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Abstract.
The web contains a vast amount of tables which provide useful information across multiple domains. Interpreting these tables

contribute to a wide range of Semantic Web applications. Aligning web tables against an ontology to understand their semantics
is known as Semantic Table Interpretation (STI). This paper presents a survey on Semantic Table Interpretation(STI). Goal
of this paper is to provide an overview of STI algorithms, data-sets used, and their evaluation strategies and critically evaluate
prior approaches. In the effort of providing the overview we developed a generic framework to analyze STI algorithms. Using
this framework we analyzed the existing algorithms and point out their strengths and weakness. Additionally this enables us to
categorize the prior works and be able to point out the key attributes of each categories. Our analysis reveals that search based
approaches are better in terms of accuracy and overall completeness, while other categories perform better only in annotating
columns with high precision. Also, We present the evaluation methodology utilized in algorithms and discuss the limitations of
it while providing suggestions for future improvements. In addition, we point out the design choices in building an STI and their
associated trade-offs, which could be of value for the future STI algorithm developers and users.
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1. Introduction

The semantic web is considered as a critical com-
ponent in the modern artificial intelligence process.
Extracting information from different data sources in
the web is vital for various semantic web applica-
tions. Structured data sources, such as web tables take
a prominence among them.

The web contains over 100 million tables in for-
mats of web tables[1]. Interpreting these tables is hu-
manly impossible due to its size. Popular approaches
map these tables to known Knowledge Bases so that
agents can utilize them. This problem domain is known
as Semantic Table Interpretation (STI)[2].

A knowledge base is essentially a directed labeled
graph which comprises of concepts as nodes, and rela-
tionship between different concepts as directed edges.
Across literature, different terms such as knowledge
graph [3, 4], taxonomy[5], catalog[6] and knowledge
base[7, 8] are used to identify the knowledge bases.
Without the loss of generality we can model all above
instances as Ontologies.

In recent years, several algorithms have been pro-
posed for STI. Due to the variations among these algo-
rithms and their inherent complexities, directly com-
paring them is challenging. In the absence of a survey
on these algorithms, this paper aims to provide a com-
mon conceptual basis that would bridge the above gap,
allowing comprehensive analysis and comparisons be-
tween different algorithms. The key contributions of
this paper include: (1) a comprehensive survey on STI
algorithms; (2) a mathematical formulation of the STI
problem; (3) a generalized breakdown of STI problem
that can be used to analyze different algorithms in a
modular level; (4) a categorized view on recent STI al-
gorithms; and (5) a summarized view on different eval-
uation metrics and Gold Standards used in literature.

This paper is structured as follows. A comprehen-
sive background to STI and the mathematical formu-
lation are provided in Section 2. Throughout Sections
3 - 5, the elements of the conceptual framework intro-
duced in Section 2 are detailed. In Section 6, a clas-
sification of STI algorithms is introduced while ana-
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lyzing features and capabilities of each category. Sec-
tion 7 outlines the evaluation methodology and met-
rics used in literature and provides a summarized view
on the analysis of 3 notable STI algorithms against 2
Gold Standards. Section 8 presents future work and a
conclusion of overall content.

2. Background

Tables are used to present data in a structured man-
ner. But they lack the semantic information regarding
the data represented in them. In order to grasp the con-
textual meaning, tables can be aligned against ontolo-
gies.

Given a predefined Ontology O, and a table T, the
semantic table interpretation problem can be defined
as a search problem that searches the space of mapping
matrices(M) for the matrix M∗ which maximizes an
objective function Q.

M∗ = argmax
M∈M

Q(T,O) (1)

Definition 2.1. A table T has a cell matrix D, and a
header array H. D has p rows and q columns indexed
by 1 6 r 6 p and 1 6 c 6 q respectively. H is an array
of size q, composed of column headers. The text in cell
(r, c) will be called Drc. The header text in column c
will be called Hc.

Definition 2.2. An entity can be a row, a column, a
header, a cell or the table itself. The set of all entities
in a table is denoted as A.

Definition 2.3. Ontology O is defined as O = <V, E, L>
where V is the set of labeled vertices representing the
entities, E is the set of edges representing the relations,
which is a set of ordered 2-subsets of V, and L is a
mapping from each edge to its label[9].

Definition 2.4. We define C to be the set of all con-
cepts in O. Thus C = V ∪ E

Definition 2.5. The objective function Q scores the
mappings denoted in M by considering the semantic
relevance between T and O.

The mapping matrix M is a |O| × |A|-matrix. Each
entry in this matrix represents a mapping between par-
ticular ontology concept and a table entity. Most STI
approaches model M as a binary matrix where each
entry indicates a presence or an absence of a relation.
Hence the size of the search space is 2|A||C|. But in

Fig. 1. An extract from an Ontology showing the vertices, edges and
labels representing Country, City, capital and their relations

most of these cases, table to ontology mapping is as-
sumed to be many to one, which reduces the search
space size to |A+1||C|. Given this context, we define a
mapping matrix M as follows.

Definition 2.6. M is a |A| × |C|−binary matrix where
each entry-mac is defined as follows.

mac =

{
1 If a and c are considered to be mapped
0 Otherwise

where a ∈ A is the table entity and c ∈ C is the ontol-
ogy concept.

Table 1
Sample Data of Countries, Population, capitals extracted from [7]

Rank Country Population Capital

1 China 1,377,516,162 Beijing
2 India 1,291,999,508 New Delhi
3 USA 323,990,000 Washigton,

D.C.
4 Indonesia 258,705,000 Jakarta
5 Brazil 206,162,929 Brasilia

Let’s take an example to elaborate on above con-
cepts. Table 1 (T1) shows a sample table which lists
populations and capitals of five countries. Figure 1
(O1) represents an extract from an ontology that rep-
resents the vertices, edges and labels corresponding to
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the concepts of Country, Population, Capital, and their
relations. The task of semantic interpretation is to max-
imize the accurate mappings between the entities of ta-
ble 1 against the ontology shown in figure 1. The set of
table entities A and the set of ontology concepts C for
this example are shown below.

A ={Table,Column1,Column2,

Row1,Row2,CellUS A,

CellChina,CellWashington,

CellBei jingHeaderCountry,

HeaderCapital, ...}

(2)

C ={Country,Capital,China,

US A, Bei jing,Washington,

City, ...}

(3)

Let a = Column2 entity from T1 and c = Country
concept from O1. Then according to the definition 2.6,
mac = 1 since Column2 is most related to the Country
concept. Similarly we can determine a value for each
entry in the mapping matrix. Finding the matrix M∗

from the matrix spaceM that contains correct values
for all the entries is goal of this process.

However in practical scenarios, table entities and
ontology concepts are not mapped exhaustively. Map-
pings are bounded by the semantic model of the table.
We observed two such models in literature:(1) table as
a single class; and (2) table as a set of classes. These
models reduce the matrix spaceM.

Even though the matrix space is further reduced by
the choice of the table model, due to the large size
of the matrices, the problem still remains substantially
complex. Thus algorithms divide the problem into sev-
eral sub-problems by considering sub-matrices of the
original matrices. By analyzing literature, we iden-
tified four such commonly used sub-problems. Each
sub-problem clearly isolate the search process to a se-
lected region of the initial matrix. In literature these
sub-problems are referred to as Annotation Tasks. An-
notation tasks can be carried out sequentially, itera-
tively, in parallel or in a hybrid manner. We identify
them as Execution Approaches. The formal definitions
and the implications of the different table models, an-
notation tasks and execution approaches are detailed
later.

3. Table Modelling

A table can be modelled using ontologies in two
ways. Those models are: (1) table as a single class; and
(2) table as a set of classes.

Table as a single class Modelling table as a single
class is a popular ideology in the algorithms focused
on the task of interpreting web tables. T1 shows a table
extracted from [7] consisting of countries ranked by
their population. It can be considered as of the class
“Country”. Which in turn implies that the columns of
the class corresponds to different properties of it while
rows corresponds to instances. This model is used in
algorithms [7, 10–12].

Several papers[7, 11–15] assume the presence of a
label or a subject column in the tables that are clas-
sified as above. The subject column is considered as
the naming column or the primary column of the table,
which may or may not uniquely identify the instance
of the table class represented by the respective row. In
T1 the “Country” column is the subject column. Fur-
ther, the rows of the table are considered as instances
of the table class and columns of the table are mapped
to properties. According to that, considering T1 Coun-
tries China, India and United States are instances of
the “Country” class, while their properties are “Rank”,
“Country” (Name), “Population” and “Capital”.

Table as a set of classes An alternate semantic model
of tables corresponds each column of the table to
a different class. This form of table model is pre-
sented in [1, 3, 6, 14]. The columns that consist of lit-
eral values (numbers, dates) rather than entities, are
mapped to properties from the ontology. According to
above ideology, in T1 columns “Country” and “Cap-
ital” correspond to respective classes in the ontology
while “Rank” and “Population” correspond to respec-
tive properties. In contrast to table as a single class
model, presence of inter-column relationships in ta-
bles is debatable in the table as a set of classes model.
Some literature[6, 8, 14] strongly suggests the exis-
tence of such relationships.

In general web tables contain information regard-
ing a single concept. Hence the table as a single class
model could be considered as a better approach for
modeling the table. We observed that trend rising in
the recent literature[7, 8, 15]. However by analyzing
prior literature, we could not arrive at a clear conclu-
sion that supports either of the models in terms of effi-
ciency and accuracy. We call out for a future work that
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investigates the possible trade offs between these two
choices.

4. Table Annotation tasks

An annotation task is a sub-problem of the initial
STI process. It comprises of a selected set of table enti-
ties and ontology concepts. Searching for the best pos-
sible map for each table entity from the selected on-
tology concepts is the annotation process. It aims at
identifying a candidate space for each table entity and
narrowing it down until the best matching concept is
found.

Candidate space selection A given table entity, tend
to map with several concepts of the ontology when
the ontology is considerably large. Candidate space
selection aims to isolate these related concepts from
the ontology to later process and single out the best
mapping concept of them. Most algorithms[6–8, 11–
14] in literature employ publicly available ontologies,
prominently DBpedia[16], YAGO[17], Freebase[18],
Google Knowledge Graph, and Wikitology[19]. The
availability of a large number of properly curated con-
cepts in these ontologies is the key incentive in us-
ing them. In such algorithms, the public API exposed
by respective ontology is used to query the candidate
space. Thus, the query process is limited to perform-
ing look-up or string matching for candidate search.
This is a prevailing limitation in most of the ex-
isting methods. Several efforts have been presented
to overcome this limitation including creating of lo-
cal indices[3, 4, 7] and employing machine learning
models[20–22]. While local indices address the query-
ing limitations, the amount of concepts represented in
these indices are considerably lower than that of afore-
mentioned ontologies. Machine learning models on
the other hand requires a substantial amount of manu-
ally annotated training data to function at a competent
level. Hence, the candidate space selection process re-
mains as a challenging aspect in STI.

To select the best map from the candidate space,
score functions are defined in algorithms. The score
provides an aggregated view of a set of similarity met-
rics between the source table entity and the candi-
date ontology concept. These metrics predominantly
include lexical similarity[7, 14], semantic similarity[7,
11, 14] and popularity based ranking.

In literature, 4 major annotation tasks can be identi-
fied as follows: (1) cell annotation; (2) column annota-

tion; (3) row annotation; and (4) table annotation. This
section explains each task in detail.

4.1. Cell annotation

Table cells mostly contain entities(strings) and liter-
als(numbers and dates). Out of which only entity cells
can be mapped to instances of the ontology. This map-
ping process is the task of cell to instance annotation.
Consider the previous example shown in T1 and O1.
The cells of the columns "Country" and "Capital" of
T1 are entity cells. Thus can be annotated with their
corresponding instances from O1. But if we consider
entity "China" from the column "Country" of T1, it
can be annotated with both Q3(China, the country) and
Q12(China, a city of California) of O1. To derive an
accurate selection, more information about the context
of the table is required. This context is obtained by the
results of other annotation tasks.

Cell to instance annotation has been tackled in sev-
eral ways in literature. Algorithms[7, 8, 10, 12, 14, 23]
generally employ search based approaches such as
look-up or regular expression search. Alternatively
machine learning based methods have been presented
in [22, 24, 25]. In literature, we observed that the cell
to instance annotation has been given a lesser priority
with respect to the rest of the annotation tasks. A plau-
sible explanation being the relatively higher ambigu-
ity associated with this task. Hence, cell annotation is
only used as a preliminary task for further annotations.

4.2. Column annotation

Column annotation associates columns of tables
with the corresponding concepts from an ontology.
Based on the table model, it can be performed in two
different ways. If the algorithm assumes the table as a
set of classes model, it would independently map each
table column to a different class in the ontology. Alter-
natively, algorithms that follow table as a single class
model would map columns only to the properties of the
selected table class. This essentially reduce the search
space when compared to the former method.

Algorithms predominantly use column cell values
to derive the mapping concepts for the columns. But
some work[5, 11, 14] have utilized the column header
in the process as well. Since, tables with missing head-
ers and malformed headers affect the annotation re-
sults, algorithms often use headers only as an addi-
tional evidence. Columns in general can be categorized
as Named Entity (NE) columns and literal columns.
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NE columns contain entity strings as cell values while
literal column contain dates or numbers. In most algo-
rithms we observed, NE column annotation had been a
key focus.

NE column annotation is carried out by first deter-
mining the cell annotations of the column and then
using it as evidence for annotating the column. Since
the cell annotations could suggest multiple possible
candidates for the column concept, heuristics, scor-
ing functions[24] or machine learning[20, 21] based
approaches are used for determining the best candi-
date. Considering the above example of T1 and O1, for
the table column "Country" there could be 2 different
candidate concepts: (1) concept "City"; or (2) concept
"Country". By considering the cell annotations, con-
cept "City" has only 1 evidence while concept "Coun-
try" is suggested by all the entities. Hence, if we select
the heuristic that the column concept is the candidate
represented by a majority of the cell annotations, the
suitable candidate concept is "Country".

In contrast to NE columns, literal columns tend to
be given a lesser priority in the STI algorithms. In re-
cent literature, few algorithms[3, 4, 8, 14, 22, 24] have
emerged targeting to tackle the literal column annota-
tion task. These work follow the table as a set of classes
model. We observed that pre-processing the target on-
tology to create a hierarchical clustering for numeric
values as the methodology followed in most of these
algorithms[3, 4]. If we consider the columns "Rank"
and "Population" of T1 above, they clearly show con-
trasting distribution characteristics. According to the
claims of [3, 4] these two columns can be accurately
clustered with proper pre-processing. Although these
algorithms have shown promising results, utilizing the
table header in the process could have improved the
overall process.

4.3. Row annotation

A row comprises a set of table cells which contain
interrelated content. Being properties of a particular in-
stance from the ontology is the most frequently occur-
ring interrelation. Thus, the row can be considered as
a representation of the aforementioned instance. Row
annotation can be initiated either by annotating the in-
dividual NE cells of the row or by identifying the en-
tity label of the row. Individually annotated cells can
be collectively utilized to infer the most appropriate in-
stance represented by a row. On the other hand, if the
subject column of the table can be identified, the cor-
responding cell of the row can be taken as the entity

label of it. Subsequently by mapping the entity label to
the ontology, the instance represented by the row can
be identified.

Row annotation is often carried out by the algo-
rithms that follow table as a class model.[7, 10] Anno-
tated rows are taken as evidence for inferring the table
class and in return the inferred table class is used to
improve the row annotations. Hence, the 2 tasks are of-
ten observed to be executing iteratively. However Ritze
et al.[11] has effectively shown ways of utilizing row
annotations even while following the table as a set of
classes model.

4.4. Table annotation

Modelling table as a single class requires the iden-
tification of a class which can provide the best repre-
sentation for a given table. Identification of this class
in such scenarios is the main goal of this task.

Table as a single class model in general assumes a
presence of a subject column. This task first tries to
find the subject column and then utilizes this column
to determine the class corresponding to the table. Most
algorithms[7, 11–15] rely on heuristics to identify the
subject column. The heuristic presented in [7, 10, 11]
identifies the subject column as the left most column
of the table with maximum number of distinct values.
Further Venetis et al.[1] have considered the possibil-
ities of multiple subject columns and the absence of
a subject column. Moreover [1] have presented a su-
pervised learning based approach for determining the
subject column in contrast to the heuristics presented
in contemporary work.

An alternate approach for identifying the table class
is presented by Ritze et al.[11]. The process first pe-
forms row annotation as described in the preceding
section. Then the class that represents a majority of
these instances is considered as the table class.

5. Execution Approaches

The annotation tasks outlined in section 4 are the
unit level processes used in the mapping mechanism.
The complete mechanism usually consist of one or
more of the above tasks processed sequentially, paral-
lely, iteratively; or in a hybrid manner.

Sequential Approach is the most commonly used ap-
proach in STI algorithms[13, 24]. Often the output of
the preceding annotation task is used as evidence for
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the latter task. Utilizing the output of cell annotation in
column annotation[13] and the output of row annota-
tion for table annotation are two such instances.

Parallel Approach executes annotation tasks without
sharing the outputs of each other. But the resulting out-
puts are evaluated together to determine inputs that
would collectively improve the accuracy of both tasks.
Work by Limaye et al.[6] introduces such methodol-
ogy where 3 of the above annotation tasks are executed
parallel by mapping them onto a probabilistic graphi-
cal model. Then the search is iterated until a solution
that maximizes the overall probability of the system is
achieved. This algorithm has been further improved by
Mulwad in TABEL[14].

Iterative Approach takes a set of annotation tasks
and executes them repeatedly executed until all tasks
produce the optimum results. Each iteration takes an
input from previous iteration to improve the perfor-
mance. For an instance, cell annotations of a column
can be utilized for annotating the column and the re-
sulting column annotation can be taken as evidence to
improve the annotations of its cells. Algorithms pro-
vided in both TableMiner methods [2, 8] are based on
this principle of iterative improvement. Furthermore,
these algorithms claim that iterative approaches can
perform more efficiently in comparison to sequential
approaches by using partial annotations of annotation
tasks to improvement each other.

Hybrid Approach Even-though the execution ap-
proaches of annotation tasks can be conceptually cat-
egorized as such, in practice algorithms comprise of
a mixture or an hybrid of two or more of the afore-
mentioned approaches[7]. We observed that a common
pattern exists where either a sequential or parallel exe-
cution of tasks is combined with iteration to formalize
the overall system.

6. Classification of algorithms presented in recent
literature

This section outlines several algorithms from the
recent literature. Considering the implementation of
these algorithms, we classified them into 3 distinct
classes: (1) Search based algorithms; (2) Supervised
Learning based algorithms; and (3) Unsupervised
Learning based algorithms. Below we discuss the fea-
tures, strengths and limitations of each of these three
kinds of algorithms in detail. Further, we review key
tools and frameworks in each category.

6.1. Search based algorithms

A majority of recently presented algorithms uti-
lizes a keyword search based approach in the im-
plementation. Mainly, these algorithms search a par-
ticular ontology by using its query API[2, 7, 8, 10,
11, 14, 15, 26, 27] or by manually creating a search
index[5, 7, 12, 13, 28, 29] and using it. A bulk of the
ontologies used in literature[16, 17, 19] provide a pub-
lic API to query the concepts of the ontology. Capabil-
ities provided by these interfaces are in general limited
to exact match and regular expression queries. Yet, for
the purpose of obtaining the linked concepts of a given
entity (parent class, properties, relations, instances),
the functioning of the interfaces are quite adequate.

TableMiner[2] and its improvement TableMiner+
[8] utilizes the public query APIs of DBpedia and
Freebase for its candidate selection process. Key fea-
ture of both algorithms is the bootstrapping annotation
approach used for efficiently annotating the columns
and the cells. The presented approach uses the results
of partial annotation of cells along a column to derive
the column class. Next the annotated class is consid-
ered as evidence for improving the previous annota-
tions of the cells and to infer further annotations. The
overall process is iterated until the cell and column
annotation properly validate each-other. The author
claims that the iterative annotation approach is much
more efficient than the exhaustive annotation methods
presented in contemporary works. Following the table
as a single class model, TableMiner presents efficient
approach for carrying out cell annotation, NE column
annotation, and literal column annotation tasks. Addi-
tionally TableMiner+ supports subject column detec-
tion and relation extraction.

TABEL[14] is a domain independent, extensible
framework for inferring semantics of tables. It was
built by extending the early ideas of Mulward et al.[30]
and Limaye et al.[6]. Author identifies the algorithm
as a framework justifying by the modular design and
the inherent extensibility of it. It comprises of a work-
flow of 5 phases: (1) Pre-processing phase; (2) Query
and Rank phase; (3) Joint inference; (4) RDF Linked
data; and (5) Human in the loop. Pre-processing phase
focuses on tackling pragmatic challenges present in
the table data. In the Query and Rank phase, TABEL
utilizes the API provided by Wikitology[19] for can-
didate search process and employs several similarity
metrics for ranking the candidates. In the joint infer-
ence phase, the framework carry out the annotation
tasks by using the probabilistic graphical model based
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algorithm proposed by Limaye et al.[6]. Final 2 phases
provide added features by utilizing the annotated re-
sults. TABEL follows the table as a set of classes
model and provides annotations for cells, NE columns
as well as literal columns. Moreover it provides binary
relation extraction, RDF generation and ability to take
human input as added features.

T2K Match[15] is designed to efficiently annotate
large quantities of tables that are relatively smaller in
size. While it depends on the DBpedia query interface
for the candidate selection task, it remarkably stands
out from the former two algorithms by successfully
covering all 4 annotation tasks of STI. It follows the
table as a single class model and initiates the pro-
cess with subject column detection. By using the sub-
ject column, it first narrows down the candidate space
search. Next through an iterative execution approach,
the cells, rows and NE columns and the table are an-
notated. In comparison to the former algorithms T2K
Match covers all STI annotation tasks and additionally
provides subject column detection. On the downside it
lacks literal column annotation and relation extraction.
Yet in considering the key STI problem, T2K Match
can be considered as one of the most comprehensive
algorithms.

TableFinder[13] utilizes an "isA database" created
by mining the web. This database consist of value pairs
that signify instance - class relationships. For exam-
ple, if we consider instances in O1, pairs would include
(USA, Country), (China, City), and (China, Country).
Further a ranking mechanism is defined for the pairs
within the database. The algorithm initially attempts to
identify the subject column. Unlike former algorithms
where subject column detection was based on heuris-
tics, TableFinder uses several table features to train a
SVM[31] model and detect the subject column. It pro-
ceeds by annotating cells and NE columns by execut-
ing in a sequential approach.

Wang et al.[5] follow a similar approach to the
TableFinder by utilizing a custom index, Probase[32].
In contrast to the isA database used by TableFinder,
Probase contains Hearts patterns[33] which shows
"such as" patterns between classes and instances.
The algorithm utilizes the API methods provided by
Probase for querying the instances and provides anno-
tations for cells and NE columns. Moreover it is capa-
ble of identifying the subject column.

FactBase Look-up[7] is a look-up based algorithm
introduced by Efthymiou et al. The approach con-
sumes a manualy index "FactBase", a generic search
index over Wikidata[34] entries. Following the table as

a class model, it initiates the process with subject col-
umn detection followed by annotation of subject col-
umn cells. For the cell annotation a refined look-up
method is presented. By using the previous annotation
results, rows and NE columns are annotated. The exe-
cution of the algorithm can be modeled as hybrid ap-
proach where sequential and iterative approaches are
combined. The authors claim that the FactBase Look-
up algorithm performs well in comparison to similar
look-up and search based algorithms.

By observing the search based STI algorithms, sev-
eral conclusion can be drawn; (1) algorithms that uti-
lize API query based search approach predominantly
follow the table as a single class model [2, 15] while
the custom index based algorithms are keen to follow
the table as a set of classes model.[5, 13]; (2) cell and
column annotations are carried out in all of them; (3) a
majority of them has the capability to detect the subject
column [2, 5, 7, 13, 15].

6.2. Supervised Learning based algorithms

In recent literature, a tendency for applying super-
vised learning for STI process can be seen. In general
such algorithms[20–22, 25, 35, 36] target on obtaining
a high accuracy for a particular annotation task rather
than the overall STI process. We observed NE column
annotation as the most prominent target in a majority
of the algorithms. The process is introduced as "Se-
mantic Labeling"[20–22] in some of the above litera-
ture, which in-fact can be classified as a subtask of the
STI process.

DSL[20] (Domain-independent Semantic Labeler)
is a supervised learning based algorithm focused on
accurately annotating columns. The algorithm first se-
lects the candidate set of classes from the ontology and
training data corresponding to these classes. Training
data is a table corpus with the columns already anno-
tated. Next these annotations along with the column
cell values are processed to obtain feature vectors. Pro-
cessing involves calculating 5 similarity metrics; (1)
attribute name similarity; (2) standard Jaccard similar-
ity and a modified similarity for numeric data; (3) TF-
IDF cosine similarity; (4) distribution similarity; and
(5) histogram similarity. A binary classifier is trained
per column class in the training data set. Authors claim
that the resulting model works relatively better than the
search based approaches as well as similar supervised
learning approaches.

DINT[21] (Data INTegrator) follows a similar su-
pervised approach as of DSL. In contrast to DSL, 26
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hand engineered features are used to train a Random
Forrest Classifier using the training data corpus. DINT
points out the issue of lack of annotated table columns
for supervised learning and propose bagging of the ex-
isting training data as a solution. Further, DSL is ca-
pable of handling columns that cannot be accurately
classified by the model by training for a "unknown"
class.

Karma[35] is a semi-automatic system, which takes
the source tables and the ontology as inputs and gen-
erate a semantic model. This model incorporates the
user input to fine tune the annotations and use CRF for
learning. Generated semantic model is then used for
further annotation of the columns. While the algorithm
show promising results, limitation of the method such
as unknown column classes and lack of training data
are not discussed by the authors.

TabEl[25] considers the STI problem as an entity
linking task where each cell in the table corresponding
is a string that need to be linked to a entity(concept)
in the ontology. Hence the algorithm focuses only on
the cell annotation task of STI process. It consists of
3 steps: (1) mention identification; (2) entity candi-
date generation; and (3) disambiguation. The candi-
date space selection process is done by calculating
the prior probability for a given cell and a concept.
The probability estimate is generated using the Web
hyperlinks. In steps (1) and (2), the algorithm finds
the most related candidate per cell using thus calcu-
lated probabilities. For disambiguation, TabEl employs
a pre-trained local classifier that ranks the candidates
by the maximum likelihood. The algorithm is executed
in an iterative manner until no further changes occur
in the disambiguation process. In contrast to previous
mentioned supervised learning algorithms, TabEl is fo-
cused on cell annotation than on NE column annota-
tion.

Supervised learning based approaches have shown
competitive accuracy when compared to the contem-
porary search based approaches. Yet, the capabili-
ties of a majority of the systems are limited to cell
annotation[25] and column annotation[20–22, 25, 35].
Further, constructing training data for the supervised
learning approaches is a tedious task and often in-
volves a substantial amount of manual work. This is-
sue has been highlighted by Ruemmele et al.[21]. Con-
sidering these limitations, it is apparent that super-
vised learning algorithms lags in the overall STI pro-
cess when compared to search based algorithms.

6.3. Unsupervised Learning based algorithms

Unsupervised learning based approaches have been
used only in a few algorithms[3, 4] through literature.
Interestingly these algorithms are solely focused on the
task of accurately annotating literal columns. In gen-
eral clustering based approaches along with ontology
prepossessing have been employed for achieving the
task.

Neumaier et al.[4] introduces a hierarchical clus-
tering based approach specifically focusing the task
of numeric column annotation. The algorithm initially
obtains classes and corresponding numerical proper-
ties and value sets from DBpedia. By using the inter-
relations among the obtained classes and considering
the property types, a hierarchical cluster is generated.
In the annotation process, the numerical column values
are sampled and compared against the generated clus-
ters using k-nearest neighbour search. Authors show
that this approach work exceptionally well for numeric
columns.

Nguyen et al.[3] proposes a similar system to that
of Neumaier et al.[4], employing Wikidata[34] as the
ontology. In contrast to the previous work, the algo-
rithm is capable of annotating literal columns accu-
rately regardless of the unit of measurement used in
the source table. This is a critical improvement since
previous work rely heavily on the assumption that the
table data would employ the units of measurements as
of the reference ontology. Thus it achieves better accu-
racy in annotating than the predecessors.

Although the aforementioned algorithms consid-
erably improve the annotation accuracy for literal
columns, support for other annotation tasks would
have greatly increased the impact of the algorithm.
Moreover, utilizing the table header annotation ap-
proach within along with the column annotator could
have increased their overall accuracy. Considering the
above factors, unsupervised learning based approaches
can not be considered as comprehensive algorithms for
the STI process.

Table 2 summarizes the algorithms presented above,
focusing on the key analysis points based on the con-
ceptual basis introduced in this paper. Further, it can
be used as a guide for initiating a novel STI algorithm,
with desired capabilities and features. By observing
the table, it is apparent that search based approaches
more concise in overall capabilities in comparison with
the alternate approaches.
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Table 2
Summary of the features and capabilities of notable STI algorithms outlines in Section 6. C - Table as a single class model, N - Table as a set of
classes model

Algorithm Table
Model

Cell
Anno-
tation

Column
Anno-
tation

Table
Anno-
tation

Row
Anno-
tation

Subject
Col-
umn
Iden-
tifica-
tion

Relation
Anno-
tation

Execution Ontology

Search

TableMiner+[2] C X X X X Iterative DBpedia
TABEL[14] N X X X Hybrid Wikitology
T2K Match[15] C X X X X X Iterative DBpedia
TableFinder[13] N X X X Sequential Custom
Wang et al.[5] N X X X Probase
FactBase Look-
up[7]

C X X X X X Hybrid Wikidata

Supervised
Learning

DSL[20] N X Generic
DINT[21] N X Generic
Karma[35] N X Custom
TabEl[25] N X Iterative YAGO

Unsupervised
Learning

Neumaier et
al.[4]

N X DBpedia

Nguyen et al.[3] N X DBpedia

7. Evaluation

In this section we review the evaluation methodol-
ogy adapted in STI algorithms in general and the gold
standards used. Further we present the evaluation of 3
selected algorithms from recent literature in a concise
manner. Finally we provide insights into ways of im-
proving the evaluation methodology in future.

7.1. Evaluation mechanism

The artifacts of the STI process consist of table, its
cells, columns and rows annotated with corresponding
concepts from the ontology. In general, the output is
the URI of the ontology concept and the confidence
score. Based on the focus on the algorithm there could
be minor variations, yet the format agrees across algo-
rithms in an abstract level. Although there are numer-
ous STI algorithms presented in literature, they have
not yet agreed upon a common gold standard for mea-
suring the performance. Hence, in this paper we out-
line 3 popular gold standards observed in the recent
literature.

7.2. Gold standards

Gold standards for evaluating STI algorithms con-
sist of 3 components; (1) the table corpus; (2) annota-

tions; and (2) the ontology. The table corpus is a set
of tables extracted from the web. Tables comprise of
varying properties of cells, rows, columns and charac-
teristics. The ontology in general is a freely available
web ontology, primarily DBPedia[16], YAGO[17],
Freebase[18], and Wikitology[19]. The ontology is
mentioned but not bundled with the gold standards.
We observed 3 gold standards that are commonly used
across literature and outline them in the proceeding
sections.

T2D[37] is one of the largest and comprehensive
gold standards. It is based on the table as a single
class model. The table corpus consist of tables ex-
tracted from the English language subset of the Web
Data Commons Web Table Corpus[38] and DBpedia
is used as the reference ontology. This gold standard
provides annotations for tables, columns and rows. Re-
cently in an attempt to improve the quality of T2D, an
improved version, T2D*[23] was presented. Ermilov
et al. claims that T2D* addresses several shortcomings
of T2D by manually curating the table corpus and the
annotations in it. However T2D* only provides anno-
tations for tables and columns.

DBD[23] (DBpedia Table Data set)1 consist of a ta-
ble corpus generated from DBpedia concise bounded

1https://github.com/aksw/TAIPAN-DBD-Datagen
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descriptions2. Similar to T2D, it follows the table as
a single class model. Apart from table and row anno-
tation is also provide ground truth for subject column
identification. Although the quality of the data and an-
notations is high in DBD, the noise inherent in web
tables is missing.

Limaye et al.[6] presented a manually compiled gold
standard which maps Wikipedia tables to Freebase
concepts. This was later used as a gold standard in sev-
eral works[2, 7]. It consists of 4 parts, and consists
of cell and table annotations. Later [7] improved the
data set by converting the tables to CSV and manually
providing annotations using DBpedia than Freebase3.
Considering the retirement of Freebase, this made the
gold standard available for testing using DBpedia.

Apart from the gold standards outlined above, sev-
eral other data sets have been used across literature for
evaluation purposes. But different algorithms have not
yet agreed upon a common standard for table corpus,
annotation output or the ontology. Initial gold stan-
dards presented tables as HTML[6] or XML[6]. As a
result STI algorithms were required to implement a
parser component for reading the data set. Latter gold
standards introduced the table corpus in CSV[23, 37]
which had comparatively less overhead on the algo-
rithm for parsing the data. Efthymiou et al.[7] con-
tributed to the process by converting both T2D and Li-
maye data sets to JSON format.

7.3. Evaluation Methodology

In literature STI algorithms are predominantly eval-
uated using the confidence of the annotation. For
which Precision (P), Recall (R) and F1 metrics are
used. These metrics are defined[11] as follows,

P =
T P

T P + FP
(4)

R =
T P

T P + FN
(5)

F1 =
2PR

P + R
(6)

2https://www.w3.org/Submission/CBD/
3http://www.cs.toronto.edu/ oktie/webtables

Where TP, FP and FN are the number of true pos-
itives, false positive and and false negatives respec-
tively. Since the annotations are generated table wise
and a given data set contains multiple tables, the final
P, R and F1 scores are given by the micro averages
of the individual metrics of tables. For instance if the
data set contains N tables and the corresponding anno-
tation results are (TP1, FP1,FN1),...,(TPN , FPN , FNN)
respectively, then the micro averaged TP, FP and FN
are defined as,

T P =
T P1 + ...+ T PN

N
(7)

FP =
FP1 + ...+ FPN

N
(8)

FN =
FN1 + ...+ FNN

N
(9)

In Table 3 we present the evaluation results of
3 search based algorithms against T2D and Limaye
gold standards outlined above. The algorithms T2K
Match[15], TableMiner+[8] and FactBase Lookup[7]
are chosen based on their overall capabilities and per-
formance. Moreover these algorithms are considered
as state-of-the-art in the field of STI[39]. The results
are extracted from literature[7, 39] and aggregated to
provide a comprehensive understanding. Precision and
Recall values for TableMiner+ was not found in liter-
ature and hence left empty, but the overall F1 measure
provides comparable insights.

By observing the evaluation results against T2D
gold standard, it is evident that all 3 algorithms per-
form well with F1 scores above 0.80. This can be ex-
plained by the high level of structuredness of the data
set. Limaye data set on the other hand contains tables
extracted from Wikipedia. As a result a majority of the
tables are small and sparse, posing a disadvantage on
the algorithms that rely on sampling rows for annota-
tions. This could be considered as the reason for the
low results of T2K Match in comparison other 2 algo-
rithms. Hence we can consider TableMiner+ and Fact-
Base Lookup as competitive algorithms for STI. Yet
we can not conclude them as the overall best since the
results are highly subjective of the data set evaluated
upon.
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Table 3
Evaluation of T2K Match[15], TableMiner+[8] and FactBase Lookup[7] algorithms against T2D and Limaye data sets

Algorithm
T2D Gold Standard Limaye Gold Standard

P R F1 P R F1

TableMiner+ - - 0.81 - - 0.84
T2K Match 0.90 0.76 0.82 0.70 0.63 0.66
Factbase Lookup 0.88 0.78 0.83 0.84 0.78 0.81

In literature providing the micro averaged values of
all annotations has been the preferred way. Yet we be-
lieve that such results do not provide an accurate in-
sight on the individual annotation performances. As
we observed in table 3 the performance of overall al-
gorithm is subjective to the data set being evaluated on.
Hence evaluating each capability and feature and ca-
pability individually will be a better approach for eval-
uating STI algorithms. Based on the conceptual frame-
work introduced in this paper, we propose the follow-
ing criteria for STI algorithm evaluations.

– Precision, Recall and F1 for cell annotation
– Precision, Recall and F1 for NE column annota-

tion
– Precision, Recall and F1 for literal column anno-

tation
– Precision, Recall and F1 for row annotation
– Precision, Recall and F1 for table annotation
– Percentage of identification of subject column

By following the aforementioned criteria, differ-
ent algorithms can be easily analyzed capability wise
without relying on the overall performance of the al-
gorithm. We believe this would be of immense use for
developing novel approaches for STI by improving the
lacking areas rather than reinventing the overall algo-
rithms.

8. Conclusion and Future Work

This paper introduces a conceptual basis for analyz-
ing STI algorithms, presents a categorical view on re-
cent STI algorithms and analyzes the categories to dis-
cuss the features and limitations of them. The anal-
ysis concludes that search based approaches outper-
form the other categories in the basis of accuracy and
overall completeness. Further observations concludes
that the supervised learning approaches perform well
in annotating NE columns to relatively small, domain
specific ontologies and that the unsupervised learning
based approaches perform well for annotating literal
columns. This paper identifies several challenging as-

pects prevailing in STI. Firstly candidate space selec-
tion with high precision and recall was seen to be an
unresolved challenge across algorithms. Secondly sub-
ject column detection being carried out majorly using
heuristics could impose unexpected bias to the algo-
rithms. Lastly the numerous limitations that exist in the
current evaluation methodology are listed in section 7.

In section 7 we outlined possible improvements for
the evaluation methodology of algorithms. Yet the gold
standards used at present is not equipped to evaluate
all listed criteria. Hence we propose the future direc-
tions to be invested in introducing a gold standard that
could facilitate evaluation of algorithms based on the
whole proposed criteria. Moreover, we recommend to
generalize the format for all future data sets and anno-
tation results as an initiation of standardizing STI gold
standards. We believe that these actions would lead to
progressive development of STI algorithms in future.
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