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Abstract. Data analytics solution engineering often involves multiple tasks from data exploration to result presentation which
are applied in various contexts and on different datasets. Semantic modeling based on the open world assumption supports
flexible modeling of linked knowledge. The objective of this paper is to review existing techniques that leverage semantic web
technologies to tackle challenges such as heterogeneity and changing requirements in data analytics solution engineering. We
explore the application scope of those techniques, the different types of semantic concepts they use and the role these concepts
play during the analytics solution development process. To gather evidence for the study we performed a systematic mapping
study by identifying and reviewing 82 papers that incorporate semantic models in engineering data analytics solutions. One of the
paper’s findings is that existing models can be classified within four types of knowledge spheres: domain knowledge, analytics
knowledge, services and user intentions. Another finding is to show how this knowledge is used in literature to enhance different
tasks within the analytics process. We conclude our study by discussing limitations of the existing body of research, showcasing
the potential of semantic modeling to enhance data analytics solutions and discussing the possibility of leveraging ontologies for
effective end-to-end data analytics solution engineering.
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1. Introduction

The business intelligence and analytics fields are
rapidly expanding across all industry sectors and many
organizations are trying to make analytics an inte-
gral part of everyday decision making [1, 2]. These
fields include the techniques, technologies, systems,
practices, methodologies and applications that are con-
cerned with analyzing critical business data to help an
enterprise better understand its business and market
and make timely business decisions [2, 3].

There is no universally accepted definition for data
analytics process. CRISP-DM [11] and KD process
proposed by Fayyad et. al [12] are two examples of
well developed and popular definitions. In the con-
text of this paper, we identify a "data analytics pro-
cess" (also called an "analytics pipeline") as an end-to-
end Data Analytics Solution (DAS) that capture tasks
related to data mining, knowledge discovery or busi-
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ness intelligence. A Data Analytics Solution can be it-
self decomposed into multiple tasks such as identify-
ing suitable datasets, developing analytics models and
validation and interpretation of final results. The pro-
cess that represents data analytics solution is related to
the discipline of data science. The software engineer-
ing aspect of DAS, which we identify as "DAS Engi-
neering", involves designing and developing data an-
alytics solutions from requirement engineering to the
deployment of the final solution including tasks such
as requirement elicitation, data integration and process
composition [13].

With the increasing popularity of big data as a re-
search area, focus of the most research efforts have
been on developing specific analysis techniques (e.g.
machine learning algorithm design) but not on support-
ing the overall DAS engineering. Within many organi-
zations, analysts with limited programming experience
are often required to manually establish relationships
between software components of the analytics solution
like software services used for computation, and data
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elements or data mining algorithms [4, 5]. According
to No-Free-Lunch theorem [6], the DAS engineering
becomes further challenging as there is no one model
that works best for every problem and depending on
the application context and input data, analysts have to
try different techniques before getting optimal results.
Most organizations are looking for flexible solutions
that align with their specific objectives and IT infras-
tructures [7], usually resulting in the use of a mix of
data sources and software frameworks. Understanding,
and managing these heterogeneous technologies needs
to be supported by good knowledge management in-
frastructure. In addition to incurring high software de-
velopment costs, maintaining and evolving heteroge-
neous software infrastructures in the face of constant
changes in both business requirements and technical
specifications is very expensive [10].

An ontology is the formal foundation for seman-
tic modeling. The main role of an ontology is to cap-
ture domain knowledge, to evaluate constraints over
domain data and to guide domain model engineer-
ing [16]. It is a powerful tool for modeling and rea-
soning [7]. As ontologies provide a sound represen-
tation of concepts and the relationship between con-
cepts, they represent malleable models that are suitable
for tracking various kinds of software development ar-
tifacts ranging from requirements to implementation
code [17]. Such properties can provide multiple bene-
fits to the organization such as reducing the cost of data
analytics solution engineering by supporting the man-
agement of heterogeneous services, datasets, analytics
models, domain knowledge, and continuously chang-
ing requirements. There has been many recent efforts
in applying semantic modeling for DAS engineering,
but overall picture of their capabilities is far from clear.

Hence, this study systematically explores the differ-
ent research studies that are focusing on designing and
developing applications that support DASs with the
aid of semantic technology. Further we identify unre-
solved challenges and potential research directions in
the analytics solution development space. We follow
the systematic mapping study process proposed by Pe-
tersen et. al. [18], collect evidence from the publica-
tions in five prominent databases and extend the evi-
dence further by snowballing [19] relevant references
of identified studies. We conduct our study around the
main research question of identifying the existing tech-
niques that use semantic models in DAS engineering
and two sub-questions related to that. We evaluate how
different knowledge areas related to analytics solutions
such as mental models of the end-user, domain knowl-

edge, semantics of data, applicability of analytics al-
gorithms and tools for a particular task, compatibility
between data and tools etc. are represented by seman-
tic models and leveraged for conducting tasks related
to DAS engineering.

The rest of the paper is structured as follows. Sec-
tion 2 describes some background related to this pa-
per. Section 3 presents the review method that we fol-
lowed. The results derived from the 82 identified stud-
ies are included in section 4 followed by a discussion
in sections 5. The limitations of the conducted study
are discussed in section 6 and the paper concludes in
section 7.

2. Background

The literature emphasizes the significance of knowl-
edge management in different fields such as enterprise
data analytics [21] and scientific workflow [22] and
there has been many attempts at identifying knowledge
specific to DAS. For example, the ADAGE framework
[20] proposes an approach that leverages the capa-
bilities of service-oriented architectures and scientific
workflow management systems. The main idea is that
the models used by analysts (i.e. workflow, service,
and data models) contain concise information and in-
structions that can be viewed as an accurate record of
the analytics process. These models can become a use-
ful artifact for provenance tracking and ensure repro-
ducibility of such analytics processes. However, de-
signing a models that accurately represent the complex
business contexts and expertise associated with an an-
alytics solution still remains a challenge. Development
methods such as CRISP-DM for enterprise-level data
mining [11] and Domain-oriented data mining [23] are
advocating the necessity of using knowledge manage-
ment techniques for capturing the business domain and
understanding of data in order to build better analytics
solutions.

There have been multiple known knowledge rep-
resentation approaches related to different aspects of
data analytics such as UML diagrams [4, 24, 25], petri-
nets [26] and decision modeler [21] but the focus of
this paper is on semantic models that originate from
the Semantic Web concept [27], where ontologies ex-
pressed via RDF1, RDFS2 and OWL3 are the founda-

1https://www.w3.org/RDF/
2https://www.w3.org/TR/rdf-schema/
3https://www.w3.org/OWL/
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tion of modeling. Although semantic technology has
been part of the research landscape for a while, the
industry is only just beginning to discover the power
of linked open data, ontologies and semantic appli-
cations in assisting enhancements to the data analyt-
ics process. Whilst there are significant examples of
leading internet companies (e.g. Google, Amazon, and
Facebook) beginning to exploit the power of semantic
search and domain ontologies (e.g. Schema.org, DB-
pedia) [28], many organizations are still largely un-
aware of the value that these approaches represent [29–
31].

To our knowledge, there is no formal study con-
ducted on how semantic modeling has contributed to
DAS engineering except the surveys conducted by
Abello et. al [7] and Ristoski and Paulheim [28].
Abello et. al [7] study is specially about using seman-
tic web technologies for Exploratory OLAP, consider-
ing the data extraction and integration aspects. Ristoski
and Paulheim [28] conducted a survey in 2016 about
the different stages of the knowledge discovery process
that use semantic web data. In comparison, our work is
unique as it is looking at the applications of semantic
models in the DAS engineering from a data analytics
as well as a software engineering perspective.

3. Research Method

3.1. Introduction

As our objective was to provide an overview of how
semantic technology is used in DAS engineering we
conducted a systematic mapping study (SMS) process.
This provides an overview showing the type of re-
search and results that have been published by catego-
rizing them with the goal of answering a specific re-
search question [18, 32]. We followed the process pro-
posed by Petersen et. al [18] to ensure the accuracy and
the quality of the outcome. We conducted initial evi-
dence search on five databases, collection of two con-
ference proceedings and one journal related to seman-
tic web technologies. Findings were extended through
snowballing approach proposed by Wohlin [19]. The
goal of our study is to present a holistic view on the use
of semantic modeling in the data analytics landscape.

3.2. Research Questions

The primary focus of our SMS is to identify and un-
derstand how semantic modeling approaches are used

to represent and communicate knowledge of a data an-
alyst as well as how existing DAS engineering tech-
niques are leveraging this knowledge. The review was
conducted on a primary research question and two sub-
questions which are stated as follows:

Primary Question: What are the existing tech-
niques that use semantic modeling for data analytics
solution engineering?

Sub-questions:

1. What type of concepts are modeled/used by these
techniques?

2. What tasks related to DAS engineering are en-
abled using the identified concepts?

3.3. Search of Relevant Literature

We adapted the work used in [18, 32–34] and iden-
tified the following strategy to construct the search
strings:

– Derive major terms used in the review questions
– Search for synonyms and alternative words.
– Use the Boolean OR to incorporate alternative

spellings and synonyms
– Use the Boolean AND to link the major terms

To obtain a balance between sensitivity and speci-
ficity as highlighted by Petticrew and Robert [35],
we selected a search string that contains three ma-
jor terms related to the concepts: semantic technology,
data analytics, and software engineering, connected by
a Boolean AND operation. Each term contains a set of
keywords related to the respective concept, connected
by a Boolean OR operation.

The complete search string initially used for the
searching of the literature was as follows:

(("knowledge management" OR semantic OR
"linked Data" OR ontology OR "conceptual mod-
eling") AND ("big data analytics" OR "business
analytics" OR "data analytics" OR "scientific
workflow" OR "data mining") AND (requirement
OR "development process" OR "code genera-
tion"))

The primary search process involved the use of 5
online databases: Web of Science, Scopus, ACM Digi-
tal Library, IEEE Xplore, and ProQuest. The selection
of databases was based on our knowledge about those
that index major publications related to computer sci-
ence, engineering and semantic technology. Based on
the recommendations of domain experts, we expanded
the search space to the collection of proceedings of In-
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ternational Semantic Web Conference and European
Semantic Web Conference, with their associated work-
shops, and the publications by the Semantic Web Jour-
nal accessible via DBLP’s search API.

Upon completion of the primary search phase, the
identification of relevant literature continued through
snowballing - all the references in the papers identified
from the primary sources were reviewed for relevancy.
If a paper satisfied the selection criteria, it was added
to the list of studies qualified for the synthesis.

3.4. Selection of Studies

Below are our exclusion criteria which were adapted
from [36]:

1. Books and News Articles
2. Papers where semantic modeling was not applied

directly to DAS engineering
3. Vision papers
4. Papers not written in English.
5. Application specific research that does not gener-

alize (such as text extraction and web search ap-
plications)

6. Infrastructure related performance-oriented ap-
plications supporting distributed storage etc.

7. Full text that was not available for public access
and not licensed by the University of New South
Wales digital library

We did not restrict the search to a span of time. This
search included all research available in the selected
databases up to 27/06/2018.

3.5. Study Quality Assessment

We designed a quality checklist to measure the qual-
ity of the primary studies by reusing some of the ques-
tions proposed in the literature [35, 37]. Our quality
checklist comprised 4 general questions stated below:

1. Was the study related to DAS engineering?
2. Do the studies leverage semantic models for in-

formation modeling?
3. Do they provide sound evaluation?
4. Were the findings credible?

Initially, one author went through the title, abstract
and keywords of search results and divided papers into
3 categories by relevancy: "Yes", "No" and "Maybe".
Then the second author went through the full text
of the papers under the "Maybe" category to identify

whether they were compliant or not with our quality
checklist.

Through the initial database search, we identified
1414 empirical studies as candidates. Among those re-
sults, 63 (4.46% of 1414 studies) were identified as rel-
evant studies, based on the study quality assessment
and exclusion criteria. The same steps were applied to
the literature identified through snowballing at the sec-
ond stage as well. We iterated through the references
of 63 papers selected during the initial search and iden-
tified 19 additional relevant papers for our study.

To avoid the inclusion of duplicate studies which
would inevitably bias the result of the synthesis [38],
we thoroughly checked if very similar studies were
published in more than one paper. In total, 82 studies
were included in the synthesis of evidence.

3.6. Constructing Classification Schemas

Our study requires two classification schemas to an-
swer sub research question 1 and 2- what are the differ-
ent types of semantic concepts used by identified stud-
ies and what tasks related to DAS engineering were
conducted using the identified concepts.

To construct each classification schema for our map-
ping study we adapted the systematic process proposed
in [18]. We created the classification schema in top-
down fashion, incorporating different classifications
proposed and used in literature to guide the classifica-
tion schema construction. We used the abstract, intro-
duction and conclusion of the selected 82 studies and
aligned the studies with categories identified in liter-
ature. When necessary, the classification schema was
extended with keywords and categories defined in the
identified literature to provide clarity and granularity
to the finalized the schema.

To answer sub-question 1, we distinguished four
broad classes of concepts represented through ontolo-
gies in identified studies, referred to as domain, ana-
lytic, service and intent. This classification was guided
by the proposal of Nigro [39] to use three ontology
types in data mining. The first two: "Domain Ontolo-
gies" and "Ontologies for Data Mining Process" were
included in our schema as the domain and analytics
concepts respectively . The third one - "Metadata On-
tologies" defines how variables are constructed. Be-
cause this definition is very high-level and vague we
introduced two new concept types: Intent concepts and
Service concepts to capture knowledge that supports
requirements management and implementation man-
agement within DAS engineering. Using the evidence
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of identified literature we extended this classification
to a more granular level with different subtypes. The
details of this classification are discussed in section
4.2.

When we look at the problem of classifying dif-
ferent DAS related tasks for sub-question 2, there
was no unique definition in the literature regarding
what constitutes a task in relation to DAS engineer-
ing. Fayyad et. al. [12] propose a five-step process
model for knowledge discovery - selection, prepro-
cessing, transformation, data mining, evaluation and
interpretation. CRISP-DM proposed by Chapman et.
al. [11] is more enterprise oriented and breaks down
the life-cycle into five steps: domain understanding,
data understanding, data preparation, modeling, eval-
uation, and deployment. All identified studies do not
follow any specific model, some of them focus more
on high level tasks such as domain understanding and
process composition while others support more granu-
lar tasks such as model selection.

Hence, we combined key categories extracted from
identified 82 studies with the tasks proposed in differ-
ent literature. We initially identified five tasks aligning
CRISP-DM process model with the tasks proposed in
82 studies - Business Understanding, Data Extraction
and Transformation, Model Selection, Model Build-
ing, Result Presentation and Interpretation. We further
identified four more task categories from the studies
that were rooted in the software engineering literature:
Data Integration, Service Composition, Analytics So-
lution Validation and Code Generation. These are im-
portant because they contribute to enhancing the over-
all quality of the DAS implementation. The identified
task categories are illustrated in Fig. 1. Each DAS en-
gineering project does not need to complete all these
tasks. The selection of tasks depends on the nature of
the analysis being performed (e.g. whether we need to
choose amongst multiple competing data mining algo-
rithms or use a specific algorithm) and the context in
which it is being developed (e.g. whether we need to
support automatic code generation to save software de-
velopment cost or not).

3.7. Data Extraction and Mapping of Studies

During the data extraction phase, we read, sorted pa-
pers in accordance with the classification schemas and
then reviewed them in detail. One author read and clas-
sified the 82 papers according to the two schemas, not-
ing down the rationale of why each paper belongs to
the selected category. The second author reviewed the
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Fig. 1. Identified Tasks from Literature

table, discussed and resolved disagreements and com-
piled the final mapping. The classification schemas de-
veloped initially evolved through this phase which re-
sulted in adding new subcategories and splitting in cer-
tain scenarios.

The finalized mappings and the associated details
are discussed in the next section.

4. Results

4.1. Primary Question: What are the existing
techniques that use semantic modeling for data
analytics solution engineering?

The complete list of identified studies is included in
section 8. RDF, RDFS and OWL are the core building
blocks of an ontology. All the identified studies, ex-
cept S35 are relying on this notation for their seman-
tic model representation (occasionally combined with
other notations). S35 deviates from that common prac-
tice and only uses the Predictive Model Markup Lan-
guage (PMML) [40] and Background Knowledge Ex-
change Format (BKEF) [41] to represent knowledge
associated with a data analytics solution.

By assessing the identified studies, we observed that
these efforts vary in the application context they are
addressing and in the way the analytics knowledge
is modeled. Through the sub-questions in section 4.2
and 4.3, we explore the different semantic concepts
and tasks used by these 82 identified studies accord-
ing to the classification schemas mentioned in section
3.6. Section 4.2 classifies different ontological con-
cepts into four types and describes the characteristics
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of the knowledge they capture. In section 4.3, we relate
identified semantic concepts to their role in realizing
and facilitating various tasks in DAS engineering.

4.2. Sub-question 1. What type of concepts are
modeled/used by these techniques?

The mapping results according to the classification
schema described in section 3.6 are illustrated in Ta-
ble 1. We identified that out of 82 studies, the major-
ity (54 studies) model domain concepts related to var-
ious application domains and 11 of them reuse stan-
dard domain ontologies. There are 30 studies that cap-
ture and use analytics concepts and 30 studies that cap-
ture service concepts. Smallest representation was in
the intent category with 14 studies. A detailed analysis
is presented in the following subsections.

4.2.1. Domain Concepts
These are context specific and high-level concepts

which represent domain specific knowledge and ob-
jects. We identified 54 studies that rely on different
subtypes of domain concepts.

First subtype, application specific concepts repre-
sent objects and relationships in a variety of niche
areas such as gene and protein analysis, health-care,
transport as shown in Table 1. The solutions they pro-
vide are highly coupled with a single application con-
text and provide less opportunity for adoption by other
applications. The majority of studies in this subtype
(32 studies) do not propose any specific domain con-
cepts but provide users with the ability to customize
concepts in any application context.

The second subtype represents concepts that are as-
sociated with different standard domain ontologies.
We identified five standard domain specific ontologies
used for designing analytics solutions- SSN Ontology
[42], GeoVocab [46], Gene Ontology [43], GALEN
ontology [44] and TOVE ontology [45].

4.2.2. Analytics Concepts
Analytics concepts are closely aligned with the

knowledge that reflects different algorithms, computa-
tional models and the data-flow nature of the analyt-
ics process in terms of inputs, outputs, and their com-
patibility. Analytic concepts provide a vocabulary for
defining and communicating analytics operations and
related attributes. Further, they can help in describ-
ing dependency relationships between variables. These
concepts are not coupled to a specific application do-
main, context or implementation.

There were 30 studies that leverage analytics con-
cepts. We classified them into three subtypes accord-
ing to their role in representing different analytics tasks
or methods: concepts related to data preprocessing and
integration activities, concepts that capture data ana-
lytics and mining techniques and concepts that repre-
sent the control and data flow nature of an analytics
process.

Under the first subtype, data preprocessing and in-
tegration, S14 proposes an analytics ontology for link-
ing different temporal and geographical datasets us-
ing concepts from different predefined ontologies. S20
proposes a Rules ontology to store concepts related to
rules that transform one data schema to another. S27,
S37, S41 and S54 propose concepts to model different
data preprocessing tasks such as null value removal,
data format conversion, sampling and feature selec-
tion. S80 proposes the Analytics-Aware Ontology to
represent data aggregation and comparison functions.

There are 25 studies under the subtype data ana-
lytics and mining. The majority of studies [S27, S36,
S37, S38, S41, S53, S54, S60, S62, S66, S75, S76,
S78, S79] model analytics tasks and algorithms such as
classification, clustering and regression. Analytic On-
tology [S15] is dedicated to statistical and machine
learning models. The Actor Ontology [S24] is lim-
ited to image processing algorithms such as image
classification and feature extraction. The Data Min-
ing Ontology in S17, the Simple Data Mining On-
tology in S22 and Expose ontology in S56 try to
capture non-functional attributes, performance assess-
ments such as sensitivity, specificity, accuracy and user
satisfaction related to data mining algorithms. S63
and S74 propose Feature Ontologies to enhance fea-
ture set descriptions in data analytics. S67 captures
event-condition-action rules for event processing vial
Rule Management. S69 proposes an extended event
ontology to capture event processing queries. In ad-
dition to the ontologies, three of the identified stud-
ies [S22,S27,S35,S66] capture details of the analyt-
ics models using Predictive Model Markup Language
[40].

Six studies focus on control and data flow related
concepts. The Analytic Ontology [S1], DM Workflow
Ontology [S75], SemNExt Ontology [S76] and DM
OPtimization Ontology [S78] include concepts that
capture the data flow nature of any analytics operation
with respect to an array of characteristics such as input
requirements and preferences, input and output data
types and accuracy. The Task-Method Ontology [S3]
represents concepts that are useful in controlling and
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Table 1
Classification of Semantic Concepts Modeled and Used in Identified Literature.

Classification Criteria Study

Domain
Concepts

Application Spe-
cific

Gene and Protein Analysis S11, S27, S29, S76
Health Care S2, S50

Sensor & Event Information S30, S31, S33, S55, S69, S70, S74
Spatiotemporal Information S40

Traffic Information S18, S31, S52
Enterprise Quality Management S7

Agriculture S32
Hyper-spectral Image Data S24

Power Grid S58,S64

Custom Built

S5, S8, S10, S12, S13, S19, S21, S23, S34, S35, S39,
S42, S43, S44, S45, S47, S48, S49, S51, S57, S59,
S61, S62, S63, S65, S67, S68, S72, S73, S77, S80,
S81, S82

Standard Ontol-
ogy

SSN Ontology [42] S30, S31, S33, S40, S69, S74
Gene Ontology [43] S11, S44, S76

GALEN Ontology [44] S44
TOVE Ontologies [45] S7

GeoVocab Ontology [46] S40, S70

Analytic
Concepts

Data Preprocessing & Integration S14, S20, S27, S37, S41, S54, S80

Data Analytics & Mining
S15, S17, S22, S24, S27, S35, S36, S37, S38, S41,
S53, S54, S56, S60, S62, S63, S66, S67, S69, S74,
S75, S76, S78, S79

Control & Data Flow S1, S3, S62, S75, S76, S78

Service Con-
cepts

Software Com-
ponent Manage-
ment

Web Ser-
vices

OWL-S Based [47] S4, S11, S30, S31, S36
WSDL-S Based [48] S11
SAWSDL based [49] S20
WSMO Based [50] S4, S43

Hydra Vocabulary
Based [51] S40

Custom Models S32, S37, S52
Library Specific APIs S27, S75, S79

Generic APIs S6

Data Manage-
ment

Multidimensional Data Schema S10, S62, S71
Graph Data Schema S9, S46

Composition
Management

Workflow Templates S4, S16, S20, S26, S53, S75, S78
Provenance Related S4, S25, S72

Quality Related S30, S31

Implementation
Management

Deployment Concepts S3, S4, S8, S69
Data Source S3, S8, S10, S38, S43, S71

Intent
Concepts

Analytic Query Expressions S2, S9, S21, S48
Analytics Requirements S3, S7, S28, S44, S53, S68

User Goals S4, S39, S66, S75
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conducting MapReduce4 type of analytics. S62 pro-
poses ontology derived from CRISP-DM terminology
to represent control flow elements of a DAS.

4.2.3. Service Concepts
Service concepts capture knowledge related to DAS

architectures and platforms. We identified 30 stud-
ies that model different aspects, namely web services,
software APIs, data schemas, workflow design, knowl-
edge related to provenance or data quality, deployment
information and data sources. We classified service
concept types into four subtypes which are software
component management, data management, compo-
sition management and implementation management
(see Table 2).

There are 10 studies under the software compo-
nent management subtype, with the majority related
to modeling web services that realize different oper-
ations in the analytics process. Many of those stud-
ies adapt or extend standard and popular semantic web
service annotation standards: OWL-S [47], WSDL-S
[48], SAWSDL [49], WSMO [50] and Hydra vocab-
ulary [51]. Particularly, S31 extends OWL-S services
in the area of event processing via the Complex Event
Service Ontology. There are three studies [S32, S37,
S57] that define custom concepts to represent web ser-
vices used in DAS. S27 and S79 model Weka library
specific software components. S6 provides the capabil-
ity to model any generic API that can be used to imple-
ment DAS, through an ontology called Processing El-
ement (PE) Knowledge Base. This ontology describes
software components based on their input and output
data types as well as relevant implementation details
such as a URL for an HTTP request or a related JAVA
class.

The second subtype represents data management
concepts that support in representing and managing
data structures and schemas. S10 proposes the BI On-
tology to describe concepts such as dimension, hier-
archy, level, property, measures that model data cubes
related to Online Analytical Processing (OLAP) op-
erations for a data warehouse. S62 proposes Corpo-
rate Data Model Ontology to capture metadata about
data schemas useful in data access. S71 uses R2RML
5 to map relational databases into RDF data. Under
the graph data schema category, S46 proposes the
OpenCube ontology to describe concepts surrounding
OLAP cubes in a data warehouse and similarly, S9 pro-

4https://research.google.com/archive/mapreduce.html
5https://www.w3.org/TR/r2rml/

poses to use an analytical schema to create RDF data
warehouses.

The third subtype has concepts related to composi-
tion management, which model knowledge related to
linking and executing multiple software services and
data management operations together. Under that cat-
egory, some studies propose different concepts (e.g.-
Kepler ontology S4, Data Mining Workflow Ontol-
ogy S78) to model scientific workflow templates and
store their instances. Other composition management
concepts are associated with provenance and quality.
S4, S25 and S72 use ontologies to describe work-
flow provenance concepts. Quality related concepts are
modeled in S30 and S31 to describe the quality and ac-
curacy of different event-based services. We observed
that S25 and S30 reuse concepts extended from the
standard provenance ontology PROV-O [52].

The last subtype is related to the implementation
management of an analytics solution. S3 uses a De-
ployment Ontology to describe the necessary deploy-
ment details for a MapReduce based system such as
configuration variables, initial inputs, variables for
profiling and performance measurements. S4 uses
a Simulation Ontology to capture runtime metadata
related to workflows. S69 models event processing
framework components such as alert streams via an
event ontology. S3, S10, S38, S43 and S71 propose
concepts that describe the implementation of differ-
ent data sources and how to access them. S8 proposes
concepts to capture data source access details as well
as system development details that represent the map-
pings between the database implementation and do-
main concepts.

4.2.4. Intent Concepts
Intent concepts capture knowledge with respect to

the data analyst’s requirements or goals. This knowl-
edge can be in the form of low-level queries that need
to be performed on data or high-level goals and inten-
tions of users.

The first subtype represents concepts that relate to
an analytics query expression. The Analytical Queries
(AnQ) model in S9 facilitates expressing user queries
that need to be performed on data. S21 and S48 pro-
pose to maintain a global ontology based on user-
defined or standard concepts and use it to express user
queries. S2 proposes the i2b2 Information Ontology,
an intent related model that helps analysts to describe
various dimensions of interest in data that are related
to a particular task.



Semantic Modeling for Engineering Data Analytics Solutions 9

Under analytics requirements subtype, S28, S44,
S53 and S68 propose ontologies that capture user
needs and constraints at a higher level. As an example,
S44 uses an intent ontology called MIO (Multidimen-
sional Integrated Ontology) which is auto-generated
based on the topics, measures, and dimensions pro-
vided by the user. The KnowledgeDiscoveryTask class
in Knowledge Discovery Ontology [S53] and the Prob-
lem component of the Decision Support Ontology
[S68] are used as templates for instantiating analytics
requirements. The Task-method Ontology proposed in
S3 enables users to model desired methods that can be
used to realize a particular task or define the expected
role of a variable within a task. S7 uses the Measure-
ment Ontology to capture concepts regarding product
inspection and testing requirements based on ISO 9001
standards.

Under the user goals subtype, the Scientist’s Intent
Ontology in S4 and the Goal Oriented Model in S39,
Purpose and Goal classes in DM3 Ontology [S66] and
Goal component of the Base Ontology [S75] provide
the capability to express a set of high-level user goals
such as the desired outcomes of analytics tasks and the
decision-making processes around them.

4.3. Sub-question 2: What tasks related to data
analytics solution engineering are enabled using
the identified concepts?

In this section, we analyze the association of 82
identified studies to different tasks related to data ana-
lytics solution engineering and how the semantic con-
cepts discussed in section 4.2 are used to realize these
tasks. The classification schema for analytics tasks was
described in section 3.6, guided by the existing litera-
ture that defines data analytics and software engineer-
ing process.

Table 2 shows the mapping of 82 studies among 9
tasks and the different types of concepts. One study
can be focused on more than one task, using one or
more concept types. Business understanding is the fo-
cus of 6 studies that leverage domain or intent con-
cepts. Data extraction and transformation approaches
that use domain, analytics or service concepts are pro-
posed in 15 studies. 31 papers propose data integration
approaches, mostly using domain concepts, and some
studies use analytics, service and intent concepts as
well. Model selection (17 studies) and model building
(15 studies) were conducted using domain, analytics
or intent concepts. All four concept types were used to
realize service composition (20 studies) and solution

validation (8 studies). Code generation was supported
by domain, analytics or service concepts in 4 studies.
9 studies that proposed approaches for result presenta-
tion and interpretation used one or two concept types
out of four.

Different applications of those concepts are de-
scribed in more detail in the rest of this section. The
trend of publications related to each task is illustrated
in Fig. 2. In 2014 and 2015 we can observe a special
interest among researchers in applying semantic tech-
nology to support the engineering of DAS.

4.3.1. Domain Understanding
The domain understanding task focuses on ana-

lyzing the domain, context of the problem and un-
derstanding available datasets. This helps to establish
solid definitions and facilitate the communication be-
tween different stakeholders. Moreover, the ontologies
and concepts related to this task are inferable and the
resulting knowledge has the flexibility of expanding
over time.

Five methods [S5, S12, S18, S49, S59] use do-
main concepts for domain understanding. The plat-
forms proposed in S5 and S59 use these concepts
to capture semantic and interpretive aspects of data
whereas S18 uses them to provide a standard spec-
ification of data for analysts. In contrast, S49 uses
these concepts to model expert knowledge related to
an analytics problem which is helpful in understanding
the constraints and expected behavior. S12 proposes a
feature-rich framework that can use custom-built do-
main concepts to understand the context thorough data
browsing and visualization.

Two methods use intent concepts for domain un-
derstanding. S39 uses a Goal Model to define require-
ments that can help in understanding and designing a
data warehouse model. S28 captures analytics require-
ments expressed in a natural language into an ontology
which is refined through interviewing the stakeholders
to identify data requirements for the analysis.

4.3.2. Data Extraction and Transformation
This task focuses on retrieving data from one or

more sources and preparing it for the subsequent anal-
ysis. It includes transforming data into desired formats
and annotating with additional metadata.

There are 8 studies that apply domain concepts for
this task. S30, S33 and S70 annotate streaming in-
put data using domain concepts making data queriable
when necessary. In S18, data transformation is assisted
by standard models built using domain concepts. In S2,
S29 and S40, approaches for on-demand data extrac-
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Table 2
Application of Concepts for Different Tasks Identified.

Related Task
Concept Classification

Domain Concept Analytic Concept Service Concept Intent Concept
Domain Understand-
ing S5, S12, S18, S49 - - S28, S39

Data Extraction and
Transformation

S2, S8, S18, S29, S30,
S33, S34, S40, S50, S52,
S59, S70, S80

S80 S8, S10, S38, S52 -

Data Integration

S2, S10, S12, S13, S19,
S21, S23, S29, S34, S39,
S40, S42, S43, S44, S45,
S47, S48, S49, S51, S55,
S59, S64, S65, S70, S76,
S77, S81

S14 S9, S46, S71 S2, S9, S21, S39, S44, S48

Model Selection S27, S49, S61, S62,
S15, S17, S22, S27, S37,
S38, S41, S53, S56, S60,
S62, S66, S75, S78, S79

- S53, S66, S75

Model Building
S7, S58, S63, S64, S67,
S69, S70, S73, S74, S77,
S80, S82

S3, S54, S56, S63, S67,
S69, S74, S80

- S3, S7

Results Presentation
and Interpretation

S35, S48, S49, S57, S61, S76 S35 S4, S25 ,S26 S4, S48

Service Composition S11, S24, S27, S30, S31,
S32, S43, S52, S62

S1, S20, S24, S27, S36,
S41, S53, S62, S75, S78

S6, S11, S16, S20, S27,
S30, S31, S32, S36, S37,
S40, S43, S52, S53, S62,
S75, S78

S53, S75

Analytics Solution
Validation

S24, S61, S72, S76 S24, S75, S76 S25, S26, S72, S75 S4, S75

Code Generation S47 S3 S3, S6, S38 -
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tion were proposed based on domain concepts that de-
scribe data sources. S34 focuses on the extraction of
JSON data from web resources, generating semantic
concepts around them and using those to convert data
into ontology instances. S50 conduct data label correc-
tion using a domain ontology of medical entities. S59
enables analysts to understand datasets to help data ex-
traction by querying knowledge represented in domain
ontologies. S80 uses domain and analytics concepts to-
gether to access and transform static as well as stream-
ing data.

Three studies use data source related service con-
cepts for data extraction. In S10, these concepts are
used to define the organization of data and how to ac-
cess it on demand. S38 uses a set of concepts that can
model any data source for model-driven data extraction
code generation. S52 uses service concepts to identify
implementations of required data transformations in a
workflow.

S8 uses both domain and service concepts (data
source and implementation management) for data ex-
traction from heterogeneous sources such as event data
streams and map the extracted data into a database
schema. S52 uses domain concepts and service con-
cepts related to data processing and to automatically
generate new datasets on demand.

4.3.3. Data Integration
Data integration implies combining heterogeneous

datasets in order to obtain a high-level and coherent
view of the data. Most studies use domain concepts to
aid in this task. Some studies use intent concepts to
conduct integration based on user needs. S9, S14, S46
and S71 are special cases that leverage analytics and
service concepts to support the integration task.

We identified five different strategies in which in-
termixed concepts from different classes contribute to
data integration. The first one, observed in S12, S13,
S19, S39, S42, S46 and S47, transforms data from het-
erogeneous sources into instances of a global ontol-
ogy. S12, S13, S39 and S42 conduct ETL processes
incorporating this global ontologies to create semantic
aware data warehouses.

The second one, identified in S2, S21, S23, S44,
S48 and S77 uses a global ontology that represents the
user’s perspective and a set of local ontologies to repre-
sent datasets. Then by aligning or converting local on-
tologies into the global ontologies, the data is matched
accordingly. The users can refer to the global ontology
to query the data.

The third approach describes each dataset through a
local ontology and achieves data integration by merg-
ing local ontologies together. S34 is an example where
each local ontology is constructed by first extracting
data provided in JSON format, generating suitable se-
mantic concepts and using those concepts to convert
the extracted data into ontology instances.

The fourth method used in 10 studies, S10, S14,
S29, S40, S45, S51, S59, S64, S70, S76, maintains
linked meta-data about datasets from different data
sources so that relevant data can be acquired at query
time from multiple sources.

The fifth one in S9, S43, S49, S55, S65, S71 and S81
is a query or requirement driven approach for data inte-
gration where formal rules or program logic are used to
represent user queries and analytics questions. Differ-
ent datasets are mapped into those rules to derive an-
swers. S9 is unique in that it captures analytics queries
as intent concepts.

4.3.4. Model Selection
Model selection is crucial for non-expert users who

do not have intuitive knowledge about the performance
of different models in different contexts or when there
are many competing analytics models and techniques
that can be used for a single purpose. This task facil-
itates comparison of algorithms or makes recommen-
dations of tools and models suitable for users.

There are 4 studies that use domain concepts for
this purpose. S49 stores expert domain knowledge in
a domain ontology and uses that to evaluate possi-
ble analytics models generated by associate rule min-
ing, incorporating an "interestingness" measure. S61
proposes a recommendation engine that maintains a
repository meta-data related to historical analytic solu-
tions using domain concepts and when a user provides
a new dataset, a matching solution is recommended
to the user. In S27, suitable analytics technique for a
particular dataset is identified by matching dataset fea-
tures represented in domain concepts with the require-
ments of the analytics techniques captured through an-
alytics concepts. S62 supports model selection by al-
lowing users to define the context of analytics prob-
lem via domain concept and using analytics concepts
to recommend appropriate analytics techniques.

There are 15 methods that apply data analytics and
mining focused concepts for model selection. The sim-
plest method proposed in S17 uses an ontology to de-
scribe data analytics algorithms and creates a knowl-
edge repository to provide a querying capability for the
users.
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Concepts defined in S15, S27, S37, S41, S53, S60,
S66, S75 and S78 assist users in matching analytics
components that suit their goal and constraints. S53,
S66 and S75 are unique among those studies as they
propose intent concepts to capture user goals and re-
quirements which are then matched with suitable mod-
els represented as analytics concepts.

In S22, analytics concepts are used to model data
mining algorithms which are then linked to web ser-
vices, providing the means for service composition.

S38 and S79 use analytics concepts to capture exist-
ing analytics workflows so novice users can search and
learn from them.

4.3.5. Model Building
Model building represents a core task during ana-

lytics process development, where the selected model
needs to be applied and customized for the problem at
hand.

S58, S64, S70, S73, S77 and S82 use domain con-
cepts to write analytic queries or event patterns exe-
cuted on data to get descriptive analytics insights. S67,
and S69 follows a similar approach, but use analytics
concepts to support users in writing queries or rules.

S63 and S74 use domain concepts and analytics con-
cepts to describe and customize feature space for ana-
lytics model construction.

S7 leverages domain concepts and intent concepts
for model building. The model generated consists of
axioms based on formal competency questions to eval-
uate whether an enterprise model represented through
domain concepts adhere to the intent concepts that
align with different compliance standards.

S56 uses analytics concepts to define analytics ex-
periments in detail for supervised classification of
propositional datasets. S54 proposes a case based sys-
tem for model selection and uses analytics concepts to
adapt the solutions suggested by case based reasoning
to fit user’s interest. S3 applies analytics concepts (to-
gether with intent concepts) for analytics model gen-
eration. The purpose is to facilitate the modeling of a
MapReduce based analytics solution.

4.3.6. Result Presentation and Interpretation
Having semantic models that store knowledge re-

lated to different aspects of the analytics process in-
herently provides a certain inference and interpretation
capability that helps in result representation. Here we
are looking at studies that specify particular methods
that use semantic concepts to explicitly facilitate result
presentation and interpretation.

Six studies use domain concepts for result presen-
tation and interpretation. S49 uses domain concepts to
store expert knowledge which is then used for vali-
dation by aligning it with the data mining results and
evaluate their interestingness. S57 uses domain con-
cepts to interpret hypotheses and related attributes on
statistical datasets. S61 use domain concepts to anno-
tate data tables via ontology alignment, enabling easy
interpretation. S35 incorporate domain concepts with
analytics concepts to generate reports on the conducted
data analytics tasks. S76 generates metadata about nu-
merical analysis using domain and analytics concepts.
S48 uses domain concepts with intent concepts to ex-
tract meta-data about OLAP operations and generate
reports. Further, S48 proposes a method to automati-
cally match the OLAP report with other documents in
a related repository.

When we look at the use of service concepts for pre-
senting results, S4, S25 and S26 capture the knowl-
edge on different aspects of scientific workflows, es-
pecially those that can help to describe and present the
outputs/results.

In S4 intent concepts are used to annotate workflows
with initial goals of the analysts, in order to identify
different decisions that have led to the outcome and
explain the results from the perspective of the analyst.

4.3.7. Service Composition
Service composition means identifying and putting

together different analytics related services to provide
a complete or partial DAS- from data acquisition and
extraction to results generation. Scientific workflow
planning and service composition are largely incorpo-
rated into this task.

Identifying a suitable service or tool to include in
a DAS is a major activity within service composi-
tion. Some studies [S32, S36, S37, S40] use soft-
ware component management concepts to guide com-
ponent selection, but leave the responsibility of pro-
cess composition to the analyst. S32 proposes a model
to represent and recommend web services using pre-
defined rules based on a context expressed through do-
main concepts. S37 and S40 use service concepts to
model a wide array of software components to be se-
lected from, including pre-processing capabilities such
as null value removal. Users can query the ontolo-
gies to identify suitable components. S36 proposes a
methodology to facilitate the selection of suitable ser-
vice implementations based on the input data. In S43
and S52, suitable service implementations for datasets
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are identified by matching characteristics represented
through domain and service concepts.

In contrast, S30 and S31 follow an approach which
facilitates the selection of data sources that match the
existing software components by the ability to extract
and process related data. Data provision services are
annotated using OWL-S and SSN ontology concepts
so that users can query them and identify suitable ser-
vices. Moreover S30 incorporates quality related ser-
vice concepts to represent important quality attributes
that need to be considered in component selection.

Other studies extend service selection to incorporate
different domain, service and analytics concepts and
facilitate composition planning and execution.

S24 uses domain concepts that describe datasets,
data analytics and data mining concepts to support
workflow composition through matching the analyt-
ics operations with data properties, on top of the Ke-
pler workflow composition canvas. S27 uses domain,
analytics and service concepts to select suitable data
sources, analytics techniques and software compo-
nents respectively. S41 uses analytics concepts for rep-
resenting components of the Weka analytics tool and
linking these components as a process. It does not pro-
vide executable workflows but recommends an analyt-
ics plan to be manually executed by the user. S1 pro-
poses a similar approach for the MIT Lincoln Labora-
tory’s Composable Analytic Environment that includ-
ing executable workflow definitions. S20 uses service
concepts for software component modeling together
with analytics concepts for modeling data transforma-
tion rules between software components. S62 users
Control and Data flow concepts to guide the knowl-
edge discovery process and supports decision making
at each stage using a knowledge base that encompasses
domain, analytic, and service concepts.

S78 uses analytics and workflow template concepts
to generate analytics processes, with a major focus on
performance optimization. S16 uses concepts related
to workflow templates to store pre-composed analytics
processes which can be queried by users in order to
select a suitable implementation.

S53 captures analytics, service and intent concepts
via a Knowledge Discovery Ontology and offers sup-
port for planning an abstract analytics process. S6 sup-
ports software composition through components mod-
eled as generic APIs by matching respective inputs
and outputs. It assists users in planning and match-
ing analytics components with a comprehensive goal
based planning method but this is limited by the in-
ability to incorporate different parameters other than

the input and output conditions. Similarly, S75 uses
analytic, service and intent concepts to capture the
user goals and KDD workflows implemented in Rapid-
Miner. These concepts are used to identify optimal an-
alytics process for new analytics problems based on
Hierarchical Task Network planning.

S11 provides comprehensive scientific workflow
composition facilities including a graphical user in-
terface but depends on the Taverna workflow engine,
SADI/BioMoby plug-ins and web services that are
SADI-compliant. It includes web service concepts to
model components that implement data analytics algo-
rithms and domain concepts to define input and output
data. Those concepts are used to recommend services
that match analytics requirements or data constraints.

4.3.8. Analytics Solution Validation
Validation of the analytics solutions involves cap-

turing provenance data, validating solution workflows
for service compatibility or data consistency and con-
firming the solution addresses the analyst’s goals. S61
uses domain ontology to generate metadata about in-
put data and output results, enabling provenance. S24
uses domain concepts that describe data and analytics
concepts to validate the structural and semantic cor-
rectness of a workflow before execution. S76 capture
provenance data related to datasets, data sources as
well as operations around numerical analysis through
domain and analytics concepts. S25 uses provenance-
related concepts to model workflow and data, store
them as RDF triples to allow users to query them in
order to validate workflows, identify defects or extract
further information. S26 defines a Research Object as
an instance of a scientific workflow, for provenance
purposes. S75 proposes solution validation approach
as an extension for RapidMiner tool that use analytic,
service and intent concepts to annotate data, operators,
models, data mining tasks and KDD workflows. The
Scientist’s Intent Ontology in S4 uses goal focused in-
tent concepts to describe user goals that are used for
validation of workflows. S72 uses domain and service
concepts to capture provenance of ETL workflows.

4.3.9. Code Generation
Methods that support code generation rely on on-

tologies to convert abstract models into the executable
analytics software. This is an important task as it re-
duces the burden of software programming for data an-
alysts. Code generation can be used to support one or
multiple stages of an analytics process (workflow) ex-
ecution.
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Most techniques use service concepts (e.g. S3,
S6 and S38) to drive code generation in a Model
Driven Engineering (MDE) fashion. For example, data
sources modeled as service concepts in S38 are used
to generate data extraction software modules. In S6
generic API modeling service concepts are used to
generate an executable analytics process. In S3, an-
alytics as well as service concepts (deployment and
data source related) capture the implementation details
related to each analytics task. This enables a semi-
automated code generation scheme for selected analyt-
ics techniques. The method proposed in S47 is the only
one that uses domain concepts to model data sources,
which are then used for generating code for data ex-
traction from data sources into linked datasets.

5. Discussion

5.1. Limitations of Existing Work

This section summarizes the limitations we identi-
fied by studying what type of semantic concepts were
used in data analytics solutions and how those differ-
ent concepts types were applied in different analytics
tasks.

5.1.1. Limited Usage of Intent Concepts
Although there are 14 studies that propose intent

concepts, (see Table 2), we can observe that only a few
studies are using intent concepts at different stages of
the analytics process, with the exception of data inte-
gration. The survey did not identify any studies that use
intent concepts for data extraction and transformation,
although this is a computationally expensive and time
consuming task that may waste resources if not per-
formed aptly. Existing techniques use intent concepts
mostly on facilitating the search of algorithms, data
providers, web services, and computational software
modules. Hence to a large extent, analytics require-
ments such as what business decisions will be sup-
ported by this analysis or what level of accuracy is re-
quired, are still a part of the mental model of the devel-
oper or the analyst who performs these tasks. In prac-
tice, several iterations of data cleansing, reformatting,
model selecting and process composition may be re-
quired in order to optimally address the analytics prob-
lem at hand. This may result in less effective DASs
whose performance is likely to degrade with time. In
addition, modifying the process can only be conducted
by someone with a sound understanding of the original

analytics requirements. Moreover, as discussed in [53]
cognitive and context information, which can be cap-
tured through intent concepts, is crucial for accurate
interpretation and validation of data mining knowl-
edge. We believe that incorporating suitable intent con-
cepts further can enhance the efficiency and effective-
ness of the DAS engineering.

5.1.2. Lack of Proper Concept Classification
Semantic concepts can be classified in many differ-

ent ways. For an example, S43 separates domain, an-
alytics and service knowledge in three ontologies and
S79 uses a class hierarchy to separate data mining re-
lated entities as process, information content and real-
izable entities. Yet in some studies, this separation of
concept types is not clearly visible. One ontology with
a unique prefix may contain concepts related to one or
more categories without attempting to follow modu-
lar approaches such as class hierarchies. For example,
S37 model both analytics and service concepts in one
ontology, and S3 model both analytics and intent con-
cepts in the Task-methods ontology. S27 contains two
ontologies (WekaOntology and ProtOntology) that cut
across concepts of all classes without proper separa-
tion.

5.1.3. Little Support for End-to-End Development
Process

Though there is an array of research on adapting se-
mantic models for different development tasks such as
data integration or model selection, only a few studies
seem to go beyond addressing one or two tasks in the
development lifecycle. In many cases, knowledge from
previous tasks would have been very useful if carried
over to the next tasks. Hence there is a lack of stud-
ies that propose semantic modeling based solutions to
support the DAS engineering lifecycle.

We identified 4 studies that use semantic models for
code generation (section 4.4.9), related to data trans-
formation and analytics process execution. They are
also limited to a specific domain or a tool and do not
provide sufficient flexibility to be used for a wider
class of DASs.

5.2. Recommendations for Future Research

Upon the findings of this study, we propose a set
of recommendations for future research regarding the
application of semantic models for DAS engineering.
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5.2.1. Developing Intent Concepts for Analytics
As discussed in section 5.1.1, service composition

techniques among the identified studies do not lever-
age intent concepts adequately. One reason could be
that intent concepts are of too high-level (e.g. a busi-
ness goal) or low level (a query). As the data analytics
community is extending wider into different industries
and organizations and as analytics contexts and re-
quirements are changing rapidly, it is necessary to ex-
plore techniques that consider all dimensions such as
business requirements, contexts and constraints. Hence
a potential research area is to study how high level user
goals and context can be represented and incorporated
in DAS engineering through data integration, process
construction, and result interpretation. Initial work in
this direction can be found at Bandara et. al. [54].

Such approaches of linking the user intentions and
contexts into analytics models have the potential of
changing static analytics models deployed today into
dynamic and adaptable analytics models, responding
to changes in user goals or the operational context.

5.2.2. Decoupling Concept Classes and Encouraging
Concept Reuse Across Development Tasks

In section 5.1.2 we discussed that it is more ef-
fective to decouple different concepts as separate on-
tologies can lead to better and modular knowledge
management. As a result, each concept type can be
reused or evolve independently of the others, enabling
users to change the application domain, implementa-
tion, data source or the analytics requirements without
altering other models. Then the integration between
those different knowledge areas has to be done sep-
arately within the DAS environment, considering the
context as well. Some studies achieve concept inte-
gration through program logic or annotation schemes,
but it would be useful to have standard, platform-
independent ways of modeling the relationships be-
tween different types of analytics knowledge to match
the context of a particular analytics process.

To promote the usage of semantic models among the
research community and to enhance the value and the
reusability of the research, it is essential to promote
the reuse of ontologies. This enables the creation of a
common vocabulary and the resulting data/models be-
come interoperable among a variety of systems. We
observed certain ontologies like SSN [42] and Gene
Ontology[43] are being used in multiple research stud-
ies. There are ongoing efforts such as OBO Foundry

6 that recommends re-using classes already defined in
other ontologies classes. Yet we believe there is room
for the system development community to adapt more
concepts from well-developed ontologies, particularly
analytics concepts proposed in ontologies such as On-
toKDD S60 and OntoDM S79, to improve user support
for analytics process design.

As knowledge represented through ontologies can
enhance each task of the DAS engineering process, a
standard framework for designing and extending on-
tologies that are usable in all analytics process stages
is necessary. The ontologies should incorporate knowl-
edge related to domain concepts and business goals
as well as the concepts useful for the execution level.
For example, an ontological representation of a data
source may contain information necessary to retrieve
data, but also information about the data quality, the la-
tency of data acquisition, metadata that can be used to
decide which algorithm is suitable to process the data
(e.g.the knowledge of whether the data is time-series
or not can reduce the space of algorithms we can use
to process it) and the relationship between the data and
other concepts. Representation of existing knowledge
and enabling efficient reuse of accumulated knowledge
and resources can reduce the cost for an organization,
otherwise spent on expert consultations or employee
training.

5.2.3. Semantic Model-Driven Data Analytic
Solution Engineering

Finally, our evidence reveals the opportunities of us-
ing semantic models for code generation in the light
of model-driven engineering methods. This needs to
be explored and experimented further as it has the
potential of lifting the burden of software program-
ming expertise from data analysts. It can lead to a
significant cost reduction and resource utilization re-
lated to software development efforts in analytics so-
lution engineering. There are already some examples
of applying MDE for data analytics applications [55],
such as creating Hadoop MapReduce analysis through
conceptual models [56]. A promising finding is that
four studies that are identified related to code genera-
tion (section 4.3.9) use semantic models that are well
aligned with the four ontologies proposed by Pan et.al,
in their book Ontology-Driven Software Engineering
[17]. They align Requirement ontology (intent con-
cepts) to Computational Independent Model (CIM),
Infrastructure Ontology (service concepts) to Platform

6www.obofoundry.org/
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Specific Model (PSM) and propose to use a domain
ontology for converting CIM to Platform Independent
Model (PIM) and a business process ontology (analyt-
ics concepts) to convert PIM to PSM. Hence we be-
lieve that studying the use of ontologies to develop an-
alytics solutions in a model driven fashion, particularly
adapting the framework proposed by Pan et.al [17], is
timely and significant.

Semantic based service orchestration plays a signif-
icant role in realizing a semantic model driven analyt-
ics environment, as all operations from data exporting,
integration into model building, execution and result
publication can be done as independent services mod-
ules represented through semantic models. Yet there is
a lack of applications that integrate the existing body
of research related to semantic based service orches-
tration such as [57–59] with semantic data analytics
process construction research. Such a combination can
contribute to a paradigm of service-based data analyt-
ics solutions and establish the basis for semantic model
driven data analytics systems.

6. Limitations of the Study

There are some limitations of our study, mainly due
to the literature selection process, including the se-
lection of keywords and the construction of inclusion
and exclusion criteria. Firstly, our study focuses on
peer-reviewed publications in academic literature only.
So gray literature such as technical reports, white pa-
pers and unpublished work were not included. Sec-
ondly, the study might be missing some relevant work
due to the search string failing to match other relevant
within the digital libraries. A snowballing technique
has helped to eliminate this limitation to a certain level.
These limitations are in-line with our exclusion crite-
ria, yet they pose a risk for the completeness and va-
lidity of the results.

One other limitation is that the selected databases
may not contain all related literature, especially ap-
plications published in domain specific venues such
as medical journals. We attempted to reduce the im-
pact of such limitations by using the of web of science
database, which exposes our search query into diverse
disciplines. We are coming from software engineering
and modeling background and hence the paper selec-
tion and mapping may be biased to that point of view
in spite of the efforts made to conduct an unbiased lit-
erature filtering process, especially in the cases where

the inspected papers do not provide a clear-cut defini-
tion of their research problem and proposed approach.

As we conduct a systematic process to identify and
map literature, this paper may contain some outdated
work or not reflect the most recent achievements in the
discipline. Recent ontologies published related to an-
alytics and data modeling such as OntoDT [60] were
not observed in any identified work. This may be due
to the limitation of search approach and authors be-
lieve there will be more future research that utilizes ex-
isting analytics related knowledge in analytics solution
engineering.

As the goal of this study is to present a holistic
overview on how semantic modeling has been used
in engineering analytics solutions, summarizing two
decades of research, it is beyond the scope of this pa-
per to drill down certain specific characteristics of an-
alytics solutions that support particular tasks and con-
duct a thorough evaluation. We limit our contribution
to a mapping study which can be used by researchers
to study certain aspects extensively in the future.

7. Conclusion

Capturing knowledge using models to drive the soft-
ware development life cycle is at the heart of the soft-
ware engineering discipline. Traditional models have
serious limitations in the area of building data analytics
solutions, which are characterized by the need to rep-
resent rich knowledge encompassing specialized ap-
plication domains, complex computing infrastructures
and changing analytics requirements. This has trig-
gered our interest in the use of semantic modelling and
ontologies as a way of underpinning new software de-
velopment practices in this area. In this paper, we pre-
sented 82 studies identified through a systematic map-
ping study, that leverage semantic modeling for engi-
neering data analytics solutions. We adopted a broad
approach encompassing distinct research areas such as
data mining and service computing.

The results of our study reveal the diversity of
knowledge representation in existing studies. Through
sub-question 1 we identified what type of seman-
tic concepts are modelled and used in the literature.
They were falling under four main categories: domain,
analytic, service and intent ontology. Through sub-
question 2 we identified the different categories of ana-
lytics or software engineering related tasks mentioned
by the identified literature. Different types of concepts
were observed to play different roles in improving each
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task and supporting various stages of the DAS engi-
neering. Semantic modeling was highly used for tasks
such as data integration, model selection, process com-
position and data extraction, which shows the abil-
ity of semantic models to represent heterogeneous re-
sources. Studies that focus on model selection and pro-
cess composition tasks highlight the capability of se-
mantic models to provide end user support for analyt-
ics solution engineering. We identified and discussed
some limitations in existing work such as the limited
usage of intent concepts and the lack of end-to-end
support for analytics process engineering.

Recommended future work, discussed in section
5.2, emphasizes the importance of moving semantic
technology out of certain research silos and aiming
at developing new research agendas around capturing
high-level intents and goals of data analysts and trans-
lating them to executable analytics processes, incor-
porating a multitude of well-defined semantic knowl-
edge repositories that have the capacity to be devel-
oped, expanded and maintained independently from
each other. This can be achieved within established
software engineering frameworks that will need to be
specifically tailored to the particular characteristics of
the DAS engineering life-cycle as presented in [61]. As
the next stage, we are working on designing a require-
ment driven platform that provides support for end-
to-end analytics process engineering, incorporating se-
mantic concept types identified through this mapping
study [54, 59].
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