
Semantic Web 0 (2018) 1–0 1
IOS Press

A comparison of object-triple mapping
frameworks
Martin Ledvinka a,* and Petr Křemen a

a Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická
2, 166 27 Prague 6 - Dejvice, Czech Republic
E-mails: martin.ledvinka@fel.cvut.cz, petr.kremen@fel.cvut.cz

Abstract. Domain-independent information systems like ontology editors provide only limited usability for non-experts when
domain-specific linked data need to be created. On the contrary, domain-specific applications require adequate architecture for
data authoring and validation, typically using the object-oriented paradigm. So far, several frameworks mapping the RDF model
(representing linked data) to the object model have been introduced in the literature. In this paper, we develop a novel framework
for comparison of object-triple mapping solutions in terms of features and performance. For feature comparison, we designed a
set of qualitative criteria reflecting object-oriented application developer’s needs. For the performance comparison, we introduce
a benchmark based on a real-world information system that we implemented using one of the compared OTM solutions – JOPA.
We present a detailed evaluation of a selected set of object-triple mapping libraries and show that they significantly differ both
in terms of features and time and memory performance.

Keywords: Object-triple Mapping, Object-ontological Mapping, Object-oriented Programming, RDF, Benchmark

1. Introduction

The idea of the Semantic Web [1] might not have
seen such an explosive success as the original Web,
but with technology leaders like Facebook1, Google2,
IBM [2] or Microsoft3, as well as emerging national
linked data [3] platforms4, adopting its principles, it
seems it has finally taken root. Semantically mean-
ingful data, which allow to infer implicit knowledge,
described, stored and queried using standardized lan-
guages and interconnected via global identifiers can
provide a huge benefit for application users on many
levels.

*Corresponding author. E-mail: martin.ledvinka@fel.cvut.cz.
1http://ogp.me, accessed 2018-03-01
2https://tinyurl.com/g-knowledge-graph, accessed 2018-03-01
3https://tinyurl.com/ms-concept-graph, accessed 2018-03-01.
4e.g. the Czech linked open data cloud https://linked.opendata.cz,

the Austrian one https://www.data.gv.at/linked-data (both accessed
2018-04-04).

1.1. Motivating scenario

Let’s consider a fictive national civil aviation au-
thority (CAA), which is a public governmental body,
and is obliged to publish its data as open data. The
CAA decides to develop a safety management system
for the oversight of national aviation organizations, in-
volving safety occurrence reporting, safety issues def-
inition, and aviation organization performance dash-
board. The CAA can then concentrate on suspicious
patterns identified by the system (e.g., from frequently
occurring events) during its inspections at the avia-
tion organizations or during safety guidelines prepara-
tion. To establish data and knowledge sharing between
the CAA and the aviation organizations, CAA decides
to share the safety data as 5-star Linked Data [4]. To
achieve this, the system is designed on top of a proper
ontological conceptualization of the domain. This al-
lows capturing safety occurrence reports with deep in-
sight into the actual safety situation, allowing to model
causal dependencies between safety occurrences, de-
scribe event participants, use rich typologies of occur-
rences, aircraft types, etc. Furthermore, integration of

1570-0844/18/$35.00 c© 2018 – IOS Press and the authors. All rights reserved

mailto:martin.ledvinka@fel.cvut.cz
mailto:petr.kremen@fel.cvut.cz
mailto:martin.ledvinka@fel.cvut.cz
http://ogp.me
https://tinyurl.com/g-knowledge-graph
https://tinyurl.com/ms-concept-graph
https://linked.opendata.cz
https://www.data.gv.at/linked-data

2 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

other available Linked Data sources, e.g. a register of
aviation companies (airlines, airports etc.) and aircraft
helps to reveal problematic aviation organizations. A
system with related functionality aimed at the space-
craft accident investigation domain was built at NASA
by Carvalho et al. [5, 6].

To be usable by non-experts, the system is domain
specific, not a generic ontology editor/browser. Design
and development of such an application require effi-
cient access to the underlying data. Using common se-
mantic web libraries like Jena [7] or RDF4J [8] for the
development of the application ends up with a large
amount of boilerplate code, as these libraries work on
the level of triples/statements/axioms and do not pro-
vide frame-based knowledge structures. The solution
is to allow developers to use the well-known object-
oriented paradigm and provide an object-triple map-
ping (OTM) that defines the contract between the ap-
plication and the underlying knowledge structure. For
this purpose, many frameworks appeared trying to of-
fer such a contract. However, these frameworks dif-
fer a lot in their capabilities as well as efficiency, nei-
ther of which is systematically documented. In this sur-
vey paper, we provide a framework for comparing var-
ious OTM solutions in terms of features and perfor-
mance. In addition, we use this framework and try to
systematize the existing OTM approaches with the aim
of helping developers choose the most suitable one for
their use case.

1.2. Contribution

The fundamental question of this paper is: “Which
object-triple mapping solution is suitable for creating
and managing object-oriented applications backed by
an RDF triple store?”. The actual contribution of this
paper can be split into three particular goals:

1. Select a set of qualitative criteria which can be
used to compare object-triple mapping libraries
for their use in object-oriented applications.

2. Design and develop a benchmark for perfor-
mance comparison of object-triple mapping li-
braries. This benchmark should be easy-to-use
and require as little effort as possible to accom-
modate a new library into the comparison.

3. Compare selected object-triple mapping frame-
works in terms of their features and performance.

The remainder of this paper is structured as follows.
Section 2 presents the necessary background on the
RDF language, OTM systems, and Java performance

benchmarks. Section 3 reviews existing approaches to
comparing OTM libraries and benchmarking in the Se-
mantic Web world in general. Section 4 presents the
framework designed in this work. Section 5 introduces
the OTM libraries chosen for the comparison and dis-
cusses the reasons for their selection. Then, Sections 6
and 7 actually compare the selected libraries using the
framework designed in Section 4. The paper is con-
cluded in Section 8. Appendices A.1 and A.2 contain
full reports of time performance, resp. scalability com-
parison.

2. Background

The fundamental standard for the Semantic Web is
the Resource Description Framework (RDF) [9]. It is
a data modeling language built upon the notion of
statements about resources. These statements consist
of three parts, the subject of the description, the pred-
icate describing the subject and the object, i.e., the
predicate value. Such statements – triples – represent
elements of a labeled directed graph, an RDF graph,
where the nodes are resources (IRIs or blank nodes)
or literal values (in the roles of subjects or objects)
and the edges are properties (in the role of predicates)
connecting them. RDF can be serialized in many for-
mats, including RDF/XML, Turtle or N-triples. Taking
an RDF graph and a set of named graphs (RDF graphs
identified by IRIs), we get an RDF dataset.

Listing 1: Turtle serialization of an RDFS schema.

@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs:
<http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix doc: <http://onto.fel.cvut.cz/ontologies/

documentation/>.
@prefix as:
<http://onto.fel.cvut.cz/ontologies/a-s/> .
@prefix ufo:
<http://onto.fel.cvut.cz/ontologies/ufo/> .

doc:documents
a rdf:Property ;
rdfs:range as:occurrence ;
rdfs:domain doc:occurrence_report .

doc:has_file_number
a rdf:Property ;
rdfs:range xsd:long .

as:occurrence
a rdfs:Class ;
rdfs:subClassOf ufo:event .

doc:occurrence_report a rdfs:Class .
ufo:event a rdfs:Class .

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 3

Fig. 1. RDF Graph representing a simple RDFS ontology.

The expressive power of RDF is relatively small. To be
able to create an ontology (a formal, shared conceptu-
alization) of a domain, more expressive languages like
RDF Schema (RDFS) [10], OWL [11] and OWL 2 [12]
were introduced. They extend RDF with constructs
like classes, domains and ranges of properties, and
class or property restrictions. A simplistic example of
an RDFS ontological schema can be seen in Figure 1,
its serialization in Turtle [13] is then displayed in List-
ing 1. An important feature of the Semantic Web is
also that RDF is used to represent both the schema and
the actual data.

The SPARQL Query Language (SPARQL) [14] and
SPARQL Update [15] are standardized languages used
to query and manipulate RDF data. A SPARQL query
example is shown in Listing 2; it selects all classes and,
if present, also their immediate super types.

Listing 2: A SPARQL query example.

PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:
<http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?cls ?supcls WHERE {
?cls a rdfs:Class .
OPTIONAL {

?cls rdfs:subClassOf ?supcls .
}

}

The primary focus of this paper (as well as most of
the discussed OTM solutions) is on RDFS. However,
OWL (2) is referenced in several places to provide fur-
ther context.

2.1. Accessing semantic data

Ontological data are typically stored in dedicated
semantic databases or triple stores, such as RDF4J [8],
GraphDB [16] or Virtuoso [17]. To be able to make
use of these data, an application needs means of
accessing the underlying triple store. Unfortunately,
there is no common standard for accessing a semantic
database (like ODBC [18] for relational database ac-
cess). This lack of standardization gave rise to multiple
approaches and libraries that can be basically split into
two categories (as discussed in [19]):

Domain-independent libraries like Jena [7], OWL
API [20] or RDF4J (former Sesame API) [8].
Such libraries are suitable for generic tools like
ontology editors or vocabulary explorers that do
not make any assumptions about the ontology be-
hind the data the application works with.

Domain-specific libraries, like AliBaba [21], Em-
pire [22] or JOPA [23] are examples of libraries
which employ some form of object-triple (OTM)
(or object-ontological (OOM)) mapping to map
semantic data to domain-specific objects, binding
the application with some assumption about the
form of data.

Domain-specific libraries are more suitable for cre-
ating object-oriented applications. Such applications
express the domain model in the form of object classes,
and their properties (attributes or relationships). OTM,
in this case, allows to automatically map the notions
from the object-oriented realm to the semantic data
model and vice versa. Domain-independent libraries
perform no such thing. They treat the underlying data
at the same level as the RDF language, i.e. at the
level of statements, without any assumption about their
meaning. Therefore, a domain-specific application at-
tempting to use such libraries would either need to treat
its data in the same manner, which makes it extremely
difficult to understand, develop and maintain; or the
developer would end up writing his own version of an
object-triple mapping library. Either way, it is more fa-
vorable to leverage dedicated object-triple mapping so-
lutions. In addition, some OTM frameworks allow ac-
cessing various data sources in a unified way, support
transactional processing and compile-time checking of
correct model usage. Table 1 shows a simplified map-
ping considered by the majority of the OTM frame-
works between RDF(S) terms and object model arti-
facts. We shall use these notions throughout this paper.

4 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

Table 1

Simplified mapping between RDF(S) terms and object model
artifacts

Ontology Object

RDFS class Entity class

RDF property Attribute

RDFS class instance Entity (object)

An analogous division is used in [24] where in-
direct and direct models correspond to the domain-
independent and domain-specific approaches respec-
tively. The authors argue that direct models are more
suitable for domain-specific applications and propose a
hybrid approach, where parts of the application model
are domain independent and parts are domain specific.

The difference between domain-independent and
domain-specific libraries is similar to the difference
between JDBC [25] and JPA [26] in the relational
database world. JDBC is a row-based access technol-
ogy, which requires a lot of boilerplate code. In addi-
tion, not all databases fully adhere to the SQL5 stan-
dard, so using JDBC, which is based on SQL, may
bring compatibility issues. JPA, on the other hand, pro-
vides object-relational mapping (ORM) and makes ac-
cess to various databases transparent.

There exists a number of OTM frameworks. How-
ever, the user base of these libraries is still relatively
small, which is reflected in the small amount of infor-
mation available about them. Some libraries are tied
to a specific underlying storage, others’ APIs do not
reflect the specifics of access to semantic data. Ulti-
mately, one would like to be able to determine which
of the libraries is the most suitable for his/her object-
oriented application.

2.2. Performance benchmarking in Java

As was already stated, the developed comparison
framework consists of a set of qualitative criteria and a
performance benchmark. The benchmark is written in
Java, which is hardly a surprise since Java is the most
prominent language in the Semantic Web community.
Therefore, approaches to performance testing in Java
were also reviewed.

Java-based performance testing has certain specifics,
which are given by the nature of the Java platform,
where each program is compiled into an intermedi-

5Structured Query Language, a data query, definition, manipula-
tion and control language for relational databases.

ate language – the bytecode – and interpreted at run-
time by the Java virtual machine (JVM). JVM is able
to optimize frequently executed parts of the running
program. These optimizations occur during execution
of the application. JVM also automatically manages
application memory via a mechanism called garbage
collection which automatically frees memory that is
no longer required by the application because objects
occupying the memory are no longer referenced. Of
course, if the application forgets to discard objects it
does not use anymore – it has a so-called memory
leak – it may eventually run out of free memory. Al-
though garbage collection is nowadays extremely effi-
cient, it still requires CPU time and may influence the
application performance. Java benchmarks thus usu-
ally take into account application throughput and its
dependence on the amount of memory available (heap
size). The best known benchmarks in this area are
SPEC [27] and DaCapo [28]. DaCapo measures appli-
cation throughput w.r.t. heap size. In addition, it sam-
ples heap occupation and composition and new ob-
ject allocation rate. The authors of [29] count garbage
collection events and the time JVM spends executing
them.

Generally, when benchmarking Java applications, it
is necessary to execute a warm-up period, which al-
lows JVM to perform code optimizations because oth-
erwise, the results could register a significant speedup
after the initial unoptimized phase. Georges et al. [30]
discuss further practices for executing Java application
benchmarks and interpreting their results, introducing
a statistically rigorous methodology for Java bench-
marking. Their methodology was also used in the ex-
periments in this work.

3. Related work

This section overviews related existing approaches.
First, we present existing object-triple mapping library
comparisons (both feature and performance-wise) and
then take a look at established storage benchmarks and
discuss how our benchmark framework complements
them.

There are very few comparisons of OTM libraries.
Most benchmarks and comparisons concentrate on the
underlying storage and its performance. While this is
certainly a very important aspect, one needs to be able
to make a qualified decision when choosing from a
set of object-triple mapping frameworks. Holanda et
al. [31] provide a performance comparison between

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 5

their framework JOINT-DE and AliBaba. However,
their benchmark uses a minimalistic model (create op-
eration works with a single entity with one string at-
tribute) and no other library is taken into account.
Cristofaro [32] provides a short feature comparison of
various OTM libraries supporting the Virtuoso storage
server [17]. A more recent and elaborate feature-based
comparison can be found in [33] which compares a
set of selected libraries from the point of development
activity, documentation, ease of use and querying ca-
pabilities. In [34], authors of the well-known LUBM
benchmark [35] do not present any actual comparison,
but they introduce a set of requirements a Semantic
Web knowledge base system benchmark should fulfill.
Although they again target mainly semantic database
benchmarks, the criteria defined in their article apply
to a large extent to this work as well and their satisfac-
tion will be shown in Section 4.

The number of benchmarks comparing storage sys-
tems is, on the other hand, relatively large6. The best
known benchmarks in this area are the Berlin SPARQL
Benchmark [36], LUBM [35] and UOBM [37]. These
benchmarks evaluate the performance of the storage
engines and, in case of the more expressive LUBM and
UOBM, also allow to compare the engines in terms
of their inference capabilities. Our work in [38] repre-
sents a step towards the application-oriented usage be-
cause it leverages the UOBM model and data and uses
a set of queries specifically designed to simulate the
behavior of OTM libraries. All these benchmarks use
the SPARQL endpoint provided by the evaluated sys-
tem, which makes them easy to apply to various stor-
age technologies. The benchmark developed here con-
centrates more on the overhead OTM libraries repre-
sent on top of the storage execution time. That is why,
in Section 5, only one underlying storage was used to
eliminate its influence on the results.

4. Design of the comparison framework

This section introduces the comparison framework
which consists of two parts:

1. A set of criteria used to evaluate the features sup-
ported by the compared libraries.

2. A performance benchmark.

6See for example the list at https://www.w3.org/wiki/
RdfStoreBenchmarking, accessed 2018-01-02.

4.1. Feature criteria

We have designed a set of criteria, which can be used
to evaluate an OTM library’s suitability in a particu-
lar use case. The criteria can be split into three main
categories:

General (GC) General criteria are based on the prin-
ciples known from application development and
relevant object-relational mapping features.

Ontology-specific (OC) These criteria take into ac-
count specific features of the Semantic Web lan-
guage stack based on RDF and its design. They
are not specific to OTM libraries and could be ap-
plied to libraries used to access semantic data in
general.

Mapping (MC) Mapping criteria concern important
techniques used for the object-triple mapping.
They are motivated by the differences of ontolo-
gies on the one side and the object-model on the
other side [39].

The selection is based on existing knowledge from
other domains (e.g. ORM), literature and our own ex-
perience with developing ontology-based applications.
We intended to incorporate also other ontology-based
information systems, but we were not able to find pub-
licly available source code of any ontology-based ap-
plication which uses an OTM library. For each crite-
rion, we describe its genesis, as well as the condition
under which we consider the criterion to be satisfied.

GC1 – Transactions Transactional processing, i.e.
splitting work into individual, indivisible operations,
is one of the fundamental paradigms of computer sci-
ence [40]. It originated in databases, but, due to its
universally applicable principles, it is used throughout
information systems with various levels of granular-
ity. Nevertheless, support for transactions is one of the
main features an OTM library has to provide, be it us-
ing an internal transaction engine or relying on the un-
derlying storage.

Transactions are characterized by the ACID acronym,
which stands for Atomicity of the transaction, eventual
Consistency of data, Isolation of concurrent transac-
tions and Durability of the transaction results. Given
the complex nature of transaction isolation, where sev-
eral isolation levels exist7, and the lack of its treatment
in all evaluated tools, our goal when examining trans-

7E.g. https://tinyurl.com/transaction-isolation, accessed 2018-03-
01.

https://www.w3.org/wiki/RdfStoreBenchmarking
https://www.w3.org/wiki/RdfStoreBenchmarking
https://tinyurl.com/transaction-isolation

6 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

actional support in the OTM libraries is to evaluate
their implementation of ACD.

Fully satisfied if: The library supports ACD user-
controlled transactions.

GC2 – Storage access variability Storage access
variability refers to the library’s ability to connect
to semantic storages of various vendors. While ap-
plication access to relational databases is standard-
ized in two ways – the Open Database Connectivity
(ODBC) [18] is a platform-independent database ac-
cess API; the Java Database Connectivity (JDBC) [25]
is a Java-based database access API (a JDBC driver
can use an ODBC driver internally) – the semantic
world lacks a corresponding standard. For instance, al-
though RDF4J-based access is supported by most of
the industry’s biggest repository developers, it is not
possible to use it to connect to a Jena SDB store, which
is backed by a relational database. To allow access to
different storages, the OTM framework has to account
for this either by having modules for access to various
storages or by defining an API whose implementations
would provide access to the repositories. Another pos-
sibility, although probably not very efficient, could be
accessing a storage using a SPARQL [41] or Linked
Data Platform [42] endpoint.

Fully satisfied if: The library supports connecting
to a triple store by means of at least two different APIs
(e.g. Jena, RDF4J) or via a generic SPARQL endpoint
API.

GC3 – Query result mapping Besides reading in-
dividual instances with known identifiers, it is often
necessary to read a set of instances corresponding to
some search criteria (for example, read all reports with
the given severity assessment which document events
that occurred during the last month). Naturally, map-
ping of SPARQL query results to objects is expected,
as SPARQL is the standard query language for the
Semantic Web, but other languages like SeRQL (a
Sesame query language) can be supported. A similar
feature is supported by JPA [26], where SQL results
can be mapped to entities or dedicated Java objects.

Fully satisfied if: SPARQL query results can be
declaratively mapped to a business-level object model
(entities).

GC4 – Object-level query language Related to GC3
is the question of query languages supported by the
OTM library. While SPARQL is adequate in most sit-
uations, it can be cumbersome to work with, espe-
cially given the fact that one has to deal with IRIs

and prefixes. When querying the data from an object-
oriented application, it is convenient to be able to lever-
age the object model in the queries. This is again sup-
ported by JPA [26], where one can use the Java Per-
sistence Query Language (JQPL) – a query language
with SQL-like syntax but exploiting classes, attributes,
and relationships instead of tables and columns. Fur-
thermore, it also defines the Criteria API, which al-
lows one to construct queries dynamically at runtime
using builder objects. Criteria API is especially suit-
able when a large number of optional filtering criteria
can be used in the query and juggling with string con-
catenation would be difficult and error-prone. In addi-
tion, Criteria API provides the benefit of compile-time
syntax checking, because it uses regular Java classes
and methods.

Prototypical solutions already exist in the Semantic
Web community. For instance, Hillairet et al. [43] use
the Hibernate Query Language, an implementation of
the standard Object Query Language [44] (OQL)8 used
by one of the most popular ORM vendors, to translate
queries to/from SPARQL. Stadler and Lehmann [45],
on the other hand, present an engine rewriting Criteria
API queries to SPARQL.

Fully satisfied if: The library provides an object
model-based query language which can be used to ac-
cess the data (e.g., like JPQL).

GC5 – Detached objects As pointed out in [31], ap-
plications need to be able to detach persistent objects
from their connection to the storage in order to work
with them, for instance when the entity is passed up
through web application’s layers and transferred over
the network in response to a client request or stored
in an application-level cache. The opposite (an object
which is always managed) can lead to an excessive
amount of retained connections to the storage, block-
ing the resources of the machine. The difference be-
tween detached and managed entities is indeed in that
managed entities are tracked by the persistence library,
which watches for changes in these objects.

Fully satisfied if: The persistence framework allows
to attach/detach objects to/from the repository connec-
tion.

GC6 – Code/ontology generator Setting up a database
schema or an object model may seem like a one-time
work, but as the application evolves, so does often the
schema. Keeping both the ontology schema and the

8JPQL is another implementation of a subset of OQL.

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 7

object model in sync automatically can spare the de-
veloper a decent amount of time and bugs (e.g., a typo
in an IRI). For this reason, JPA allows one to gen-
erate database schema from an object model [26]. In
addition, many JPA implementations support also the
converse – generating an object model from database
tables. There also exist libraries like Owl2Java [46]
which allow generating an object model from an ontol-
ogy. To this end, three approaches to object model vs
ontology schema transformation are discussed in [47]
– manual mapping of an object model, its automatic
generation from an ontological schema and a hybrid
approach, which the authors deem most useful based
on its correctness/efficiency ratio. In the hybrid sce-
nario, a basic model is generated automatically and the
developer then fine tunes it manually. Conversely, one
could start with an object model, generate an ontol-
ogy schema from it and continue extending the schema
further.

Fully satisfied if: The library provides a generator
to synchronize the object model with the ontology.

OC1 – Explicit inference treatment Whether a state-
ment is asserted or inferred is not distinguishable from
the formal point of view [48]. However, application
developers need to use the information whether an at-
tribute value is asserted/inferred to properly design ap-
plication logic. The main reason is that inferred state-
ments can only be modified through asserted state-
ments. For instance, it is perfectly fine to remove a
statement about an instance’s type. However, if the
type is inferred (e.g. because of a property range decla-
ration), one cannot simply go and delete it, it is neces-
sary to modify the statements upon which the inference
is based. An OTM library has to deal with such sit-
uations consistently, e.g. by preventing modifications
of inferred values. This issue would be even more im-
portant for OWL-based libraries because OWL is more
expressive than RDFS and it allows richer inference.

Fully satisfied if: The library distinguishes handling
of inferred and asserted statements.

OC2 – Named graphs Named graphs [49] are an im-
portant feature of RDF, as they allow to split RDF data
into meaningful and identifiable parts inside an RDF
dataset. Although there exist different semantics for
treatment of named graphs, triple stores mostly adopt
the one where the dataset’s default graph represents a
union or merge of its named graphs [50]. This strategy
makes named graphs suitable for the logical structur-
ing of data. Consider a company repository containing
information about projects, business contracts and em-

ployees. It is sensible to let the employees occupy a
different named graph than projects, possibly together
with different degrees of access control.

Fully satisfied if: The OTM framework provides a
way to access different graphs (default graph as well
as named graphs) of an RDF dataset.

OC3 – Automatic provenance management RDF al-
lows to record provenance information about the data
using the RDF reification vocabulary [10]. This ap-
proach, although not without flaws [51], provides an
interesting alternative to auditing in JPA, which is
not standardized and is done by various libraries in
an ad hoc manner. Quasthoff and Meinel [52] intro-
duce a prototype which is able to generate provenance
data in RDF processing, more specifically, it connects
newly created statements to triples upon which they
are based. We can formulate an example of benefits of
automatic provenance tracking in terms of the bench-
mark model introduced later in Section 4.2.1 – instead
of manually assigning the last editor or author of a re-
port, the OTM could set it based on user session infor-
mation available in the application.

Fully satisfied if: The library provides a config-
urable way to automatically generate provenance data
about operations performed by the library, including
the operation originator and time frame.

MC1 – Inheritance mapping Class hierarchies rep-
resent a major component of every domain concep-
tualization. Although RDFS does not support ad-
vanced class declaration expressions like disjointness,
intersection or union, which are part of OWL [11],
it allows building class hierarchies using the RDFS
subClassOf property. When mapping class hierar-
chies to an object model, the developer may encounter
one technical issue: some programming languages, in-
cluding Java, do not support multiple inheritance on
the class level, whereas RDFS does. This is often re-
solved using interfaces, which do not have this restric-
tion.

Mapping ontological inheritance to an object model
actually brings subtle conceptual issues. For example,
consider an ontology containing the following state-
ments:

@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs:
<http://www.w3.org/2000/01/rdf-schema#> .
@prefix ex:
<http://onto.fel.cvut.cz/ontologies/example/> .

ex:A rdf:type rdfs:Class.
ex:B rdf:type rdfs:Class; rdfs:subClassOf ex:A.

8 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

ex:C rdf:type rdfs:Class; rdfs:subClassOf ex:A.
ex:a rdf:type ex:B, ex:C.

An application that would attempt to load an entity
a (mapped to an RDFS class instance ex:a) as an
instance of an entity class A9 (mapped to an RDFS
class ex:A) might experience the following three
problematic scenarios:

1. If inference is not enabled in the storage, ex:a
is not an instance of ex:A so a cannot be loaded
as an instance of A.

2. If inference is enabled and the application at-
tempts to remove the loaded entity a of entity
class A, it will in effect attempt to remove an in-
ferred class assertion ex:a rdf:type ex:A.

3. The OTM library might attempt to look for an
explicit class assertion in the same RDFS class
inheritance hierarchy. However, that would lead
to an ambiguous result because both
ex:a rdf:type ex:B and
ex:a rdf:type ex:C are explicit class asser-
tions, but they are at the same level in the hierar-
chy.

Thus, OTM frameworks need to support inheritance
mapping due to its ubiquity, yet attention has to be paid
to its treatment.

Fully satisfied if: The library supports both single-
class and multiple-class inheritance mapping.

MC2 – Unmapped data access An application’s ob-
ject model may represent only a part of the domain
ontology. Similarly, one may start building an appli-
cation using a simplified object model and gradually
extend its coverage of the underlying ontology. Yet,
there exist situations in which access to the portion of
the ontology not mapped by the object model may be
required. Consider an aviation safety occurrence re-
porting application (will be discussed in the next sec-
tion) based on an aviation safety occurrence report-
ing ontology which extends a generic safety report-
ing ontology [53]. The generic safety ontology can be
used for other high-risk industries such as power en-
gineering, railroad transportation, etc. There may ex-
ist an application which allows browsing safety occur-
rence reports from different industries using an object
model based on the generic ontology. Yet, the applica-
tion could provide access to the industry-specific prop-

9We shall use the sans serif font to express object language con-
structs throughout this work.

erty values without them being mapped by the object
model.

Another example of the benefits of accessing un-
mapped ontological data is ontology-based classifica-
tion. In the aviation safety reporting tool, events can
be classified using RDFS classes from a predefined vo-
cabulary [54]. However, the application does not need
to map these classes in order to use them if the OTM
library allows access to these unmapped types.

Fully satisfied if: The library allows to access data
which are not mapped by the OTM into the object
model.

MC3 – RDF collections and containers By default,
all RDF properties are plural. In addition, RDF does
not impose any kind of ordering restriction on their
values, giving them effectively the semantics of a
mathematical set. RDF defines the notions of contain-
ers and collections, which allow to represent groups of
values with different kinds of semantics. For instance,
an RDF container rdf:Seq represents an ordered un-
bounded sequence of elements [10]. On the other hand,
an RDF collection rdf:List is a sequence of ele-
ments with a known length [10]. Lists (or sequences of
data in general) are ubiquitous in programming, so it is
important to support mapping of such RDF structures.

Fully satisfied if: The library allows to manage both
RDF collections and containers.

4.2. Performance benchmark

To provide a full picture of the OTM libraries, we
complement the (qualitative) feature comparison with
a (quantitative) performance comparison. To make the
comparison more usable and repeatable, it was decided
to design a benchmark framework which could be used
to compare as large variety of OTM libraries as possi-
ble.

As [34] and [55] point out, a benchmark should
aim at simulating real-world conditions as much as
possible, especially avoiding microbenchmarks, which
are easy to get wrong. Luckily, we had an experience
of developing ontology-based safety information solu-
tions for the aviation domain in the INBAS10 and B-
INBAS11 projects. A part of these solutions is a safety
occurrence reporting tool (RT)12. RT is a web applica-

10https://www.inbas.cz, accessed 2018-01-03.
11https://www.inbas.cz/web/binbas, accessed 2018-01-06.
12Source code is available at https://github.com/kbss-cvut/

reporting-tool, accessed 2018-01-06.

https://www.inbas.cz
https://www.inbas.cz/web/binbas
https://github.com/kbss-cvut/reporting-tool
https://github.com/kbss-cvut/reporting-tool

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 9

tion written in Java, backed by ontologies and ontolog-
ical data and its functionality and model were used as
a base for the benchmark framework. One might ask
why we did not reuse the object model and data gen-
erator from one of the established benchmarks. There
are several reasons for this decision. As far as the gen-
erator is concerned, the main goal was to restrict un-
wanted randomization. We wanted the benchmark to
generate precise numbers of instances so that all the li-
braries would have the same conditions. Also, the gen-
erator had to create object instances, whereas, for ex-
ample, the LUBM generator outputs RDF. The model
is based on a real-world application, it is small enough
to enable adaptation to new benchmarked libraries, yet
it exercises most of the common mapping features (de-
scribed in Section 4.2.1).

4.2.1. Benchmark model
We took an excerpt of the RT model and modified it

by removing some of the attributes which use features
already present in other parts of the model. It is built
upon a conceptualization of the aviation domain called
the Aviation Safety Ontology [56] which is based on
the Unified Foundational Ontology (UFO) [57]. RDFS
serialization of the model ontology is visualized in Fig-
ure 2.

The goal of the benchmark is to exercise both com-
mon mapping features known from JPA and other fea-
tures specific to OTM revealed in our experience with
building ontology-based applications. Therefore, the
model contains both singular and plural relationships,
properties with literal values, inheritance, and refer-
ences to resources not mapped by the object model (the
ufo:has_event_type property references an ex-
ternal vocabulary, a doc:logical_record refer-
ences an unmapped doc:question-doc:answer
tree). The last point illustrates how the object model
can be connected to a larger domain model, which ex-
ceeds the application’s area of operation. The corre-
sponding object model is illustrated in Figure 3.

We conclude this part with a remark regarding in-
stance identifiers. The identifier attribute was not in-
cluded in declarations of the entity classes in the model
because various libraries use various types for the iden-
tifier, e.g. String, URI or a vendor-specific class. More-
over, since some of the libraries do not make a mapped
object’s identifier (the RDF resource) accessible at
all, a key property was added, which explicitly spec-
ifies a unique identifier of the instance. The notion
of a unique key identifying an instance was formal-
ized in the OWL 2 specification [12] in the form of

owl:hasKey axioms. In contrast to them, our key
has no formal semantics and its uniqueness is purely
conventional. It is used to find matching objects when
verifying operation results.

4.2.2. Benchmark operations
The set of operations executed by the benchmark is

supposed to represent a common domain-specific ap-
plication scenario. Therefore, the scenarios include a
basic set of create, retrieve, update and delete (CRUD)
operations, plus a batch persist and a find all query.
The CRUD operations represent a typical form of op-
eration of a business application, where data are per-
sisted, updated, queried and occasionally deleted. The
find all query is another example, where the user re-
quests a list of all instances of some type, e.g., for a
table of all reports in the system. The batch persist, on
the other hand, may represent a larger amount of data
being imported by an application at once.

Each operation consists of three phases; it has op-
tional set up and tear down phases, which are not mea-
sured but are used to prepare test data and verify re-
sults respectively. Between these optional phases is the
actual execution phase, duration of which is measured.
Test data are generated before each operation.

OP1 – Create OP1 represents a typical operation
performed by a domain-specific business application.
It creates an object graph centered around some en-
tity (an OccurrenceReport instance in this case) and
then persists it. This simulates data being received for
instance via REST services, connecting them to the
logged-in user and persisting them into the repository.
To make the results more representative, this transac-
tion is repeated multiple times for separately created
objects – a longer runtime reduces the influence of
things like just-in-time compilation, garbage collection
and possibly imprecise small-scale time measurement
in JVM. The operation specification is as follows:

1. Set up Persist Person instances to allow newly
created reports to connect to them (simulating in-
terconnection of existing and newly added data).

2. Execution Assign a random author and last editor
to the generated reports and persist all of them in
separate transactions.

3. Tear down Verify the persisted data.

OP2 – Batch create As was already stated, the batch
create operation represents for example data being im-
ported or processed by an application in one transac-
tion. Thus, the mode of operation is almost the same

10 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

Fig. 2. Benchmark ontology visualization. Rectangles with solid line represent RDFS classes, rectangles with dotted line denote literal datatypes
and ellipses are RDF properties used as RDF triple subjects/object. Each edge represents an RDF triple with a source/target node label represent-
ing the triple subject/object and the edge label representing the triple predicate. Unlabeled edges ended with a hollow arrow denote triples with
the rdfs:subClassOf predicate. Prefixes ufo, as, doc,xsd,rdf and rdfs have been introduced in Listing 1. Prefix dc denotes the Dublin
Core namespace http://purl.org/dc/terms/, prefix foaf denotes the FOAF namespace http://xmlns.com/foaf/0.1/ and
rt denotes an application specific namespace http://onto.fel.cvut.cz/ontologies/reporting-tool.

as OP1, only now all the entities are persisted in one
large transaction.

1. Set up Persist Person instances to allow newly
created reports to connect to them (simulating in-
terconnection of existing and newly added data).

2. Execution Assign a random author and last editor
to the generated reports and persist all of them in
one large transaction.

3. Tear down Verify the persisted data.

OP3 – Retrieve OP3 stands for the application re-
questing a specific entity together with its object graph
(an instance and its property values in RDF terms).
Again, to increase the clarity of the measurement, mul-
tiple objects are read one by one. This operation also
verifies that all the required data were loaded by the
persistence library.

1. Set up Persist test data using the same process
described in set up and execution of OP2.

2. Execution Iterate through all existing reports,
read each report using the existing report’s iden-
tifier. Verify that the loaded report corresponds to
the existing one.

OP4 – Retrieve all A “find all instances of a type”
query is a typical operation for many applications.
Its implementations can vary. Some libraries sup-
port mapping SPARQL query results to objects, so a
SPARQL SELECT query is used, others contain such
a method directly in their API. The goal is ultimately
the same – retrieve a relatively large amount of entities
together with their references at once.

1. Set up Persist test data using the same process
described in set up of OP3.

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 11

m o d e l 2018/05/23 powered by Astah

 pkg

− contacts : Set<String>
− password : String
− username : String
− lastName : String
− firstName : String

Person

− eventType : URI
− endTime : Date
− startTime : Date

Event

− name : String

Occurrence

*

1

subEvents

− summary : String
− revision : int
− lastModified : Date
− dateCreated : Date
− severityAssessment : int
− fileNumber : long

OccurrenceReport

0..1

*

lastModifiedBy
1

*author

− description : String
− identifier : String

Resource

*

1

attachments

11

occurrence

Fig. 3. UML class diagram of the benchmark model.

2. Execution Read all reports and verify them. If the
library API provides a dedicated method for this
task, use it. Otherwise, use a SPARQL SELECT
query.

OP5 – Update Update merges a modified entity into
the repository. Several of its attributes and attributes
of objects it references are updated, with both literal
values and references to other objects being changed.
Also, a reference to a new object that needs to be per-
sisted is added. This operation is done in a single trans-
action. Several objects are updated in this way.

1. Set up Persist test data using the same process
described in set up of OP3.

2. Execution For one half of the existing reports,
perform the following updates (each object in a
separate transaction):

– set a different last editor (singular reference at-
tribute) and last modified date (singular date-
time attribute),

– change occurrence name (singular string at-
tribute),

– change severity assessment (singular integer
attribute),

– increment revision number by one (singular
integer attribute),

– add a newly generated attachment (plural ref-
erence attribute),

and merge the updated entity into the repository.
3. Tear down Verify the updates.

OP6 – Delete While modern triple stores do not par-
ticularly concentrate on removal operations since stor-
age capacity is relatively cheap and many systems
tend to create new versions instead of modifying ex-
isting data, business applications sometimes need to
delete data, e.g. for privacy or security reasons. OP6
simulates precisely this situation, where an object is
deleted, including its references. Once again, multiple
objects are deleted in separate transactions to improve
result robustness.

1. Set up Persist test data using the same process
described in set up of OP3.

2. Execution Delete one half of the existing re-
ports, including their dependencies, i.e. every-
thing from their object graph except the author
and last editor.

3. Tear down Verify that all relevant data were re-
moved.

A benchmark runner is used to execute the opera-
tions according to a configuration. The runner collects
a number of statistics:

– The fastest and slowest round execution time,
– Mean round execution time,
– Q1, Q2 (median) and Q3 of round execution

times,
– Total execution time,
– Standard deviation of round execution times.

In addition, it allows a file to be configured into which
raw execution times for rounds are output so that they
can be further analyzed.

The whole benchmark framework is available on-
line13. Table 2 shows conformance of the compari-
son framework developed here to the Semantic Web
knowledge base system benchmark requirements de-
fined in [34] and discussed in Section 3.

5. Libraries selected for comparison

In this section, we introduce the frameworks se-
lected for the comparison. Several OTM libraries were

13https://kbss.felk.cvut.cz/gitblit/summary/otm-benchmark.git,
accessed 2018-05-22.

https://kbss.felk.cvut.cz/gitblit/summary/otm-benchmark.git

12 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

Table 2

Evaluation of benchmark criteria defined in [34] on our benchmark. SUT stands for system under test

Req# Description Evaluation

G1 Scalability The data generator allows generation of datasets of arbitrary size.

G2 Broad architectural scope The comparison framework is platform and storage independent. The benchmark requires
Java.

G3 Easy to add new SUT The benchmark API requires implementation of approximately ten short classes to add a
new SUT.

G4 Meaningful metrics The benchmark collects commonly used performance metrics and statistics (mean, stan-
dard deviation etc.).

G5 Controlled measurements Data generation is repeatable, warm-up period is included and configurable.

S1 Real-world workload The benchmark measures performance of typical domain-specific object-oriented appli-
cation operations.

S2 Metrics supporting various (possi-
bly conflicting) requirements

The benchmark measures execution time and memory consumption. Plus it provides
feature comparison criteria.

S3 Metrics capture result conformance
to expectations

Not fully applicable (original intention was for inference completeness/soundness). The
benchmark verifies correct results of the operations against predefined data.

selected based on their popularity, level of matu-
rity and development activity – libraries with latest
changes older than five years were omitted. The fea-
ture comparison is platform agnostic, so a diverse set
of libraries was chosen:

– ActiveRDF
– AliBaba
– AutoRDF
– Empire
– JAOB
– JOPA
– KOMMA
– RDFBeans
– RDFReactor
– The Semantic Framework
– Spira
– SuRF

However, since the benchmark part of the compar-
ison framework is based on Java, only Java OTM li-
braries were evaluated so that platform specifics (e.g.
code being compiled to native code like in C++, to
bytecode like in Java/C# or directly interpreted like
in Ruby) do not influence the results. The selection
is further narrowed by requiring the libraries to sup-
port triple store access – using plain RDF files for real-
world applications is not suitable in terms of perfor-
mance and data management. Finally, to improve the
comparability, we decided to concentrate only on li-
braries which support access to a single triple store.

This eliminates the influence of the storage technol-
ogy and its implementation on the performance bench-
mark, where e.g. a Jena relational database-based stor-
age could have different performance characteristics
than an RDF4J storage. We picked RDF4J14 [8] be-
cause the amount of mature tools for it is the greatest,
including industry-grade storage implementations like
GraphDB [16]. As a result, the following libraries were
evaluated in the benchmark:

– AliBaba
– Empire
– JOPA
– KOMMA
– RDFBeans

RDFReactor was a candidate for the performance
benchmark as well, but its RDF4J/Sesame storage con-
nector works only with an embedded in-memory store
and cannot connect to a remote repository. Thus, it was
excluded from the benchmark selection.

The mapping in the selected Java libraries is real-
ized via annotations which specify the mapping of Java
entity classes to RDFS classes and attributes to RDF
properties. Listing 3 shows an example entity class
declaration in Empire.

14Since RDF4J is an evolution of the Sesame API, we will use
the terms interchangeably throughout this paper. We will stress the
difference when necessary.

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 13

Listing 3: Example of an Empire Java entity class with
annotations specifying mapping to the RDF(S) data
model. Getters and setters are methods used to get and
set the values of attributes respectively.

@Entity
@Namespaces({"as",
"http://onto.fel.cvut.cz/ontologies/a−s/",
"ufo","http://onto.fel.cvut.cz/ontologies/ufo/",
"rt", "http://onto.fel.cvut.cz/ontologies/reporting−tool/"})
@RdfsClass("ufo:event")
public class Event implements SupportsRdfId {

@RdfProperty("as:has_start_time")
private Date startTime;

@RdfProperty("as:has_end_time")
private Date endTime;

@OneToMany(fetch = FetchType.EAGER, cascade = CascadeType.ALL)
@RdfProperty("ufo:has_part")
private Set<Event> subEvents;

@RdfProperty("rt:has_event_type")
private URI eventType;

// Getters and setters follow
}

The following paragraphs introduce all the evalu-
ated OTM frameworks.

5.1. ActiveRDF

ActiveRDF [58] is an object-oriented API for Se-
mantic Web data written in Ruby. It is built around the
premise that dynamically-typed languages like Ruby
are more suitable for semantic data representation be-
cause, like RDF, they do not require objects to con-
form to a specific class prescription. ActiveRDF rep-
resents resources by object proxies, attaching to them
methods representing properties. Calling these meth-
ods translates to read/write queries to the storage. In
addition, it supports an object-oriented query syntax
based on PathLog [59] and is able to actually generate
convenience filter methods automatically.

In fact, ActiveRDF is not a typical OTM frame-
work like AliBaba or Empire, where RDFS classes
are mapped to entity classes. Instead, it treats RDF
resources as objects to which it dynamically attaches
methods corresponding to their properties. One caveat
of the highly dynamic nature of ActiveRDF is pointed
out in [60] – it does not offer type correctness and ty-
pographical error verification present in libraries based
on statically-typed languages such as Java.

5.2. AliBaba

AliBaba [21] is a Java framework for developing
complex RDF-based applications. It is an evolution

of the Elmo [61] library. AliBaba is an extension to
the original Sesame API, so it supports only storages
accessible via a Sesame/RDF4J connector. Its API is
centered around an ObjectConnection, which allows
to persist and retrieve objects mapped by AliBaba’s
OTM. It uses dynamically generated proxy objects to
track updates. AliBaba also allows to use SPARQL
queries to support more complex strategies of mapping
values to Java attributes. On the other hand, the entities
managed by AliBaba are not able to store IRIs of the
resources they represent, which is a severe limitation
requiring the developer to maintain a map of objects
and identifiers externally.

In addition to OTM, AliBaba contains an HTTP
server which can automatically make resources acces-
sible as REST services, providing querying, inserting
and deleting capabilities.

5.3. AutoRDF

AutoRDF [62] is a framework facilitating handling
of RDF data written in C++. The fact that it is writ-
ten in C++ allows it to run for instance on embedded
devices – actually, one of its intended usages is in ID
document verification. It is built on top of the Redland
RDF library15. Similar to ActiveRDF, AutoRDF does
not really store any data in the runtime objects. Instead,
they act as proxies and all operations are directed to the
underlying RDF. Besides RDFS, AutoRDF supports
also several OWL features like owl:oneOf (mapped
to enumerations), cardinality restrictions and classes
being restrictions of other classes. It also supports
anonymous resources (identified by RDF blank nodes)
and automatic documentation generation based on se-
lected RDFS vocabulary terms (e.g. rdfs:label,
rdfs:comment or rdfs:isDefinedBy).

5.4. Empire

Empire [22] is an RDF-based implementation of the
JPA standard [26]. Therefore, its API should be fa-
miliar to developers used to working with relational
databases in Java. However, since parts of JPA deal
with the physical model of the relational database un-
der consideration (e.g. the @Table and @Column an-
notations), Empire is not fully JPA-compliant. On the
other hand, it does support the basic EntityManager
API, query API, and entity lifecycle. Unfortunately,

15http://librdf.org/, accessed 2018-03-10.

http://librdf.org/

14 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

Empire’s documentation is limited and it is often un-
clear which other parts of JPA are implemented.

It adds a set of RDF-specific annotations, which are
used to express the mapping of Java classes and at-
tributes to RDF classes and properties (see Listing 3).
It does not support anonymous resources, so all in-
stances it works with must have an IRI.

5.5. JAOB

The Java Architecture for OWL Binding (JAOB) [63],
as its name suggests, is primarily intended for OWL
ontologies. However, with minor adjustments, RDF(S)
ontologies can be manipulated by it. First, the annota-
tion used for declaring class mapping is called OWL-
Class, but an RDFS class IRI can be used as its value.
Then, in contrast to RDF(S), OWL defines three kinds
of properties - object properties, datatype properties
and annotation properties [11]. These properties have
equivalent annotations in JAOB. To use them with
RDF(S), it is necessary to use OWLObjectProperty for
attributes whose value is expected to be a reference
to another object (RDF resource), OWLDataProperty
can be used for every other attribute, i.e. with a literal
value.

JAOB is built on top of OWL API, so it supports
only ontologies stored in files. It basically works as
(un)marshaller, so it is able to load or save collections
of mapped objects. However, there is, for example, no
direct way to update an entity in JAOB.

JAOB also contains a generator, which allows gen-
erating Java classes based on an ontology schema and
vice versa.

5.6. JOPA

The Java OWL Persistence API (JOPA) [19, 23]
is a persistence library primarily designed for access-
ing OWL ontologies. However, it can be used to work
with RDF data as well. Its API is designed so that it
resembles the JPA as much as possible, but it does
take semantic data specifics like named graphs or in-
ference into account. JOPA tries to bridge the gap
between the object-oriented application world, which
uses the closed-world assumption (missing knowledge
is assumed false), and the ontological world, which is
based on the open-world assumption (missing knowl-
edge can be true in some worlds and false in oth-
ers), by splitting the model into a static and dynamic
part. The static part is mapped to the object model
and its validity is guarded by integrity-constraints with

closed-world semantics [64]. The dynamic part is not
directly mapped (although it is accessible to a limited
extent) and may evolve freely without affecting the ob-
ject model.

Using JOPA with RDF(S) ontologies requires mi-
nor adjustments because JOPA is OWL-based. These
adjustments are similar to those described for JAOB
above.

5.7. KOMMA

The Knowledge Management and Modeling Archi-
tecture (KOMMA) [65] is a Java framework for build-
ing applications based on semantic data. A part of
this framework is an object-triple mapping module,
but the library itself has much richer functionality, in-
cluding support for building graphical ontology editors
based on the Eclipse Modeling Framework16. OTM
in KOMMA is based on Java interfaces representing
RDFS classes, for which it generates dynamic imple-
mentations at runtime. This allows, for instance, to ac-
commodate support for multiple inheritance into the
model. In addition, KOMMA also supports transaction
management, caching and RDF named graphs.

5.8. RDFBeans

RDFBeans [66] is another OTM library built on top
of RDF4J. It allows two forms of the object model:
1) the object model may consist of Java classes rep-
resenting the RDFS classes; 2) the object model may
consist of interface declarations forming the mapping,
RDFBeans will generate appropriate implementations
at runtime using the dynamic proxy mechanism. RDF-
Beans supports, besides the basic features like transac-
tions and inheritance, also mapping of Java collections
to RDF containers or operation cascading, e.g. when
an updated entity is merged into the storage, objects
referenced by this entity are merged as well. Instances
of entity classes without an explicitly declared identi-
fier attribute are mapped to RDF blank nodes.

5.9. RDFReactor

RDFReactor [67] is yet another Java OTM library.
It supports code generation and uses proxy objects to
access RDF data directly, instead of storing attribute
values in entities. In addition to the mapped proper-
ties, RDFReactor entity classes also contain an API for

16http://www.eclipse.org/modeling/emf/, accessed 2018-01-02.

http://www.eclipse.org/modeling/emf/

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 15

type information manipulation – methods getAll, add
and remove allow to retrieve and update types of an
instance at runtime. Besides RDFS, RDFReactor also
supports selected OWL features like cardinality con-
straints, inverse properties.

All entity classes mapped by RDFReactor extend
the ReactorBase class, which acts as a generic repre-
sentation of an RDF resource, allowing untyped access
to all properties the resource has. Subclasses can then
explicitly map these properties to provide type-safe ac-
cess.

5.10. The Semantic Framework

The Semantic Framework (SF) [68] is a Java li-
brary for object-oriented access to ontologies. Simi-
lar to JAOB or JOPA, SF is primarily built for OWL,
but it can, again, be used with RDFS as well. It in-
ternally uses OWL API to process RDF files and its
core is an extension of the Jenabean library [69]. The
combination of Jena (internally used by Jenabean) and
OWL API is in our opinion rather odd given the fact
that Jena is able to process RDF files. The mapping is
realized using Java annotations in entity classes.

5.11. Spira

Spira [70] is a framework for viewing RDF data
as model objects written in Ruby. It allows to access
RDF data both as domain objects (entities) and as RDF
statements. In particular, one may view and edit state-
ments representing an entity directly from its object
representation. On the other hand, it is also possible
to create RDF statements directly, without any object
representation of the resource. Spira allows to ‘view’
resources as instances of various classes without re-
quiring them to explicitly have the corresponding RDF
type statement. It also allows to map one Ruby class to
multiple ontological types, to work both with named
and anonymous resources or to use localized property
values, i.e. a single-valued property can have a value
in multiple languages.

Spira uses RDF.rb17 to access the underlying RDF
data. It can work with multiple repositories at once, all
of them accessed in a thread-safe manner.

17https://github.com/ruby-rdf/rdf, accessed 2018-03-20.

5.12. SuRF

SuRF [71] is a Python object RDF mapper. SuRF
is built on top of the RDFLib18 library and allows ac-
cess to various triple stores, including Sesame [8], Vir-
tuoso [17] and a generic SPARQL endpoint. Attributes
of SuRF entities are by default loaded lazily and refer-
ences to other entities are automatically accompanied
by convenience inverse versions, i.e. a knows attribute
of an entity is complemented by an is_knows_of at-
tribute on the target instances.

SuRF contains convenience API which can be used
to retrieve instances of the mapped classes and filter
them by their attribute values. One subtle feature of
SuRF is that it allows to retrieve resources regardless
of whether they are actually present in the triple store.
To check for their existence, a dedicated is_present
method has to be called.

5.13. Libraries omitted from selection

There are several OTM libraries which were omit-
ted from the selection. Elmo [61], Jastor [72], Jen-
abean [69], Owl2Java [46] or Sommer [73] are obso-
lete, with their last versions published more than five
years ago.

We also wanted to include a purely SPARQL
endpoint-based solution, which would allow us to
compare the performance of a storage agnostic library
to libraries exploiting vendor-specific optimizations,
but RAN-Map [74] is not published online (neither
sources nor binaries) and TRIOO [75] is buggy and
we were not able to adapt it to the benchmark appli-
cation without significant changes to its code base (for
example, it does not insert resource type statements on
persist).

Libraries like JOINT-DE [31] (and the original
JOINT), Sapphire [60] and the Semantic Object Frame-
work [76] were excluded because their source code is
not publicly available and the articles describing them
do not provide enough details to evaluate the compari-
son criteria.

6. Feature comparison

Comparison of features of the selected libraries ac-
cording to the criteria defined in Section 4 is summa-
rized in Table 3. In the table, Xsignifies that the crite-

18https://github.com/RDFLib/rdflib, accessed 2018-03-20.

https://github.com/ruby-rdf/rdf
https://github.com/RDFLib/rdflib

16 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

rion is fully satisfied according to the condition defined
in Section 4. ◦ signifies partial satisfaction and the text
should be consulted for further details. We now expand
on the results.

6.1. GC1 – Transactions

AutoRDF, JAOB and the Semantic Framework do
not support transactions likely due to their lack of sup-
port for triple stores in general (more details in Sec-
tion 6.2). While ActiveRDF, RDFReactor and Spira do
support access to regular triple stores and for example,
RDFReactor internally makes use of the store’s trans-
actional mechanism, they do not allow the programmer
to control the transactions externally. Empire’s API
hints towards support for transactional processing but
its implementation is rather strange. As will be dis-
cussed in Section 7, operations which insert/update/re-
move data are automatically committed without any
way of preventing this behavior. So, for example, it is
not possible to bind updates to multiple entities into
one transaction.

AliBaba, KOMMA, and RDFBeans support trans-
actions by relying on the underlying storage’s trans-
action management, i.e. starting an OTM-level trans-
action begins a database-level transaction and its end
causes the database-level transaction to end as well.
SuRF, on the other hand, tracks the changes to objects
by marking their updated attributes dirty and allows the
programmer to commit the changes manually. JOPA
handles transactions by creating clones of the manipu-
lated objects and tracking their changes locally, push-
ing them into the storage on commit. In addition, the
changes are stored in transaction-local models and are
used to enhance results of subsequent operations in the
same transaction, e.g. when an entity is removed, it
will not be in the results of a find all query executed
later in the same transaction.

6.2. GC2 – Storage access variability

AutoRDF, JAOB and the Semantic Framework sup-
port only access to RDF data stored in text files, albeit
with various serializations. AliBaba and RDFBeans
are tightly bound to the Sesame API, so they can ac-
cess exclusively Sesame/RDF4J storages.

While KOMMA does not have any other implemen-
tation than RDF4J storage access, its internal APIs are
designed so that new storage connector implementa-
tions can be added.

ActiveRDF supports access to various storages, in-
cluding Jena, Sesame or a generic SPARQL end-
point. Empire contains storage access modules which
can implement the required access API. For instance,
it provides a connector to the Stardog database19.
JOPA defines a storage access layer called the On-
toDriver. This allows switching the underlying stor-
age easily. Currently, JOPA supports Jena, OWL API
and Sesame/RDF4J storages. RDFReactor uses a sim-
ilar mechanism – an underlying storage access layer
called RDF2Go, which at the time of writing sup-
ports Jena and RDF4J access. Spira, thanks to its re-
liance on RDF.rb, can access various storages, includ-
ing Sesame, AllegroGraph20 or MongoDB21. Simi-
larly, SuRF can use the RDFLib to connect to Allegro-
Graph, Sesame or a SPARQL endpoint.

6.3. GC3 – Query result mapping

In contrast to JAOB, which does not provide any
query API at all, AutoRDF, RDFBeans, the Semantic
Framework and Spira do not provide a query API ei-
ther but contain at least a find all method, which allows
to retrieve all instances of the specified type. In case of
RDFBeans the situation is peculiar because its RDF-
BeanManager wraps an instance of RDF4J Reposito-
ryConnection which supports SPARQL query execu-
tion, yet RDFBeanManager does not expose this func-
tionality. SuRF allows to execute arbitrary SPARQL
queries, but cannot map their results to entities.

While ActiveRDF does not support mapping SPARQL
query results to entities, its advanced query API obvi-
ates this issue by supporting almost complete SPARQL
grammar [58].

Finally, AliBaba, Empire, JOPA and KOMMA sup-
port mapping SPARQL query results to entities by al-
lowing to specify target entity class when retrieving
query results.

6.4. GC4 – Object-level query language

ActiveRDF contains a variation of a criteria query
API containing methods representing query operations
like selection, filtering and projection. Additionally, it
automatically generates methods for filtering objects
by their properties, e.g. it will provide a method Per-

19https://www.stardog.com/, accessed 2018-03-20.
20https://franz.com/agraph/allegrograph/, accessed 2018-03-20.
21https://www.mongodb.com/, accessed 2018-03-20.

https://www.stardog.com/
https://franz.com/agraph/allegrograph/
https://www.mongodb.com/

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 17

Table 3

Selected OTM libraries compared using criteria defined in Section 4. × means no support, ◦ represents partial support (consult the main text for
further details), X is full support of the feature and N/A signifies that the feature cannot be evaluated in the particular case

Criterion ActiveRDF AliBaba AutoRDF Empire JAOB JOPA

GC1 (Transactions) × X × ◦ × X

GC2 (Storage-agnostic) X × × X × X

GC3 (Query result mapping) ◦ X × X × X

GC4 (Object query language) X × × × × ×

GC5 (Detached objects) × × × X X X

GC6 (Model Generator) N/A X X × ◦ ◦

OC1 (Explicit inference) × × × × × X

OC2 (Named graphs) X × × X × X

OC3 (Provenance management) × × × × × ×

MC1 (Inheritance) N/A X X ◦ × ◦

MC2 (Unmapped data access) X × × × × X

MC3 (RDF containers/collections) × X × × × ◦

Criterion KOMMA RDFBeans RDFReactor SF Spira SuRF

GC1 (Transactions) X X × × × X

GC2 (Storage-agnostic) ◦ × X × X X

GC3 (Query result mapping) X × × × × ×

GC4 (Object query language) × × × × × X

GC5 (Detached objects) × X × X × ×

GC6 (Model Generator) × × X × × N/A

OC1 (Explicit inference) × × × × × ×

OC2 (Named graphs) X × X × × ×

OC3 (Provenance management) × × × × × ×

MC1 (Inheritance) ◦ ◦ ◦ ◦ ◦ N/A

MC2 (Unmapped data access) × × X × X X

MC3 (RDF containers/collections) × X × ◦ × ×

son.find_by_name for a class Person with an attribute
name. A similar API exists in SuRF.

None of the other libraries support any object-
level query language, so their users have to resort to
SPARQL queries, if available.

6.5. GC5 – Detached objects

ActiveRDF, AliBaba, AutoRDF, RDFReactor, Spira,
and SuRF do not support detached objects because
their entities act as proxies which load attribute val-
ues from the repository when they are accessed for the
first time or on each access, depending on the inter-
nal implementation. Conversely, setting attribute val-

ues causes the changes to be written into the storage
immediately (except for SuRF which tracks changes
locally). Therefore, they have to hold onto a connec-
tion to the storage in order to provide basic data ac-
cess functions. Similarly, although it would appear
that KOMMA does support detached objects because
it is possible to close a KOMMA IEntityManager and
still access attributes of an object read by the closed
manager, the contrary is true. As pointed out in [31],
the generated proxy objects retain a connection to the
underlying storage. Closing an IEntityManager only
closes a delegate object.

Empire, JAOB, JOPA, RDFBeans and the Semantic
Framework, on the other hand, allow working with the

18 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

entities completely independently of the persistence
context from which they were retrieved because they
store the data in the actual objects.

6.6. GC6 – Code/ontology generator

Empire, KOMMA, RDFBeans, the Semantic Frame-
work and Spira do not contain any generator capable
of creating entity classes from ontology schema or vice
versa. ActiveRDF and SuRF do not contain code gen-
erators either, but they do not actually use any static
object model and all entity classes are generated on
demand at runtime.

AliBaba, AutoRDF, JAOB, and JOPA contain gen-
erators able to build an object model from the ontol-
ogy. The AliBaba generator supports both RDFS and
OWL, but it is less configurable. AutoRDF supports
several OWL constructs, but its core is RDFS-based.
On the other hand, the generators in JAOB and JOPA
are OWL-based and expect the ontology to contain
declarations of OWL classes and object, data and an-
notation properties.

JAOB is the only library with a generator capable of
creating an ontology schema based on an object model.
This generator is able to create classes and their hi-
erarchies plus OWL data and object property declara-
tions with domains and ranges and information about
whether the property is functional or not [11].

6.7. OC1 – Explicit inference treatment

JOPA is the only library to explicitly treat inferred
statements. It takes the safest but most restrictive ap-
proach – it makes attributes containing inferred infor-
mation read-only. This prevents the user from execut-
ing operations with undefined results, like removing an
inferred attribute value but it also disallows any addi-
tive changes to the attribute value.

6.8. OC2 – Named graphs

Alibaba, AutoRDF, JAOB, RDFBeans, the Semantic
Framework, Spira, and SuRF are not aware of RDF
named graphs and work only with the default graph.

Empire supports named graphs to a limited extent.
Named graph access is specified via the @Named-
Graph annotation, which has two modes of operation.
The first mode leads to each instance of the annotated
class being stored in its own named graph. The sec-
ond mode then allows to specify an IRI of a named
graph into which all instances of the annotated class

are saved. JOPA and ActiveRDF, on the other hand,
allow one to specify a named graph per instance and
for individual attributes. RDFReactor uses model in-
stances which represent individual named graphs of
the repository. Each entity is then associated with a
single model.

6.9. OC3 – Automatic provenance management

Unfortunately, none of the evaluated libraries sup-
ports automatic provenance management. The main
reason is arguably the fact that there is no standardized
API which would allow the application to pass user
context information (session) to the OTM framework
in an automated way. Without this context, the OTM
provider is not able to record real-time provenance data
like username or user profile IRI.

6.10. MC1 – Inheritance mapping

Inheritance mapping is probably the most complex
feature in the comparison framework, with many sub-
tle issues. Despite this, several evaluated libraries take
a straightforward approach which can often lead to un-
expected results.

Consider Empire which does support multiple inher-
itance in that it is able to work with classes which in-
herit mapped getters/setters from multiple interfaces.
However, it is unable to persist more than one type
for an entity. So if each interface declares a mapped
type, only one of them gets persisted. KOMMA and
RDFBeans suffer from the same issue, i.e. they cor-
rectly interpret inherited attributes, but always persist
only a single type. For example, let us have interfaces
A and B, which are mapped to RDFS classes ex:A and
ex:B respectively. Then, we declare an entity class
C, which implements both A and B. Saving an object
c of type C into the repository would result in either
ex:c rdf:type ex:A or ex:c rdf:type ex:B
being inserted, depending on the order of declarations
in the implements clause of C, where c is mapped to
ex:c. The Semantic Framework would also support
multiple inheritance thanks to its use of Java classes
and interfaces. However, the implementation extracts
only attributes declared in a particular class, without
regard for any fields inherited from its superclass. This
in effect means that any values of fields declared in a
superclass are ignored when persisting an instance.

JAOB does not support inheritance mapping. SuRF
allows to specify multiple superclasses when loading a
resource but they do not represent mapped ontological

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 19

classes, they are regular Python classes adding custom
behavior to the instance. On the other hand, similarly
to ActiveRDF, since loaded instances contain attributes
corresponding to all properties found on the resource,
the concept of inheritance mapping does not really ap-
ply in this case. Appropriate type assertion presence
on a resource can be of importance w.r.t. the type hier-
archy, but such an issue is more closely related to the
way libraries handle explicit and inferred statements.

JOPA currently supports only class-based inheri-
tance, so mapping classes with multiple supertypes
is not possible. The same issue applies to RDFReac-
tor. Similarly, Spira supports only single inheritance
because Ruby does not support multiple class inher-
itance. On the other hand, Spira allows an entity to
specify multiple types, so multiple ontological classes
can be combined into a single mapped Ruby class,
which can be used as another class’s parent.

AliBaba and AutoRDF are thus the only libraries
fully supporting class hierarchy mapping. Since Al-
iBaba is a Java library, it relies on interfaces to support
multiple inheritance. AutoRDF is able to exploit the
built-in support for multiple inheritance of C++.

6.11. MC2 – Unmapped data access

Providing access to unmapped properties is diffi-
cult in statically typed languages like Java or C++.
AliBaba, AutoRDF, Empire, JAOB, KOMMA, RDF-
Beans and the Semantic Framework do not support
such a feature.

JOPA and RDFReactor, although being Java frame-
works, do attempt to supply this access. In JOPA, there
are two relevant attribute annotations – a @Types at-
tribute allows to read and modify an instance’s on-
tological types and @Properties denotes a map of
property-value pairs, representing the properties not
mapped by the rest of the entity attributes. RDFReactor
solves the issue by making all entity classes implement
the ReactorBase interface (actually, the classes usually
extend the ReactorBaseImpl abstract class) whose API
contains generic methods for setting and retrieving ar-
bitrary properties attached to the instance. Internally,
even the mapped attributes make use of this API.

ActiveRDF and SuRF, due to their lack of a static
model, naturally allow accessing all the properties of
a resource. In Spira, all model objects can be manipu-
lated also at the RDF statement level, where unmapped
properties are accessible, thanks to the integration with
RDF.rb.

6.12. MC3 – RDF collections and containers

Support for RDF collections and containers is scarce
among the evaluated libraries. The only libraries which
fully implement this feature are AliBaba and RDF-
Beans. AliBaba supports RDF lists and RDF contain-
ers. Both are mapped to instances of java.util.List. If
the list root has the type rdf:List, it is treated cor-
respondingly, otherwise, it is assumed to be a RDF
container. This root type management, however, has
to be done on RDF statement level, no dedicated API
is present for it in AliBaba. RDFBeans also allows to
work with both RDF containers and lists. The type of
the target RDF construct is specified via Java annota-
tions.

The approaches of the Semantic Framework and
JOPA may be regarded as partial support. The Se-
mantic Framework automatically stores array and
java.util.List attributes as RDF sequences, without any
way to configure this behavior. JOPA supports the
OWL design pattern of linked lists and linked lists with
content nodes [77], but it does not support any of the
RDF containers. The type of the list is specified via an
annotation.

7. Performance comparison

All the benchmark operations revolve around an ob-
ject graph whose template is shown in Figure 4. As
can be seen, there is one central OccurrenceReport ob-
ject connected to an Occurrence, which is the root of
a three level-deep balanced binary tree of events. Each
report has also a set of three Resources attached and is
connected to a randomly selected pre-existing author
and last editor (instances of Person).

7.1. Experiment setup

The experiments were conducted on a machine with
the following setup:

– OS: Linux Mint 17.3 64-bit
– CPU: Intel Core i5-750 2.67 GHz (4 cores)
– RAM: 16 GB
– Disk: Samsung SSD 850 EVO 250 GB
– Java: Java HotSpot JDK22 8u161, 64-bit

22Java Development Kit

20 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

object−model 2018/05/23 powered by Astah

 pkg

author : Person editor : Person

report : OccurrenceReport

author lastModifiedBy

rOne : Resource rTwo : Resource rThree : Resource

attachments

occurrence : Occurrence

occurrence eOne : Event eTwo : Event

eThree : Event eFour : Event eFive : Event eSix : Event

subEvents

subEvents subEvents

Fig. 4. UML object diagram of the object model used by the benchmark.

As a storage, we decided to use GraphDB 8.4.1 Free
running on the same machine as the benchmark to
eliminate possible network lag. GraphDB [16] is an
industry-grade semantic graph database supporting the
RDF4J API. The free version is limited to two queries
in parallel, but this is of no concern, since the bench-
mark is not multithreaded. To ensure that none of the
evaluated libraries had an unfair advantage by being
specifically optimized for GraphDB, an additional ex-
periment on a native RDF4J storage was conducted. Its
results showed similar relative differences between the
OTM frameworks as the measurements on GraphDB.
The latest available versions of the libraries were used.
Since some of them were not present in the Maven
Central Repository23 (an online repository of Java li-
braries), they had to be built from source code locally.
The versions were (as of 20th March 2018) as follows:

– AliBaba 2.1, built locally, sources downloaded
from https://bitbucket.org/openrdf/alibaba/,

– Empire 1.0, built locally, sources downloaded
from https://github.com/mhgrove/empire,

– JOPA 0.9.15, retrieved from Maven Central,
– KOMMA 1.3.3-SNAPSHOT, built locally, sources

retrieved from https://github.com/komma/komma,
– RDFBeans 2.2, retrieved from Maven Central.

7.1.1. Performance
The scalability of the performance benchmark al-

lowed custom specification of the size of data being
used in the comparison. A scaling factor of one was
used, which resulted in the following specification for
individual operations:

OP1 – Create 300 Persons to choose the authors
and last editors from, 300 OccurrenceReport

23http://search.maven.org/, accessed 2018-01-08.

instances together with their associated object
graphs.

OP2 – Batch Create The same setup as OP1.
OP3 – Retrieve 300 OccurrenceReports together with

their object graphs and 300 Persons pre-persisted
(each report is assigned a random author and last
editor from the Person instances).

OP4 – Retrieve All The same setup as OP3.
OP5 – Update The same setup as OP3. One half of

the reports (every odd one, to be precise) are up-
dated.

OP6 – Delete The same setup as OP3. One half of
the reports (again, every odd one) are deleted, to-
gether with their dependencies.

Each operation was executed in 120 rounds, where
the first twenty rounds represented a warm-up period
which was not measured and was intended for the Java
virtual machine to stabilize and perform optimizations.
The following 100 rounds were measured. This was
executed in three separate runs, i.e. three executions of
the JVM, to account for different ways the code could
be optimized, as discussed in [30]. The whole bench-
mark, i.e. all runs of all operations for all libraries, was
executed automatically by a shell script. The reposi-
tory was cleared after each round and GraphDB was
restarted between the operations.

The benchmark was run for several values of heap
size. The results should then reveal how sensitive the
frameworks are to restricted heap size and how they
scale as the heap size changes. The heap size was fixed
(using the -Xms and -Xmx JVM configuration param-
eters) to:

– 32 MB
– 64 MB
– 128 MB
– 256 MB
– 512 MB

https://bitbucket.org/openrdf/alibaba/
https://github.com/mhgrove/empire
https://github.com/komma/komma
http://search.maven.org/

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 21

– 1 GB

The maximum number of statements generated by
the benchmark for OP3 (the other operations are ei-
ther the same or very similar) was 23 700 for Em-
pire, JOPA, KOMMA and RDFBeans and 23 700 or
41 026 for AliBaba. The pair of numbers for AliBaba is
due to the rather strange cascading strategy employed
by AliBaba. When persisting an object, AliBaba au-
tomatically cascades the persist recursively to all ref-
erences of the persisted entity. Such a strategy gen-
erates blank nodes for the referenced instances, lead-
ing to the 23 700 statements in total. If, on the other
hand, one wanted to be able to denote the referenced
instances (e.g. the occurrence or person) using a regu-
lar IRI, he would have to persist them separately. This,
however, leads to a large duplication of data, because
AliBaba will perform the cascading anyway, resulting
in the 41 026 statements.

7.1.2. Memory
Measuring memory utilization turned out to be a

bit tricky. Given the performance results, Java heap
occupation could not have been measured throughout
the execution of the performance benchmark, because
it had a different duration for each library. Most of
the literature concentrates on obtaining and analyzing
heap dumps in the search for memory leaks (e.g., [55])
which was not the goal of this comparison.

In the end, a different strategy was used – a sep-
arate runner was developed which executed a series
of CRUD operations similar to the ones used in the
performance benchmark for a specific period of time.
More precisely, the runner executed OP1, OP4, OP5
and OP6 in a sequence over and over until a speci-
fied timeout. This way, all the libraries were used for
the same amount of time. To collect results, the Java
virtual machine was configured to output detailed in-
formation about garbage collection events (using the
-XX:+PrintGCDetails flag) and a fixed heap size
was set, so that the application had a limited amount of
memory available.

The particular setup for the memory benchmark was
as follows:

– Runtime: 4 h,
– Heap size: 40 MB,
– Default garbage collector settings for the JVM

used in the benchmark.

After the execution, GCViewer24 was used to analyze
the results and collect the following values:

– The number of young generation garbage collec-
tion events (YGC),

– The number of full garbage collection events
(FGC),

– Accumulated garbage collection pause time (GCT),
– Application throughput.

To put these terms in context: since most objects in ap-
plications are short-lived, YGC is able to dispose of
them quickly [55]. FGC events occur when the Java
virtual machine needs to reclaim memory occupied by
older objects and it is more demanding in terms of
CPU time. Generally, an application benefits from as
few FGC’s as possible. Parts of both young genera-
tion and full garbage collection can happen in paral-
lel to the application execution (if the CPU allows it),
but sometimes the application has to be stopped so that
the garbage collector can mark objects for disposal
and remove them. It is these so-called stop-the-world
events which are represented by GCT and which in-
fluence the application throughput. In particular, the
throughput indicates how much of the total runtime the
application spent actually performing its tasks, the rest
being spent in garbage collection. More detailed ex-
planation of garbage collection principles and strate-
gies employed by the JVM can be found for example
in [55, 78]. All in all, these values, together with the
limited amount of available memory and the fixed ex-
ecution time, offer a reasonable picture of how an ap-
plication using these libraries is utilizing the available
memory. A small heap size was used in order to put
the garbage collector under more stress so that its over-
head would be more noticeable. However, a 32 MB
heap was not used since most evaluated libraries had
issues using it (see Section 7.2.2).

7.2. Results

Let us now delve into the results of the performed
experiments and attempt to interpret them. First, per-
formance results are detailed, followed by a discus-
sion of scalability of the evaluated libraries. Finally,
memory utilization experiments are examined. Com-
plete results can be found in Appendix A and also –
together with the underlying data – online25.

24https://github.com/chewiebug/GCViewer, accessed 2018-01-
08.

25At https://kbss.felk.cvut.cz/web/kbss/otm-benchmark, accessed
2018-05-22.

https://github.com/chewiebug/GCViewer
https://kbss.felk.cvut.cz/web/kbss/otm-benchmark

22 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

7.2.1. Performance
In this part, relative performance differences be-

tween the evaluated libraries are discussed. As a rep-
resentative example, results for benchmark with heap
size set to 1 GB are visualized in a plot in Figure 5.
Table 4 then complements the plot visualization with
information on execution time mean, standard devia-
tion and the 95% confidence interval. Performance on
other heap sizes will be discussed in Section 7.2.2 and
complete results can be found in Appendix A.1.

All the libraries performed relatively consistently,
with low deviation and the confidence interval size
within 2% of the execution time mean, as suggested
by [30]. Only Empire exhibited larger standard devia-
tion for the retrieval operations (OP3 and OP4). The
following paragraphs elaborate on individual operation
results.

Create (OP1) and batch create (OP2) The charac-
ter of OP1 and OP2 suggests that the libraries should
perform better in OP2, because they have to execute
only a single transaction compared to a linear num-
ber of transactions in OP1. The only library that de-
fied this expectation and performed virtually the same
in both OP1 and OP2 was Empire. This is due to the
fact that Empire actually commits the transaction af-
ter each data modifying operation of its EntityManager,
more precisely, after merge, persist and remove. Not
only is this highly inefficient in the batch scenario, but
it can also lead to incorrect behavior because it effec-
tively prohibits a rollback of transactional changes or
grouping multiple operations into one transaction. The
rather poor performance of Empire is partially due to
the fact that it iterates over all attributes of the object
being persisted using Java reflection instead of relying
on a metamodel (model of entity classes and their at-
tributes) [26] built during application persistence ini-
tialization. Reflection is a powerful mechanism which
allows a program to examine and modify itself and
the environment in which it operates [79], but it rep-
resents a performance overhead. While middleware li-
braries in Java typically use reflection, it is important
to be aware of its performance impacts and to avoid
them when possible. The other factor in Empire’s cre-
ate performance is its strategy for checking that an in-
stance does not already exist in the repository. It uses
a SPARQL SELECT query with an unbound subject,
predicate and object, filtering results by the subject be-
ing equal to the persisted individual’s identifier. First,
our experience with RDF4J indicates that executing
SPARQL queries is in most cases slower than using the

statement filtering API. Second, a simpler ASK query
could have been used.

In both OP1 and OP2, KOMMA performed the
worst by a large margin. There are multiple factors par-
ticipating in this result. One is that KOMMA gener-
ates classes and their implementation at runtime (more
precisely, when they are first used), adding specific be-
havior to the getters/setters. The most significant fac-
tor, though, is that it attempts to remove old values
from the repository whenever a setter is called on an
entity. This strategy is sensible in the update scenario
when one sets a new value of an attribute of a managed
object, and it is actually used by AliBaba as well26.
However, to persist an entity in KOMMA, it is neces-
sary to call the createNamed method which returns an
empty managed instance of the requested type and then
use setters to initialize its attributes. Therefore, even
when persisting a completely new object, KOMMA is-
sues statement removal calls to the underlying storage,
which has a detrimental effect on its performance.

RDFBeans performed slightly better than Empire.
Looking at the implementation of its add method, two
factors are of interest. One is that the method is syn-
chronized. This incurs a slight performance overhead
because Java has to manage the synchronization mech-
anism even for the single-threaded benchmark. And it
is somewhat unexpected, given that the documentation
of RDF4J specifically declares the RepositoryConnec-
tion, around which RDFBeans BeanManager is built,
not to be thread-safe and recommends multi-threaded
applications to obtain separate connections for each
thread27. Second, RDFBeans uses the RDF4J API has-
Statement method with a bound subject to check for
a resource’s existence in the repository. In contrast,
JOPA uses the same method, but specifies the whole
triple, checking whether the subject is an instance of
the specified RDFS class. This is not only arguably
faster, but it also allows to persist the same entity as an
instance of different RDFS classes.

It can be seen that AliBaba outperforms the other li-
braries in both OP1 and OP2. Especially the batch sce-
nario (OP2), where it was able to perform a round in
under one second, an order of magnitude faster than in
OP1, not only illustrates the overhead of transactions,
but also the overhead of the other OOM libraries.

26It turns out that portions of AliBaba’s code base are reused in
KOMMA.

27See https://tinyurl.com/repository-connection, accessed 2018-
02-13.

https://tinyurl.com/repository-connection

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 23

Table 4

Results of the performance benchmark with all libraries running on a 1 GB heap. (T̄) denotes mean execution time, (σ) standard deviation and
CI95 95 % confidence interval. O stands for the operation executed and L for the evaluated library. For each operation, the fastest library is
underlined

O OP1 – Create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 9 155.46 27 628.78 13 925.49 71 823.58 25 599.89

σ (ms) 174.77 124.39 148.02 646.03 137.00

CI95 (ms) (9 135.68; 9 175.23) (27 614.70; 27 642.86) (13 908.74; 13 942.24) (71 750.47; 71 896.68) (25 584.38; 25 615.39)

O OP2 – Batch create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 738.16 27 624.64 6 926.20 64 241.03 17 325.64

σ (ms) 65.98 176.91 184.14 835.19 121.09

CI95 (ms) (730.70; 745.63) (27 604.62; 27 644.66) (6 905.36; 6 947.04) (64 146.52; 64 335.54) (17 311.97; 17 339.37)

O OP3 – Retrieve

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 19 838.94 36 632.24 8 748.13 48 581.99 59 486.47

σ (ms) 307.56 2 808.46 99.82 536.58 280.45

CI95 (ms) (19 804.13; 19 873.74) (36 314.44; 36 950.04) (8 736.83; 8 759.42) (48 521.27; 48 642.71) (59 454.74; 59 518.21)

O OP4 – Retrieve all

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 21 811.98 35 852.54 8 855.95 49 211.94 57 521.18

σ (ms) 729.50 2 782.01 99.38 507.20 391.03

CI95 (ms) (21 729.43; 21 894.53) (35 537.73; 36 167.35) (8 844.70; 8 867.19) (49 154.54; 49 269.33) (57 476.93; 57 565.43)

O OP5 – Update

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 11 127.57 19 154.26 11 896.90 52 817.48 12 802.06

σ (ms) 176.45 86.91 291.88 453.97 205.95

CI95 (ms) (11 107.60; 11 147.53) (19 144.43; 19 164.10) (11 863.87; 11 929.93) (52 766.11; 52 868.85) (12 778.76; 12 825.37)

O OP6 – Delete

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 13 479.67 33 567.58 17 700.54 14 542.59 15 912.55

σ (ms) 216.33 739.66 144.05 281.12 106.94

CI95 (ms) (13 455.19; 13 504.15) (33 483.88; 33 651.28) (17 684.23; 17 716.84) (14 510.78; 14 574.40) (15 900.45; 15 924.65)

24 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

OP1 − Create OP2 − Batch create OP3 − Retrieve OP4 − Retrieve all OP5 − Update OP6 − Delete

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

Provider

T
im

e
(m

s)

Fig. 5. Performance of the individual libraries on a 1 GB heap. The plots are grouped by the respective operations. Lower is better.

Retrieve (OP3) and retrieve all (OP4) While Al-
iBaba was the fastest library in all other operations, it
was outperformed by JOPA in the retrieval scenarios.
Looking through the source code, all the libraries use
different strategies for loading entity attributes.

AliBaba uses a single SPARQL SELECT query to
get the subject and all the properties mapped by the en-
tity class. To avoid failed joins, all the property patterns
are wrapped in OPTIONAL. However, OPTIONAL
increases the query complexity to PSPACE [80].

Empire adopts a different strategy. A SPARQL
CONSTRUCT query is issued, retrieving a graph
containing all statements concerning the specified sub-
ject. Then, it processes the attributes mapped by the
target entity class and filters values for the correspond-
ing properties from the constructed graph.

JOPA does not use SPARQL to retrieve entities for
two reasons. One is our experience showing that filter-
ing using the RDF4J API is more efficient. The other,
and more important, is that a SPARQL query does not
allow to specify whether inferred statements should be
included or not and the result does not indicate the ori-
gin of the resulting statements (see CR2 in Section 4).
Instead, JOPA uses a single call to get all statements

concerning the specified subject and then processes
these statements, populating the resulting object with
appropriate values. While this strategy may turn out
inefficient in cases where the object model represents
only a tiny portion of the graph around the loaded sub-
ject, it does sufficiently well in most cases. Indeed, the
results show that it outperforms all the other strategies
by a considerable margin.

KOMMA returns initially an empty object. When
a getter is called, KOMMA loads the attribute value
lazily using a SPARQL SELECT query. However,
KOMMA has an internal cache of values, so it may
happen that the attribute value is already cached and
no query has to be performed. We argue that with-
out it, KOMMA would be slower than RDFBeans, be-
cause using SPARQL queries for loading individual at-
tributes is slower than using one larger query or the
Sesame filtering API.

RDFBeans returns a fully initialized object, but it
loads its attributes one by one using the RDF4J filter-
ing API. Moreover, similarly to persist, it first checks
for the subject’s existence in the repository, which in-
volves a rather costly statement filter with a bound sub-
ject. Thus, it was the slowest for both OP3 and OP4.

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 25

Update (OP5) OP5 showed comparable performance
by AliBaba, JOPA, and RDFBeans, AliBaba outper-
forming the other libraries by less than one and two
seconds respectively. KOMMA was again significantly
slower. The update is also interesting in terms of the
internal implementation in the particular libraries.

AliBaba, because it does not support detached ob-
jects, requires the user to first load the entity to be up-
dated and then update it manually, essentially corre-
sponding to the behavior Empire, JOPA and KOMMA
implement internally. However, this can become ex-
tremely cumbersome – for instance, consider an ob-
ject coming into the application in a PUT request to its
REST API, signifying a data update. Then the appli-
cation would either have to determine the changes by
scanning the incoming object and comparing it to an
existing object in the database, or use the incoming ob-
ject as the new state and replace the existing data com-
pletely by iterating over all its attributes and merging
their values into the repository. The approach of JOPA
(see below) is much more flexible because it allows,
for example, to specify whether the merge operation
should be cascaded to objects referenced by the entity
being merged.

Empire internally loads all the data concerning the
subject which is being merged, removes them and then
inserts the new, updated, data. While efficient, it is
hardly the correct behavior. Consider a situation when
the application is using a legacy RDF triple store and
the object model covers only a part of the schema
of the data. Invoking merge in Empire will not only
delete the mapped data, but also all the other state-
ments which have the same subject as the updated in-
stance. The automatic commit of changes in Empire,
which, given the setup of OP5, did not influence the
performance but which can be harmful from the trans-
actional behavior point of view nonetheless, should be
also stressed.

JOPA and KOMMA internally load the instance
into which updates will be merged (the same behav-
ior is expected in JPA [26]). They then compare the
merged instance with the loaded one and propagate
the changes into the repository. The performance dif-
ference between these libraries essentially corresponds
to their differences in instance loading. JOPA is not
more efficient than AliBaba because of the rather com-
plex machinery happening behind the scenes which
is intended to provide behavior corresponding to JPA
as much as possible. For instance, JPA specifies that
when merging an entity with references to other ob-
jects, these references should not be merged and, ac-

tually, if they contain changes, these changes should
be overwritten with the data loaded from the reposi-
tory [26]. None of the other libraries behaves in this
way.

RDFBeans works similarly to Empire in that it sim-
ply removes all statements concerning the updated
subject and inserts new statements corresponding to
the updated object. This, on the one hand, gives RDF-
Beans a significant performance boost, on the other
hand, it can lead to incorrect behavior. As mentioned
when discussing Empire, it can lead to the loss of data
not mapped by the object model.

Delete (OP6) Except for Empire, all the libraries ex-
hibited comparable performance for OP6.

AliBaba does not have a dedicated remove method,
so entity removal in its case is a little more compli-
cated. It consists of loading the object to be removed,
setting all its attributes to null and then removing the
class designation, i.e. the assertion of the instance’s
type.

The performance of Empire suffers from the fact
that it uses the same strategy for loading statements
as in the case of OP3, i.e. a SPARQL CONSTRUCT
query. This query retrieves all statements with the
specified subjects. Empire then removes these state-
ments from the storage. Similar to update, this has
the potentially harmful effect of removing statements
which are not a part of the object model.

To avoid this issue, JOPA employs the epistemic re-
move strategy. Epistemic remove deletes only state-
ments asserting properties mapped by the object model.
Although less efficient than removing all statements
concerning an individual, it is a safer option in terms
of data consistency.

Unfortunately, AliBaba, Empire and JOPA do not
deal with the situation where the removed resource is
an object of other statements, i.e. it could be refer-
enced by other instances (whether mapped by the ob-
ject model or not). Relational databases resolve this us-
ing referential integrity which does not allow removal
of a certain record as long as there are references to it
in the form of foreign keys. In the open world of ontolo-
gies, a reference to an individual completely suffices
to prove its existence, however, for an object model,
this may not be (and often is not) the case. Therefore,
OOM libraries should face this issue. In this regard,
KOMMA and RDFBeans come with a solution.

Both KOMMA and RDFBeans perform entity re-
moval by removing all statements whose subject or ob-
ject is the resource being removed. This sufficiently

26 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

deals with the issue of referential integrity. On the
other hand, this solution can lead to unintended data re-
moval. For example, one may remove an instance with-
out knowing by how many other resources (mapped or
not) it is referenced. Another user can then load an ob-
ject which formerly referenced the removed one and
find that the connection has been severed for reasons
unknown. We believe that this issue deserves a more
thorough and systematic approach and it is one of the
research issues considered for further development of
JOPA.

7.2.2. Scalability
There are multiple ways in which the scalability of

an application or a framework can be tested. In the case
of this research, it was tested how well the libraries
scale with regards to the memory available to the ap-
plication.

Most of the libraries had issues with running on
the smallest, 32 MB heap. The only framework able to
perform the whole benchmark on a 32 MB heap was
RDFBeans. AliBaba and JOPA were able to execute
OP1, but failed on the other operations. Empire fin-
ished the OP6 benchmark, but its standard deviation
was so large that the results are inconclusive. KOMMA
was not able to do any of the operations. In addition,
Empire ran out of memory also for OP4 on a 64 MB
heap. The fact that it did not happen for OP3, which
is similar to OP4, is likely due to the individual in-
stances loaded by OP3 being discarded right after the
verification phase, whereas for OP4 all the instances
are loaded at once and then verified.

Contrary to the expectations, with increasing heap
size, the benchmark runtime did not decrease. In fact,
in some cases, it tended to increase slightly. This in-
crease could be explained by the garbage collector hav-
ing to manage a larger amount of memory. Overall,
once the heap size passed the threshold after which
the benchmark did not run out of memory, there was
no definitive trend in terms of application performance
with respect to the heap size. This can be seen in an
example plot for OP1 in Figure 6 (all plots regard-
ing scalability w.r.t. heap size can be found in Ap-
pendix A.2).

To summarize, the benchmark developed as part of
the OTM comparison framework appears not suitable
for measuring scalability of the OTM libraries. In hind-
sight, this seems logical. Concerning scalability w.r.t.
heap size, once the benchmark data fit into the avail-
able memory, increasing the heap size brings no per-
formance benefit. Especially since garbage collection

●
● ● ● ● ●

T
im

e
(m

s)

32 64 128 256 512 1024

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

Heap (MB)

● AliBaba
Empire
JOPA
KOMMA
RDFBeans

Fig. 6. Benchmark performance of OP1 w.r.t. heap size. Lower is
better.

is triggered after the setup of each round. A more
useful scalability comparison could involve a variable
number of concurrent clients. However, this is not sup-
ported by the presented benchmark. On the other hand,
a concurrent access-based benchmark would have to
be carefully designed in terms of data correctness and
objectivity and a different triple store would have to be
used.

7.2.3. Memory
Memory utilization is summarized in Table 5. It

shows that both KOMMA and RDFBeans are rel-
atively memory efficient, creating large numbers of
short-lived objects which can be disposed of by the
less-impactful young generation garbage collection. It
is interesting that although being efficient, KOMMA
was running out of memory when executing the per-
formance benchmark on a 32 MB heap. AliBaba and
JOPA required significantly more full garbage collec-
tions, but the application throughput remained over
96%. This, of course, has to be considered also in the
context of performance, where both AliBaba and JOPA
clearly outperform KOMMA and RDFBeans. This in-
dicates that AliBaba and JOPA use longer-living ob-
jects as a means to cache relevant data or to fetch the
data more efficiently in terms of execution time.

Finally, the throughput of the benchmark applica-
tion running Empire was approximately 85%, signifi-
cantly less than the other libraries. However, when we

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 27

tried the same experiment, but only with a 1 h runtime,
its throughput was comparable to the other libraries.
We suspect that there may be a memory leak in Em-
pire. For the shorter runtime, the leak had not enough
time to fully manifest. It would also explain Empire
failing to execute OP4 on a 64 MB heap.

8. Conclusions

We have introduced a novel framework for compar-
ison of object-triple mapping libraries. It consists of
a set of qualitative criteria describing features impor-
tant for developers of domain-specific object-oriented
applications and a performance benchmark written in
Java. The framework was used to compare a diverse
set of OTM libraries. The results indicate that sig-
nificant differences exist between the evaluated OTM
providers in terms of features, performance and their
treatment of semantic data – for instance, some expect
the object model to completely cover the schema of
the data, others also support access to a subset of the
schema.

Several conclusions may be derived from the com-
parison results. AliBaba demonstrated the best over-
all performance of the five evaluated libraries. How-
ever, it can only access Sesame-based storages and em-
ploys an unintuitive cascading strategy. Empire exhib-
ited worse than average time performance and a po-
tential memory leak in query mapping. On the other
hand, its API directly implements portions of the JPA
standard [26] which can make it suitable for exist-
ing projects migrating from relational to semantic
databases. JOPA provides rich features as well as ac-
ceptable performance, memory utilization, and sound
data access patterns for the general case. KOMMA,
in contrast, performed the worst in all the operations
but OP6 and its API made it more difficult to use in the
benchmark than the other libraries. RDFBeans is the
most suitable library for environments with extremely
limited memory. In comparison to the other four li-
braries evaluated in the performance benchmark, its
time performance is, apart from retrieval operations,
average.

The performance benchmark was designed so that
adding new libraries into the comparison is relatively
straightforward. However, attention must be paid to
providing equal conditions to all compared libraries.
For this reason, the evaluation provided in the paper
concentrated on a single triple store implementation.
The performance benchmark is published online and

so are the results of the comparison presented in this
work. We believe that these results might help poten-
tial users of OTM libraries in deciding which one to
choose. In addition, the benchmark can be considered
an example application for each of the libraries, com-
plete with an object model declaration and the persis-
tence layer setup and usage. Given the scarce docu-
mentation of most of the evaluated libraries, this can
be a welcome benefit.

In the future, the benchmark should be extended to
allow evaluating scalability w.r.t. multiple concurrent
users, providing an even more realistic test case for the
OTM frameworks.

Acknowledgements

This work was partially supported by grants No.
GA 16-09713S Efficient Exploration of Linked Data
Cloud of the Grant Agency of the Czech Republic
and No.SGS16/229/OHK3/3T/13 Supporting ontolog-
ical data quality in information systems of the Czech
Technical University in Prague.

28 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

Table 5

Memory utilization summary. YGC (FGC) is young generation (full) garbage collection event count, GCT is the total time spent in garbage
collection and Throughput is the application throughput

Measure AliBaba Empire JOPA KOMMA RDFBeans

YGC 14 311 14 169 25 981 51 815 29 658

FGC 11 685 13 320 9 713 60 51

GCT (s) 496.98 1 326.58 448.82 73.75 40.4

Throughput (%) 96.37 84.56 96.88 99.49 99.72

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 29

Appendix A. Complete benchmark results

A.1. Performance

This section contains plots depicting performance
of the evaluated libraries in the benchmark. Figure 7
shows results for a 32 MB heap, Figure 8 for a 64 MB
heap, Figure 9 for a 128 MB heap, Figure 10 for a
256 MB heap, Figure 11 for a 512 MB heap and Fig-
ure 12 for a 1 GB heap. The tables contain the mean
execution time, standard deviation and confidence in-
tervals for each operation and each library. Each table
represents benchmark results for a particular heap size.
Table 6 contains results for a 32 MB heap, Table 7 for
a 64 MB heap, Table 8 for a 128 MB heap, Table 9 for
a 256 MB heap, Table 10 for a 512 MB heap, and Ta-
ble 11 for a 1 GB heap.

30 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

OP1 − Create OP2 − Batch create OP3 − Retrieve OP4 − Retrieve all OP5 − Update OP6 − Delete

A
liB

aba

E
m

pire

JO
PA

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

R
D

FB
eans

A
liB

aba

E
m

pire

JO
PA

R
D

FB
eans

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

Provider

T
im

e
(m

s)

Heap size − 32MB

Fig. 7. Performance of the individual libraries on a 32 MB heap. The plots are grouped by the respective operations. Lower is better.

OP1 − Create OP2 − Batch create OP3 − Retrieve OP4 − Retrieve all OP5 − Update OP6 − Delete

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
90000
95000

100000
105000
110000
115000
120000
125000
130000
135000

Provider

T
im

e
(m

s)

Heap size − 64MB

Fig. 8. Performance of the individual libraries on a 64 MB heap. The plots are grouped by the respective operations. Lower is better.

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 31

OP1 − Create OP2 − Batch create OP3 − Retrieve OP4 − Retrieve all OP5 − Update OP6 − Delete

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

Provider

T
im

e
(m

s)

Heap size − 128MB

Fig. 9. Performance of the individual libraries on a 128 MB heap. The plots are grouped by the respective operations. Lower is better.

OP1 − Create OP2 − Batch create OP3 − Retrieve OP4 − Retrieve all OP5 − Update OP6 − Delete

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

Provider

T
im

e
(m

s)

Heap size − 256MB

Fig. 10. Performance of the individual libraries on a 256 MB heap. The plots are grouped by the respective operations. Lower is better.

32 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

OP1 − Create OP2 − Batch create OP3 − Retrieve OP4 − Retrieve all OP5 − Update OP6 − Delete

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

Provider

T
im

e
(m

s)

Heap size − 512MB

Fig. 11. Performance of the individual libraries on a 512 MB heap. The plots are grouped by the respective operations. Lower is better.

OP1 − Create OP2 − Batch create OP3 − Retrieve OP4 − Retrieve all OP5 − Update OP6 − Delete

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

A
liB

aba
E

m
pire

JO
PA

K
O

M
M

A
R

D
FB

eans

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

Provider

T
im

e
(m

s)

Heap size − 1GB

Fig. 12. Performance of the individual libraries on a 1 GB heap. The plots are grouped by the respective operations. Lower is better.

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 33

Table 6

Results of the performance benchmark with all libraries running on a 32 MB heap. (T̄) denotes mean execution time, (σ) standard deviation
and CI95 95 % confidence interval. O stands for the operation executed and L for the evaluated library. For each operation, the fastest library is
underlined

O OP1 – Create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 9 624.75 × 14 337.39 × 25 940.71

σ (ms) 231.66 × 197.67 × 123.18

CI95 (ms) (9 598.54; 9 650.97) × (14 315.02; 14 359.75) × (25 926.77; 25 954.65)

O OP2 – Batch create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) × × × × 17 398.23

σ (ms) × × × × 181.18

CI95 (ms) × × × × (17 377.73; 17 418.73)

O OP3 – Retrieve

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) × × × × 59 810.57

σ (ms) × × × × 304.38

CI95 (ms) × × × × (59 776.13; 59 845.01)

O OP4 – Retrieve all

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) × × × × 57 778.39

σ (ms) × × × × 362.33

CI95 (ms) × × × × (57 737.39; 57 819.39)

O OP5 – Update

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) × × × × 12 982.18

σ (ms) × × × × 142.54

CI95 (ms) × × × × (12 966.05; 12 998.31)

O OP6 – Delete

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) × 40 753.17 × × 16 169.85

σ (ms) × 8 865.69 × × 168.68

CI95 (ms) × (39 749.95; 41 756.40) × × (16 150.77; 16 188.94)

34 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

Table 7

Results of the performance benchmark with all libraries running on a 64 MB heap. (T̄) denotes mean execution time, (σ) standard deviation
and CI95 95 % confidence interval. O stands for the operation executed and L for the evaluated library. For each operation, the fastest library is
underlined

O OP1 – Create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 8 469.15 26 816.89 13 013.89 70 829.33 24 752.90

σ (ms) 180.32 271.77 122.68 571.92 168.57

CI95 (ms) (8 448.77; 8 489.56) (26 786.14; 26 847.64) (13 000.01; 13 027.77) (70 764.62; 70 894.05) (24 733.82; 24 771.97)

O OP2 – Batch create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 816.98 26 817.00 6 931.65 69 294.11 17 288.31

σ (ms) 54.10 183.64 164.25 11 064.78 146.06

CI95 (ms) (810.86; 823.10) (26 796.22; 26837.78) (6 913.06; 6 950.24) (68 042.03; 70 546.18) (17 271.78; 17304.84)

O OP3 – Retrieve

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 21 531.18 39 095.80 8 872.86 48 472.58 59 460.36

σ (ms) 286.97 3 620.09 137.54 306.42 353.73

CI95 (ms) (21 498.71; 21 563.66) (38 686.15; 39 505.44) (8 857.29; 8 888.42) (48 437.90; 48 507.25) (59 420.33; 59 500.39)

O OP4 – Retrieve all

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 21 904.37 × 8 917.77 49 603.73 57 410.77

σ (ms) 725.06 × 98.81 752.99 260.54

CI95 (ms) (21 822.33; 21 986.42) × (8 906.59; 8 928.95) (49 518.52; 49 688.94) (57 381.28; 57 440.25)

O OP5 – Update

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 10 694.26 18 356.25 11 426.66 49 272.53 12 339.22

σ (ms) 133.35 118.52 136.96 3 995.99 109.96

CI95 (ms) (10 679.17; 10 709.35) (18 342.84; 18 369.66) (11 411.17; 11 442.16) (48 820.35; 49 724.71) (12 326.77; 12 351.66)

O OP6 – Delete

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 13 052.14 33 955.28 17 326.18 14 083.81 15 491.79

σ (ms) 169.87 1 298.76 133.97 216.09 117.26

CI95 (ms) (13 032.92; 13 071.36) (33 808.31; 34 102.24) (17 311.02; 17 341.34) (14 059.36; 14 108.26) (15 478.52; 15 505.06)

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 35

Table 8

Results of the performance benchmark with all libraries running on a 128 MB heap. (T̄) denotes mean execution time, (σ) standard deviation
and CI95 95 % confidence interval. O stands for the operation executed and L for the evaluated library. For each operation, the fastest library is
underlined

O OP1 – Create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 8 713.70 27 064.14 13 469.14 71 241.91 25 048.47

σ (ms) 127.39 189.82 199.92 935.53 225.96

CI95 (ms) (8 699.28; 8 728.11) (27 042.66; 27 085.62) (13 446.52, 13 491.77) (71 136.05; 71 347.77) (25 022.90; 25 074.04)

O OP2 – Batch create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 739.42 27 153.00 6 898.00 63 977.56 17 304.30

σ (ms) 72.39 159.27 160.00 665.76 85.99

CI95 (ms) (731.23; 747.61) (27 134.97; 27 171.02) (6 879.90; 6 916.11) (63 902.22; 64 052.89) (17 294.57; 17 314.03)

O OP3 – Retrieve

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 21 527.06 37 651.89 8 741.72 48 314.09 59 569.55

σ (ms) 226.91 3 184.72 96.87 390.20 268.05

CI95 (ms) (21 501.38; 21 552.73) (37 291.51; 38 012.26) (8 730.76; 8 752.68) (48 269.94; 48 358.25) (59 539.22; 59 599.89)

O OP4 – Retrieve all

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 21 875.11 36 230.50 8 871.37 49 178.87 57 370.60

σ (ms) 784.56 1 752.28 97.11 567.24 263.63

CI95 (ms) (21 786.33; 21 963.89) (36 032.21; 36 428.78) (8 860.38; 8 882.36) (49 114.68; 49 243.05) (57 340.76; 57 400.43)

O OP5 – Update

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 10 906.91 18 693.81 11 621.43 50 080.73 12 524.04

σ (ms) 145.07 133.32 204.09 632.03 120.72

CI95 (ms) (10 890.50; 10923.33) (18 678.73; 18 708.90) (11 598.34; 11 644.53) (50 009.21; 50 152.25) (12 510.38; 12 537.70)

O OP6 – Delete

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 13 231.23 33 625.23 17 412.55 14 225.75 15 717.66

σ (ms) 151.42 994.90 127.01 220.62 157.61

CI95 (ms) (13 214.10; 13 248.36) (33 512.65; 33 737.81) (17 398.18; 17 426.93) (14 200.78; 14 250.71) (15 699.82; 15 735.49)

36 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

Table 9

Results of the performance benchmark with all libraries running on a 256 MB heap. (T̄) denotes mean execution time, (σ) standard deviation
and CI95 95 % confidence interval. O stands for the operation executed and L for the evaluated library. For each operation, the fastest library is
underlined

O OP1 – Create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 8 801.82 27 126.05 13 461.65 71 255.72 25 229.68

σ (ms) 125.52 122.86 99.60 679.13 256.97

CI95 (ms) (8 787.61; 8 816.02) (27 112.15; 27 139.95) (13 450.38; 13 472.92) (71 178.87; 71 332.57) (25 200.60; 25 258.75)

O OP2 – Batch create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 782.93 27 229.57 6 882.30 63 937.70 17 311.32

σ (ms) 67.60 156.16 142.41 840.59 94.71

CI95 (ms) (775.28; 790.58) (27 211.89; 27 247.24) (6 866.19; 6 898.42) (63 842.58; 64 032.82) (17 300.61; 17 322.04)

O OP3 – Retrieve

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 21 115.87 36 909.70 8 793.69 48 354.16 59 441.71

σ (ms) 494.35 2 868.89 187.92 571.01 294.53

CI95 (ms) (21 059.93; 21 171.81) (36 585.06; 37 234.34) (8 772.40; 8 814.93) (48 289.54; 48 418.77) (59 408.38; 59 475.03)

O OP4 – Retrieve all

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 21 802.91 36 421.56 8 867.83 49 378.57 57 491.72

σ (ms) 770.91 3 013.25 123.43 388.12 271.83

CI95 (ms) (21 715.68; 21 890.15) (36 080.59; 36 762.54) (8 853.86; 8 881.79) (49 334.65; 49 422.49) (57 460.96; 57 522.48)

O OP5 – Update

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 10 998.84 18 786.56 11 697.42 50 779.10 12 622.81

σ (ms) 195.20 110.43 171.51 1 118.16 126.15

CI95 (ms) (10 976.75; 11 020.92) (18 774.06; 18 799.05) (11 678.02; 11 716.83) (50 652.57; 50 905.63) (12 608.53; 12 637.08)

O OP6 – Delete

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 13 360.98 33 359.14 17 467.42 14 332.69 15 806.75

σ (ms) 203.04 861.21 183.60 320.33 109.86

CI95 (ms) (13 338.01; 13 383.96) (33 261.69; 33 456.60) (17 446.64; 17 488.19) (14 296.44; 14 368.94) (15 794.32; 15 819.19)

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 37

Table 10

Results of the performance benchmark with all libraries running on a 512 MB heap. (T̄) denotes mean execution time, (σ) standard deviation
and CI95 95 % confidence interval. O stands for the operation executed and L for the evaluated library. For each operation, the fastest library is
underlined

O OP1 – Create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 9 201.87 27 488.23 13 904.15 71 863.39 25 540.07

σ (ms) 149.49 202.24 113.96 632.12 174.80

CI95 (ms) (9 184.95; 9 218.79) (27 465.34; 27 511.11) (13.891.26; 13 917.05) (71 791.86; 71 934.92) (25 520.29; 25 559.85)

O OP2 – Batch create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 711.93 27 568.86 6 948.82 64 554.25 17 323.95

σ (ms) 64.86 303.20 139.14 669.83 120.04

CI95 (ms) (704.59; 719.27) (27 534.55; 27 603.17) (6 933.08; 6 964.57) (64 478.45; 64 630.05) (17 310.36; 17 337.53)

O OP3 – Retrieve

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 20 507.68 36 729.19 8 835.20 48 577.78 59 516.95

σ (ms) 208.02 2 815.72 103.19 622.38 272.68

CI95 (ms) (20 484.14; 20 531.22) (36 410.57; 37 047.81) (8 823.52; 8 846.88) (48 507.35; 48 648.21) (59 486.09; 59 547.80)

O OP4 – Retrive all

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 21 905.64 36 096.34 8 885.67 49 432.99 57 470.96

σ (ms) 778.16 2 838.06 109.66 470.01 364.24

CI95 (ms) (21 817.59; 21 993.70) (35 775.19; 36 417.49) (8 873.26; 8 898.08) (49 379.80; 49 486.17) (57 429.75; 57 512.18)

O OP5 – Update

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 11 121.83 19 154.90 11 926.78 52 461.46 12 765.91

σ (ms) 170.39 133.68 283.87 365.42 142.05

CI95 (ms) (11 102.55; 11 141.11) (19 139.77; 19 170.02) (11 894.66; 11 958.90) (52 420.11; 52 502.81) (12 749.83; 12 781.98)

O OP6 – Delete

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 13 520.13 33 562.09 17 681.34 14 487.75 15 965.50

σ (ms) 243.72 768.82 350.42 309.69 122.67

CI95 (ms) (13 492.55; 13 547.71) (33 475.09; 33 649.09) (17 641.69; 17 720.99) (14 452.71; 14 522.80) (15 951.61; 15 979.38)

38 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

Table 11

Results of the performance benchmark with all libraries running on a 1 GB heap. (T̄) denotes mean execution time, (σ) standard deviation and
CI95 95 % confidence interval. O stands for the operation executed and L for the evaluated library. For each operation, the fastest library is
underlined

O OP1 – Create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 9 155.46 27 628.78 13 925.49 71 823.58 25 599.89

σ (ms) 174.77 124.39 148.02 646.03 137.00

CI95 (ms) (9 135.68; 9 175.23) (27 614.70; 27 642.86) (13 908.74; 13 942.24) (71 750.47; 71 896.68) (25 584.38; 25 615.39)

O OP2 – Batch create

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 738.16 27 624.64 6 926.20 64 241.03 17 325.64

σ (ms) 65.98 176.91 184.14 835.19 121.09

CI95 (ms) (730.70; 745.63) (27 604.62; 27 644.66) (6 905.36; 6 947.04) (64 146.52; 64 335.54) (17 311.97; 17 339.37)

O OP3 – Retrieve

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 19 838.94 36 632.24 8 748.13 48 581.99 59 486.47

σ (ms) 307.56 2 808.46 99.82 536.58 280.45

CI95 (ms) (19 804.13; 19 873.74) (36 314.44; 36 950.04) (8 736.83; 8 759.42) (48 521.27; 48 642.71) (59 454.74; 59 518.21)

O OP4 – Retrive all

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 21 811.98 35 852.54 8 855.95 49 211.94 57 521.18

σ (ms) 729.50 2 782.01 99.38 507.20 391.03

CI95 (ms) (21 729.43; 21 894.53) (35 537.73; 36 167.35) (8 844.70; 8 867.19) (49 154.54; 49 269.33) (57 476.93; 57 565.43)

O OP5 – Update

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 11 127.57 19 154.26 11 896.90 52 817.48 12 802.06

σ (ms) 176.45 86.91 291.88 453.97 205.95

CI95 (ms) (11 107.60; 11 147.53) (19 144.43; 19 164.10) (11 863.87; 11 929.93) (52 766.11; 52 868.85) (12 778.76; 12 825.37)

O OP6 – Delete

L AliBaba Empire JOPA KOMMA RDFBeans

T̄ (ms) 13 479.67 33 567.58 17 700.54 14 542.59 15 912.55

σ (ms) 216.33 739.66 144.05 281.12 106.94

CI95 (ms) (13 455.19; 13 504.15) (33 483.88; 33 651.28) (17 684.23; 17 716.84) (14 510.78; 14 574.40) (15 900.45; 15 924.65)

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 39

A.2. Scalability

This section contains figures illustrating the scala-
bility of the selected OTM libraries w.r.t. heap size for
all operations. Figure 13 shows performance results
depending on heap size for OP1, OP2, OP3 and OP4.
Figure 14 then for OP5 and OP6.

40 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

●
● ● ● ● ●

OP1 − Create

T
im

e
(m

s)

32 64 128 256 512 1024

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

Heap (MB)

● AliBaba
Empire
JOPA
KOMMA
RDFBeans

(a) Benchmark performance of OP1 w.r.t. heap size.

● ● ● ● ●

OP2 − Batch create
T

im
e

(m
s)

32 64 128 256 512 1024

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

Heap (MB)

● AliBaba
Empire
JOPA
KOMMA
RDFBeans

(b) Benchmark performance of OP2 w.r.t. heap size.

Fig. 13. Scalability w.r.t. heap size. Lower is better.

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 41

● ● ● ●
●

OP3 − Retrieve

T
im

e
(m

s)

32 64 128 256 512 1024

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

Heap (MB)

● AliBaba
Empire
JOPA
KOMMA
RDFBeans

(a) Benchmark performance of OP3 w.r.t. heap size.

● ● ● ● ●

OP4 − Retrieve all

T
im

e
(m

s)

32 64 128 256 512 1024

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

Heap (MB)

● AliBaba
Empire
JOPA
KOMMA
RDFBeans

(b) Benchmark performance of OP4 w.r.t. heap size.

● ● ● ● ●

OP5 − Update

T
im

e
(m

s)

32 64 128 256 512 1024

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Heap (MB)

● AliBaba
Empire
JOPA
KOMMA
RDFBeans

(c) Benchmark performance of OP5 w.r.t. heap size.

● ● ● ● ●

OP6 − Delete

T
im

e
(m

s)

32 64 128 256 512 1024

0

5000

10000

15000

20000

25000

30000

35000

40000

Heap (MB)

● AliBaba
Empire
JOPA
KOMMA
RDFBeans

(d) Benchmark performance of OP6 w.r.t. heap size.

Fig. 14. Scalability w.r.t. heap size. Lower is better.

42 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

References

[1] T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web,
Scientific American 284(5) (2001), 28–37.

[2] A. Kalyanpur, B.K. Boguraev, S. Patwardhan, J.W. Murdock,
A. Lally, C. Welty, J.M. Prager, B. Coppola, A. Fokoue-
Nkoutche, L. Zhang, Y. Pan and Z.M. Qiu, Structured Data
and Inference in DeepQA, IBM J. Res. Dev. 56(3) (2012),
351–364, ISSN 0018-8646. doi:10.1147/JRD.2012.2188737.
http://dx.doi.org/10.1147/JRD.2012.2188737.

[3] T. Heath and C. Bizer, Linked Data: Evolving the Web into a
Global Data Space, 1st edn, Morgan & Claypool, 2011. ISBN
9781608454303. http://linkeddatabook.com/.

[4] D. Wood, M. Zaidman, L. Ruth and M. Hausenblas, Linked
Data: Structured Data on the Web, Manning Publications Co.,
2014.

[5] R.E. Carvalho, J. Williams, I. Sturken, R. Keller and T. Panon-
tin, Investigation Organizer: the development and testing of
a Web-based tool to support mishap investigations, in: 2005
IEEE Aerospace Conference, 2005, pp. 89–98, ISSN 1095-
323X. doi:10.1109/AERO.2005.1559302.

[6] R. Carvalho, S. Wolfe, D. Berrios and J. Williams, Ontology
Development and Evolution in the Accident Investigation Do-
main, in: 2005 IEEE Aerospace Conference, 2005, pp. 1–8,
ISSN 1095-323X. doi:10.1109/AERO.2005.1559634.

[7] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne
and K. Wilkinson, Jena: implementing the semantic web rec-
ommendations, in: Proceedings of the 13th international World
Wide Web conference (Alternate Track Papers & Posters),
2004, pp. 74–83.

[8] J. Broekstra, A. Kampman and F. van Harmelen, Sesame: A
Generic Architecture for Storing and Querying RDF and RDF
Schema, in: Proceedings of the First International Semantic
Web Conference on The Semantic Web, 2002, pp. 54–68.

[9] R. Cyganiak, D. Wood and M. Lanthaler, RDF 1.1 Concepts
and Abstract Syntax, Technical Report, W3C, 2014.

[10] D. Brickley and R.V. Guha, RDF Schema 1.1, W3C Recom-
mendation, W3C, 2014.

[11] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,
D.L. McGuinness, P.F. Patel-Schneider and L.A. Stein, OWL
Web Ontology Language, W3C Recommendation, W3C,
2004.

[12] B. Motik, B. Parsia and P.F. Patel-Schneider, OWL 2 Web On-
tology Language Structural Specification and Functional-Style
Syntax, W3C Recommendation, W3C, 2009.

[13] D. Beckett, T. Berners-Lee, E. Prud’hommeaux and
G. Carothers, RDF 1.1 Turtle, W3C Recommendation, W3C,
2014, https://www.w3.org/TR/turtle/, accessed 08-08-2017..

[14] S. Harris and A. Seaborne, SPARQL 1.1 Query Language,
Technical Report, W3C, 2013.

[15] P. Gearon, A. Passant and A. Polleres, SPARQL 1.1 Update,
Technical Report, W3C, 2013, Accessed 2018-01-08. https://
www.w3.org/TR/sparql11-update.

[16] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev
and R. Velkov, OWLIM: A family of scalable semantic repos-
itories, Semantic Web – Interoperability, Usability, Applicabil-
ity (2010).

[17] O. Erling and I. Mikhailov, RDF Support in the Virtuoso
DBMS., in: Conference on Social Semantic Web, S. Auer,
C. Bizer, C. Müller and A.V. Zhdanova, eds, LNI, Vol. 113,

GI, 2007, pp. 59–68. ISBN 978-3-88579-207-9. http://dblp.
uni-trier.de/db/conf/cssw/cssw2007.html#ErlingM07.

[18] Microsoft, Microsoft Open Database Connectivity (ODBC),
Microsoft Corporation, 2016. https://cdn.simba.com/
wp-content/uploads/2016/03/ODBC_specification.pdf.

[19] P. Křemen and Z. Kouba, Ontology-Driven Information Sys-
tem Design, IEEE Transactions on Systems, Man, and Cyber-
netics: Part C 42(3) (2012), 334–344, ISSN 1094-6977.

[20] M. Horridge and S. Bechhofer, The OWL API: A Java API for
OWL ontologies, Semantic Web – Interoperability, Usability,
Applicability (2011).

[21] J. Leigh, AliBaba, 2007, Accessed 2018-01-02. https://
bitbucket.org/openrdf/alibaba/.

[22] M. Grove, Empire: RDF & SPARQL Meet JPA,
semanticweb.com (2010). http://semanticweb.com/
empire-rdf-sparql-meet-jpa_b15617.

[23] M. Ledvinka and P. Křemen, JOPA: Accessing Ontologies in
an Object-oriented Way, in: Proceedings of the 17th Interna-
tional Conference on Enterprise Information Systems, 2015.

[24] C. Puleston, B. Parsia, J. Cunningham and A. Rector, Integrat-
ing Object-Oriented and Ontological Representations: A Case
Study in Java and OWL, in: The Semantic Web - ISWC 2008,
A. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin
and K. Thirunarayan, eds, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 130–145. ISBN 978-3-540-88564-1.

[25] JCP, JDBCT M 4.2 Specification, Oracle America, Inc., 2014.
[26] JCP, JSR 317: JavaT M Persistence API, Version 2.0, Sun Mi-

crosystems, 2009.
[27] Standard Performance Evaluation Corporation,

SPECjbb R©2015, 2015, Accessed 2018-01-04. https:
//www.spec.org/jbb2015/.

[28] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang,
K.S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S.Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J.E.B. Moss, A. Phansalkar, D. Stefanović, T. Van-
Drunen, D. von Dincklage and B. Wiedermann, The Da-
Capo Benchmarks: Java Benchmarking Development and
Analysis, in: Proceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-oriented Programming Systems,
Languages, and Applications, OOPSLA ’06, ACM, New
York, NY, USA, 2006, pp. 169–190. ISBN 1-59593-348-
4. doi:10.1145/1167473.1167488. http://doi.acm.org/10.1145/
1167473.1167488.

[29] G. Gousios, V. Karakoidas and D. Spinellis, Tuning Java’s
memory manager for high performance server applications,
in: Proceedings of the 5th International System Administration
and Network Engineering Conference SANE 06, A. Zavras, ed.,
Stichting SANE, 2006, pp. 69–83, NLUUG.

[30] A. Georges, D. Buytaert and L. Eeckhout, Statistically Rig-
orous Java Performance Evaluation, in: Proceedings of the
22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, OOPSLA ’07, ACM,
New York, NY, USA, 2007, pp. 57–76. ISBN 978-1-59593-
786-5. doi:10.1145/1297027.1297033. http://doi.acm.org/10.
1145/1297027.1297033.

[31] O. Holanda, S. Isotani, I.I. Bittencourt, D. Dermeval and
W. Alcantara, An Object Triple Mapping System Support-
ing Detached Objects, Engineering Applications of Artifi-
cial Intelligence 62(C) (2017), 234–251, ISSN 0952-1976.
doi:10.1016/j.engappai.2017.04.010. https://doi.org/10.1016/j.
engappai.2017.04.010.

http://dx.doi.org/10.1147/JRD.2012.2188737
http://linkeddatabook.com/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/sparql11-update
https://www.w3.org/TR/sparql11-update
http://dblp.uni-trier.de/db/conf/cssw/cssw2007.html#ErlingM07
http://dblp.uni-trier.de/db/conf/cssw/cssw2007.html#ErlingM07
https://cdn.simba.com/wp-content/uploads/2016/03/ODBC_specification.pdf
https://cdn.simba.com/wp-content/uploads/2016/03/ODBC_specification.pdf
https://bitbucket.org/openrdf/alibaba/
https://bitbucket.org/openrdf/alibaba/
http://semanticweb.com/empire-rdf-sparql-meet-jpa_b15617
http://semanticweb.com/empire-rdf-sparql-meet-jpa_b15617
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/
http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/1297027.1297033
https://doi.org/10.1016/j.engappai.2017.04.010
https://doi.org/10.1016/j.engappai.2017.04.010

M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks 43

[32] P. Cristofaro, Virtuoso RDF Triple Store Analysis Benchmark
& mapping tools RDF / OO, 2013, Accessed 2018-01-02.
https://tinyurl.com/virt-rdf-map-tools.

[33] K. Schlegel, Selecting an RDF mapping library for cross-
media enhancements, 2015, Accessed 2018-01-04. https://
tinyurl.com/sel-rdf-map-lib.

[34] Y. Guo, A. Qasem, Z. Pan and J. Heflin, A Requirements
Driven Framework for Benchmarking Semantic Web Knowl-
edge Base Systems, IEEE Transactions on Knowledge and
Data Engineering 19(2) (2007), 297–309.

[35] Y. Guo, Z. Pan and J. Heflin, LUBM: A benchmark for
OWL knowledge base systems, Journal of Web Seman-
tics 3(2–3) (2005), 158–182. http://dx.doi.org/10.1016/
j.websem.2005.06.005;http://www.bibsonomy.org/bibtex/
2924e60509d7e1b45c6f38eaef9a5c6bb/gromgull.

[36] C. Bizer and A. Schultz, The Berlin SPARQL benchmark, In-
ternational Journal On Semantic Web and Information Systems
5(2) (2009), 1–24.

[37] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan and S. Liu, Towards a
Complete OWL Ontology Benchmark, in: ESWC’06 Proceed-
ings of the 3rd European conference on The Semantic Web: re-
search and applications, 2006, pp. 125–139.

[38] M. Ledvinka and P. Křemen, Object-UOBM: An Ontological
Benchmark for Object-oriented Access, in: Knowledge Engi-
neering and the Semantic Web, Springer, CCIS series, 2015.

[39] W.V. Siricharoen, Ontologies and Object models in Object Ori-
ented Software Engineering, in: Proceedings of the Interna-
tional MultiConference of Engineers and Computer Scientists
2006, IMECS ’06, June 20-22, 2006, Hong Kong, China, 2006,
pp. 856–861.

[40] G. Weikum and G. Vossen, Transactional Information Sys-
tems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002. ISBN 9780080519562.

[41] L. Feigenbaum, G.T. Williams, K.G. Clark and E. Tor-
res, SPARQL 1.1 Protocol, Technical Report, W3C,
2013, Accessed 2018-01-08. https://www.w3.org/TR/
sparql11-protocol.

[42] S. Speicher, J. Arwe and A. Malhotra, Linked Data Platform
1.0, Technical Report, W3C, 2013, Accessed 2018-01-08. http:
//www.w3.org/TR/ldp/.

[43] G. Hillairet, F. Bertrand and J.Y. Lafaye, Rewriting Queries by
Means of Model Transformations from SPARQL to OQL and
Vice-Versa, in: Theory and Practice of Model Transformations,
R.F. Paige, ed., Springer Berlin Heidelberg, Berlin, Heidelberg,
2009, pp. 116–131. ISBN 978-3-642-02408-5.

[44] R.G.G. Cattell and D.K. Barry, The Object Data Standard:
ODMG 3.0, Morgan Kaufmann, 2000. ISBN 1-55860-647-5.

[45] C. Stadler and J. Lehmann, JPA Criteria Queries over RDF
Data, in: Workshop on Querying the Web of Data co-located
with the Extended Semantic Web Conference, 2017. http://
jens-lehmann.org/files/2017/quweda_jpa.pdf.

[46] M. Zimmermann, Owl2Java – A Java Code Generator for
OWL, 2009, Accessed 2018-01-02. http://www.incunabulum.
de/projects/it/owl2java/.

[47] M. Quasthoff, H. Sack and C. Meinel, Can Software Devel-
opers Use Linked Data Vocabulary?, in: Proceedings of Inter-
national Conference on Semantic Systems 2009 (i-semantics
2009), 2009.

[48] D. Allemang and J. Hendler, Semantic Web for the Working
Ontologist: Effective Modeling in RDFS and OWL, 2nd edn,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2011. ISBN 9780123859655, 9780123859662.

[49] J.J. Carroll, C. Bizer, P. Hayes and P. Stickler, Named Graphs,
Provenance and Trust, in: Proceedings of the 14th Interna-
tional Conference on World Wide Web, WWW ’05, ACM,
New York, NY, USA, 2005, pp. 613–622. ISBN 1-59593-046-
9. doi:10.1145/1060745.1060835. http://doi.acm.org/10.1145/
1060745.1060835.

[50] A. Zimmermann, RDF 1.1: On Semantics of RDF Datasets,
2014, Accessed 2018-01-04. https://www.w3.org/TR/
rdf11-datasets/.

[51] S.S. Sahoo, O. Bodenreider, P. Hitzler, A. Sheth and
K. Thirunarayan, Provenance Context Entity (PaCE): Scal-
able Provenance Tracking for Scientific RDF Data, in: Pro-
ceedings of the 22Nd International Conference on Scientific
and Statistical Database Management, SSDBM’10, Springer-
Verlag, Berlin, Heidelberg, 2010, pp. 461–470. ISBN 3-642-
13817-9, 978-3-642-13817-1. http://dl.acm.org/citation.cfm?
id=1876037.1876075.

[52] M. Quasthoff and C. Meinel, Tracing the Provenance of
Object-Oriented Computations on RDF Data, in: Proceedings
of the 2nd Workshop (in conjunction with 7th ESWC) on Trust
and Privacy on the Social and Semantic Web (SPOT 2010),
2010.

[53] P. Křemen, B. Kostov, M. Blaško, J. Ahmad, V. Plos, A. Lališ,
S. Stojić and P. Vittek, Ontological Foundations of European
Coordination Centre for Accident and Incident Reporting Sys-
tems, Journal of Aerospace Information Systems 14(5) (2017),
279–292, https://doi.org/10.2514/1.I010441.

[54] L. Saeeda, Iterative Approach for Information Extraction and
Ontology Learning from Textual Aviation Safety Reports, in:
The Semantic Web, E. Blomqvist, D. Maynard, A. Gangemi,
R. Hoekstra, P. Hitzler and O. Hartig, eds, Springer Interna-
tional Publishing, Cham, 2017, pp. 236–245. ISBN 978-3-319-
58451-5.

[55] S. Oaks, Java Performance: The Definitive Guide, 1st
edn, O’Reilly Media, Inc., 2014. ISBN 1449358454,
9781449358457.

[56] B. Kostov, J. Ahmad and P. Křemen, Towards Ontology-
Based Safety Information Management in the Aviation In-
dustry, in: On the Move to Meaningful Internet Systems:
OTM 2016 Workshops: Confederated International Work-
shops: EI2N, FBM, ICSP, Meta4eS, and OTMA 2016, Rhodes,
Greece, October 24–28, 2016, Revised Selected Papers, I. Ciu-
ciu, C. Debruyne, H. Panetto, G. Weichhart, P. Bollen,
A. Fensel and M.-E. Vidal, eds, Springer International
Publishing, Cham, 2017, pp. 242–251. ISBN 978-3-319-
55961-2. doi:10.1007/978-3-319-55961-2_25. https://doi.org/
10.1007/978-3-319-55961-2_25.

[57] G. Guizzardi, Ontological Foundations for Structural Concep-
tual Models, PhD thesis, University of Twente, 2005.

[58] E. Oren, B. Heitmann and S. Decker, ActiveRDF: Embedding
SemanticWeb data into object-oriented languages, Web Seman-
tics: Science, Services and Agents on the World Wide Web 6(3)
(2008), ISSN 1570-8268. http://www.websemanticsjournal.
org/index.php/ps/article/view/143.

[59] J. Frohn, G. Lausen and H. Uphoff, Access to objects by path
expressions and rules, in: Proceedings of the International

https://tinyurl.com/virt-rdf-map-tools
https://tinyurl.com/sel-rdf-map-lib
https://tinyurl.com/sel-rdf-map-lib
http://dx.doi.org/10.1016/j.websem.2005.06.005; http://www.bibsonomy.org/bibtex/2924e60509d7e1b45c6f38eaef9a5c6bb/gromgull
http://dx.doi.org/10.1016/j.websem.2005.06.005; http://www.bibsonomy.org/bibtex/2924e60509d7e1b45c6f38eaef9a5c6bb/gromgull
http://dx.doi.org/10.1016/j.websem.2005.06.005; http://www.bibsonomy.org/bibtex/2924e60509d7e1b45c6f38eaef9a5c6bb/gromgull
https://www.w3.org/TR/sparql11-protocol
https://www.w3.org/TR/sparql11-protocol
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/ldp/
http://jens-lehmann.org/files/2017/quweda_jpa.pdf
http://jens-lehmann.org/files/2017/quweda_jpa.pdf
http://www.incunabulum.de/projects/it/owl2java/
http://www.incunabulum.de/projects/it/owl2java/
http://doi.acm.org/10.1145/1060745.1060835
http://doi.acm.org/10.1145/1060745.1060835
https://www.w3.org/TR/rdf11-datasets/
https://www.w3.org/TR/rdf11-datasets/
http://dl.acm.org/citation.cfm?id=1876037.1876075
http://dl.acm.org/citation.cfm?id=1876037.1876075
https://doi.org/10.1007/978-3-319-55961-2_25
https://doi.org/10.1007/978-3-319-55961-2_25
http://www.websemanticsjournal.org/index.php/ps/article/view/143
http://www.websemanticsjournal.org/index.php/ps/article/view/143

44 M. Ledvinka and P. Křemen / A comparison of object-triple mapping frameworks

Conference on Very Large Data Bases (VLDB), 1994, pp. 273–
284.

[60] G. Stevenson and S. Dobson, Sapphire: Generating Java Run-
time Artefacts from OWL Ontologies, in: Advanced Informa-
tion Systems Engineering Workshops, C. Salinesi and O. Pas-
tor, eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011,
pp. 425–436. ISBN 978-3-642-22056-2.

[61] P. Mika, Social Networks and the Semantic Web:
The Next Challenge, IEEE Intelligent Systems 20(1)
(2005). http://www.cs.vu.nl/~pmika/research/papers/
IEEE-TrendsAndControversies.pdf.

[62] F. Chevalier, AutoRDF - Using OWL as an Object Graph Map-
ping (OGM) Specification Language, in: The Semantic Web,
H. Sack, G. Rizzo, N. Steinmetz, D. Mladenić, S. Auer and
C. Lange, eds, Springer International Publishing, Cham, 2016,
pp. 151–155. ISBN 978-3-319-47602-5.

[63] J. von Malottki, JAOB (Java Architecture for OWL Binding),
2008, Accessed 2018-01-02. http://wiki.yoshtec.com/jaob.

[64] J. Tao, E. Sirin, J. Bao and D.L. McGuinness, Integrity Con-
straints in OWL, in: AAAI, M. Fox and D. Poole, eds, AAAI
Press, 2010.

[65] K. Wenzel, KOMMA: An Application Framework for
Ontology-based Software Systems, Semantic Web – Interoper-
ability, Usability, Applicability (2010).

[66] A. Alishevskikh, RDFBeans, 2017, Accessed 2018-01-02.
https://rdfbeans.github.io.

[67] M. Völkel and Y. Sure, RDFReactor - From Ontologies to
Programmatic Data Access, in: Poster and Demo at Interna-
tional Semantic Web Conference (ISWC) 2005, Galway, Ire-
land, 2005.

[68] P. Ježek and R. Mouček, Semantic framework for mapping
object-oriented model to semantic web languages, Frontiers in
Neuroinformatics 9(3) (2015).

[69] T. Cowan and D. Donohue, Jenabean, 2010, Accessed 2018-
01-04. https://code.google.com/archive/p/jenabean/.

[70] Ben Lavender, Spira: A Linked Data ORM for Ruby, 2010,
Accessed 2018-03-20. https://github.com/ruby-rdf/spira.

[71] Cosmin Basca, SuRF, 2009, Accessed 2018-03-20. https://
github.com/cosminbasca/surfrdf.

[72] B.H. Szekely and J. Betz, Jastor Homepage, 2006, Accessed
2018-01-02. http://jastor.sourceforge.net.

[73] H. Story, Semantic Object (Metadata) MappER, 2009, Ac-
cessed 2018-01-02. https://github.com/bblfish/sommer.

[74] D. Toti and M. Rinelli, RAN-Map: a system for automatically
producing API layers from RDF schemas, Journal of Ambient
Intelligence and Humanized Computing 8(2) (2017), 291–299,
ISSN 1868-5145. doi:10.1007/s12652-016-0394-z. https://doi.
org/10.1007/s12652-016-0394-z.

[75] S. Fernández, D. Berrueta, M.G. Rodríguez and J.E. Labra,
TRIOO: Keeping the semantics of data safe and sound into
object-oriented software, in: ICSOFT 2010 - Proceedings of
the 5th International Conference on Software and Data Tech-
nologies, Vol. 1, 2010, pp. 311–320.

[76] P.-H. Chiu, C.-C. Lo and K.-M. Chao, Integrating Semantic
Web and Object-Oriented Programming for Cooperative De-
sign, Journal of Universal Computer Science 15(9) (2009),
1970–1990.

[77] N. Drummond, A. Rector, R. Stevens, G. Moulton, M. Hor-
ridge, H.H. Wang and J. Seidenberg, Putting OWL in Order:
Patterns for Sequences in OWL, in: OWL Experiences and Di-
rections (OWLEd 2006), Athens Georgia, 2006.

[78] Oracle, Java Garbage Collection Basics, 2016, Accessed
2018-01-04. http://www.oracle.com/webfolder/technetwork/
tutorials/obe/java/gc01/index.html.

[79] I.R. Forman and N. Forman, Java Reflection in Action (In Ac-
tion Series), Manning Publications Co., Greenwich, CT, USA,
2004. ISBN 1932394184.

[80] M. Schmidt, M. Meier and G. Lausen, Foundations of
SPARQL Query Optimization, in: Proceedings of the 13th In-
ternational Conference on Database Theory, ICDT ’10, ACM,
New York, NY, USA, 2010, pp. 4–33. ISBN 978-1-60558-947-
3. doi:10.1145/1804669.1804675.

http://www.cs.vu.nl/~ pmika/research/papers/IEEE-TrendsAndControversies.pdf
http://www.cs.vu.nl/~ pmika/research/papers/IEEE-TrendsAndControversies.pdf
http://wiki.yoshtec.com/jaob
https://rdfbeans.github.io
https://code.google.com/archive/p/jenabean/
https://github.com/ruby-rdf/spira
https://github.com/cosminbasca/surfrdf
https://github.com/cosminbasca/surfrdf
http://jastor.sourceforge.net
https://github.com/bblfish/sommer
https://doi.org/10.1007/s12652-016-0394-z
https://doi.org/10.1007/s12652-016-0394-z
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

	Introduction
	Motivating scenario
	Contribution

	Background
	Accessing semantic data
	Performance benchmarking in Java

	Related work
	Design of the comparison framework
	Feature criteria
	Performance benchmark
	Benchmark model
	Benchmark operations

	Libraries selected for comparison
	ActiveRDF
	AliBaba
	AutoRDF
	Empire
	JAOB
	JOPA
	KOMMA
	RDFBeans
	RDFReactor
	The Semantic Framework
	Spira
	SuRF
	Libraries omitted from selection

	Feature comparison
	GC1 – Transactions
	GC2 – Storage access variability
	GC3 – Query result mapping
	GC4 – Object-level query language
	GC5 – Detached objects
	GC6 – Code/ontology generator
	OC1 – Explicit inference treatment
	OC2 – Named graphs
	OC3 – Automatic provenance management
	MC1 – Inheritance mapping
	MC2 – Unmapped data access
	MC3 – RDF collections and containers

	Performance comparison
	Experiment setup
	Performance
	Memory

	Results
	Performance
	Scalability
	Memory

	Conclusions
	Acknowledgements
	Appendix A. Complete benchmark results
	Performance
	Scalability

	References

