
50

D
el

ay
(s

)

Centralized (b) Distributed reasoning

s0
cdp

s1
cdp

s2
cdp

s0
cip

s1
cip

s2
cip

s0
adp

s1
adp

s2
adp

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
el

ay
(s

)

Centralized

Fig. 11. Scalability measures, centralized reasoning

(a) Multi-host execution

s0
cir

s1
cir

s2
cir

s0
cdr

s1
cdr

s2
cdr

0
5

10
15
20
25
30
35
40
45
50

D
el

ay
(s

)

Centralized

fact that more deductions are forwarded by the con-
strained nodes rather than deduced directly by it, since
it is at depth 1 in the topology, and it is only con-
nected to few sensors compared to conveyor or ma-
chine nodes.

Approaches promoting direct communication, i.e.
CDR and CDP, perform better that their indirect coun-
terparts, respectively CIR, CIP. This is an expected re-
sult, as direct communication reduces the number of
hops required for a message (be it an observation or a
deduction) to reach its target.

A trend that can be observed in the breakout is the
increase of the share of transfer time in centralized
strategies compared to decentralized ones. An expla-
nation for this phenomenon is the saturation of the
network link, combined to an overhead on the cen-
tral node induced by the necessity to perform all the
reasoning. The central node has less CPU time avail-
able to declare reception of messages, and therefore
the time between the emission event and the reception
event is increased. Overall, the limited increase of de-
lays and the balance of the delays breakdown in the

Table 6
Machines hosts for distribution experiments

Virtual node Datacenter Floor Conveyor Machine

Physical host Server Laptop Raspberry Pi Server

distributed settings support our claim that EDRT is a
scalable approach to rule-base reasoning based on se-
mantic Fog computing.

6.5. Impact of distribution on responsiveness

6.5.1. Simulation topology
To measure how distribution impacts responsive-

ness, four topologies were distinguished, labeled d1 to
d4 and further on simply denoted d*. Each of these
topologies is constituted of 42 identical nodes, and
processes data according to four rules, r1 to r4. The
difference between the four d* topologies is the loca-
tion of sensors, as depicted in Fig. 15. Sensors produc-
ing data of the type ρ1 are directly attached to the top
node in d1, while they are attached to its children in d2.
Since bodyt(r1) = {ρ1, ρ4}, r1 is applied at a max-
imum depth of 1 in d1, but is propagated to nodes of
depth 2 in d2, hence a “more decentralized” execution
is performed in d2 than in d1. Rule execution depths
are given in Tab. 7: in d4, all sensors are connected to
leaf nodes, and the distribution is maximal.

To assess the impact of distribution, the same sen-
sors are deployed from topology d0 to d4, but they are
not situated at the same level, enabling the control of
the level at which rules are processed. Sensors are situ-
ated in d* topologies so that the rules are processed at
the depths depicted in Tab. 7. The simulation topology
is composed of 42 nodes in total (including sensors),
hosted on the physical machines as detailed on Tab.
6. Fig. 16 displays results for single-host approaches,

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 25

Fig. 12. Scalability measures, decentralized reasoning

(a) Multi-host execution

s0
cdp

s1
cdp

s2
cdp

s0
adp

s1
adp

s2
adp

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
el

ay
(s

)

Centralized
(b) Multi-host execution

s0
cip

s1
cip

s2
cip

0
1
2
3
4
5
6
7
8

D
el

ay
(s

)

Centralized
(c) Multi-host execution (RPi 2)

s0
cip

s1
cip

s2
cip

0
1
2
3
4
5
6
7
8
9

10
11
12

D
el

ay
(s

)

Centralized

Fig. 13. Breakout of delays (normalized, multi-host execution)

adp cdp
s0
cip cdr cir adp cdp

s1
cip cdr cir adp cdp

s2
cip cdr cir

0

10

20

30

40

50

60

70

80

90

100

D
ur

at
io

ns
(%

)

Idle
Processing
Transit

Fig. 14. Reference topology for d*
Depth 0

Depth 1

Depth 2

Depth 3

Factory datacenter

Floor

Conveyor

Machine Machine

Conveyor

Machine Machine

Table 7
Depth of rule processing for d*

R1 R2 R3 R4 R5 R6 R7
d0 0 0 0 0 0 0 0

d1 0 1 0 1 1 0 0

d2 1 1 0 1 1 0 0

d3 1 1 0 3 3 1 3

d4 3 2 2 3 3 2 3

and Fig. 17 for multi-host approaches, both showing
centralized and distributed reasoning.

Fig. 15. d* topologies

(a) d1

B

F

C

M

ρ4

ρ3 M

ρ4

ρ2 C

M

ρ4

ρ3 M

ρ4

ρ1 F

C

M

ρ4

ρ3 M

ρ4

ρ2 C

M

ρ4

ρ3 M

ρ4

1

2

1

4

1

2

1

8

1

2

1

4

1

2

1

(b) d2

B

F

C

M

ρ4

ρ3 M

ρ4

ρ2 ρ1 C

M

ρ4

ρ3 M

ρ4

F

C

M

ρ4

ρ3 M

ρ4

ρ2 ρ1 C

M

ρ4

ρ3 M

ρ4

1

2

1

4 4

1

2

1 1

2

1

4 4

1

2

1

26 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

6.5.2. Results
With the centralized reasoning delivery mecha-

nisms, there is little impact of the distribution on per-
formances as seen on Fig. 16a. The best performances
are measured in the most centralized topology, d0,
when the sensors are directly connected to the rea-
soning node, thus minimizing the transit time, as it is
shown on Fig. 16a and Fig. 17a. Moreover, for this
completely centralized topology, the delays measured
with the decentralized delivery mechanisms (CDP,
CIP, ADP) are comparable to the centralized ones
(CIR, CDR), which is an expected result: since all the
sensors are connected to a single node, there is no dif-
ference between rule deployments. It should also be
noted that there are no significant differences between
the centralized and decentralized executions. Since all
reasoning, which is the most computing-intense pro-
cess of the simulation, is located in both cases on the
most powerful node, it is also an observation consistent
with our expectations.

For the decentralized delivery mechanisms, where
rules are propagated into the network according to the
EDRT technique, the distribution has indeed an impact
on deduction delivery delay, seen on Fig. 16b. In the
single-host execution environment (Fig. 16b), where
all the nodes have comparable capabilities, there is a
correlation between the depth at which rules can be ex-
ecuted (denoting a more important distribution of pro-
cessing), and the delivery delay decreases. In this case,
each node takes a increasing share of the reasoning in
charge, leading to a relative decrease of the idle time
compared to the reasoning time as seen on Fig. 18.

However, comparing Fig. 16 and 17 shows a dis-
crepancy between the simulation in a single-host and a
multi-host-host environment, the latter actually includ-
ing constrained nodes. For ADP and CIP on Fig. 17b,
at the d3 topology, the third and fourth quartiles show
an increase in the delays. The median delay is compli-
ant with the expected decreasing trend for ADP, but it
begins increasing for CIP. For the d4 topology on Fig.
17b, where the distribution is maximal, there is an im-
portant increase of delays for all decentralized delivery
mechanisms, exceeding the delays measured even for
d0. This is discussed in details in Section §6.6

6.6. Discussion

When increasing the distribution of rule execution in
the multi-host experimentation environment, a degra-
dation of the performances is observed. An explana-
tion for this phenomenon is the saturation of the Fog

node passed a certain work load, the tipping point be-
ing crossed around d’3 (see Fig. 17b). Rules executed
deeper are processed by constrained Fog nodes, and
passed a certain load, the benefits of the distribution
are compensated by the limitations of their processing
capabilities.

The progressive relative increase of the idle time
when increasing distribution, seen when comparing
d’3 an d’4 on Fig. 18 and Fig. 19, supports this hypoth-
esis. To this regard, the EDRT technique has a naive
approach, where the capabilities of the Fog nodes are
not considered in the deployment process. The ob-
tained results are encouraging, especially in terms of
scalability, and moreover the proposed experimenta-
tion aims at creating extreme conditions, by distribut-
ing the rules as much as possible. The obtained topol-
ogy is not necessarily an accurate reflection of what
would be deployed in a real-world application, and it
is designed to show a trend rather than to be applied as
is.

The technological choices made for the implemen-
tation of EDRT are also factors to be considered in the
observed results. Overall, EDRT is still a proof of con-
cept, and some choices in the implementation should
be rethinked for performance:

– The HTTP framework used (Jersey12) has been
chosen for convenience for the flexibility of de-
velopment it allows, but it adds a certain overhead
in the memory print and execution time which is
not negligible in a constrained environment.

– The SHACL engine used in our experiments is
described by its creators as "not really optimized
for performance, just for correctness"13. It is pos-
sible that in the future, better performances will
be reached by sheer improvement of the SHACL
engine. This engine was chosen because, to the
best of our knowledge, it was the only Jena-
compatible SHACL implementation at the time of
implementation.

– Knowledge is exchanged between nodes serial-
ized in RDF Turtle. Other more compact RDF se-
rializations exist [34], and switching to such a for-
mat would reduce the communication overhead
when messages are exchanged.

Moreover, due to technical constraints, the experi-
ments we conducted could not be performed at a large
scale on constrained nodes. This introduces a bias in

12https://jersey.github.io/
13https://github.com/TopQuadrant/shacl

https://jersey.github.io/
https://github.com/TopQuadrant/shacl

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 27

Fig. 16. Distribution experiments, single-host execution

(a) Centralized reasoning

d0
cir

d1
cir

d2
cir

d3
cir

d4
cir

d0
cdr

d1
cdr

d2
cdr

d3
cdr

d4
cdr

0
1
2
3
4
5
6
7
8
9

D
el

ay
(s

)

(b) Distributed reasoning

d0
cdp

d1
cdp

d2
cdp

d3
cdp

d4
cdp

d0
cip

d1
cip

d2
cip

d3
cip

d4
cip

d0
adp

d1
adp

d2
adp

d3
adp

d4
adp

0

1

2

3

4

5

6

D
el

ay
(s

)

Fig. 17. Distribution experiments, multi-host execution

(a) Centralized reasoning

d0
cir

d1
cir

d2
cir

d3
cir

d4
cir

d0
cdr

d1
cdr

d2
cdr

d3
cdr

d4
cdr

0

1

2

3

4

5

6

7

8

D
el

ay
(s

)

(b) Distributed reasoning

d0
cdp

d1
cdp

d2
cdp

d3
cdp

d4
cdp

d0
cip

d1
cip

d2
cip

d3
cip

d4
cip

d0
adp

d1
adp

d2
adp

d3
adp

d4
adp

0
1
2
3
4
5
6
7
8
9

10

D
el

ay
(s

)

the measured results, since the simulated nodes are ran
on machines much more powerful than the Fog nodes
should be. We are aware of this bias, and the experi-
ments are designed in such way that it has an impact as
reduced as possible. For future experiments, we intend
to set up a network of virtual machines, emulating the
actual capabilities of physical nodes, rather than mere
processes.

7. Conclusion and future work

In this paper, we proposed EDR, a generic approach
for dynamically distributed rule-based reasoning in a
Cloud-Fog IoT architecture. In existing approaches to
rule-based reasoning for the SWoT, computation is of-
ten performed on Cloud nodes only, potentially lead-
ing to a centralized bottleneck, and by design creating
network communication overhead. In order to tackle
these issues, decentralized approaches are proposed in
the literature, taking advantage of the Fog comput-
ing paradigm. In such cases, computation is dissemi-
nated among Fog nodes in order to be brought closer

to the IoT devices producing the data. However, these
distributed reasoning approaches do not discuss rule
placement: it is static, either computed at design time,
or all the nodes execute the same set of rules.

With EDR, the contributions described in this paper,
address these shortcomings by leveraging the comple-
mentarity between Cloud and Fog computing, in order
to associate remote powerful nodes providing stability,
and local, limited, opportunistically available comput-
ing resources. EDR is a generic approach to dynami-
cally distributed rule-based reasoning, based on modu-
lar SHACL rules. The execution by Fog nodes of core
EDR functionalities is controlled via a dedicated vo-
cabulary describing knowledge in each node’s KB.
This vocabulary is used by rule modules to imple-
ment deployment strategies enabling the propaga-
tion of rules neighbor-to-neighbor across the Fog tier
of the Cloud-Fog-Device pattern. Rule deployment
strategies aim at optimizing rule placement for cus-
tomizable criteria, such as response time or energy
consumption, based on the knowledge stored in each
node’s KB. Such knowledge include a description of
its neighbors, the current state of the environment

28 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

Fig. 18. Distribution experiments delays breakout (single-host execution)

adp cdp
d0
cip cdr cir adp cdp

d1
cip cdr cir adp cdp

d2
cip cdr cir adp cdp

d3
cip cdr cir adp cdp

d4
cip cdr cir

Topologies

0

10

20

30

40

50

60

70

80

90

100

D
ur

at
io

ns
(%

)

Transit
Processing
Idle

Fig. 19. Distribution experiments delays breakout (multi-host execution)

adp cdp
d0
cip cdr cir adp cdp

d1
cip cdr cir adp cdp

d2
cip cdr cir adp cdp

d3
cip cdr cir adp cdp

d4
cip cdr cir

Topologies

0

10

20

30

40

50

60

70

80

90

100

D
ur

at
io

ns
(%

)

Transit
Processing
Idle

based on sensor observations, and background knowl-
edge. Overall, EDR enables, in a purely decentralized
and emergent manner, the deployment of rule, the
propagation of data and the delivery of deductions
inferred when applying the rules once they have been
deployed.

In order to enforce its genericity, EDR itself is made
agnostic to individual deployment strategies. There-
fore, it has to be refined by injecting rules embedding
their own deployment strategy, selected according
to application-level requirements. To this end, we pro-
posed EDRT , an EDR refinement implementing a de-
ployment strategy dedicated to reducing delays for
transmitting deductions to applications. EDRT aims
at deploying rules on Fog nodes as close as possible
to sensors, while avoiding unnecessary computation.
Rules are thus propagated toward sensors producing
the type of data they consume, as deep as possible

in the topology. The propagation stops when the rule
is deployed on the Fog node being the closest com-
mon ancestor to these sensors in the topology. To en-
force the locality of decisions, node capabilities are
announced through the network thanks to a proxying
mechanism, where data productions and consumptions
are propagated.

The genericity and the dynamicity of the EDR ap-
proach are achieved by design, while its scalability
and the improvement brought by distribution for re-
sponsiveness have been measured through experimen-
tation. A simulated smart factory use case has been
considered, executed on a powerful server or dis-
tributed across constrained nodes. Decentralized deliv-
ery mechanisms outperform centralized ones: Quality
of Service (QoS) is less degraded when the number of
nodes increase in a distributed reasoning setting. Simi-
larly, the enablement of a more widespread distribution

N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog 29

of rules by a modification of the sensors deployment
have not improved QoS with a centralized delivery
mechanism. The complementarity of Fog and Cloud
paradigms is also supported by the results of our ap-
proach: there is an improvement of performances even
in cases where deductions are forwarded to a Cloud
node, and not directly to applications, compared to a
centralized reasoning approach. Therefore, unloading
the Cloud infrastructure by performing semantic Fog
computing, while considering the Cloud node both as
a computation resource and as an stable Web endpoint
for applications enables scalable deployments for the
SWoT.

However, not considering the resources available in
the Fog showed limitations, and in future work we in-
tend to develop distribution strategies able to perform
load balancing between Cloud and Fog nodes based
on nodes capabilities. The genericity of the EDR ap-
proach enables such extensions to be developed with-
out modifying the core algorithm. Likewise, future
work include the development of a privacy-aware de-
ployment strategy for EDR. Indeed, in the strategy im-
plemented by EDRT , a complete cooperation is as-
sumed between nodes, and there are no guarantees re-
garding the scope of data exchange. However, IoT data
includes private elements, that should only be shared
with trusted third-parties. The distributed nature of
EDR fosters a paradigm shift: data producers can be-
come data owners, and remain in control. Instead of
sending their data to service providers, data owners are
provided with rules, and only reveal to remote nodes
part of their data. In the past years, multiple security
breaches have been revealed, and enabling users to re-
gain control over their data might restore the trust users
need to have regarding the systems that are deployed
in their environment. Distributing reasoning driven by
a privacy-aware strategy would be a first step towards
safer, more user-friendly IoT systems.

References

[1] Fog Computing and Its Role in the Internet of Things. New
York, New York, USA. ISBN 978-1-4503-1519-7.

[2] Mahdi Ben-Alaya, Samir Medjiah, Thierry Monteil, and Khalil
Drira. Toward semantic interoperability in oneM2M architec-
ture. IEEE Communications Magazine, 53(12):35–41, 2015.
ISSN 0163-6804. .

[3] Tim Berners-Lee, Jim Hendler, and Ora Lasilla. The Semantic
Web. Scientific American, 284(5):34–43, 2001. .

[4] Harold Boley, Michael Kifer, Paula-Lavinia Pătrânjan, and
Axel Polleres. Rule interchange on the web. In Reasoning Web
International Summer School, pages 269–309. Springer, 2007.

[5] Faouzi Ben Charrada and Samir Tata. An Efficient Algo-
rithm for the Bursting of Service-Based Applications in Hy-
brid Clouds. IEEE Transactions on Services Computing, (3):
357–367, may . ISSN 1939-1374. .

[6] Ioannis Chatzigiannakis, Henning Hasemann, Marcel Karnst-
edt, Oliver Kleine, Alexander Kröller, Myriam Leggieri, Den-
nis Pfisterer, Kay Römer, and Cuong Truong. True Self-
Configuration for the loT. In 3rd International Conference on
the Internet of Things (IOT), 2012. .

[7] Pratikkumar Desai, Amit Sheth, and Pramod Anantharam. Se-
mantic Gateway as a Service architecture for IoT Interoperabil-
ity. In Kno.e.sis Publications, 2015.

[8] Yulia Evchina, Juha Puttonen, Aleksandra Dvoryanchikova,
and José Luis Martinez Lastra. Context-aware knowledge-
based middleware for selective information delivery in data-
intensive monitoring systems. Engineering Applications of Ar-
tificial Intelligence, 43:111–126, 2015. ISSN 09521976. .

[9] Amelie Gyrard, Martin Serrano, Joao Bosco Jares,
Soumya Kanti Datta, and Muhammad Intizar Ali. Sensor-
based Linked Open Rules (S-LOR): An Automated Rule
Discovery Approach for IoT Applications and its use in Smart
Cities. In Proceedings of the 26th International Conference on
World Wide Web Companion, pages 1153–1159. International
World Wide Web Conferences Steering Committee. ISBN
978-1-4503-4914-7. .

[10] Henning Hasemann, Alexander Kröller, and Max Pagel. RDF
provisioning for the internet of things. In Proceedings of 2012
International Conference on the Internet of Things, IOT 2012,
pages 143–150. IEEE, oct . ISBN 9781467313469. .

[11] Dina Hussein, Son N. Han, Gyu Myoung Lee, Noel Crespi, and
Emmanuel Bertin. Towards a dynamic discovery of smart ser-
vices in the social internet of things. Computers & Electrical
Engineering, 2016. ISSN 00457906. .

[12] Charbel El Kaed, Imran Khan, Hicham Hossayni, and Philippe
Nappey. SQenloT: Semantic query engine for industrial
Internet-of-Things gateways. 2016 IEEE 3rd World Forum on
Internet of Things, WF-IoT 2016, pages 204–209, 2016. ISSN
15513203. .

[13] Charbel El Kaed, Imran Khan, Andre Van Den Berg, Hicham
Hossayni, and Christophe Saint-Marcel. SRE: semantic rules
engine for the industrial internet-of-things gateways. IEEE
Trans. Industrial Informatics, 14(2):715–724, 2018.

[14] Charbel El Kaed, Imran Khan, Andre Van Den Berg, Hicham
Hossayni, and Christophe Saint-Marcel. SRE : Semantic Rules
Engine For the Industrial Internet- Of-Things Gateways. IEEE
Transactions on Industrial Informatics, 14(2):715–724, 2018.
ISSN 15513203. .

[15] Panagiotis Kasnesis, Charalampos Z. Patrikakis, and
Iakovos S. Venieris. Collective domotic intelligence through
dynamic injection of semantic rules. In IEEE International
Conference on Communications, volume 2015-Septe, pages
592–597, 2015. ISBN 9781467364324. .

[16] Ankesh Khandelwal, Ian Jacobi, and Lalana Kagal. Linked
rules: Principles for rule reuse on the web. Lecture Notes
in Computer Science, 6902 LNCS:108–123, 2011. ISSN
03029743. .

[17] Yann Hang Lee and Shankar Nair. A Smart Gateway Frame-
work for IOT Services. Proceedings - 2016 IEEE Interna-
tional Conference on Internet of Things; IEEE Green Comput-
ing and Communications; IEEE Cyber, Physical, and Social
Computing; IEEE Smart Data, iThings-GreenCom-CPSCom-

30 N. Seydoux et al. / Exending the SWoT from the Cloud to the Fog

Smart Data 2016, pages 107–114, 2016. .
[18] Zang Li, Chao Hsien Chu, Wen Yao, and Richard a. Behr.

Ontology-driven event detection and indexing in smart spaces.
In Proceedings - 2010 IEEE 4th International Conference
on Semantic Computing, ICSC 2010, pages 285–292. ISBN
9780769541549. .

[19] Paolo Lillo, Luca Mainetti, Vincenzo Mighali, Luigi Patrono,
and Piercosimo Rametta. A Novel Rule-based Semantic Ar-
chitecture for IoT Building Automation Systems. In Interna-
tional Conference on Software, Telecommunications and Com-
puter Networks (SoftCOM), number 1, pages 124–131. IEEE,
sep . ISBN 978-9-5329-0056-9. .

[20] Altti Ilari Maarala, Xiang Su, and Jukka Riekki. Semantic
Reasoning for Context-aware Internet of Things Applications.
IEEE Internet of Things Journal.

[21] Peter Mell and Timothy Grance. The NIST Definition of
Cloud Computing Recommendations of the National Institute
of Standards and Technology. National Institute of Standards
and Technology, Information Technology Laboratory, page 7.
ISSN 1472-0213. .

[22] Siniša Nikoli, Valentin Penca, and Zora Konjovi. Semantic
Web Based Architecture for Managing Hardware Heterogene-
ity in Wireless Sensor Network. In International Journal of
Computer Science and Applications, volume 8, pages 38–58,
2011. ISBN 9781450301480.

[23] Pankesh Patel, Muhammad Intizar Ali, and Amit Sheth. On
Using the Intelligent Edge for IoT Analytics. IEEE Intelligent
Systems, 32(5):64–69, sep 2017. ISSN 1541-1672. .

[24] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dim-
itrios Georgakopoulos. Context aware computing for the inter-
net of things: A survey. IEEE Communications Surveys and
Tutorials, (1):414–454, jan . ISSN 1553877X. .

[25] Dennis Pfisterer, Kay Romer, Daniel Bimschas, Oliver Kleine,
Richard Mietz, Cuong Truong, Henning Hasemann, Alexan-
der Kröller, Max Pagel, Manfred Hauswirth, Marcel Karnst-
edt, Myriam Leggieri, Alexandre Passant, and Ray Richardson.
SPITFIRE: toward a semantic web of things. IEEE Communi-
cations Magazine, (11):40–48, nov . .

[26] Ismael Bouassida Rodriguez, Jérome Lacouture, and Khalil
Drira. Semantic Driven Self-Adaptation of Communications
Applied to ERCMS. In 2010 24th IEEE International Confer-
ence on Advanced Information Networking and Applications,
pages 1292–1299. IEEE. ISBN 978-1-4244-6695-5. .

[27] Yuvraj Sahni, Jiannong Cao, Shigeng Zhang, and Lei Yang.
Edge Mesh: A New Paradigm to Enable Distributed Intelli-
gence in Internet of Things. IEEE Access, 5:16441–16458,
2017. ISSN 21693536. .

[28] Nicolas Seydoux, Khalil Drira, Nathalie Hernandez, and
Thierry Monteil. IoT-O, a core-domain IoT ontology to repre-
sent connected devices networks. In EKAW, 2016.

[29] Nicolas Seydoux, Khalil Drira, Nathalie Hernandez, and
Thierry Monteil. Capturing the contributions of the semantic
web to the IoT: a unifying vision (extended abstract). Semantic

Web technologies for the Internet of Things, 2017.
[30] Nicolas Seydoux, Khalil Drira, Nathalie Hernandez, and

Thierry Monteil. Towards Cooperative Semantic Computing:
a Distributed Reasoning approach for Fog-enabled SWoT. In
COOPIS, October 2018.

[31] Nicolas Seydoux, Drira Khalil, Nathalie Hernandez, and
Thierry Monteil. A Distributed Scalable Approach for Rule
Processing: Computing in the Fog for the SWoT. In Web intel-
ligence, Santiago, Chili, December 2018.

[32] Omer Berat Sezer, Erdogan Dogdu, and Ahmet Murat Ozbayo-
glu. Context Aware Computing, Learning and Big Data in In-
ternet of Things: A Survey. IEEE Internet of Things Journal,
(1):1–1. ISSN 2327-4662. .

[33] Amit Sheth, Cory Henson, and Satya S Sahoo. Semantic Sen-
sor Web. In IEEE Internet Computing, volume 12, pages 78–
83, 2008. ISBN 1089-7801 VO - 12. .

[34] Xiang Su, Jukka Riekki, Jukka K. Nurminen, Johanna Niemi-
nen, and Markus Koskimies. Adding semantics to internet of
things. Concurrency and Computation: Practice and Experi-
ence, 27(8):1844–1860, 2015. ISSN 15320634. .

[35] Xiang Su, Pingjiang Li, Jukka Riekki, Xiaoli Liu, Jussi Kil-
jander, Juha-Pekka Soininen, Christian Prehofer, Huber Flo-
res, and Yuhong Li. Distribution of Semantic Reasoning on
the Edge of Internet of Things. In IEEE UbiComp, number
November, page 79, 2018. ISBN 9781450348140.

[36] Yunchuan Sun and Antonio J. Jara. An extensible and ac-
tive semantic model of information organizing for the Internet
of Things. Personal and Ubiquitous Computing, 18(8), 2014.
ISSN 16174909. .

[37] Ioan Szilagyi and Patrice Wira. Ontologies and Semantic Web
for the Internet of Things - a survey. In IECON. IEEE.

[38] Mohit Taneja and Alan Davy. Resource aware placement of
IoT application modules in Fog-Cloud Computing Paradigm.
In 2017 IFIP/IEEE Symposium on Integrated Network and Ser-
vice Management, pages 1222–1228. IEEE, may . ISBN 978-
3-901882-89-0. .

[39] William Van Woensel and Syed Sibte Raza Abidi. Optimizing
Semantic Reasoning on Memory-Constrained Platforms Using
the RETE Algorithm. In ESWC, volume 10843 LNCS, pages
682–696, 2018. ISBN 9783319934167. .

[40] Shiyong Wang, Jiafu Wan, Di Li, and Chengliang Liu. Knowl-
edge reasoning with semantic data for real-time data process-
ing in smart factory. Sensors (Switzerland), 18(2):1–10, 2018.
ISSN 14248220. .

[41] Guangquan Xu, Yan Cao, Yuanyuan Ren, Xiaohong Li, and
Zhiyong Feng. Network security situation awareness based on
semantic ontology and user-defined rules for internet of things.
IEEE Access, 5:21046–21056, 2017.

[42] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Van-
gelista, and Michele Zorzi. Internet of Things for Smart Cities.
IEEE Internet of Things Journal, 1(1):22–32, 2014. ISSN
2327-4662. .

