Semantic Web 0 (0) 1 1
10S Press

Continuous Top-k Approximated Join of
Streaming and Evolving Distributed Data

Shima Zahmatkesh ", Emanuele Della Valle ?

& Department of Electronics, Information and Bioengineering , Politecnico di Milano, Milan, Italy
E-mails: shima.zahmatkesh@polimi.it, emanuele.dellavalle @ polimi.it

Abstract.

Continuously finding the most relevant (shortly, top-k) answer of a query that joins streaming and distributed data is getting
a growing attention. In recent years, this is in particular happening in Social Media and IoT. It is well known that, in those
settings, remaining reactive can be challenging, because accessing the distributed data can be highly time consuming as well as
rate-limited. In this paper, we consider even a more extreme situation: the distributed data slowly evolves.

The state of the art proposes two families of partial solutions to this problem: i) the database community studied continuous
top-k queries on a single data stream ignoring the join with distributed datasets, ii) the Semantic Web community studied approx-
imate continuous joining of an RDF stream and a dynamic linked dataset that guarantees reactiveness but ignores the specificity
of top-k queries.

In this paper, extending the state-of-the-art approaches, we investigate continuous top-k query evaluation over a data stream
joined with a slowly evolving distributed dataset. We extend the state-of-the-art data structure proposed for continuous top-k
query evaluation and introduce Super-MTK+N list. Such a list handles changes in the distributed dataset while minimizing
the memory usage. To address the query evaluation problem, first, we propose Topk+N algorithm. This is an extension of the
state-of-the-art algorithm that handles the changed objects in the distributed dataset and manages them as new arrivals. Then,
adopting the architectural approach presented by the Semantic Web community, we propose AcquaTop framework. This keeps
a local replica of the distributed dataset and guarantees reactiveness by construction, but it may need to approximate the result.
Therefore, we propose two maintenance policies to update the replica. We contribute a theoretical proof of the correctness of the
proposed approach. We perform a complexity study. And we provide empirical evidence that the proposed policies provide more
relevant and accurate results than the state of the art.

Keywords: Continuous Top-k Join, RDF Data Stream, Distributed Dataset, RSP Engine

1. Introduction In social content marketing, advertisement agencies
may want to continuously detect emerging influential
Social Network users in order to ask them to endorse
their commercials. To do so they monitor users’ men-
tions and number of followers in micro-posts across
Social Networks. They need to select those users that
are not already known to be influencer, are highly men-
tioned and whose number of followers grows fast. It

is worth to note that 1) users’ mentions continuously

Many modern applications require to combine highly
dynamic data streams with distributed data, which
slowly evolves, to continuously answer queries in a re-
active way'. Consider the following two examples in
Social Media and industrial IoT.

*Corresponding author. E-mail: shima.zahmatkesh@polimi.it.

'A program is reactive if it maintains a continuous interaction
with its environment, but at a speed which is determined by the en-
vironment, not by the program itself [1]. Real-time programs are
reactive, but reactive programs can be non real-time as far as they
provide result in time to successfully interact with the environment.

arrive, 2) the number of followers may change in sec-
onds, and 3) agencies have around a minute to de-
tect them. Otherwise, the competitors may reach the
emerging influencer sooner than them or the attention
to the emerging influencer may drop. It is possible to

1570-0844/0-1900/$35.00 (© 0 — IOS Press and the authors. All rights reserved

mailto:shima.zahmatkesh@polimi.it
mailto:emanuele.dellavalle@polimi.it
mailto:shima.zahmatkesh@polimi.it

2 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

formulate this information need as a continuous query
of the form:

Return every minute the users who are not influ-
encer, are mentioned the most and whose number
of followers is growing the fastest.

In order to make the problem concrete, let us discuss
how to implement this example using Twitter APIs.
If we use the API that provides access to the sample
stream of micro postsz, we can obtain around 2,000
account mentions per minute. The sample stream con-
tains around 1% of the tweets. Therefore, at scale
(i.e., if we were able to use the API that streams
all the tweets), we would find around 200,000 men-
tions per minute. To obtain the number of followers of
each mentioned account, we cannot use the streaming
APIs and we must use the REST service®. This ser-
vice returns fully-hydrated user descriptions for up to
100 users per request, thus 2,000 requests per minute
should return us the information we need to answer the
query. Unfortunately, this naive approach will fail to
be reactive for at least two reasons.

First of all, as it often happens on the Web, the ser-
vice is rate limited to 300 requests every 15 minutes,
i.e., 20 requests per minute, and its terms of usage for-
bids parallel requests. Notably, such a rate limit pre-
vents to answer the query at scale while being reactive.
It is at most enough to gather the number of followers
of users mentioned in the sample stream.

Secondly, even if the REST service would not be
rate limited, each request takes around 0.1s. Therefore,
in one minute, we can at most ask 600 requests, which,
again, is not enough to answer the query in a timely-
fashion.

Let us present one more example, this time it is
about manufacturing companies that use automation
and instrumented their production lines with IoT sen-
sor networks. In this setting, a production line con-
sists of various machineries using different tools. For
each instrument used by each machinery in the pro-
duction line, the companies keep static data such as
brand, type, installation date, etc. In addition, they also
track the usage of each instrument mounted on each
machine for maintenance purposes. A machine can au-
tomatically change the instrument it uses every minute.
The information about when an instrument is in use on
a machine and when it was last maintained is typically

2https://dev.twitter.com/streaming/reference/get/statuses/sample
3https://dev.twitter.com/rest/reference/get/users/lookup

stored in an Enterprise Resource Planning (ERP) sys-
tem that is not in the production site. The IoT sensor
networks in those companies track the environmental
conditions of all machineries. They continuously ob-
serves several thousands of variables per second per
production line, e.g., temperature, pressure, vibration,
etc of each machine. They normally streams out all
those information using IoT protocols such as MQTT*.
A common usage of all this information is the reactive
detection of the environmental condition that can af-
fect the quality of the products. For example, to check
(directly on the production site) the effects of vibration
on the quality of product, it is possible to formulate a
continuous query such as:

Return every minute the list of products made with
instruments that are the least recently maintained
and are mounted on machines that show the high-
est vibrations.

As in the Social Media scenario, answering this
query in a reactive manner is challenging since it joins
thousands of observations per seconds on the MQTT
stream with the information stored in the ERP. If, as it
is often the case, the network between the production
line and the ERP has a latency of 100 ms, it may be
impossible to perform the entire join.

However, one may wonder if it is really necessary to
perform the entire join to answer those two informa-
tion needs introduced above. They clearly focus only
on the top results. Indeed, the state of the art includes
two families of partial solutions to this problem. On
the one hand, the database community studied contin-
uous top-k queries over the data streams [2] that can
handle massive data streams focusing only on the top-k
answer but ignores the join with slowly evolving dis-
tributed datasets. On the other hand, the Semantic Web
community studied approximate continuous joining of
RDF streams and dynamic linked data sets [3] which
is reactive by design but it is not optimized for top-k
queries.

More specifically, the Semantic Web community
showed that RDF Stream Processing (RSP) engines
provide an adequate framework for continuous join-
ing of stream and distributed data [4]. In this set-
ting, distributed data is usually stored remotely or on
the Web and accessible by using SPARQL query over

4Message Queuing Telemetry Transport (MQTT) is an extremely
lightweight publish-subscribe-based messaging protocol. It is de-
signed for connections with remote locations where a small code
footprint is required and/or network bandwidth is limited.

https://dev.twitter.com/streaming/reference/get/statuses/sample
https://dev.twitter.com/rest/reference/get/users/lookup

SO0 IR WN =

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 3

SPARQL endpoints. In order to access remote ser-
vices, the query has to use federated SPAQRL syn-
tax [5] which is supported by different RSP query lan-
guages (e.g. RSP-QL [6]). For instance, a simplified
version of the first example above, which is formu-
lated as a continuous RSP-QL top-k query using the
syntax proposed in [7] is shown in Listing 1. Top-k
Queries get a user-specified scoring function, and pro-
vides only the top-k answers with highest score based
on the scoring function.

REGISTER STREAM
SELECT ?user
F (?mentionCount, ?followerCount) as ?score

:TopkUsersToContact AS

FROM NAMED WINDOW :W ON :S [RANGE 9m STEP 3m]
WHERE {
WINDOW :W {?user :hasMentions ?mentionCount}

SERVICE
}
ORDER BY DESC
LIMIT 1

:BKG {?user :hasFollowers ?followerCount}

(?score)

Listing 1: Sketch of the query studied in the problem

At each query evaluation, the WHERE clause at
lines 5-8 is matched against the data in a window
:W open on the data stream :S, on which the men-
tions of each user flows, and in the remote SPARQL
service :BKG, which contains the number of follow-
ers for each user. Function F computes the score
of each user as the normalized sum of her men-
tions (?mentionCount) and her number of followers
(?followerCount). The users are ordered by their scores,
and the number of results is limited to 1.

Figures 1(a), and 1(b) show a portion of a stream
between time 0 and 13. The X axis shows the arriv-
ing time on the stream of the number of mentions of
a certain user to the system, while the Y axis shows
the score of the user computed after evaluating the join
clause with the number of followers fetched from the
distributed data. For the sake of clarity, we label each
point in the Cartesian space with the ID of the user it
refers to. This stream is observed through a window
that has length equal to 9 minutes and slides every 3
minutes. In particular, Figure 1(a) shows the content of
window W, that opens at 1 and close at 10 (excluded).
Figure 1(b) shows the next window Wj after the slid-
ing of 3 minutes. Each circle indicates the score of a
user after the evaluation of the JOIN clause, but before
the evaluation of the ORDER and LIMIT clauses.

During window Wy users A, B, C, D, E, and F come
to the system (Figure 1(a)). When Wy expired, users A
and B go out of the result. Before the end of window

Wi, user A arrives again and the new user G appears
(Figure 1(b)). Evaluating the query in Listing 1 gives
us user E as the top-1 result for window Wj and user
G as top-1 result for window Wj.

However, changes in the number of followers of a
user in the distributed data can change the score of a
user between subsequent query evaluations, and this
can affect the result. For example, in Figure 1(c), be-
tween the evaluation time of windows W,, and Wy,
the score of user E changes from 7 to 10 (due to the
changes in the number of followers in the distributed
data). Considering the new score of user E in the eval-
uation of window Wy, the top-1 result is no longer user
G, but it changes to user E.

As we mention above, while RSP-QL allows to en-
code top-k queries, state-of-the-art RSP engines are
not optimized for such a type of queries and they
would recompute the result from scratch as explained
in [8, 9]. This put them at risk of loosing reactiveness.
In order to handle this situation, in this paper we in-
vestigate the following research question: How can we
optimize continuously, if needed approximately, top-k
joining of stream and distributed dataset which may
change between two consecutive evaluations, while
guaranteeing the reactiveness of the system?

In continuous top-k query answering, it is well
known that recomputing the top-k result from scratch
at every evaluation is a major performance bottleneck.
In 2006, Mouratidis et al. [8] were the first to solve
this problem proposing an incremental query evalua-
tion approach that uses a data structure known as k-
skyband and an algorithm to precompute the future re-
sults in order to reduce the probability of recomputing
the top-k results from scratch. Few years after, in 2011,
Di Yang et al. [2] completely removed this perfor-
mance bottleneck designing MinTopk algorithm which
answers a top-k query without any recomputation of
top-k results from scratch. The approach memorizes
only the minimal subset of the streaming data which
is necessary and efficient for query evaluation and dis-
cards the rest. The authors also showed the optimality
of the proposed algorithm in both CPU and memory
utilization for continuous top-k monitoring. Unfortu-
nately, MinTopk algorithm cannot be applied to queries
that join streaming data with distributed data, specially
when the distributed data slowly evolves.

A solution to this problem can be found in the RSP
state-of-the-art, where few years ago S. Dehghanzadeh
et al. [3] noticed that high latency and limitation of ac-
cess rate can put the RSP engine at risk of losing re-
activeness and addressed this problem, using a local

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

8 10 10 @
® © 8 ©
6 8 (
e; ® © 22 ©® s 0"
o @ Q4 o4
() @ U)J @ wz ®
o e . Tz e —® 2 g &
012345678 91011213 012345678 910111213 01234567 8910111213
Time Time Time
Wee W,e o W,e o

(a) Evaluation of window Wy

(b) Evaluation of window Wy

(c) Evaluation of window Wj considering
changing

Fig. 1. The example that shows the objects in top-k result after join clause evaluation of windows Wq, and Wy

replica of the distributed dataset (shortly named AC-
QUA in the remainder of this paper). The authors de-
fined the notion of refresh budget to limit the number
of remote accesses to the distributed dataset for up-
dating the local replica, and guaranteeing by construc-
tion the reactiveness of the system. However, if the re-
fresh budget is not enough to refresh all the data in the
replica, some of the data items become stale, and the
query result can contain errors. The authors showed
that expertly designed maintenance policies can update
the local replica in order to reduce the number of er-
rors and approximate the correct result. Unfortunately,
also this approach is not optimized for top-k queries.

In this paper, we extend the state-of-the-art approach
for top-k query evaluation [2], considering distributed
dataset that has changes during the evaluation. Our
contributions are highlighted in boldface in the follow-
ing paragraphs.

As a first solution, we assume that all changes are
pushed from the distributed data to the engine that
continuously evaluates the query. We extend the data
structure proposed in [2] and introduce Super-MTK+N
list that keeps the necessary and sufficient data for
top-k query evaluation. The proposed data structure
can handle changes in distributed data while mini-
mizing the memory usage. However, MinTopk algo-
rithm [2] assumed distinctive arrival of data, so to han-
dle the changes pushed from the distributed dataset, we
have to modify it to support indistinct arrival of data.
Indeed, in the example, user E is already in the window
when her number of followers changes and so does the
score. The proposed Topk+N algorithm considers the
changed data items as new arrivals with new scores.

This first solution works in a data center, where
the entire infrastructure is under control, network la-
tency is low and bandwidth is large, but it may not
on the Web, which is decentralize and where we can
frequently experience high network latency, low band-
width and even rate-limited access. In this setting, the

engine, which continuously evaluates the query, has to
pull the changes form the distributed data. Therefore,
considering the architectural approach presented in [3]
as a guideline, we propose a second solution, named
AcquaTop framework, that keeps a local replica of
the distributed data and updates a part of it according
to a given refresh policy before every evaluation. No-
tably, when we have got enough refresh budget to up-
date all the stale elements in the replica the proposed
approach is exact, but when we have not, we might
have some errors in the result.

In order to approximate as much as possible the cor-
rect answer in this extreme situation, we propose two
maintenance policies to update the replica using Ac-
quaTop algorithm. They are specifically tailored to
top-k approximated join. Top Selection Maintenance
(AT-TSM) policy, maximize the relevance, i.e., mini-
mizes the difference between the order of the answers
in the approximate top-k result and the correct order.
Border Selection Maintenance (AT-BSM) policy, in-
stead, maximizes the accuracy of the top-k result, i.e.,
it tries to get all the top-k answers in the result, but it
ignores the order.

The remainder of the paper is organized as follows.
In Section 2, we formalize the problem and introduce
the relevant background information. In Section 3, we
introduce the state-of-the-art work. Section 4, and 5
present our proposed solutions for top-k query evalua-
tion over stream and dynamic distributed dataset. Sec-
tion 6 discusses the experimental setting and the re-
search hypotheses, reports on the evaluation of the pro-
posed approach, and highlights the practical insights
we gathered. In Section 7, we review the related work
regarding to our contributions and, finally, Section 8
concludes and presents future works.

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 5

2. Problem Definition

This section, first, introduces the background neces-
sary to understand the paper (Section 2.1) and, then,
proposes a formal problem statement (Section 2.2).

2.1. Preliminaries

In this section, we present two preliminary contents:
RSP-QL semantics, which is important for precisely
formalizing the problem in Section 2.2, and the met-
rics, which we use to evaluate the quality of the an-
swers in the result.

2.1.1. RSP-QL Semantic

RDF Stream Processing (RSP) [10] extends the
RDF data model and query model considering the tem-
poral dimension of data and the evolution of data over
time. In the following, we introduce the definitions of
RSP-QL [6].

An RSP-QL query is defined by a quadruple
(ET,SDS,SE,QF), where ET is a sequence of eval-
uation time instants, S DS is an RSP-QL dataset, S E
is an RSP-QL algebraic expression, and QF is a query
form.

In order to define S DS, we need first to introduce
the concepts of time, RDF stream and window over
a RDF stream that creates RDF graphs by extracting
relevant portions of the stream.

Definition 2.1. Time. The time T is an infinite, dis-
crete, ordered sequence of time instants (71,72, ...),
where #; € N.

Definition 2.2. Evaluation Time. The Evaluation Time
ET C T is a sequence of time instants at which the
evaluation occurs. It is not practical to give ET explic-
itly, so normally ET is derived from an evaluation pol-
icy. In the context of this thesis, all the time instants, at
which a window closes, belong to ET'. For other poli-
cies see [6].

Definition 2.3. RDF Statement.An RDF statement is
atriple (s, p,0) € (IUB) x (I) x (IUBU L), where
I is the set of IRIs, B is the set of blank nodes and L is
the set of literals [11].

Definition 2.4. RDF Stream. An RDF stream § is a
potentially unbounded sequence of timestamped data
items (d;, t;):

S = (dl,tl), (dg,[g), cees (dn,tn), .

where d; is an RDF statement, ; € T the associated
time instant, and for each dataitem d;, it holds #; < #;41
(i.e., the time instants are non-decreasing).

Beside RDF streams, it is possible to have static or
quasi-static data, which can be stored in RDF reposito-
ries or embedded in Web pages. For that data, the time
dimension of S DS can be defined through the notions
of time-varying and instantaneous graphs. The time-
varying graph G is a function that maps time instants to
RDF graphs and instantaneous graph G(¢) is the value
of the graph at a fixed time instant ¢.

Definition 2.5. Time-based Window. A time-based
window W(S) is a set of RDF statements extracted
from a stream S, and defined through opening and
closing time instance (i.e., o, and c¢ time instance)
where W(S) = {d | (d,1) € S,t € (o,c]}.

Definition 2.6. Time-based Sliding Window. A time-
based sliding window operator W [6], takes an RDF
stream S as input and produces a time-varying graph
Gw. W is defined through three parameters: w — its
width —, B — its slide —, and 9 — the time stamp on
which W starts to operate.

Operator W generates a sequence of time-based
windows. Given two consecutive windows W;, W; de-
fined in (0;, ;| and (0, c;], respectively, it holds: 0; =
to+i*w,c;—0;=cj—0;=w,and o; —o0; = B. The
sliding window could be count- or time-based [12].

Active windows are defined as all the windows that
contain the current time in their duration. Current win-
dow is the window that closes in the current evaluation
time. As stated in the beginning of this section, nor-
mally, evaluation times are derived from an evaluation
policy. The evaluation times can be equal to the arrival
times of objects, or can be equal to the closing time of
each window. In this thesis, we consider all the clos-
ing time of windows as evaluation times. Given cur-
rent window W,,,, and next window W,,, as two con-
secutive windows defined in (0, Ceyr] and (0prs Coxi,
respectively, we define current evaluation time as the
closing time of current window, ¢, and next evalua-
tion time as the closing time of next window, ¢;,;.

An RSP-QL dataset S DS is a set composed by one
default time-varying graph Gy, a set of n time-varying
named graphs {(u;,G;)}, where u; € I is the name
of the element; and a set of m named time-varying
graphs obtained by the application of time-based slid-
ing windows over o < m streams, (u;, W;(Sk))},
where j € [1,m], and k € [1,0]. It is possible to deter-
mine a set of instantaneous graphs and fixed windows

6 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

for a fixed evaluation time instant, i.e. RDF graphs, and
to use them as input data for the algebraic expression
evaluation.

An algebraic expression SE is a streaming graph
pattern which is the extension of a graph pattern ex-
pression defined by SPARQL. It is composed by op-
erators mostly inspired by relational algebra, such as
joins, unions and selections. In addition to the ones de-
fined in SPARQL, RSP-QL adds a set of *streaming
operators (RStream, IStream and DStream), to trans-
form the query result in an output stream. Considering
the recursive definition of the graph pattern, stream-
ing graph pattern expressions are recursively defined
as follows [6]:

— a basic graph pattern (i.e. set of triple patterns
(s, p,0) € {UBUV)x (IUV)x (IUBULUYV))
is a graph pattern;

— let P be a graph pattern and F a built-in condition,
P FILTER F is a graph pattern;

—let P; and P, be two graph patterns,
Pl UNIONPQ,Pl JOINPQEIIIdPl OPTPQE]IC
graph patterns;

— let P be a graph pattern and u € (I U V), the
expressions S ERVICE u P, GRAPH u P and
WINDOW u P are graph patterns;

— let P be a graph pattern, RS tream P, IS tream P
and DS tream P are streaming graph patterns.

RSP-QL query form QF is defined as in SPARQL
(see Section 16 of SPARQL 1.1 W3C Recommenda-
tion®). The query form uses the solution mappings to
form result sets or RDF graphs. There exist four query
form: i) SELECT which returns all or subset of the
variables bound in a query pattern match, if) CON-
STRUCT which returns an RDF graph, iii) ASK which
return a boolean that shows query pattern matches or
not, and iv) DESCRIBE which returns an RDF graph
that describes the resources found.

As in SPARQL, the instantaneous evaluation of
streaming graph pattern expressions produces sets of
solution mappings. A solution mapping is a function
that maps variables to RDF terms, ie., u : V —
(IUBUL). dom(u) denotes the subset of V where u
is defined. yu(x) indicates the RDF term resulting by
applying the solution mapping to variable x.

Two solution mappings uq1 and py are compatible
(11 ~ po) if the two mappings assign the same value

Shttps://www.w3.org/TR/sparql1 1-query/#QueryForms

to each variable in dom(u;) N dom(us) (ie., Vx €
dom(py) Ndom(pz), p1(x) = p2(x)).

Let now 2; and €, be two sets of solution map-
pings, the join is defined as:

Oy X Qg = {n Upalur € Qi pe € Qo1 ~ o}

Definition 2.7. Top-k Join Query. Consider a set of
graph patterns P = {Py,..., P,}. A top-k join query
joins Pq, ..., P,, and returns the k join results with the
largest combined scores. The combined score of each
join result is computed according to some function
F(v1,..., V), where V = {v1, ..., v, } are scoring vari-
ables, and Yv; € V : JP; € P wherev; € var(P;).

2.1.2. Metrics

Measuring the accuracy of top elements in the result
is crucial in the type of queries that we consider in this
paper. Different criteria exist to measure this quality
such as the precision at k, the accuracy at k, the nor-
malized discounted cumulative gain (nDCG), or the
mean reciprocal rank (MRR) [13].

In the following we introduce two metrics that we
use in our experiments in order to compare the possibly
erroneous result of a query at time i, named Ans(Q;),
with certainly correct answers obtained from setting up
an Oracle, named Ans(Oracle;).

Discounted Cumulative Gain. Discounted Cumu-
lative Gain (DCG) is used widely in information re-
trieval to measure relevancy (i.e., the quality of rank-
ing).

There are two obvious facts in evaluation of ranked
result of a query: i) The high relevant items are more
valuable comparing to others. ii) The lower the ranked
position of a relevant items, the more valuable it is for
the user [14]. The gain of each result set is computed
by summing up the gains of the items in the result set,
which is equal to their relevancies. In order to consider
the ranked position of each item in the list, DCG ap-
plies a discount factor, which reduces the gain of items
with higher ranked position as they are less valuable
for user. DCG at particular position k is defined as:

k 2reli -1
DCGQk = —_—
; log,(i+ 1)

Where rel; is the graded relevance of the result at po-
sition i.

In order to compare different result sets for various
queries and positions, DCG must be normalized across

https://www.w3.org/TR/sparql11-query/#QueryForms

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 7

queries to do so. First, we produce the maximum pos-
sible DCG through position k, which is called Ideal
DCG (IDCG). This is done by sorting all relevant doc-
uments by their relative relevance. Then, the normal-
ized discounted cumulative gain (nDCG), is computed
as:

DCGQk

Precision. Precision in information retrieval com-
putes the ratio between the correct instances in the re-
sult and all the retrieved instances. If on the contrary
we focus on having all the correct answer in the result,
the key feature of the top-k result is their correctness,
while their ranks are less critical. In this case, we use
precision as metric, and define precision at position k
as:

tp
tp+ fp

precisionQk =

where ¢p is the number of true positive values, and fp
is the number of false positive ones.

Consider the following example. Assuming that we
have the following list of data items as a correct an-
swer of a query: {A, B,C, D, E, F} with relevancy re-
spectively equal to {6,5,4,3,2,1}. Considering two
top-3 answers: {A, D, F}, and {F, C, B} as case 1, and
2. In the first case, as item A with highest relevancy is
correctly ranked in the result, we expect high value of
nDCGQ3.

Considering {A, B, C} as the correct result of case
1, the IDCG is computed as follows:

63 31 15
IDCG = — + —— 4+ = = 90.
CG =T+ s T 5 = 9006

and nDCG@3 is computed as :

DCG 63 +4.42+05

nDCGA3 = 7556 = 90.06

= 0.754

The precisionQk is computed as :

tp 1
=-=0.333
tp+fp 3

precisionQ3 =

So, for the first case, nDCG@Q3 is equal to 0.754
while precision@3 is equal to 0.33, which shows that
the result are more relevant and less accurate. Data

item A which is the most relevant item, is ranked in
the accurate place, and the other answers are not the
correct ones.

In the contrary, the second case contains more cor-
rect answers, so we expect high value of precision@3.
For the second case, nDCG@3 is equal to 0.288 while
precision@3 is equal to 0.667, which indicates that the
result are more accurate and less relevant. There are 2
correct answers in the result, but comparing to the case
1, they are less relevant.

2.2. Problem Statement

In this paper, we consider top-k continuous RSP-QL
queries over a data stream S and a distributed dataset
D. We assume that: (i) there is a 1:1 join relation-
ship between the data items in the data stream and
those in the distributed dataset; (i7) the window, opened
over the stream S, slides (i.e., w > f); (iii) queries
are evaluated when windows close and (iv) the dis-
tributed dataset is slowly evolving between two subse-
quent evaluations.

Moreover, the algebraic expression SE of this class
of RSP-QL queries is defined as in Figure 2(a), where:

— Ps, and Pp are graph patterns,

- us, and up identify the window on the RDF
stream and the remote SPARQL endpoint,

— us is a solution mapping of the graph pattern
WINDOW us Ps,

— up is a solution mapping of the graph pattern
SERVICE up Pp,

— xs, and xp are scoring variables in mapping us
and up,

— x7 is a join variable in dom(us) N dom(up), and

— F(xs,xp) is a monotone scoring function, which
generates the score and adds it to the solution
mapping by using EXTEND operator.

For the sake of clarity, Figure 2(b) illustrates
the algebraic expression of the query in List-
ing 1. Tuser :hasMentions TmentionCount, and Tuser
:hasFollowers ?followerCount are the graph pat-
terns respectively in the WINDOW and in the SER-
VICE clauses. ?mentionCount, and ? followerCount
are the scoring variable, and ?user is the join vari-
able. The scoring function F gets ?mentionCount, and
?followerCount as inputs and generates the score
for each user. The values of ?mentionCount, and
?followerCount can increase or decreased overtime,
and any linear combination of these two variable can
guarantee to have a monotonic function .

8 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

PROJECT ?x,, ?score

SLICE [0,

|
ORDER ?score

[He
EXTEND ?score = F(xg, Xp)

JOIN ?
I-lsl_ i —|UD

WINDOW ug SERVICE uy
I I

Ps Pp
(a) Algebraic expression of top-k
query

PROJECT ?user, ?score
I
SLICE [0,1]
ORDER ?score

I
EXTEND

?score = F(?mentionCount, ?followerCount)

I—JolN ?user —I

WINDOW ug

SERVICE uj

{?user :hasMentions ?mentionCount} {?user :hasFollowers ?followerCount}

(b) Algebraic expression of the query in Listing 1

Fig. 2. Algebraic expression

Once each solution mapping of the join is extended
with a score, the solution mappings are order by their
score and the top-k ones are reported as result.

In the remainder of the paper, we need to focus
our attention on the solution mappings Q¢ of the EX-
TEND graph pattern where for each solution map-
ping ug € Qp we have: dom(ug) = dom(us) U
dom(up) U {?score}. Let us call Object O(id, score)
one of such results, where the id = ug(x7), and the
score O.score is a real number computed by the scor-
ing function F(ug(xs), ue(xp)). We denote O.scores,
and O.scorep the values coming from the streaming
and the distributed data, respectively, i.e., O.scores =
ue(xs), and O.scorep = pg(xp).

Let us, now, formalize the notion of changes in the
distributed dataset that may occur between two consec-
utive evaluations of the top-k query. Assuming ¢ and
' as two consecutive evaluation times (i.e. ', ¢’ € ET,
and A" € ET : ¢ <" < ") the instantaneous graph
G,4(1') in the distributed data differs from the instanta-
neous graphs G,(t").

Those changes in the values of the scoring vari-
ables of objects, which are used to compute the scores,
can affect the result of top-k query. Assuming that
O.scorey is the score of object O at time ¢/, and
O.score,: is the score of object O at time . O.score
may be different from O.score, due to the changes
in the value of ug(xp) that comes from distributed
dataset.

Therefore, in the evaluation of the query at time
¢, we cannot count on the result obtained in previous
evaluation, as the score of object O at the evaluation
time ¢ may differ from the one at time ¢ and this can
give us an incorrect answer. We denote with Ans(Q;)

the possibly erroneous answer of the query evaluated
at time i.

For instance, in the example of Figure 1(c), the score
of object E changes from 7 to 10 between windows Wy,
and Wj. So, the top-1 result of window Wj is object E
instead of object G.

If, for every query evaluation, the join is recomputed
and the score of objects is generated from scratch, we
have the correct answer for all iterations. We denote
the correct answer for iteration i as Ans(Oracle;).

For each iteration i of the query evaluation, it is pos-
sible to compute the nDCGQk and precision@Qk com-
paring the query answer Ans(Q;), and the correct an-
swer Ans(Oracle;). Let us denote with M the set of
metrics {nDCGQk, precisionQK } and define the er-
ror as fallow:

error=1—M

So, our goal in this paper is to minimize such error.
For example, assuming that the correct answer
Ans(Oracle;) is equal to {A, B, C}, and the query an-
swer Ans(Q;) is equal to {A, D, F}, as mentioned in
Section 2.1.2, the nDCG@Q3 is equal to 0.754 and the
precision@3 is equal to 0.333, and the respective er-
rors are 1 — 0.754 = 0.246 and 1 — 0.333 = 0.667.

3. Background

In this section, we introduce the state-of-the-art
work that we base our approach on. Section 3.1 intro-
duces top-k query monitoring over streaming data. We

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 9

explain the data structure and the algorithm proposed
in [2] for monitoring top-k queries. In Section 3.2, we
introduce the framework and algorithms for continu-
ous top-k approximate join of streams and dynamic
linked data sets proposed in [3].

3.1. Top-k query monitoring over the data stream

Starting from the mid 2000s, various works ad-
dressed the problem of top-k approximate join of data
stream [2, 8, 9] by introducing novel techniques for in-
cremental query evaluation.

Yang et al. [2] address the problem of recomputa-
tion bottleneck and propose an optimal solution re-
garding to CPU and memory complexity. The Au-
thors introduce Minimal Top-K candidate set (MTK)®,
which is necessary and efficient for continuous top-k
query evaluation. They introduce a compact represen-
tation for predicted top-k results, named super-top-k
list. They also propose MinTopk algorithm based on
MTK set and finally, prove the optimality of the pro-
posed approach.

Going into the details of [2], let’s consider a window
of size w that slides every 8. When an object arrives in
a the current window, it will also participate in all w/g
future windows. Therefore, a subset of top-k result in
the current window, which also participate in all future
windows, has the potential to contribute to the top-k re-
sult in future windows. The objects in predicted top-k
result constitute the MTK set.

In order to reach optimal CPU and memory com-
plexity, they propose a single integrated data structure
named super-top-k list, for representing all predicted
top-k results of future windows. Objects are sorted
based on their score in the super-top-k list, and each
object has starting and ending window marks which
show a set of windows in which the object participate
in top-k result. To efficiently handle new arrival of ob-
jects, they define a lower bound pointer (Ibp) for each
window, which points to the object with the smallest
score in the top-k list of the window. LBP set contains
pointers for all the active windows.

Considering the example of Figure 1, where the win-
dow length is equal to 9 and each window slides 3
time units, window Ws opens at 7 and close at 16
(excluded), and window W3 opens at 10 and close at
19 (excluded). Assuming that we want to report the
top-3 object for each window, the content of super-

SNote that the notion of candidate set in MTK is different from
the one presented in [3].

W, W, W, Object | Score | W, | W, LBP
c | 8 [1]3
E|[E] E | 7 |1]2
c | 6 | 1]1]w,
F | 3 [2]2]w,
A 2 313
(a) Before processing changes
W, W, W, Object | Score | W, | W, LBP
E | E 10 [1]2
G | 8 [1]3
C c 6 | 1] 1|w,
F 3 | 2]2|W,
A 2 |33

(b) After processing changes

Fig. 3. Independent predicted top-k result vs. integrated list of our
example in Section 1 at evaluation of window wy before and after
processing changes

top-k list at the evaluation of window W; is shown in
Figure 3(a). During the evaluation of window Wy, we
have to consider window W5, and W5 as future win-
dows.The left side of the picture shows the top-k result
for each window. For instance, objects G, E, and C are
in the top-3 result of window W; and objects G, E, and
F are in the top-3 predicted result of window Wy which
is started at time 7. The right side shows the Super-
top-k list which is a compact integrated list of all top-k
results. Objects are sorted based on their score. Wi,
and W, are window starting and ending marks, respec-
tively. The Ibps of Wy, and W5 are available, as those
windows have top 3 objects in their predicted results.

The MinTopk algorithm consists of two mainte-
nance steps: handling the expiration of the objects at
the end of each window, and handling the insertion of
new arrival objects.

For handling expiration, the top-k result of the ex-
pired window must be removed from the super-top-k
list. The first k objects in the list with highest score are
the top-k result of the expired window. So, logically
purging the first top-k objects of super-to-k list is suffi-
cient for handling expiration. It is implemented by in-
creasing the starting window mark by 1, which means
that the object will not be in the top-k list of the ex-
pired window any more. If the starting window mark
becomes larger than the end window mark, the object

10 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

will be removed from the list and the LBP set will be
updated if any [bp points to the removed object.

For insertion of the a new object, first the algorithm
checks if the new object has the potential to become
part of the current or the future top-k results. If all the
predicted top-k result lists have k elements, and the
score of the new object is smaller than any object in
the super-top-k list, the new object will be discarded.
If those lists have not reached the size of k yet, or if
the score of the new object is larger than any object in
the super-top-k list, the new object could be inserted
in the super-top-k list based on its score. The starting
and ending window marks will also be calculated for
the new object. In the next step, for each window, in
which the new object is inserted, the object with lowest
score, which is pointed by Ibp, will be removed from
the predicted top-k result. Like for the purging process,
we increase the starting window mark by 1 and if it be-
comes larger than ending window mark, we physically
remove the object from super-top-k list and the LBP
set will be updated if any lbp points to the removed
object. In order to update [bp pointer, the algorithm
simply moves it one position up in the super-top-k list.

The CPU complexity for MinTopK algorithm is
O(Npew * (log(MTK.size)) in the general case, with
O(Nye) the number of new objects that come in each
window, and MTK.size is the size of super-top-k list.
The memory complexity in the general case is equal to
O(MTK.size). In the average case, the size of super-
top-k list is equal to O(2k). So, in the average case the
CPU complexity i O(Nye, * (log(k)) and the mem-
ory complexity is O(k). The authors also prove the op-
timality of the MinTopK algorithms. The experimen-
tal studies [2] on real streaming data confirm the out-
performance of MinTopK algorithms over the previous
solutions.

Although [2] present an optimal solution for top-k
query answering over the data stream, it did not con-
sider join with distributed dataset, aggregated score,
distinct arrival of items, and changes in scoring values.
Therefore, MinTopk algorithm does not work properly
in such cases.

3.2. Approximate Continuous Query Answering in
RSP

As mentioned in Section 1, RSP engines can join
data from streams with distributed data using federated
query evaluation, but the time to access and fetch the
distributed data can be so high to put the RSP engine
at risk of violating the reactiveness requirement.

<
Qjoin JOIN Proposer Ranker
4 1 2

I I l€
{ Local View HMaintainer}(—[SERVICE clause }
3

Fig. 4. The framework proposed in [3]

The state of the art addressed this problem and of-
fered solutions for RSP engines. S. Dehghanzadeh et
al. [3] started investigating Approximate Continuous
Query Answering over streams and dynamic Linked
datasets (ACQUA). Instead of accessing the whole
background data at each evaluation, ACQUA uses a lo-
cal replica of the background data, and maintenance
policies that refresh only a minimum subset of the lo-
cal replica. Notably [3] assumes that the 1:1 join rela-
tionship between the stream and the distributed Linked
dataset.

A maximum number of fetches (namely a refresh
budget denoted with y) at each evaluation guaran-
tees the reactiveness of the RSP engine. If y fetches
are enough to refresh all stale data of the replica, the
RSP engine gives correct answer, otherwise some data
items may become stale and it may give an approxi-
mated answer.

The maintenance process introduced in [3] is de-
picted in Figure 4, and it is composed by three ele-
ments: a proposer, a ranker and a maintainer. The Pro-
poser selects a set of candidates’ for the maintenance.
The Ranker orders the candidate set and the Main-
tainer refreshes the top y elements (named elected set).
Finally, the join operation is performed after the main-
tenance of replica.

ACQUA introduces several algorithms for updat-
ing the local replica. The best performance is obtained
combining the WSJ (proposer) and the WBM (ranker)
algorithms. WSJ builds the candidate set by selecting
mappings from the replica which are compatible with
those in the current window. WBM identifies the map-
pings that are going to be used in the upcoming evalua-
tions to save future refresh. WBM uses two parameters
to order the candidate set by assigning scores defined
as:

score;(t) = min(L; (1), Vi(t)),

TNote that the ACQUA’s candidate set is different from the Mini-
mal Top-k one presented in [2].

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 11

Wo

POOEE 6O

01 2 3 4 5 6 7 8 9 10 11 12 13

Evaluation Time

(a) Streaming data

SEERNCEGIGE

01 2 3 4 5 6 7 8 9 10 11 12 13

Best Before Time

(b) Best before time for mappings in local replica

Fig. 5. The example that shows how WSJ-WBM policy works.

where ¢ is the evaluation time, L;(¢) is the remain-
ing life time, i.e. the number of future evaluations that
involve the mapping, and V;(¢) is the normalized re-
newed best before time, i.e., the renewed best before
time normalized with the sliding window parameters.

Given a sliding window W(w,), L; and V; are de-
fined as:

Lit) F*ﬁ‘“‘ﬂ , (1)
i =[O =t @

where #; is the time instant associated to the mapping
Wi, T; is the current best before time, and [;(¢) is the
change interval that captures the remaining time before
the next expiration of y;. It is worth noting that /; is
potentially unknown and could require an estimator.

Figure 5 shows an example that illustrate how WSJ-
WBM policy works. Figure 5(a) shows the mappings
that enter the window clause between time 0 and 12.
Each window has a length of 5 units of time and slide
every 2 units of time. For instance window W opens at
1 and closes at 6 (excluded). Each mapping is marked
with a point and for the sake of clarity, we label each
point with I where I is the ID of the subject of map-
ping and § indicates that the mappings appear on the
data stream. So, for example during window W, map-
pings A5, BS, C5, D%, and ES appear on the data
stream.

Figure 5(b) shows the mappings in the local replica.
The mappings in the replica are indicated by R. The
replica contains mappings AR, BX,..., HR. The X axis
shows the value of best before time for each mapping.
It is worth to note that points with the same ID in Fig-
ures 5(a), and 5(b) indicates compatible mappings.

At the end of window W, at time 6, WSJ com-
putes the candidate set by selecting compatible map-
pings with the ones in the window. The candidate set
C contains mappings A®, BR, CK, DR, and ER. In the
next step, WSJ-WBM finds the possible stale map-
pings by comparing their best before time values with
the the current time. The possibly stale mappings are
PS = {AR, BR ER}. The best before time of other
mappings are greater than the current time, so they do
not need to be refreshed.

The remaining life time shows the number of suc-
cessive evaluations for each mapping. The remaining
life time of mapping AR, BR, ER are 1, 1 and 3 re-
spectively. Figure 5(b) shows the renewed best before
time of the elements in PS by the arrows. The nor-
malized renewed best before time (V;(z)) of mappings
AR BR_ ER at time 6 are respectively 3, 2 and 3. Finally,
the score will be computed for each mapping at time
6: scores(6) = 1, scoreg(6) = 1, and scoreg(6) = 3.
Given the refresh budget y equal to 1, the elected map-
ping will be EX, which has the highest score.

Other rankers proposed in [3] are i) LRU that, in-
spired by the Least-Recently Used cache replacement
algorithm, orders the candidate set by the time of the
last refresh of the mappings (the less recently a map-
ping has been refreshed in a query, the higher is its
rank), and ii) RND that randomly ranks the mappings
in the candidate set.

As already stated in the introduction, ACQUA is not
optimal for top-k queries. Intuitively, WSJ-WBM pol-
icy may update mappings that do not contribute to the
top-k result and throw away the available refresh bud-
get. In the next section we elaborate on an extension
that instead focuses on the top-k results.

4. Topk+N Solution

In this section, we introduce the proposed solu-
tion to the problem of top-k approximate join of data
stream and slowly evolving distributed dataset in the
context of RSP engines. As we repeated multiple
times, being reactive is the most important require-
ment, while we have slowly changes in the distributed
dataset. Section 4.1 shows how we extend the approach

12 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

in [2] for joining streaming and slowly evolving dis-
tributed data. Section 4.2 introduces the MTK+N data
structure. In Section 4.4, we explain the Topk+N algo-
rithm, which is optimized for top-k approximate join.
Finally, in Section 4.3 we introduce the Super-MTK+N
list.

4.1. MinTopk+

As mentioned in Section 3.1, MinTopk [2] offers an
optimal strategy to monitor top-k query over stream-
ing data. In this first subsection, we report on how to
extend it to handle changes in the distributed dataset.

In the setting of the problem statement, we may have
changes in the distributed dataset between two consec-
utive evaluations of a top-k query, which can affect its
result. One solution to address this problem is to as-
sume that the distributed dataset notifies changes to the
engine that has to answer the query. First of all it is
important to note that MinTopk assumes distinct ar-
rivals, so, it cannot be applied if the changed object has
been already processed in the current window. The first
contribution of this paper is, therefore, an extension of
MinTopk algorithm to consider indistinct arrival of ob-
jects. We name this algorithm MinTopk+.

If the changed object exists in the super-top-k list,
first we removed the old object from the super-top-k
list, and then we add the object with the new score to
the super-top-k list. If the changed object is not in the
list of top-k predicted results, then we have to consider
it as a new arrival object and check if, with new score,
it could be inserted in the top-k list. This second case
is not feasible in practice, as it requires to store the
value of the scoring variable xs for all the streaming
data that entered the current window, while the goal of
MinTopk is to discard all streaming data that does not
fit in the predicted top-k results of the active windows.

However, we need to generate a new score for the
changed object, even if we forgot the streaming value.
Having to inspect all the streaming data entering the
current window, we propose to keep the minimum
value of the scoring variable xs that has been seen
while processing the current window. Let us denote it
as min.scores.

Therefore, we can generate an approximated score
for the changed object using min.scores as the stream-
ing score of the changed object. As the scoring vari-
able of the changed object cannot be greater than
min.scoregs, the generated new score is a lower bound
for the real new score. In this way we are sure to report
exact result in terms of precision@k for the current,

but we may report approximated result for the future
evaluations.

As we don’t need to keep the scoring variable of all
arrival objects in current window, MinTopk+ is not de-
pended on the size of the data in the window, and a sub-
set of data is enough for top-k approximated join. We
further elaborate on this idea in Sections 4.4 and 5.3
where we, respectively, formalize how the min.scores
is computed and where we study the memory and time
complexity of a generalized version of this algorithm.

4.2. Updating Minimal Top-K+N Candidate List

Considering the changes in the distributed dataset,
which affect the top-k result, in this section, we pro-
pose an approach that gives the correct answer in the
current window in most of the cases and, in some
cases, may give an approximated answer. The authors
in [2] proposed MTK set which is necessary and suffi-
cient for evaluating continuous top-k query.

We extend the MTK set by considering changes of
the objects and keeping N additional objects, and in-
troduce Minimal Top-K+N Candidate list (MTK+N
list). MTK+N list keeps K+N ordered objects that are
necessary to generate top-k result. The following anal-
ysis shows that MTK+N list is also sufficient for gener-
ating correct result in the current window for most of
the cases.

Assume that we have N changes per evaluation in
the distributed dataset, and we keep K+N objects for
each window in the predicted result. Each MTK+N list
consists of two areas. Let us name them K-list and N-
list. Therefore, each object can be placed in 3 differ-
ent areas: K-list, N-list, and outside (i.e. outside the
MTK+N list). It is worth to note that each object can
be placed in different areas in different MTK+N lists.
For example, in Figure 3(b), assuming K=1, and N=2,
object G is in the N-list of windows W1, and Ws, but
it is placed in the k-list of window Wj5. The position
of the object can change between those areas due to
changes to the values assumed by the scoring variables
xp in the distributed dataset. Depending on the initial
and the destination areas of each object, we may have
exact or approximated result in each window. The fol-
lowing theorems analyze different scenarios for each
window separately, and assuming that i) the previous
results are correct, ii) we have N changes per evalua-
tion in the distributed dataset, and iii) we keep K+N
objects for each window in the predicted result.

Theorem 1. If the changed object is in the K-list, or
the N-list and remains in one of them, or if the changed

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 13

object is initially outside of the MTK+N list and re-
mains outside, we can report the correct top-k result
for corresponding window (current, or future).

Proof. If the changed object exists in the MTK+N list,
we have the previous score of the object. The new
score can only change the place of object in the list.
If the changed object is outside of the list and re-
mains outside, we do not have any modification in the

MTK+N list. In both cases, we have the correct result.
O

Theorem 2. Ifthe changed object was in the K-list, or
the N-list, and the new score removes it from MTK+N
list, we can report the correct top-k result for the cor-
responding window.

Proof. If the changed object o exists in the MTK+N
list, but the new score is less than the lowest score in
the MTK+N list, we have to remove the object from
MTK+N list. As all the objects in the K-list are placed
correctly, we have the exact result for the current win-
dow. However, after removing it, we have one empty
position in MTK+N list. If we do not have any other ob-
jects in the MTK+N lists of future windows, which fit
into the current MTK+N list, we can only add o back
with the new score. In previous evaluations, we may
had another object with higher score comparing to the
new one of o, but it did not satisfied the constraints to
be in the MTK+N list at that point in time, and we dis-
carded it. When that happens, the forgotten object is
misplaced by object o. If during the evaluation of the
window, the misplaced object o comes up in the K-list,
we do not have the correct result. []

Theorem 3. If the changed object initially is outside
the MTK+N list, and, after the changes, it moves in the
MTK+N list, we may have approximated result for the
corresponding window.

Proof. When the changed object o is not in the MTK+N
list, we do not have access to the previous informa-
tion of the object in the data stream, we don’t know
if it appeared in the streaming data or not, and if yes,
what was the value of scoring variable xs. To solve this
problem two different approaches can be considered:
first, we can just ignore the changed objects o which
are not in the MTK+N list, second, we can keep point-
ers to the objects come in the streaming data in each
window and also keep the minimum score of them as
min.scoregs.

Focusing on the second approach, we are able to
generate an approximated score for o. The new ap-

Table 1
Summary of scenarios in handling changes.
Initial Area
K-list N-list Outside

K-list \% Vv Vpre(‘isinn@k ~nDCGQk
=
g
§ g N-list Vv Vv

= - ~

=
)
[a}

outside V.~ V.~ \%

proximated score of object o can be generated us-
ing F(min.scores, o.scorep and the changed value of
scoring variable in distributed dataset, which is the
minimum threshold for the real score. The changed ob-
ject may fit in different areas:

1. If it moves in the K-list, as the new score is a min-
imum threshold for real score, the real score of
the object will also put it in the K-list. However,
being the approximated score a lower bound, the
real score may position it in a higher ranked place.
So, considering precisionQk, we have the exact
result, while considering nDCG@Qk, we may have
an approximated result.

2. If it moves in the N-list, as the new score is a min-
imum threshold, the real score of the object may
put it in the K-list, so we have approximated re-
sult for the window.

O

Table 1 summarizes all the explained scenarios. As-
suming that we have exact result up to current time,
each cell shows the correctness of the top-k result as
a function of the initial and destination areas of the
changed object. The exact result is indicated by V,
while the approximation in the result is showed by ~.
precision@k and nDCG@Qk shows the metrics used for
comparing the real result with the correct one.

Theoretically, introducing another area, between N
and the outside areas, can increase the correctness of
the result and avoid approximation for the upcoming
future windows. Considering the size of this new area
equal to N, the result of the next window will also be
correct for all scenarios. But, practically, the result of
the experiments in Section 6 shows that keeping more
objects in MTK+N list after a certain point does not lead
to a more accurate result.

4.3. Super-MTK+N list

When a query expressed on a sliding window, the
predicted top-k results of the current and future win-

14 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

List of symbols used in the algorithms.

Symbol Description

MTK+N Minimal Top-K+N list of objects

Super-MTK+N Compact representation for MTK+N lists of objects for all active windows

O; An arriving object

O;.t Arriving time of object O;

O;.w.start Starting window mark of O;

O;.w.end Ending window mark of O;

O;.score Score of object O;

wi.lbp The lower bound pointer of w; which points to the object with smallest score in the
window w;

LBP Set of lower bound pointers for all windows that have top k objects in Super-MTK+N
list

Ov;.ibp Object pointed by w;.lbp

w;.tke The number of items in top-k result of window w;

Waer List of active windows which contain current time in their duration

Oumins core The object with smallest score in the Super-MTK+N list

MTK+N.size Size of MTK+N list which is equal to K+N

Winax Maximum number of windows

Wexp The window just expired

min.scores
current window

Minimum value of scoring variable xs seen on the data stream while processing the

dows have partial overlaps. So we have objects which
are repeated in the MTK+N lists of the current and fu-
ture windows. In order to minimize the memory usage,
a single integrated list for all active windows can be
used instead of various MTK+N lists.

Therefore, we define the Super-MTK+N list that
consists of several MTK+N lists of all active window
(current and future). The objects in Super-MTK+N list
are ordered based on their scores. In order to distin-
guish the top-k result of each window, for each ob-
ject we define starting and ending window marks. The
marks of each object show the period in which it is in
the predicted top-k result.

4.4. Topk+N Algorithm

As mentioned in previous section, we extend the in-
tegrated data structure MTK list from [2] and introduce
Super-MTK+N list to handle changes in distributed
dataset. In this section, we describe the Topk+N algo-
rithm that evaluates top-k queries over streaming and
slowly evolving distributed data. Table 2 contains the
description of symbols used in Algorithms 1,2,3, and
4.

The evaluation of a continuous top-k query over a
sliding window needs to handle the arrival of new ob-

jects in stream and removal of old objects in the ex-
pired window. In addition to the state-of-the-art ap-
proach [2], in this problem setting we have changes
in the distributed dataset. So, we have to also handle
those changes during query processing. The proposed
algorithm consists of three main steps: expiration han-
dling, insertion handling, and change handling.

Algorithm 1 shows the pseudo-code of Topk+N al-
gorithm which gets the data stream S, distributed data
BKG, scoring function F, and window W as inputs
and generates the top-k result for each window. In the
beginning the evaluation time is initialized. For every
new arrival object O;, in the first step, it checks if any
new window has to be added to the active window list
(Line 4). The algorithm keeps all the active windows
in a list named W,,. In the next step, it checks if the
time of arrival is less than the next evaluation time
(i.e., the ending time of the current window), and it up-
dates the Super-MTK+N list if the condition is satisfied
(Lines 5-7).

Otherwise, at the end of current window, it checks
for the received changes from the distributed dataset
(Line 9). Function UpdateChangedObjects (Line 10)
gets the set changedObjects and updates Super-
MTK+N list based on changes. This function is the

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 15

main contribution of the Topk+N Algorithm compar-
ing to the MinTopk algorithm [2]. Getting the top-k re-
sult from Super-MTK+N list, the algorithm generates
the query result (Line 11). Finally, it purges the ex-
pired window and goes to the next window processing
(Lines 12-13).

4.4.1. Expiration Handling

When a window expires, we have to remove the cor-
responding top-k result from the Super-MTK+N list.
We cannot simply remove the objects, as we have in-
tegrated view of top-k result in Super-MTK+N list, and
some of the top-k objects may be also in the top-k
results of the future windows. We can implement the
removing of these object from the list by updating
their window marks and increasing the starting win-
dow marks by 1 for all the objects in the top-k result of
the expired window.

Function PurgeExpiredWindow (Line 18) in Algo-
rithm 1 shows the pseudo-code of expiration handling.
It gets the first top-k objects from Super-MTK+N list,
whose starting window mark is equal to the expired
window and increases their starting window mark by 1
(Line 22). If the starting window mark becomes larger
than the end window mark, the object is removed
from Super-MTK+N list. The LBP set is updated if any
pointer to the deleted object exists (Lines 25-28). Fi-
nally, the expired window is removed from the Active
Windows list and LBP set (Lines 33-34).

4.4.2. Handling New Arrivals and Changes

When a new object arrives in the stream, we have to
check if it can be added to the top-k result of current
and future windows or not, so its score should be com-
pare with the minimum score in the Super-MTK+N list
and if all the predefined conditions are satisfied we can
insert it to the Super-MTK+N list. We treat the changed
object as a new arrival object and we check if it can be
added to the Super-MTK+N list. If the changed object
exists in the Super-MTK+N list, it should be replaced
with the old one.

Topk+N algorithm (see Algorithm 2 for the pseudo-
code) updates Super-MTK+N list based on new arriv-
ing objects on the stream S. For every object O; in
the stream, function UpdateMTKN checks if the ob-
ject O; can be inserted in the Super-MTK+N list or
not. At the first step, if the streaming score of the ob-
ject is less than the value of min.scores, the minimum
score should be updated (Lines 2-4). Keeping the min-
imum score let us approximate the score for changed
objects as discussed in Section 4.1. Then, it checks if
the object O; is present in the Super-MTK+N list, since

Algorithm 1: The pseudo-code of the proposed al-

gorithm
Data: S,BKG,F,.W
1 begin
2 time < starting time of evaluation based on W
3 foreach new object O; in the stream S do
4 CheckNewActiveWindow (O;.1) ;
5 if O;.t < time then
6 UpdateMTKN(O;) ;
7 end
8 else
9 changedOb jects < receive changed
objects from distributed dataset BKG
10 UpdateChangedObjects (
changedObjects) ;
11 Get top-k result from Super-MTK+N
list and generate query answer ;
12 PurgeExpiredWindow() ;
13 time < next evaluation time ;
14 end
15 end
16 end
17
18 Function PurgeExpiredWindow()
19 i< 0;
20 foreach O from top of Super-MTK+N list do
21 if O.w.start == w,,, then
22 O.w.start ++ ;
23 1++;
24 end
25 if O.w.end < O.w.start then
26 Remove O from Super-MTK+N list ;
27 update LBP ;
28 end
29 if i == k then
30 break ;
31 end
32 end
33 Remove w,y, from W;
34 Remove pointer of w,,, from LBP ;

Topk+N algorithm supports indistinct arrivals (differ-
ent from state of the art [2]). If the Super-MTK+N
list contains a stale version of O;, it is replaced with
the fresh one. As the score of the replaced object O;
changed, its position in Super-MTK+N list can change

16 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

Algorithm 2: The pseudo-code for updating
Super-MTK+N list

1 Function UpdateMTKN(O;)

2 if O;.scores < min.scores then

3 min.scores < O;.scores

4 end

5 if Super-MTK+N list contains old version of
O; then

6 Replace O; ;

7 RefreshLLBP() ;

8 end

9 else

10 if O; is a changed object then

11 ‘ Compute O;.score using min.scores ;

12 end

13 else

14 ‘ compute O;.score ;

15 end

16 InsertTOMTKN(O;) ;

17 end

18 Function InsertinToMTKN(O;)

19 if O;.score < 0,5 core.ScOre AND all w;.tkc
== k then

20 | discard O; ;

21 end

22 else

23 O;.w.start = CalculateStartWindow() ;

24 O;.w.end = CalculateEndWindow() ;

25 add O; to MTK+N list ;

26 UpdateLBP(0;) ;

27 end

28

29 Function UpdateChangedObjects (Ob jects)

30 foreach O; € Ob jects do

31 updateMTKN(O;) ;

32 end

too and it may move up or down in the list. Changing
position in the Super-MTK+N list could affect the top-k
results of some of the active windows, thus the LBP
set needs to be refreshed. Otherwise, when the object
is not present in the Super-MTK+N list, the algorithm
1) computes the score, the starting window mark, and
the ending window marks; 2) it inserts the object in the
Super-MTK+N list; and 3) updates the LBP set.
Algorithm 2 shows in more details the pseudo-code
for handling insertion of new arriving objects through
the update of the Super-MTK+N list. If a stale ver-

sion of the arriving object exists in Super-MTK+N list,
the algorithm replaces it with the fresh one with new
values i.e., its score, and its starting/ending window
marks (Line 6). Then, we have to refresh the LBP set
based on the changes occurred in Super-MTK+N list
(Line 7). As the new values of the arriving object could
change the order of objects in the Super-MTK+N list,
the LBP set is recomputed. In case the object is not
in the Super-MTK+N list, it computes the score, and
adds the new object in the list (Line 16). If the object
is a new arrival, computing the score from the values
of the scoring variables is straightforward, but if object
O; is a changed object, the new score is computed get-
ting the value of min.scores and the scoring value in
the replica (Line 11), as we did not keep the scoring
value of all the objects, but only of those that entered
the Super-MTK+N list (see also Section 4.1, where we
present this idea).

Function InsertinTOMTKN handles object insertion
to the Super-MTK+N list. If the score of the object
O; is smaller than the minimum score in the Super-
MTK+N list, and all active windows contain k ob-
jects as top-k result, then the arriving object is dis-
carded (Lines 19-21). Otherwise, the future windows,
in which the object can be in top-k result, are de-
fined by computing the starting and the ending win-
dow marks (Lines 23-24). In the next step, the object
is inserted into the Super-MTK+N list and the LBP set
is updated (Line 26).

Function UpdateChangedObjects is used for updat-
ing Super-MTK+N list for a set of objects, and gets the
Objects set as input. For each object in the Objects set,
it updates the Super-MTK+N list by refreshing the stale
object in the Super-MTK+N list (Line 31).

4.4.3. Updating Lower Bound Pointers

As mentioned in Section 3.1, LBP is a set of pointers
to the top-k objects with the smallest scores for all ac-
tive windows that have k objects as top-k result. When
anew object arrives, we need to compare its score with
those of the objects pointed by LBP for each window.
If the size of any predicted top-k result for future win-
dows is less than the size of MTK+N list (i.e. K+N), or
the new object has higher score comparing to the ob-
jects that have Ibps, the new object can be inserted in
the Super-MTK+N list.

After inserting the new object, the LBP set needs to
be updated; in particular, those pointers that relate to
the windows between the starting and the ending win-
dow marks of the inserted object. For those windows
that have not got any pointer in the LBP set, the size of

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 17

Algorithm 3: The pseudo-code for updating LBP
List

1 Function UpdateLBP(O;)

2 foreach w; < O;.w.start to O;.w.end do

3 if w;.lbp ==NULL then

4 wi.thc++;

5 if w;.tkc == MTK+N.size then

6 GenerateLBP() ;

7 end

8 end

9 else if O,,, ;pp.score <= O;.score then

10 Oy,.ipp-W.Start++ ;

1 if Oy, pp.w.start > O,, jpp.w.end then

12 Move w;.lbp by one position up in
the MTK+N list ;

13 Remove Oy, i, from
Super-MTK+N list;

14 end

15 end

16 end

the top-k result is increased by 1. If the size becomes
equal to k, the pointer is created for the window and
added to the LBP set.

If the window has got a pointer in LBP set and the
score of the inserted object is less than the score of
the pointed object, then the last top-k object in the pre-
dicted result is removed from the list, so we have to in-
crement the starting window mark by 1. If the starting
window mark becomes greater than the ending win-
dow mark for any object, the pointer moves up by one
position in the Super-MTK+N list and the object is re-
moved from Super-MTK+N list.

Algorithm 3 shows the pseudo-code for updating the
LBP set after inserting the new object to the Super-
MTK+N list. For all the affected windows from the
starting to the ending window marks of the inserted
object, if the window does not have any lbp, we incre-
ment the cardinality of top-k result by 1 (Line 4). If
the cardinality of top-k result of a window reaches the
K+N, Function GenerateLBP generates the pointer to
the last top-k object of that window and adds it to the
LBP set (Line 6).

If the window has a pointer in LBP set, we compare
the score of the inserted object with the score of the
pointed object (i.e. the last object in top-k result with
lowest score). If the inserted object has higher score,
we remove the last object in top-k result by increasing
the starting window mark by 1 (Line 10). If the start-

ing window mark of the object becomes greater than
ending window mark, we move the /bp one position up
in the Super-MTK+N list and remove the object from
Super-MTK+N list (Lines 11-14).

Figure 3(b) in Section 3 shows how handling
changes could affect the content of the Super-MTK+N
list and of the top-k query result. At the evaluation time
of W1, after handling new arrivals of window Wi, the
content of the Super-MTK+N list is as in Figure 3(a).
As the score of object E changes from 7 to 10 (Fig-
ure 1(c)), it is considered as an arriving object with
new score, so, it is placed in the Super-MTK+N list
above object G. The LBP set does not change in this
case.

Comparing to the MinTopk algorithm [2], the
Topk+N algorithm has the following additional futures:
i) it computes the minimum score on streaming side
to approximate score of changed objects, ii)it handles
distinctive arrival of objects, and iii) it handles changed
objects.

5. AcquaTop Solution

Using Super-MTK+N list and Topk+N algorithm, we
are able to process continuous top-k query over stream
and distributed dataset while getting notification of
changes from the distributed dataset. As we anticipated
in Section 1, this solution works in a data center, where
the entire infrastructure is under control, but it does not
when we may have high latency, low bandwidth and
even rate-limited access as in the two examples of Sec-
tion 1. In those cases the engine, which continuously
evaluates the query, has to pull the changes from the
distributed dataset and, thus, the reactiveness require-
ment can be violated.

In the following of the section we present AcquaTop
solution to address this problem. Section 5.1 intro-
duces the AcquaTop Framework. In section 5.2 we
present the details of the AcquaTop algorithm, and the
proposed maintenance policies. Finally, Section 5.3 re-
views the cost analysis.

5.1. AcquaTop Framework

As mentioned in Section 3.2, ACQUA [3] addresses
this problem by keeping a local replica of the dis-
tributed data and using several maintenance policies
to refresh such a replica. Considering the architectural
approach presented in [3] as a guideline, we propose
a second solution to our problem, named AcquaTop

18 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

Stream Data) [Distributed Dataset]
L) Maintenance
Policies w..___ 4
Top-k AcquaTop Super-MTK+N
result <"| Algorithm List Candidate set| ranker
N N
Elected set
[Local Replica]<_— Maintainer [«

Fig. 6. The AcquaTop framework

framework. It keeps a local replica of the distributed
data and updates the part of it that affects the most the
current and future top-k answer after every evaluation.

Figure 6 shows the architecture of AcquaTop frame-
work. AcquaTop gets data from the stream and the lo-
cal replica and, using Super-MTK+N list structure, it
evaluates continuous top-k query at the end of each
window. The Super-MTK+N list provides the Candi-
date set for updating. Notably, such a set is a small sub-
set of the objects that logically should be stored in the
window since our approach discards objects that do not
enter in the predicted top-k results when they arrive.
The Ranker gets the Candidate set and orders them
based on the criteria of the different maintenance poli-
cies. The maintainer get the top y elements, namely the
Elected set, where v is the refresh budget for updating
the local replica.

When the refresh budget is not enough to update
all the stale elements in the replica, we might have
some errors in the result. Therefore, as in ACQUA,
we propose different maintenance policies for updat-
ing the replica, in order to approximate as much as pos-
sible the correct result. In the following, we introduce
AcquaTop algorithm and the proposed maintenance
policies.

5.2. AcquaTop Algorithm

In top-k query evaluation, after processing the new
arrivals of each window, we prepare the set of objects
which have been updated in the local replica by fetch-
ing a fresher version from the distributed dataset. Al-
gorithm 4 shows the pseudo-code of AcquaTop Algo-
rithm for handling changes in local replica in addition
to handling insertion of new arrival objects.

In the first step, the evaluation time is initialized.
Then, for every new arriving objects, it checks if any

new window has to be added to the active window list
(Line 4). If the time of arrival is less than the next eval-
uation time (i.e., the ending time of the current win-
dow), it updates the Super-MTK+N list (Lines 5-7).

At the end of the current window, Function Up-
dateReplica gets the Super-MTK+N list and returns the
set of changed objects in the replica (Line 9). Then,
Function TopkN (Line 10) gets the set changedObjects
and updates Super-MTK+N list based on changes. The
algorithm considers changed objects as new arriving
objects with different scores. It removes the stale ver-
sion of the object from the Super-MTK+N list and rein-
serts it if the constraints are satisfied. Then, getting the
top-k result from Super-MTK+N list, the algorithm re-
turns the query answer (Line 11). Finally, it purges the
expired window and goes to the next window process-
ing (Lines 12-13).

Function UpdateReplica in Algorithm 4 updates the
replica getting the Super-MTK+N list and the policy
as inputs. Function UpdatePolicy (Line 19) gets the
Super-MTK+N list and the policy. Then based on dif-
ferent maintenance policies, it returns the electedSet
of objects for updating. For every object in the elect-
edSet, if the new value of the scoring variable xp
and the one in replica are not the same, it updates
the replica and puts the object in the set changedOb-
jects (Lines 20-25). Finally, Function UpdateReplica
returns the set changedObjects.

In the following sections, we propose different
maintenance policies. Function UpdatePolicy gets one
of them as input and generates the electedSet of ob-
jects for updating the local replica. The following four
sections detail our maintenance policies.

5.2.1. Top Selection Maintenance Policy (AT-TSM)
We need to propose maintenance policies that are
specific for top-k query evaluation. The intuition is

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 19

Algorithm 4: The pseudo-code of AcquaTop algo-
rithm

1 begin

2 time < starting time of evaluation ;

3 foreach new object O; in the stream S do

4 CheckNewActiveWindow (O;.1) ;

5 if O;.t < time then

6 UpdateMTKN(O;) ;

7 end

8 else

9 changedOb jects < UpdateReplica(
Super-MTK+N list);

10 TopkN (changedObjects) ;

11 Get top-k result from Super-MTK+N
list and generate query answer ;

12 PurgeExpiredWindow() ;

13 time <— next evaluation time ;

14 end

15 end

16 end

17
8 Function UpdateReplica(Super-MTK+N list,
policy)

ot

19 electedSet+— UpdatePolicy (S uper-MT K+N
list , policy) ;

20 foreach O; € electedSet do

21 if new value of scoring variable of O; #
replica value of scoring variable of O;
then

22 update replica for O; ;

23 add O; to list changedObjects ;

24 end

25 end

26 return changedObjects ;

straightforward: since AcquaTop algorithm makes it
possible to predict the top-k result of the future win-
dows, updating the replica for those predicted objects
catches the opportunity to generate more accurate re-
sult. As a consequence, the rest of the data in replica
has less priority for updating.

The predicted top-k result of future windows are
kept in the Super-MTK+N list. Based on AcquaTop al-
gorithm, as we have a sliding window, the top-k object
of the current window have high probability to be in
the top-k result of future windows. Therefore, updating
the top-k objects can affect the relevance of the result
of future windows more than updating object far from
the first top-k. Based on this intuition, AT-TSM pol-

icy selects objects from the top of the Super-MTK+N
list for updating the local replica. The proposed pol-
icy gives priority to the object with higher rank, as
it focuses on more relevant result. Our hypothesis is
that comparing to the other policies, AT-TSM can have
higher value of nDCGQk.

5.2.2. Border Selection Maintenance Policy
(AT-BSM)

Super-MTK+N list contains K+N objects for each
window, and each object in the predicted result is
placed in one of the following areas: the K-list, which
contains the top-k objects with the highest rank; or
the N-list, which contains the next N items after top-k
ones. AT-BSM policy focuses on the objects around the
border of those two lists and selects objects for updat-
ing around the border.

The intuition behind AT-BSM is that objects around
the border has higher chances to move between the
K- and the N-list [15]. Indeed, updating those objects
may affect the top-k result of future window. The pol-
icy concentrates on the objects that may be inserted in
or removed from top-k result and can generate more
accurate results. So, our hypothesis is that comparing
with other policies, AT-BSM policy has higher value of
precisionQk.

5.2.3. All Selection Maintenance Policy (AT-ASM)

The upper bound accuracy and relevancy of Ac-
quaTop is the case when there is no limit for the re-
fresh budget, i.e. we can update all the elements in
the Super-MTK+N list. We name this policy AT-ASM.
Our hypothesis is that AT-ASM policy has high accu-
racy and relevancy as it has no constraint on the num-
ber of accesses to the distributed dataset, and updates
all the objects in the predicted top-k results. AT-ASM
policy is not useful in practice, but we use it to verify
the correctness of the experiments reported in Section
6.

5.2.4. AT-LRU and AT-WBM policies

We can use AcquaTop algorithm and Super-MTK+N
list to evaluate top-k query, while applying state-of-
the-art maintenance policies from ACQUA [3] for up-
dating the local replica. ACQUA shows that WSJ-
WBM and WSJ-LRU policies perform better that others
while processing join query. We combine those poli-
cies with AcquaTop algorithm and propose the follow-
ing policies: AT-LRU, and AT-WBM. Our hypothesis is
that AT-LRU works when most recently used objects
appears in the top-k result of future windows. AT-WBM
policy works when we have correlation between being

20 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

in top-k result and staying longer in the sliding win-
dow.

5.3. Cost Analysis

The memory size required for each object o; in
the Super-MTK+N list is equal to (Object.size + 2 *
Reference.size), as we keep the object and its two
window marks in the Super-MTK+N list. Based on
the analysis in [2], in the average case, the size of
the super-top-k list is equal to 2K (K is the size of
MTK set). Therefore, in the average case, the size of
the Super-MTK+N list is equal to 2 * MT K+N.size =
2 x (K 4+ N). Notably, the memory complexity of our
Super-MTK+N list is constant, as the value of K and
N are fixed, do not depend neither on the volume of
data that comes from the stream, nor on the size of the
distributed dataset.

The CPU complexity of the proposed algorithm is
computed as follows. The complexity of handling ob-
ject expiration is equal to O(MT K+N.size), as we need
to go through the MTK+N list to find the first k objects
of the just expired window.

For handling the new arrival object, the cost for each
object is:

P (log(MTK + N.size)+
Wact~5ize + Caaw + Calb17)+
(1 = P) * (1 + Wy.size),

where P is the probability that object o; will inserted
in the Super-MTK+N list, Cy,, is the number of af-
fected active window, C,, is the number of affected
pointers in LBP set, and W,,.size is the size of active
window list.

If the probability of inserting object o; in the Super-
MTK+N listis P, the cost for positioning it in the Super-
MTK+N list is equal to log(MTK+N.size) by using
tree-based structure for storing the Super-MTK+N list.
The cost of computing the starting window marks is
equal to W,.size, as all the active windows must be
checked as a candidate. The cost of updating the coun-
ters of all affected active windows is C,,,,, and the cost
of updating all affected pointers in LBP set is Cyypp.

With probability (1 — P), we discard the object with
the cost of one single check with the lowest score in
Super-MTK+N list and W,,.size checks of active win-
dow counters.

For handling the changed object, the cost for each
object is:

2 % log(MT K+N.size) + O(MTK+N.size),

where 2 * log(MT K+N.size) is the cost of remov-
ing the old object and inserting it with new score, and
O(MT K+N.size) is the cost of refreshing the LBP set.

Therefore, in the average case the CPU complexity
of the proposed algorithm is O(N,,,, * (log(K + N) +
Wacr-Size) + Nepanges * (K + N)). The analysis shows
that the most important factors, in CPU cost of Ac-
quaTop algorithm, are the size of MTK+N and the num-
ber of active windows (i.e. W,;.size), which are fixed
during the query evaluation. Therefore, the CPU cost
is constant as it is independent from the size of the
distributed dataset and the rate of arrival objects in the
data stream.

Based on these cost computations, The proposed
approach can be compared with the state-of-the-art
ones. Comparing to MinTopk algorithm, AcquaTop has
memory overhead equal to O(N), but N can be set to
0 if the distributed data does not change. As we stated
before, the computational cost of AcquaTop algorithm
is equal to 2 x log(MT K+N.size) + O(MTK+N.size),
while for the MinTopk algorithm, the cost is equal to
2xlog(MTXK.size). So even when N=0, AcquaTop still
has a small constant overhead in the worst case.

Comparing to ACQUA, AcquaTop’s memory cost
is equal to O(MTK+N.size), while ACQUA has to
keep all data items that come in the window to com-
pute the top-k result of the window. Moreover, the
state-of-the-art shows that using materialization-then-
sort approach (like ACQUA) has higher computational
overhead comparing to the incremental approaches
(MinTopk and AcquaTop).

6. Evaluation

In this section, we report the results of the experi-
ments that we carried on to evaluate the proposed poli-
cies. Section 6.1 introduces our experimental setting.
Section 6.2 shows the result of the preliminary exper-
iment. In Section 6.3, we formulate our research hy-
potheses. The rest of the sections report on the evalua-
tion of the research hypotheses.

6.1. Experimental Setting

As experimental environment, we use an In-
tel i7@1.7 GHz with 8 GB memory and a SSD

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 21

Number of Mentions

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

(a) distribution of number of mentions

60

Number of Mentions
8 5 8

8

FERRERISNRTERREBFIRBEHEE_REREER]

Window

(b) Number of mentions per window

Fig. 7. Data stream characteristics

disk. The operating system is Mac OS X 10.13.2 and
Java 1.8.0_91 is installed on the machine. We carry out
our experiments by extending the experimental setting
of [3].

The experimental data are composed of streaming
and distributed datasets. The streaming data contains
tweets mentioning 400 verified users of Twitter. The
data is collected by using the streaming API of Twitter
for around three hours of tweets (9462 seconds). As
one can expect, the number of mentions per user dur-
ing the evaluation has a long-tail distribution, in which
few users have high number of mentions, and most
of the users have little mentions. The profiling of the
number of mentions per window shows min=26, me-
dian=38, and max=59. Figure 7(a) shows the distribu-
tion of number of mentions, and Figure 7(b) shows the
number of mentions per window.

For generating the distributed dataset, every minute
for each user we fetched the number of followers from
twitter’s REST APIs. Differently from the example in
Listing 1, to better resemble the problem presented in
Section 1, for each user u and each minute i, we added
to the distributed dataset the difference between the
number of followers at i (nf;) and that at the previous
minute i-1 (nf;—1). Let us denote such a difference with
dfc;. Itholds that dfc; = nf; — nfi_1.

As top-k query, we use the one presented in Sec-
tion 1. We set the length of the window equal to 100
seconds, and the slide equal to 60 seconds. We run

150 iterations of the query evaluation (i.e. we have 150
slided windows for the recorded period of data from
twitter) to compare different maintenance policies. The
scoring function for each user is a linear combinamtion
of the number of mentions (named mn) in the stream-
ing data and the value of d fc in the distributed dataset.
Notably the values of mn, and d fc increase or decrease
during the iterations, but the selected linear scoring
function is monotonic as assumed in top-k query liter-
ature. The scoring function computes the score as fol-
lows:

score = F(mn,dfc) = ws *x norm(mn)

+wy x norm(dfc),

where, norm is a function that computes the normal-
ized value of its input, considering the minimum and
maximum value in the input range, w; is the weight
used for the number of mentions, and w, in the weight
used for the number of followers.

For experimental evaluation, we need to control the
average number of changes in the distributed dataset.
Before controlling it, we need to explore the distribu-
tion of changes in the recorded data. Notably, Twit-
ter APIs allow asking for the profile of a maximum
of 100 users per invocation®, thus multiple invocations
are needed per minutes to get the number of followers
and compute the dfc for each of the 400 users. In total,
we run 702 invocations to collect the data used over
the 150 iterations.

Exploring the characteristic of the obtained dis-
tributed dataset considering dfc, we find that in aver-
age, in every invocation of twitter API, 80 users have
changes in dfc.

Now that we know this information, we generate
dataset with a decreased number of changes by sam-
pling the real dataset and randomly decreasing the av-
erage number of changes in dfc. To decrease the aver-
age number of changes, for each invocation, we ran-
domly select users who have changes in d fc, and set it
to the previous value to reach the target average num-
ber of changes per invocation.

We also find that doing so we introduce many ties in
the scores, which as known in top-k query answering
literature simplifies the problem. In order to keep the

8Twitter API returns the information of up to 100 users
per request, https://developer.twitter.com/en/docs/accounts-and-
users/follow-search-get-users/api-reference/get-users-lookup

22 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

IS
S

Number of Users
w
s
Number of Users
8

N
15}

=
o

12345678 910111213141516171819
Number of Changes

(a) DS-CH-5

30
II 20 I
10
oll‘l‘ ‘ Illl-. o_‘__|I Ill‘_‘ -

19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
Number of Changes

(b) DS-CH-20

Number of Users.
2N ow s o0 o9
o 5 8 &8 8 & 8

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
Number of Changes

(c) DS-CH-80

Fig. 8. Distribution of number of users per number of changes

Table 3

Summary of characteristics of distributed datasets which reports the
statistic related to the number of changes per invocation.

Dataset Average Median 1st Quartile 3rd Quartile ‘
DS-CH-80 | 79.97 94 77 96
DS-CH-40 | 40.33 47 40 48
DS-CH-20 | 20.45 23 20.5 24
DS-CH-10 | 10.33 12 10 12
DS-CH-5 5.53 6 5 6

problem as hard as possible, we alter the changes in
dfc by adding random noise.

Applying those methods, we generate five datasets
in which there are on average 5, 10, 20, 40, and 80
changes in each invocation. The value 80 is the max-
imum number of changes in each invocation for the
dataset. So, the dataset with 80 changes in each in-
vocation is the extreme test case that we have in our
evaluations . We tested that each generated dataset has
normal distribution of number of changes. We have
different mean value for each dataset, but there is not
any significant difference between variances. Figure 8
shows the distribution for three of those datasets.

In order to reduce the risk of bias in synthetic data
generation, for each number of changes, we produce
a test case that contains 5 different datasets for each
number of changes. In the remainder of the paper, we
use the notation DS-CH-x to refer collectively to the
five datasets whose average number of changes per in-
vocation is equal to x. Table 3 shows the characteristics
of generated datasets. The streaming and distributed
datasets, and the implemented experiments are avail-
able on GitHub’.

6.2. Preliminary Experiment

In this experiment, we check the relevancy and ac-
curacy of the top-k result for all the maintenance poli-
cies over 150 iterations. We select DS-CH-20 test case
for this experiment. In the first step, we check the total
result in each iteration and we found that, in average
we have 30 items in the query result. Therefore, we
consider default K equal to 5, which is around 15% of
the average size of the total result. We put refresh bud-
get equal to 7, so theoretically, we have enough budget
to refresh all the answers of top-k query.

In order to set a default value for parameter N, we
have to analyze the distributed datasets. As we say
in Section 6.1, during 9462 seconds of recording data
from twitter API, we have 702 invocations. There-
fore, in average we have 7.42 invocations per window
with 100 seconds length (702 + 9462 x 100 = 7.42).
We know that in DS-CH-20 test case, we have 20
changes per invocation in average. So, the average
number of changes per window is equal to 7.42 x 20 =
148.4. Considering that we have 400 users in total and
30 users in average in the result set, we have 11.13
changes per window (% x 30 = 11.13). So, we con-
sider default value of N equal to 10 for the MTK+N list.

In order to investigate our hypotheses, we set up an
Oracle that, at each iteration, certainly provides cor-
rect answers. Then, we compare the correct answers at
iteration i, Ans(Oracle;), with the possibly erroneous
ones of the query, Ans(Q;), considering different main-
tenance policies. Given that the answers are ordered
lists of the users’ IDs, we use the following metrics to
compare the query result with the Oracle one.

In our experiments, we compute the nDCGQk and
precisionQk for each iteration of the query eval-
uation. We also introduce the cumulated nDCGQk
(precision@k) at the J™ iteration as following:

9https://github.com/shima-zahmatkesh/AcquaTop

https://github.com/shima-zahmatkesh/AcquaTop

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 23

N w B
o o o

—_
o

Cummulative error of nDCG@K

o

Iteration

(a) Cumulative errors of nDCG@Qk over iterations

b

-3 MTKN-A

w
o

N
o

N
o

Cummulative error of precision

o

Iteration

(b) Cumulative errors of precision@k over iterations

Fig. 9. Result of Preliminary Experiment

J
nDCGQL(J) = Y nDCGQk(Ans(Qy),

i=1
Ans(Oracle;))

J
precision@QKC (J) = Zprecision@K(Ans(Qi),
i=1

Ans(Oracle;))

where the nDCGQ@k of the iteration i is
denoted as nDCGQk(Ans(Q;),Ans(Oracle;))
and the precision@k of the iteration i as
precisionQk(Ans(Q;), Ans(Oracle;)). Higher value
of nDCGQk and precision@Qk show more relevancy
and accuracy of the result set, respectively.

We run 150 iterations of query evaluation for each
policy and compute the cumulative error related to
nDCGQk and precision@k metrics for every iteration.
Figure 9 shows the result of the experiment. In the be-
ginning (iteration 1 to 50) it is difficult to identify poli-

cies with better performance, but while the iteration
number increases, distinct lines become detectable and
comparison between different policies becomes easier.
Therefore, for the rest of the experiment we consider
nDCGQKC (150), or precision@k®(150) for compar-
ing the relevancy and accuracy of different policies.
Abusing notation, in the rest of the paper, we refer to
them using nDCGQk, or precision@Qk.

6.3. Research Hypotheses

The space, in which we formulate our hypothesis,
has various dimensions. Table 4 describes them and
shows the values for each parameter that we used in
the experiments.

We introduce two baseline maintenance policies
(WST, and WSJ-RND) to compare proposed policies
with. WST maintenance policy is a lower bound w.r.t.
the comparison in terms of accuracy with the Oracle.
WSJ-RND (from [3]) randomly selects objects for up-
dating from the Candidate set. We expect that our pro-
posed policies outperform WSJ-RND policy. As we

24

Table 4

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

Parameter Grid

Parameter (Default) Values Description

CH (20) {5,10,20,40,80} Average Number of changes per invocation

B (7) {1,3,5,7,10,15,20,25,30} Refresh budget

K (5) {5,7,10,15,20,30} Number of top-k result

N (10) {0,10,20,30,40} Number of additional elements in MTK+N list

told in Section 5.2.3 we also introduce AT-ASM pol-
icy as an upper bound. We expect all policies to show
worst accuracy and relevancy than AT-ASM w.r.t. Ora-
cle.

In addition to the baseline policies, we consider
WSJ-LRU, and WSJ-WBM policies from ACQUA [3]
in order to compare them with our proposed policies.
Moreover, as mentioned in Section 5.2.4, we also in-
troduce AT-LRU, and AT-WBM, which use AcquaTop al-
gorithm and Super-MTK+N list, while applying state-
of-the-art maintenance policies from ACQUA [3] for
updating the local replica.

In general, we formulate the hypothesis that our pro-
posed policies outperform the state-of-the-art policies
within the setting of this paper. As AcquaTop algo-
rithm only keeps the objects which can participate in
top-k result and discards the rest of the data stream,
even comparable results with the state-of-the-art poli-
cies (WSJ-WBM, and WSJ-LRU) are good. Indeed, Ac-
quaTop algorithm has significant optimization in mem-
ory usage, while ACQUA’s memory complexity de-
pends on the amount of data in the window, AcquaTop
framework’s memory only depends on K, and N.

We formulate our hypothesis as follows:

Hp.1 For every refresh budget the proposed policies
(AT-TSM,AT-BSM) report more relevant (accurate)
or comparable results with the state-of-the-art
policies.

Hp.2 For datasets with different average number of
changes per invocation (CH) the proposed poli-
cies generate more relevant (accurate) or compa-
rable results with the state-of-the-art policies.

Hp.3 Considering enough refresh budget for updating
the replica, for every value of k the proposed poli-
cies report more relevant (accurate) or compara-
ble results with the state-of-the-art policies.

Hp.4 Considering enough refresh budget for updating
replica, for every value of N>CH the proposed
policies report more relevant (accurate) or com-
parable results with the state-of-the-art policies.

Table 5
Summary of Experiments

‘ Experiment | Hypothesis B CH K N
0 - 7 20 5 20
1 HP1 B 10 5 10
2 HP2 7 CH 5 10
3 HP3 7-15 10 K 10
4 HP4 7-15 10 5 N

Table 5 summarizes a significant subset of the ex-
perimentes that we have done. In each experiment, one
parameter has varius values and the rest of them have
a default value. For every experiment nDCGQk, and
precision@k are computed to compare the relevancy
and accuracy of the generated results w.r.t. our Oracle.

6.4. Experiment I - Sensitivity to the Refresh Budget

In this experiment, we check the sensitivity to the
refresh budget for different policies to test Hypothesis
Hp.1 As mentioned in Section 6.2, based on the anal-
ysis of data stream and distributed dataset, we set K
equal to 5, and N equal to 10. We run the experiment
over the DS-CH-20 test case for different refresh bud-
gets (y € {1,3,7,10,15,20,25}), we consider y = 1
as the extreme case where we have minimum budget
for updating, and y = 25 for maximum budget, as we
have in average 30 items in the result set..

Figure 10 shows the result of the experiment for dif-
ferent budgets. Figure 10(a) shows the median of cu-
mulative nDCG@Qk with error bars over five datasets
for different policies and refresh budgets. Y axis shows
the value of cumulative nDCG@k. The maximum
value on nDCGQk is equal to 150, because in each
iteration the maximum value of nDCGQk is equal to
1 for the correct answer and we have 150 iterations.
X axis shows different values of refresh budget and
each line identifies a maintenance policy. Figure 10(b)
shows the median of cumulative precision@k with er-
ror bars in the same way.

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 25

150

—
S
o

Cumulative nDCG@K
w
o

120

-@® - WSJ-WBM
-m - WST

—
N
(=]

Cumulative precision@K
N W
o (o]

110

(b) precision@k for different budgets

Fig. 10. Result of Experiment 1 - Relevancy and Accuracy for different value of refresh budget

Figure 10(a) shows that AT-ASM has the highest rel-
evancy in top-k results as it updates all the objects in
Super-MTK+N list without considering the refresh bud-
get. WST policy also is not sensitive to refresh bud-
get as it does not update the local replica. Therefore,
low relevancy of result is expected for WST policy.
When we have a small refresh budget for updating lo-
cal replica, the proposed policies (AT-TSM, AT-BSM)
perform like other policies and have same relevancy
in top-k result. But, when we have large enough re-
fresh budgets (i.e., 3 to 15), AT-TSM, and AT-BSM pol-
icy outperform other policies. When the value of the
refresh budget is high (y > 20), AT-LRU is as good
as AT-ASM, AT-TSM, and AT-BSM policies in relevancy.
This is expected because considering K=5 and N=10,
MTK+N size is equal to 15 and based on [2], we have

2 x 15 = 30 objects in Super-MTK+N list in average.
So, for refresh budget near to 30, we almost refresh the
entire Super-MTK+N list.

Figure 10(b) shows the accuracy of the top-k results.
Like the chart of Figure 10(a), AT-ASM and WST poli-
cies are not sensitive to refresh budget. AT-BSM pol-
icy outperforms other policies for most of the refresh
budgets (y < 20). For low refresh budgets (y < 7)
AT-TSM can generate top-k result as accurate as oth-
ers, but for budgets between 7 to 15 it has higher accu-
racy comparing to other policies except AT-BSM pol-
icy. For large budgets, AT-TSM, AT-BSM, and AT-LRU
are as good as AT-ASM.

Figure 10 shows some elbow points around refresh
budget equal to 10 or 15, in which the performance
starts to rise slowly. The experiment done over the DS-

26

150
v ®
® 5
g 140 r;
Q :
] o
= [
E 2
5130 5
£ E
3 E
(&)
120
110
5 10 20 40 80
CH

(a) nDCGQk for different CH

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

-3 - |AT-ASM

AT-BaM
—A— AT-LRU
-Q - AT-RND
- AT-WBM

-® - WSJ-WBM
-0 -WST

5

10

(b) precision@k for different CH

Fig. 11. Result of Experiment 2 - Relevancy and Accuracy for different value of CH

CH-20 test case, and the computation in Section 6.2
shows that in average we have 11.13 changes in the re-
sult set. Therefore having high number of refresh bud-
get (y = 15) does not help to improve the perfor-
mance, as we have lower number of changes compar-
ing to the refresh budget.

From a practical perspective, this analysis confirms
what we said in Section 4: if we have enough refresh
budget for updating the top-k result, AT-TSM policy
is the best option. Applying AT-TSM policy we can
achieve more relevant data, while the rank position
of each data item is important. AT-BSM policy outper-
forms other when only accuracy is considered.

6.5. Experiment 2 - Sensitivity to Change Frequency
(CH)

In this experiment, we set refresh budget to 7, i.e.,
where our proposed policies outperform others in pre-
vious experiment. We test Hypothesis Hp.2 to check
the sensitivity to the change frequency in distributed
dataset for different policies. The maximum change
frequency in the dataset is equal to 80. We run the top-k
query over datasets with various CH values, setting N
to 10, and K to 5. Figure 11 shows the result of Ex-
periment 2. Charts show that AT-TSM has a constant
behavior while we have different number of changes
in dataset, and the both relevancy and accuracy of the
result does not have any noticeable change.

Figure 11(a) shows the relevancy of the result con-
sidering nDCG@k metric for different CH. For most
of the policies, while we have less number of changes

in dataset, we have higher relevancy. Both AT-TSM and
AT-BSM policies outperform others.

Figure 11(b) shows the accuracy of the top-k re-
sult for various CH considering precision@k metric. In
most of the policies, increasing the number of changes
reduces the accuracy of the result. AT-BSM generates
more accurate top-k result, considering precisionQk.
AT-TSM has almost the same accuracy for all CH, but
in AT-BSM the accuracy decreases for high CH. The
robust performance of AT-TSM policy for different CH
is not expected. Theoretically for higher value of CH,
we need to keep more objects in the Super-MTK+N list
(i.e., N ~ CH), but practically AT-TSM policy has al-
most the same relevancy and accuracy for different val-
ues of CH.

6.6. Experiment 3 - Sensitivity to K

The result of Experiment 1 shows that, for refresh
budget between 7 and 15, AT-TSM, and AT-BSM poli-
cies outperform other policies both in relevancy and
in accuracy. So, in this experiment, we explore some
extreme conditions. We focus on the middle area of
budget selection and set the refresh budget equal to 7
and 15, which are the minimum and maximum refresh
budgets in this area respectively. We run the query for
different values of K (i.e. Ke {5, 7,10, 15,20, 30}) to
test Hypothesis Hp.3. Using Oracle we found that in
average we have 30 result items in each window, so we
consider K = 30 as the maximum value. When K is
100% of the window content we are testing our contri-
bution in the ACQUA setting [3].

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 27

150
X
5 9
[=]
8140 130
a :
o
2 S120
= 2
S ©
5130 S110
3 g
' (8]
' 100
120

5 7 10 15 20 30
K

(a) nDCGQk at budget=7

150
« ®
) 5
8140 % 130
a &
E 5120
® 2
E ®
E130] 3110
3 ' 5
i (8]
/ 100
120

5 7 10 15 20 30
K

(¢) nDCGQk at budget=15

140 {2

-3 - |AT-ASM

AT-BaM
—A— AT-LRU
-Q - AT-RND
- AT-WBM

-® - WSJ-WBM
-0 -WST

14012

-3 - AT-ASM
AT-BaM
—A— AT-LRU
-0 - AT-RND
3 st
—A— WSJ-RND
-® - WSJ-WBM
-m - WST

(d) precision@k at budget=15

Fig. 12. Result of Experiment 3 - Relevancy and Accuracy for different value of K

Figures 12(a), and 12(c) show that for different K,
AT-TSM, and AT-BSM perform better than others and
the results are more relevant. They also generate more
relevant result while refresh budget is higher (y = 15).

Figures 12(b), and 12(d) show that for low values
of K, (i.e. K < 7), AT-TSM, and AT-BSM perform bet-
ter than others. When refresh budget is equal to 7 ,
and K > 7, most of the policies outperform AT-TSM
and AT-BSM, and WSJ-LRU, and AT-LRU are the best
policies. When the refresh budget is equal to 15 and
K > 7, in general we have more accurate result, and
WSJ-LRU, and AT-LRU are the best policies after AT-
ASM. AT-BSM is better than the remaining policies,
while AT-TSM is the worst policy (even after WST).

Unexpectedly, we learn from observation that focus-
ing on a specific part of the result (e.g. top of the re-
sult) and trying to update that part could generate more
errors when the refresh budget is not enough to update

the entire top-k result (i.e., ¥ < K). In this case, uni-
formly selecting from all the object in the window or
Super-MTK+N list, as done in WSJ-LRU, or AT-LRU,
can lead to more accurate results.

6.7. Experiment 4 - Sensitivity to N

In this experiment, we focusing on the middle area
of Figure 10, in which AT-TSM, and AT-BSM poli-
cies outperform other policies both in relevancy and
in accuracy, we set refresh budget equal to 7 and 15,
which are the minimum and maximum refresh bud-
gets in this area. We run the query for different N (i.e.
Ne {0, 10, 20, 30, 40}) to test Hypothesis Hp.4. Notice
that Hp.4. should be confirmed for large N while small
N are extreme situations where Hp.4. may not hold.

Figure 13 shows that AT-TSM, and AT-BSM poli-
cies perform better than others. AT-TSM policy has

28 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

1507 ..
¥ é)140
S 5
8140 @
a o
c g
c 5130
2 o A
w =z | N —8— WSJ-LRU
I PO S E S
5 E1zo(® 7" - @ ---0----0 _g.ysT
(3] =3 .
(&S]

A

E---®---8---EH----H
120 110

0 10 30 40

20
N

(b) precision@k at budget=7

150
« émo
® 6
8140 2
a - SRRAREY" SPRPRYS: . TR o
; ¢ 3130
R A o A| Epren,
Sq30| 5 A o Ry
£ L e e B
o
A
L et St N L L e
0 10 2 30 40 10 icl) 30 40

(¢) nDCGQk at budget=15

(d) precision@k at budget=15

Fig. 13. Result of Experiment 4 - Relevancy and Accuracy for different N

higher relevant results considering nDCG@Qk, while
AT-BSM generates more accurate results considering
precision@Qk. This observation gives us an insight. Fo-
cusing on the top result can lead to a more relevant re-
sult, while focusing on the border of the K and the N
area, can give us a more accurate results.

Comparing the plots in Figure 13 we can find that
giving more refresh budget, we are able to fill the gap
between AT-TSM, and AT-BSM with AT-ASM and gen-
erate more relevant and accurate results.

Theoretically, keeping additional N objects in
Super-MTK+N list lead us to more relevant and accu-
rate results. Figure 13 also shows that AT-ASM pol-
icy performs better when we have higher values of N.
However, from a practical perspective, if we do not
have enough refresh budget to update the replica, we
are not able to generate more relevant and accurate re-
sults.

6.8. Wrap up

Table 6 summarizes the improvements of pro-
posed policies (AT-TSM, and AT-BSM) comparing them
with state-of-the-art ones (WSJ-WBM, and WSJ-LRU)
from [3]. For each experiment (1 to 4), we compared
policies and find the maximum and minimum improve-
ment for both metrics.

In general, the maximum improvement is our best
achievement, and the minimum values are related to
extreme conditions. They have no practical meanings,
but show the worst conditions we tested. In most of
the cases, our best achievement is more than 10%.
Among all the experiments, around half of the mini-
mum improvements are positive, which shows that in
half of the extreme cases we outperform state of the
art. The negative cases are not remarkable, but for ex-
periment 3. In this experiment WSJ-LRU outperforms

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 29
Table 6
Improvement of proposed policies (in percentage) comparing with the state-of-the-art ones in different experiments.
Experiment 1-Refresh budget 2-CH 3-K 4-N
Metric nDCG@k |precision@k| nDCG @k |precision@k| nDCG@k |precision@k| nDCG@Xk |precision@k
Comparison max | min | max | min | max |min| max | min | max | min | max | min | max | min {[max| min

AT-TSM vs WSJ-WBM
AT-TSM vs WSJ-LRU
AT-BSM vs WSJ-WBM
AT-BSM vs WSJ-LRU

11.68 -3.58 19.16 -3.76
14.22 -1.76 8.27 -2.69
11.7 276 19.39 1.44
9.1 0.68 11.95 0.55

18.28 2.75 10.22 -2.35 11.68 0.2 18.04 -10.26 11.71 10.05 18.3 9.06
20.87 2.57 11.94 -1.04 11.46 0.07 5.06 -23.72 11.46 3.65 5.29
11.86 0.75 14.99 1.47
13.27 0.65 16.78 2.83 5.58 -0.34 5.47

-1.87
2.8 11.72 439 185 547
-8.59 10.71 3.65 9.06 -1.87

11.7 -0.29 18.5

both our policies. This was expected since K is as large
as the entire result set, and there is no advantage in
focusing at the top.

For instance in Experiment 1, which we have vari-
ous refresh budgets, considering nDCG@Qk, the maxi-
mum improvement of AT-TSM policy comparing to the
WSJ-WBM policy is 11.68%, while the minimum im-
provement is —3.58%. The maximum improvement is
related to the extreme condition of refresh budget 15,
which is our best achievement, and the minimum is re-
lated to the refresh budget 1, in which WSJ-WBM pol-
icy performs better than AT-TSM. Refresh budget equal
to 1 is an extreme case in which we are not able to gen-
erate accurate results when do not have enough budget
to update all the changes (see Figure 10(a)).

To study our research question, we formulate four
hypotheses, and test if our proposed policies provide
better or at least the same accuracy comparing to the
state-of-the-art policies for different values of refresh
budgets, CH, K, and N. The results are summarized in
Table 7.

The results of Experiment 1 about Hp.1 show that,
if we have enough refresh budget comparing to the K
value, AT-TSM policy is the best option considering rel-
evancy, while AT-BSM outperforms others when accu-
racy is more important.

The results of Experiment 2 about Hp.2 show that,
for different values of change frequency CH, AT-TSM
policy outperforms others in terms of relevancy, while
AT-BSM generates more accurate top-k results, in terms
of accuracy.

The results of Experiment 3 about Hp.3 show that,
for different values of K, AT-TSM, and AT-BSM per-
form better than others and the results are more rele-
vant. However, considering accuracy, for low values of
K, (i.e., K < 7), AT-BSM performs better than others,
but for high values of K, (K > 7), WSJ-LRU is the best
policy.

Finally, the results of Experiment 4 about Hp.4 show
that AT-TSM, and AT-BSM policies perform better than

others. AT-TSM policy has higher accurate result con-
sidering nDCG @k, while AT-BSM generates more ac-
curate result considering precision@k. The results also
show that giving more refresh budget, we are able to
fill the gap between AT-TSM /F and AT-ASM, and gen-
erates more relevant and accurate results.

Overall, AT-TSM shows better relevancy than state-
of-the-art policies when it has enough budget and us-
ing nDCGQ@k metric. AT-BSM shows better accuracy
when changes are limited and K is small and we mea-
sure precisionQk.

7. Related Work

To the best of our knowledge, we are the first to ex-
plore the evaluation of top-k continuous query for pro-
cessing streaming and distributed data when the latter
slowly evolves. Works near to this topic are in the do-
main of top-k query answering, continuous top-k query
evaluation over streaming data, data sources replica-
tion, and federated query answering in RSP engine.

The top-k query answering problem has been stud-
ied in the database community, but none of the works
in this domain has our focus.

Ilyas et al. in [16] present the generation of top-k
result based on join over relations. Then, in [17] they
extend relational algebra with ranking. Instead of the
naive materialize—then—sort schema, they introduce
the rank operator. They extend relational algebra oper-
ators to process ranked list and they show the possibil-
ity to interleave ranking and processing to incremen-
tally generate the ordered results. For a survey on top-k
query processing techniques in relational databases see
[18].

Yi et al. [19] introduced an approach to incre-
mentally maintain materialized top-k views. The idea
is to consider rop-k’ results where k' is between k
and parameter Kmax, to reduce the frequency of re-

30 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

Table 7

Summary of the verification of the hypotheses. Overall, AT-TSM shows better relevance than state-of-the-art policies when it has enough budget.
AT-BSM shows better accuracy when changes are limited and K is small.

measuring varying AT-TSM AT-BSM WSJ-LRU
Hp.1 relevancy refresh budget B>3
Hp.1 accuracy refresh budget v
Hp.2 relevancy CH v
Hp.2 accuracy CH v
Hp.3 relevancy K v
Hp.3 accuracy K K<7 K>10
Hp.4 relevancy N v
Hp.4 accuracy N v
Overall relevancy B>3 v
Overall accuracy K<7 v

computation of top-k result which is an expensive op-
eration.

There are also some initial works on top-k query an-
swering in the Semantic Web community [20-23].

Continuous top-k query evaluation has also been
studied in literature recently. All the works process
top-k queries over data streams, but do not take into ac-
count joining streaming data with distributed datasets,
especially while they slowly evolve.

Mouratidis et al. [8] propose two techniques to mon-
itor continuous top-k query over streaming data. The
First one, the TMA algorithm, computes the new an-
swer when some of the current top-k result expire. The
second one, SMA, is a k-skyband based algorithm. It
partially precomputes the future changes in the result
in order to reduce the recomputation of top-k result.
SMA has better execution time than TMA, but it needs
higher space for "skyband structure" that keeps more
than k objects.

As mentioned in Section 3.1, Yang et al. [2] were
first in proposing an optimal algorithm in both CPU
and memory utilization for continuous top-k query
monitoring over streaming data.

There are also some works that evaluate queries over
incomplete data streams like [24], or proposed proba-
bilistic top-k query answering like [25].

Pripuzic et al. [9] also propose a probabilistic k-
skyband data structure that stores the objects from the
stream, which have high probability to become top-k
objects in future. The proposed data structure uses
the memory space efficiently, while the maintenance
process improves runtime performance compared to
k-skyband maintenance [8].

Lv et al. [26] address the problem of distributed
continuous top-k query answering. The solution splits
the data streams across multiple distributed nodes and
propose a novel algorithm that extremely reduces the
communication cost across the nodes. The authors
call monitoring nodes those that process the streams
and coordinator node the one that tracks the global
top-k result. The coordinator assigns constraints to
each monitoring node. When local constraints are vio-
lated at some monitoring nodes, the coordinator node
is notified and it tries to resolve the violations through
partial or global actions.

Zhu et al. [27] introduce a new approach that is
less sensitive to the query parameters, and distribu-
tions of the objects’ scores. Authors propose a novel
self-adaptive partition based framework, named SAP,
which employs partition techniques to organize objects
in the window. They also introduce the dynamic parti-
tion algorithm which enables SAP framework to adjust
the partition size based on different query parameters
and data distributions.

Data sources replication is used by many systems
to decrease the time to access data in order to improve
their performance and availability. A maintenance pro-
cess is needed to keep the local replica fresh in order
to get accurate and consistent answer. There are var-
ious studies about this topic in the database commu-
nity [28-31]. However, these works still do not con-
sider the join problem between streaming and evolving
distributed data.

Babu et al. [28] address the problem of using caches
to improve performance of continuous queries. Au-
thors proposed an adaptive approach for placement and

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 31

removal of caches to control streams of updates whose
characteristics may change over time.

Guo et al. [29] study cache design by defining fun-
damental cache properties. Authors provide a cache
model in which users can specify a cache schema by
defining a set of local views, and cache constraints to
guarantee cache properties.

Viglas et al. [30] propose an optimization in join
query evaluation for inputs arrive in a streaming fash-
ion. It introduces a multi-way symmetric join opera-
tor, in which inputs can be used to generate results in a
single step, instead of pipeline execution.

Labrinidis et al. [31] explore the idea that a trade-off
exists between quality of answers and time for mainte-
nance process. They propose an adaptive algorithm to
address online view selection problem in the Web con-
text. They maximize the performance while consider-
ing user-specified data freshness requirements.

Federated query answering in RSP engine provides
a uniform user interface for users to store and retrieve
data with a single query over heterogeneous datasets.
In the Semantic Web domain, federation is currently
supported in SPARQL 1.1 [32]. As we stated through
the paper using federated SPARQL extension can put
the RSP engines at risk of violating the reactiveness
requirement. As mentioned in Section 3, ACQUA [3]
was the first approach to address this problem and to
offer solutions for RSP engines.

Gao et al. [33] study the maintenance process for
a class of queries that extends the 1:1 join relation-
ship of [3] to M:N join, but that does not include top-k
queries. It models the join between streams and back-
ground data as a bipartite graph. They propose a set
of basic algorithms to maximizing the freshness of the
current sliding window evaluation, and an improved
approach for future evaluations. Authors also propose
a flexible budget allocation method for further improv-
ing the maintenance process.

8. Conclusion and Future Work

In this work, we study the problem of continuously
evaluating top-k join of streaming and evolving dis-
tributed data.

Monitoring top-k query over streaming data has
been studied in recent years. Yang et al. [2] propose
an optimal approach both in CPU and memory con-
sumption to monitor top-k queries over streaming data.
We extend this approach focusing on joining the data
stream with a slowly evolving distributed dataset. We

introduce Super-MTK+N data structure which keeps
the necessary and sufficient objects for top-k query
evaluation, and handles slowly changes in the dis-
tributed dataset, while minimizing the memory usage.

As a first solution, we assume that the engine can get
notifications for all changes in the distributed data, and
considers them as indistinct arrivals with new scores.
This is often impossible over the Internet, but it is in-
teresting to explore the theoretical guarantees that our
algorithm gives in terms of correctness in current and
future windows. We introduce Topk+N algorithm, in
which top-k result are affected and changed between
two consecutive evaluations, based on the changes in
the distributed dataset.

In order to guarantee reactiveness, the state-of-the-
art architectural approach for RSP engines [3] keeps a
replica of the dynamic linked dataset and uses several
maintenance policies to refresh such a replica.

In this paper, as a second solution, we build on such
an architectural approach, and introduce AcquaTop al-
gorithm that keeps up-to-date a local replica of the dis-
tributed dataset using alternatively AT-BSM or AT-TSM
maintenance policies. AT-BSM policy maximizes the
accuracy of the top-k result, and tries to get all the
top-k answers. AT-TSM policy, instead, maximize the
relevancy by minimizing the difference with the cor-
rect order, ignoring the accuracy of the results in lower
positions.

To study our research question, we formulate four
hypotheses in which we test if our proposed policies
provide better or at least the same accuracy (relevancy)
comparing to the state-of-the-art policies for differ-
ent parameters. The results of experiments show that
AT-TSM policy has better relevance comparing to the
state-of-the-art policies when it has enough budget. AT-
BSM policy shows better accuracy when changes are
limited and K value is small.

As a future work, it is possible to broaden the class
of query. In this paper, we focus on a specific type of
query which contains only a 1:1 join relationship be-
tween the streaming data and the distributed dataset.
Queries with an 1:M, N:1, and N:M join relation-
ship [33], or those with other SPARQL clauses such as
OPTIONAL, UNION, or FILTER can be investigated.
For queries with a 1:M, N:1, and N:M join relation-
ship, the selectivity of the join relationship needs to be
considered in the maintenance policy. For example, for
N:1 relationships, selecting an item in the SERVICE
side with high selectivity of the join, can create many
correct answers in the result.

32 S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data

Keeping the replica of a dataset is a feasible solu-
tion only for low volume datasets. This assumption is
one of the limitations in our proposed approach. For
high volume distributed datasets, an alternative solu-
tion could be using a cache [34] instead of a replica,
and considering recency or frequency strategies to
keep the cache updated.

We consider a single stream of data and we evalu-
ate only one query in the experiments. However, more
complex scenarios can be examined such as distributed
streams and multiple queries. In distributed streams,
it is needed to identify more efficient way of commu-
nication and coordination between various nodes. In
multiple queries scenario, while working on maximiz-
ing the relevancy of each query, it is worth to pay at-
tention to the maintenance that bring overall benefit in
the long term.

In this paper, in the proposed algorithm, we define
a minimum threshold min.scores in order to compute
the new score for the changed objects that do not exist
in the Super-MTK+N list. As a future work, we can im-
prove the approximation of new score for this group of
objects taking inspiration from [35].

Last but not least, in this work, we define a static re-
fresh budget to control reactiveness of the RSP engine
in each query evaluation. Further investigations can be
done on dynamic use of refresh budgets following up
ideas in [33], which proposed flexible budget alloca-
tion method by saving the current budget for future
evaluation, where it may produce better results.

References

[1] G. Berry, Real time programming: Special purpose or general
purpose languages, PhD thesis, INRIA, 1989.

[2] D. Yang, A. Shastri, E.A. Rundensteiner and M.O. Ward, An
optimal strategy for monitoring top-k queries in streaming win-
dows, in: Proceedings of the 14th International Conference on
Extending Database Technology, ACM, 2011, pp. 57-68.

[3] S. Dehghanzadeh, D. Dell’Aglio, S. Gao, E. Della Valle,
A. Mileo and A. Bernstein, Approximate Continuous Query
Answering Over Streams and Dynamic Linked Data Sets, in:
15th International Conference on Web Engineering, Switzer-
land, 2015.

[4] E. Della Valle, D. Dell’ Aglio and A. Margara, Taming velocity
and variety simultaneously in big data with stream reasoning:
tutorial, in: Proceedings of the 10th ACM International Con-
ference on Distributed and Event-based Systems, ACM, 2016,
pp. 394-401.

[5] A. Seaborne, A. Polleres, L. Feigenbaum and G.T. Williams,
SPARQL 1.1 Federated Query, 2013.

[6] D. Dell’Aglio, E. Della Valle, J.-P. Calbimonte and O. Corcho,

RSP-QL semantics: a unifying query model to explain hetero-

geneity of RDF stream processing systems, International Jour-

nal on Semantic Web and Information Systems (IJSWIS) 10(4)

(2014), 17-44.

D. Dell’Aglio, J.-P. Calbimonte, E. Della Valle and O. Cor-

cho, Towards a unified language for RDF stream query pro-

cessing, in: International Semantic Web Conference, Springer,

2015, pp. 353-363.

[8] K. Mouratidis, S. Bakiras and D. Papadias, Continuous moni-
toring of top-k queries over sliding windows, in: Proceedings
of the 2006 ACM SIGMOD international conference on Man-
agement of data, ACM, 2006, pp. 635-646.

[9] K. Pripuzi¢, L.P. Zarko and K. Aberer, Time-and space-efficient
sliding window top-k query processing, ACM Transactions on
Database Systems (TODS) 40(1) (2015), 1.

[10] D. Dell’Aglio, E. Della Valle, F. van Harmelen and A. Bern-
stein, Stream reasoning: A survey and outlook, Data Science
(2017), 1-25.

[11] O. Lassila and R.R. Swick, Resource description framework
(RDF) model and syntax specification (1999).

[12] A. Arasu, S. Babu and J. Widom, CQL: A language for con-
tinuous queries over streams and relations, in: International
Workshop on Database Programming Languages, Springer,
2003, pp. 1-19.

[13] S.Boyd, C. Cortes, M. Mohri and A. Radovanovic, Accuracy at
the top, in: Advances in neural information processing systems,
2012, pp. 953-961.

[14] K. Jarvelin and J. Kekildinen, IR evaluation methods for re-
trieving highly relevant documents, in: Proceedings of the 23rd
annual international ACM SIGIR conference on Research and
development in information retrieval, ACM, 2000, pp. 41-48.

[15] S.Zahmatkesh, E. Della Valle and D. Dell’ Aglio, When a filter
makes the difference in continuously answering sparql queries
on streaming and quasi-static linked data, in: International
Conference on Web Engineering, Springer, 2016, pp. 299-316.

[16] LF. Ilyas, W.G. Aref and A.K. Elmagarmid, Joining ranked in-
puts in practice, in: Proceedings of the 28th international con-
ference on Very Large Data Bases, VLDB Endowment, 2002,
pp. 950-961.

[17] C.Li, K.C.-C. Chang, L.F. Ilyas and S. Song, RankSQL: query
algebra and optimization for relational top-k queries, in: Pro-
ceedings of the 2005 ACM SIGMOD international conference
on Management of data, ACM, 2005, pp. 131-142.

[18] LF. Ilyas, G. Beskales and M.A. Soliman, A survey of top-
k query processing techniques in relational database systems,
ACM Computing Surveys (CSUR) 40(4) (2008), 11.

[19] K. Yi, H. Yu, J. Yang, G. Xia and Y. Chen, Efficient mainte-
nance of materialized top-k views (2003), 189-200, IEEE.

[20] S. Magliacane, A. Bozzon and E. Della Valle, Efficient execu-
tion of top-k SPARQL queries, The Semantic Web—ISWC 2012
(2012), 344-360.

[21] A. Wagner, T.T. Duc, G. Ladwig, A. Harth and R. Studer, Top-
k linked data query processing, in: Extended Semantic Web
Conference, Springer, 2012, pp. 56-71.

[22] N.Lopes, A. Polleres, U. Straccia and A. Zimmermann, AnQL:
SPARQLing up annotated RDFS, The Semantic Web—ISWC
2010 (2010), 518-533.

[23] A. Wagner, V. Bicer and T. Tran, Pay-as-you-go approximate
join top-k processing for the web of data, in: European Seman-
tic Web Conference, Springer, 2014, pp. 130-145.

[7

—

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

S. Zahmatkesh et al. / Continuous Top-k Approximated Join of Streaming and Evolving Distributed Data 33

P. Haghani, S. Michel and K. Aberer, Evaluating top-k queries
over incomplete data streams, in: Proceedings of the 18th ACM
conference on Information and knowledge management, ACM,
2009, pp. 877-886.

C. Jin, K. Yi, L. Chen, J.X. Yu and X. Lin, Sliding-window
top-k queries on uncertain streams, Proceedings of the VLDB
Endowment 1(1) (2008), 301-312.

Z. Lv, B. Chen and X. Yu, Sliding window top-k monitoring
over distributed data streams, in: Asia-Pacific Web (APWeb)
and Web-Age Information Management (WAIM) Joint Confer-
ence on Web and Big Data, Springer, 2017, pp. 527-540.

R. Zhu, B. Wang, X. Yang, B. Zheng and G. Wang, SAP:
Improving Continuous Top-K Queries Over Streaming Data,
IEEE Transactions on Knowledge and Data Engineering 29(6)
(2017), 1310-1328.

S. Babu, K. Munagala, J. Widom and R. Motwani, Adaptive
caching for continuous queries, in: Data Engineering, 2005.
ICDE 2005. Proceedings. 21st International Conference on,
IEEE, 2005, pp. 118-129.

H. Guo, P. Larson and R. Ramakrishnan, Caching with good
enough currency, consistency, and completeness, in: Proceed-
ings of the 31st international conference on Very large data
bases, VLDB Endowment, 2005, pp. 457-468.

S.D. Viglas, J.F. Naughton and J. Burger, Maximizing the out-
put rate of multi-way join queries over streaming information
sources, in: Proceedings of the 29th international conference
on Very large data bases-Volume 29, VLDB Endowment, 2003,
pp. 285-296.

A. Labrinidis and N. Roussopoulos, Exploring the tradeoff be-
tween performance and data freshness in database-driven web
servers, The VLDB Journal 13(3) (2004), 240-255.

C. Buil-Aranda, M. Arenas, O. Corcho and A. Polleres, Fed-
erating queries in SPARQL 1.1: Syntax, semantics and eval-
uation, Web Semantics: Science, Services and Agents on the
World Wide Web 18(1) (2013), 1-17.

S. Gao, D. Dell’Aglio, S. Dehghanzadeh, A. Bernstein,
E. Della Valle and A. Mileo, Planning ahead: Stream-driven
linked-data access under update-budget constraints, in: Inter-
national Semantic Web Conference, Springer, 2016, pp. 252—
270.

S. Dehghanzadeh, Cache maintenance in federated query pro-
cessing based on quality of service constraints, PhD thesis,
2017.

R. Fagin, A. Lotem and M. Naor, Optimal aggregation algo-
rithms for middleware, Journal of computer and system sci-
ences 66(4) (2003), 614-656.

F. Gandon, C. Guéret, S. Villata, J. Breslin, C. Faron-Zucker
and A. Zimmermann, The Semantic Web: ESWC 2015 Satellite
Events: ESWC 2015 Satellite Events, PortoroZ, Slovenia, May
31-June 4, 2015, Revised Selected Papers, Vol. 9341, Springer,
2015.

J. Umbrich, M. Karnstedt, A. Hogan and J.X. Parreira, Fresh-
ening up while staying fast: Towards hybrid SPARQL queries,
in: Knowledge Engineering and Knowledge Management,
Springer, 2012, pp. 164-174.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(511

D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle and M. Gross-
niklaus, Querying rdf streams with c-sparql, ACM SIGMOD
Record 39(1) (2010), 20-26.

J.-P. Calbimonte, H.Y. Jeung, O. Corcho and K. Aberer, En-
abling query technologies for the semantic sensor web, Inter-
national Journal on Semantic Web and Information Systems 8
(2012), 43-63.

D. Le-Phuoc, M. Dao-Tran, J.X. Parreira and M. Hauswirth, A
native and adaptive approach for unified processing of linked
streams and linked data, in: The Semantic Web—ISWC 2011,
Springer, 2011, pp. 370-388.

J. Pérez, M. Arenas and C. Gutierrez, Semantics and com-
plexity of SPARQL, ACM Trans. Database Syst. 34(3)
(2009). doi:10.1145/1567274.1567278. http://doi.acm.org/10.
1145/1567274.1567278.

D. Yang, A. Shastri, E.A. Rundensteiner and M.O. Ward, An
optimal strategy for monitoring top-k queries in streaming win-
dows, in: Proceedings of the 14th International Conference on
Extending Database Technology, ACM, 2011, pp. 57-68.

A. Margara, J. Urbani, F. van Harmelen and H.E. Bal, Stream-
ing the Web: Reasoning over dynamic data, J. Web Sem. 25
(2014), 24-44.

K.G. Clark, L. Feigenbaum and E. Torres, SPARQL Proto-
col for RDF (W3C Recommendation 15 January 2008), World
Wide Web Consortium (2008).

Y. Wang, L. Wang, Y. Li, D. He, W. Chen and T.-Y. Liu, A theo-
retical analysis of NDCG ranking measures, in: Proceedings of
the 26th Annual Conference on Learning Theory (COLT 2013),
2013.

K. Udomlamlert, T. Hara and S. Nishio, Threshold-Based Dis-
tributed Continuous Top-k Query Processing for Minimizing
Communication Overhead, IEICE TRANSACTIONS on Infor-
mation and Systems 99(2) (2016), 383-396.

X. Wang, W. Zhang, Y. Zhang, X. Lin and Z. Huang, Top-
k spatial-keyword publish/subscribe over sliding window, The
VLDB Journal 26(3) (2017), 301-326.

K. Pripuzié, LP. Zarko and K. Aberer, Top-k/w publish/sub-
scribe: A publish/subscribe model for continuous top-k pro-
cessing over data streams, Information systems 39 (2014), 256—
276.

K. Kolomvatsos, C. Anagnostopoulos and S. Hadjiefthymi-
ades, A time optimized scheme for top-k list maintenance over
incomplete data streams, Information Sciences 311 (2015), 59—
73.

LF. Ilyas, W.G. Aref and A.K. Elmagarmid, Supporting top-
k join queries in relational databases, The VLDB Journal-The
International Journal on Very Large Data Bases 13(3) (2004),
207-221.

M. Balduini, E. Della Valle, M. Azzi, R. Larcher, F. Antonelli
and P. Ciuccarelli, Citysensing: Fusing city data for visual sto-
rytelling, IEEE MultiMedia 22(3) (2015), 44-53.

http://doi.acm.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278

	Introduction
	Problem Definition
	Preliminaries
	RSP-QL Semantic
	Metrics

	Problem Statement

	Background
	Top-k query monitoring over the data stream
	Approximate Continuous Query Answering in RSP

	Topk+N Solution
	MinTopk+
	Updating Minimal Top-K+N Candidate List
	Super-MTK+N list
	Topk+N Algorithm
	Expiration Handling
	Handling New Arrivals and Changes
	Updating Lower Bound Pointers

	AcquaTop Solution
	AcquaTop Framework
	AcquaTop Algorithm
	Top Selection Maintenance Policy (AT-TSM)
	Border Selection Maintenance Policy (AT-BSM)
	All Selection Maintenance Policy (AT-ASM)
	AT-LRU and AT-WBM policies

	Cost Analysis

	Evaluation
	Experimental Setting
	Preliminary Experiment
	Research Hypotheses
	Experiment 1 - Sensitivity to the Refresh Budget
	Experiment 2 - Sensitivity to Change Frequency (CH)
	Experiment 3 - Sensitivity to K
	Experiment 4 - Sensitivity to N
	Wrap up

	Related Work
	Conclusion and Future Work
	References

