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Abstract. The increasing number of Knowledge Graphs (KGs) available today calls for powerful query languages that can strike
a balance between expressiveness and complexity of query evaluation and, that can be easily integrated into existing query
processing infrastructures. We present Extended Property Paths (EPPs), a significant enhancement of Property Paths (PPs), the
navigational core included in the SPARQL query language. We introduce the EPPs syntax, which allows to capture in a succinct
way a larger class of navigational queries than PPs and other navigational extensions of SPARQL, and provide formal semantics.
We describe a translation from non-recursive EPPs (nEPPs) into SPARQL queries and provide novel expressiveness results
about the capability of SPARQL sub-languages to express navigational queries. We prove that the language of EPPs is more
expressive than that of PPs; using EPPs within SPARQL allows to express things that cannot be expressed when only using PPs.
We also study the expressiveness of SPARQL with EPPs in terms of reasoning capabilities. We show that SPARQL with EPPs
is expressive enough to capture the main RDFS reasoning functionalities and describe how a query can be rewritten into another
query enhanced with reasoning capabilities. We complement our contributions with an implementation of EPPs as the SPARQL-
independent iEPPs language and an implementation of the translation of nEPPs into SPARQL queries. What sets our approach
apart from previous research on querying KGs is the possibility to evaluate both nEPPs and SPARQL with nEPPs queries under
the RDFS entailment regime on existing query processors. We report on an experimental evaluation on a variety of real KGs.
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1. Introduction

Knowledge Graphs (KGs) are becoming crucial in
many application scenarios [1]. The Google Knowl-
edge Graph [2], Facebook Open Graph [3], DBpe-
dia [4], Yago [5], and Wikidata [6] are just a few ex-
amples. Devising powerful KG query languages that
can strike a balance between expressiveness and com-
plexity of query evaluation while at the same time
having little impact on existing query processing in-
frastructures is crucial [7]. There is a large number
of KGs encoded in RDF [8], the W3C standard for
the publishing of structured data on the Web [9]. To
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query RDF data, a standard query language, called
SPARQL [10, 11], has been designed. While an early
version of SPARQL did not provide explicit naviga-
tional capabilities that are crucial for querying graph-
like data, the most recent version (SPARQL 1.1) incor-
porates Property Paths (PPs). The main goal of PPs is
to allow the writing of navigational queries in a more
succinct way and support basic transitive closure com-
putations. However, it has been widely recognized that
PPs offer very limited expressiveness [12–15]; notably,
PPs lack any form of tests within a path, a feature that
can be very useful when dealing with graph data. For
example, a query like find Italian exclusive friends,
that is, “friends that are not friend of any other friends,
and are Italian" requires both path difference and tests.
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Surprisingly, these features neither are available in PPs
nor in any previous navigational extension of SPARQL
(e.g., NRE [16]). In this paper we introduce Extended
Property Paths (EPPs), a comprehensive language in-
cluding a set of navigational features to extend the cur-
rent navigational core of SPARQL. In particular, EPPs
integrate features like path conjunction, difference, and
repetitions, as well as powerful types of tests. A pre-
liminary description of the language appeared in the
proceedings of the AAAI’15 conference [17].

1.1. EPPs by Example

We introduce the main features of EPPs by describ-
ing a few examples. An excerpt of a KG is given in
Fig. 1. Intuitively, an EPP expression defines a binary
relation on the nodes of the graph upon which it is eval-
uated.

Example 1. (Path Difference). Find pairs of cities lo-
cated in the same country but not in the same region.

Navigational Languages such as Nested Expression
(NRE) and PPs cannot express such request due to the
lack of path difference (the result has to exclude cities
in the same region). With EPPs, the request can be ex-
pressed as follows (the full syntax will be presented in
Section 3.1):

?x ((:country/ˆ:country)∼(:region/ˆ:region)) ?y

The symbol ^ denotes backward navigation from
the object to the subject of a triple. Path difference ∼
enables to discard from the set of cities in the same
country (i.e., :country/ˆ:country) those that
are in the same region (i.e., :region/ˆ:region).
A SPARQL-independent evaluation pattern of the EPP
expression1 considers all the bindings of the variable
?x (representing one of the cities that are wanted) and
then evaluates the expression from each binding. The
result is the set of bindings for the variable ?y, repre-
senting the other city. From :Rome, the evaluation of
the expression ((:country/ˆ:country)∼(:region/ˆ:region))

reaches :Florence and :Carrara. J

Example 2. (Path Conjunction). Find pairs of cities
located in the same country and in the same region.

?x ((:country/ˆ:country)&(:region/ˆ:region)) ?y

1We provide a detailed algorithm in Section 7.

In this case, path conjunction & enables to keep from
the set of nodes satisfying the first subexpression those
that also satisfy the second one. From :Florence,
the evaluation of the expression ((:country/ˆ:country)&

(:region/ˆ:region)) reaches the cities :Florence
and :Carrara. J

Example 3. (Tests). Find pairs of cities governed by
the same political party founded before 2010.

?x (:leaderParty&&TP(_o, :formationYear&&

T(_o < 2010))/ˆ:leaderParty) ?y

TP denotes a test for the existence of a path
whose parameters specify the position in the triple
from which the test starts (_o denotes the object of
the last traversed triple), and a path (in this case
:formationYear&& T(_o < 2010)). The path is
composed by logical AND (&&) of two tests. The first
checks the existence of an edge :formationYear
and the second, which starts from the object of the last
traversed triple (i.e., :formationYear), checks
that the value is less than 2010. PPs and NREs-
based languages lack tests like TP to check the ex-
istence of paths satisfying conditions. Starting from
:Rome, the first logical AND (via &&) of two tests
is performed; one checks for the existence of an edge
:leaderParty, which leads to :Democratic_Party,
while the other (i.e., TP) starts from the object of
the previous navigational step, that is, the object of
(:Rome, :leaderParty, :Democratic_Party).
From :Democratic_Party, another logical AND

(via &&) of two tests is evaluated. The first checks the
existence of an edge :formationYear and enables
to reach the node 2007; the second, which starts from
the object of the previous step (i.e., 2007), checks that
the value is < 2010; in this case the test succeeds and
the evaluation continues from :Democratic_Party
by navigating the edge :leaderParty backward
and reaching the nodes :Florence and :Rome in-
cluded in the results. J

Composing all the previous features together, we
can express a more complex query.

Example 4. (Path Conjunction, Difference and
Tests).Find pairs of cities located in the same coun-
try but not in the same region. Such cities must be
governed by the same political party, which has been
founded before 2010.

?x ((:country/ˆ:country)∼(:region/ˆ:region)) &

(:leaderParty&&TP(_o, :formationYear&&T(_o < 2010))

/ˆ:leaderParty ?y
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Fig. 1. An excerpt of Knowledge Graph taken from DBpedia.

From :Rome, the evaluation of the first subexpres-
sion, including :country and :region, allows to
reach the nodes :Florence and :Carrara. The
evaluation of the second part of the path conjunction
allows to reach the nodes :Rome and :Florence.
From :Rome we reach :Florence. J

Example 4 cannot be expressed by using NREs-
based languages or PPs. These languages lack both
path difference (we want cities in the same country
but not in the same region) and conjunction (addi-
tionally, they must be governed by the same political
party). We have discussed in the previous examples
how a SPARQL-independent algorithm can evaluate
EPP expressions. However, since our primary goal is
to allow powerful navigation queries on existing KGs
query processing infrastructures, we devised a trans-
lation of non-recursive EPPs into SPARQL. Our ap-
proach follows the same reasoning as the translation of
non-recursive PPs into SPARQL used by the current
SPARQL standard [18]. The advantage of using EPPs
to write non-recursive navigational queries instead of
writing them directly into SPARQL is that the same
request can be expressed more succinctly and without
the need to deal with intermediate variables.

Example 5. The SPARQL query corresponding to the
translation of the EPP expression in Example 4 is
shown in Fig. 2, where ?v1, ?v2, ?v3 and ?v4
are variables automatically generated by the transla-
tion algorithm.

SELECT ?x ?y WHERE {
{?x :country ?v1.?y :country ?v1.}
MINUS{?x :region ?v2.?y :region ?v2. }
?x :leaderParty ?v3. ?y :leaderParty ?v3.
FILTER EXISTS{?v3 :formationYear ?v4.
FILTER(?v4 < 2010)} }

Fig. 2. SPARQL translation of the EPP expression in Example 4.
J

Example 6. (Arbitrary Path Length with Tests).
Find cities reachable from :Carrara connected via
a path of arbitrary length with labels :twinned con-
sidering only those cities reachable by a chain of in-
termediate cities having :population greater than
10000. The EPP expression capturing this request is:

:Carrara (:twinned &&

TP(_o, :population&&T(_o>10000)) )
∗ ?y

The expression involves arbitrary length paths plus
tests. The evaluation checks from the node :Carrara
the existence of paths of arbitrary length (denoted by
∗) where each node reached in the path must satisfy
the test TP. Starting from :Carrara, with a path
:twinned of length one, :Grasse is reached. From
this node the test TP is evaluated to check the exis-
tence of a triple (:Grasse, :population, n) with
n>10000. Since :Grasse passes the TP test, start-
ing from it the path :twinned is evaluated again
reaching :Murcia, which also passes the TP test and
:Migliarino that does not pass the TP test. The
evaluation continues from :Murcia and stops when
reaching the node :Miami, which passes the TP test.
Overall, we reach :Carrara, :Grasse, :Murcia,
and :Miami. J
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The EPP expression in Example 6 cannot be trans-
lated into a basic SPARQL query because it makes
use of the closure operator ∗ (requiring the evaluation
of (:twinned &&TP(_o, :population&&T(_o>10000))) an a-
priori unknown number of times). To give semantics
to this kind of EPP expressions we introduce the eval-
uation function EALP1 (Fig. 8), which extends the
function ALP1 defined for PPs in the SPARQL stan-
dard [10]. EPPs also support path repetitions (handled
via EALP1), that are a concise way of expressing the
union of concatenations of an expression between a
min and max number of times.

Example 7. (Path Repetitions). By using path repe-
titions between 1 and 2, the expression in Example 6
can be rewritten as follows:

:Carrara (:twinned &&

TP(_o, :population&&T(_o>10000)) ){{1, 2}} ?y

J

So far we have presented examples of isolated EPPs
expressions. We now consider their usage in SPARQL.

Example 8. (EPPs within SPARQL). Find pairs of
cities (A,B) and their populations such that: (i) A and
B are in the same country, but not in the same region;
(ii) there exists some transportation from A to B.

SELECT ?cityA ?cityB ?popA ?popB WHERE {
?cityA :population ?popA.
?cityB :population ?popB.
{ /* BEGIN EPPs pattern */
?cityA ((:country/^country)
~(:region/^:region))
&:transportation ?cityB.
} /* END EPPs pattern */
}

Fig. 3. EPPs used inside SPARQL as for Example 8.

The query in Example 3 allows to obtain the popula-
tion of the pairs of cities satisfying the EPP expression
by introducing two additional patterns, where the vari-
ables ?popA and ?popB are bound to population in-
formation. When the query is evaluated on the graph
reported in Fig. 1 it produces no results; for instance
the pair (:Rome, :Florence) is connected by an
:airbus that is a kind of :plane, which is a mean
of :transportation, but there is no edge whose
label is :transportation. J

The previous example does not take the KG RDFS
schema into account. When considering transporta-

tion services without specifying the exact type of ser-
vice, one would be able to actually discover the con-
nection between :Rome and :Florence. This can
be achieved by performing sub-property inference ac-
cording to the RDFS entailment regime. One crucial
aspect of EPPs is that they can capture the main RDFS
inference types by encoding each inference rule in a
prototypical EPP expression (see Section 5.2), with the
advantage that the resulting expressions can be trans-
lated into SPARQL and evaluated on existing proces-
sors (via ALP1).

Example 9. (EPPs and Reasoning). The EPPs in Ex-
ample 8 can be automatically rewritten into an EPP
supporting RDFS reasoning as follows:

SELECT ?cityA ?cityB ?popA ?popB WHERE {
?cityA :population ?popA.
?cityB :population ?popB.
{ /* BEGIN EPPs pattern */
?cityA
((:country/^country)~(:region/^:region))&

(TP(_p,(rdfs:sp*/rdfs:sp)
&&T(_o=:transportation))
||T(_p=:transportation)))))
?cityB.

}} /* END EPPs pattern */

The translation to SPARQL this query is reported
in Fig. 4. When this query is evaluated on the graph
in Fig. 1 it produces (?cityA→:Rome, ?cityB→
:Florence, ?popA→2874034, ?popB→380226). J

1.2. Contributions and Organization
The contribution of the paper are both theoretical

and practical.

– We introduce two languages EPPs and iEPPs to
query KGs. They have the same syntax but dif-
ferent semantics; one based on multiset (Sec-
tion 3.2) and complying with SPARQL, and the
other based on sets (Section 7.1).

– We provide a translation from non-recursive EPPs
into SPARQL queries (Section 4). The benefit of
our translation is twofold; on one hand, it allows
to evaluate nEPPs (a larger class of queries than
non-recursive PPs) into existing SPARQL proces-
sors; on the other hand, the usage of our transla-
tion paves the way toward readily incorporating
EPPs in the current SPARQL standard.

– Building upon our translation, we also show how
a SPARQL query can be rewritten into another
SPARQL query that incorporates reasoning capa-
bilities and can be evaluated on existing SPARQL
processors (Section 5).
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SELECT ?cityA ?cityB ?popA ?popB WHERE
{ ?cityA: population ?popA. ?cityB : population ?popB.
/* BEGIN EPPs-\rhoDF to SPARQL TRANSLATION */
{ {?cityA ? pN_0_0_0 ? middleN_0_0.
FILTER(?pN_0_0_0 =:country)}
UNION
{?cityA ?pN_0_0_0 ?middleN_0_0.
FILTER EXISTS {?pN_0_0_0 sp* ?middleN_0_0_0_0_1_0.
?middleN_0_0_0_0_1_0 sp ?endN_0_0_0_0_1_0.
FILTER( ?endN_0_0_0_0_1_0 = :country)}
{?cityB ?pN_0_0_1 ?middleN_0_0.
FILTER(( ?pN_0_0_1 = :country)}
UNION { ?cityB ?pN_0_0_1 ?middleN_0_0.
FILTER EXISTS {?pN_0_0_1 sp * ?middleN_0_0_1_0_1_0.
?middleN_0_0_1_0_1_0 sp ?endN_0_0_1_0_1_0.
FILTER( ?endN_0_0_1_0_1_0 = :country)}
}
MINUS
{?cityA ? pN_0_1_0 ? middleN_0_1.
FILTER( ?pN_0_1_0 = :region)}}
UNION {?cityA ?pN_0_1_0 ?middleN_0_1.
FILTER EXISTS {?pN_0_1_0 sp * ?middleN_0_1_0_0_1_0.
?middleN_0_1_0_0_1_0 sp ? endN_0_1_0_0_1_0.
FILTER( ? endN_0_1_0_0_1_0 = : region)}
{ ?cityB ?pN_0_1_1 ?middleN_0_1.
FILTER( ?pN_0_1_1 = :region)}
UNION {?cityB ?pN_0_1_1 ?middleN_0_1.
FILTER EXISTS {?pN_0_1_1 sp * ?middleN_0_1_1_0_1_0.
?middleN_0_1_1_0_1_0 sp ? endN_0_1_1_0_1_0.
FILTER( ? endN_0_1_1_0_1_0 = region)}
}
{ ?cityA ?pN_1 ?cityB. FILTER( ? pN_1 = : transportation) }
UNION {?cityA ? pN_1 ? cityB.
FILTER EXISTS { ?pN_1 sp * ?middleN_1_0_1_0.
?middleN_1_0_1_0 sp ?endN_1_0_1_0.
FILTER( ? endN_1_0_1_0 = : transportation)} }}
/* END rhoDF-EPPs to SPARQL TRANSLATION */
} Fig. 4. SPARQL translation of Example 9.

– We implement the nEPPs to SPARQL translation
as an extension of the Jena library and an iEPPs
query processor. Both are available on-line2.

– We perform an extensive experimental evaluation
on a variety of real data sets (Section 8).

From a theoretical point of view:

– We introduce iEPPs as a SPARQL-independent
language and discuss its complexity (Section 7.2).

– We report novel expressiveness results about the
capability of SPARQL in expressing navigational
queries. We show that SPARQL is expressive
enough to capture nEPPs (Section 4.2).

– We prove that the language of EPPs is more ex-
pressive than that of PPs and, as a by-product, that
the fragment of SPARQL including EPPs, AND
and UNION is more expressive than the fragment
of SPARQL including PPs, AND and UNION
(Section 6.1).

– We provide a novel study about the expressive-
ness of SPARQL in terms of the main reason-
ing capabilities of RDFS (defined as ρdf [19])
when considering different navigational cores
(Section 6.2). We show that SPARQL is expres-
sive enough to capture ρdf.

2https://extendedpps.wordpress.com

The remainder of the paper is organized as follows.
We provide some background definitions in Section 2.
Section 3 presents the EPPs syntax and semantics. Sec-
tion 4 formalizes the translation of non-recursive EPPs
into SPARQL queries. Section 5 shows how EPPs sup-
port reasoning. The expressiveness of EPPs is analyzed
in Section 6. The iEPPs language is described in Sec-
tion 7. The implementation and the evaluation of EPPs
and iEPPs are discussed in Section 8. Section 9 dis-
cusses related literature. We conclude in Section 10.

2. Preliminaries

In this section we provide some background about
RDF, SPARQL and SPARQL property paths. An RDF
triple3 is a tuple of the form 〈s, p, o〉 ∈ I × I × I ∪ L,
where I and L are countably infinite sets of IRIs and
literals respectively. An RDF graph G is a set of triples.
The set of terms of an RDF graph (i.e., the set of
IRIs and literals appearing in the graph) is denoted
by terms(G) while nodes(G) denotes the set of terms
used as a subject or object of a triple. In what follows
we will focus on the fragment of SPARQL including
the SELECT query form and provide a formalization
of its semantics along the lines of Angles and Gutier-
rez [20] that is faithful to the semantics of the W3C
standard.

2.1. Background on SPARQL

Let V be a countably infinite set of variables, such
that V ∩ (I ∪ L) = ∅. A (solution) mapping µ is a
partial function µ: V → I ∪ L. The empty mapping,
denoted µ0, is the mapping satisfying dom(µ0) = ∅.
Two mappings, say µ1 and µ2, are compatible (resp.,
not compatible), denoted by µ1 ∼ µ2 (resp., µ1 6∼ µ2),
if µ1(?X) = µ2(?X) for all variables ?X ∈

(
dom(µ1)∩

dom(µ2)
)

(resp., if µ1(?X) 6= µ2(?X) for some ?X ∈
(dom(µ1) ∩ dom(µ2))). If µ1 ∼ µ2 then we write
µ1 ∪ µ2 for the mapping obtained by extending µ1 ac-
cording to µ2 on all variables in dom(µ2) \ dom(µ1).
Note that two mappings with disjoint domains are al-
ways compatible, and that the empty mapping µ0 is
compatible with any other mapping. Given a finite
set of variables W ⊂ V , the restriction of a map-
ping µ to W, denoted µ|W , is a mapping µ′ satisfying

3To simplify the discussion we do not consider blank nodes in
this section; we will adddress this issue later in Section 2.4.

https://extendedpps.wordpress.com
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dom(µ′) = dom(µ) ∩W and µ′(?X) = µ(?X) for ev-
ery ?X ∈ dom(µ) ∩W.

A selection formula is defined recursively as fol-
lows: (i) If ?X, ?Y ∈ V and c ∈ I ∪ L then (?X = c),
(?X =?Y) and bound(?X) are atomic selection for-
mulas; (ii) If F and F′ are selection formulas then
(F ∧F′), (F ∨F′) and ¬(F) are boolean selection for-
mulas. The evaluation of a selection formula F under
µ, denoted µ(F), is defined in a three-valued logic (i.e.
with values true, false, and error) as follows:

– If F is ?X = c and ?X ∈ dom(µ), then µ(F) =
true when µ(?X) = c and µ(F) = false oth-
erwise. If ?X /∈ dom(µ) then µ(F) = error.

– If F is ?X =?Y and ?X, ?Y ∈ dom(µ), then
µ(F) = true when µ(?X) = µ(?Y) and µ(F) =
false otherwise. If either ?X /∈ dom(µ) or
?Y /∈ dom(µ) then µ(F) = error.

– If F is bound(?X) and ?X ∈ dom(µ) then
µ(F) = true else µ(F) = false.

– If F is a complex selection formula then it is eval-
uated following the three-valued logic presented
in Table 1.

Table 1
Three-valued logic for evaluating selection formulas.

p q p ∧ q p ∨ q
true true true true
true false false true
true error error true
false true false true
false false false false
false error false error
error true error true
error false false error
error error error error

p ¬p
true false
false true
error error

We use the symbol Ω to denote a multiset and
card(µ,Ω) to denote the cardinality of the map-
ping µ in the multiset Ω. Moreover, it applies that
card(µ,Ω) = 0 when µ /∈ Ω. We use Ω0 to de-
note the multiset containing the only mapping µ0, that
is card(µ0,Ω0) > 0 (Ω0 is called the join identity).
The domain of a solution mapping Ω is defined as
dom(Ω) =

⋃
µ∈Ω dom(µ). The SPARQL algebra for

multisets of mappings is composed of the operations of
projection, selection, join, difference, left-join, union
and minus. Let Ω1,Ω2 be multisets of mappings, W be
a set of variables and F be a selection formula.

Definition 10. (Operations over multisets of map-
pings). Let Ω1 and Ω2 be multiset of mappings, then:

Projection: πW(Ω1) = {µ′ | µ ∈ Ω1, µ
′ = µ|W},

card(µ′, πW(Ω1)) =
∑

µ∈Ω1 s.t. µ′=µ|W
card(µ,Ω1)

Selection: σF(Ω1) = {µ ∈ Ω1 | µ(F) = true}
where card(µ, σF(Ω1)) = card(µ,Ω1)

Union: Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 ∨ µ ∈ Ω2} where
card(µ,Ω1 ∪ Ω2) = card(µ,Ω1) + card(µ,Ω2)

Join: Ω1 on Ω2={µ = (µ1 ∪ µ2) | µ1 ∈ Ω1, µ2 ∈
Ω2, µ1 ∼ µ2}, card(µ,Ω1 on Ω2)=
=
∑

µ1∈Ω1 and µ2∈Ω2 s.t. µ=(µ1∪µ2) card(µ1,Ω1)×
card(µ2,Ω2).

Difference: Ω1 \F Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2, (µ1 �
µ2)∨(µ1 ∼ µ2∧(µ1∪µ2)(F) = false)}where
card(µ1,Ω1 \F Ω2) = card(µ1,Ω1)

Minus: Ω1 − Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2, µ1 � µ2 ∨
dom(µ1)∩ dom(µ2) = ∅} where card(µ1,Ω1 −
Ω2) = card(µ1,Ω1).

Left Join: Ω1qyon FΩ2 = σF(Ω1 on Ω2) ∪ (Ω1 \F Ω2)
where card(µ,Ω1qyon FΩ2) = card(µ, σF(Ω1 on
Ω2)) + card(µ,Ω1 \F Ω2).

2.2. SPARQL Patterns

We now introduce SPARQL graph patterns. A graph
pattern is defined recursively as follows:

– A tuple from (I∪L∪V)× (I∪V)× (I∪L∪V)
is a graph pattern called a triple pattern4.

– If P1 and P2 are patterns then (P1 ANDP2),
(P1 UNIONP2), (P1 OPTIONALP2), (P1 MINUSP2)
and (P1 NOT-EXISTSP2) are graph patterns.

– If P1 is a pattern and C is a filter constraint (as
defined below) then (P1FILTERC) is a pattern.

A filter constraint is defined recursively as follows:
(i) If ?X, ?Y ∈ V and c ∈ I ∪ L then (?X = c), (?X =
?Y) and bound(?X) are atomic filter constraints; (ii) If
C1 and C2 are filter constraints then (!C1), (C1 || C2)
and (C1 && C2) are complex filter constraints. Given
a filter constraint C, we denote by f (C) the selection
formula obtained from C. Note that there exists a sim-
ple and direct translation from filter constraints to se-
lection formulas and vice-versa.

Given a triple pattern t and a mapping µ such that
var(t) ⊆ dom(µ), we denote by µ(t) the triple ob-
tained by replacing the variables in t according to µ.
Overloading the above definition, we denote by µ(P)
the graph pattern obtained by the recursive substitution
of variables in every triple pattern and filter constraint
occurring in the graph pattern P according to µ.

4We assume that any triple pattern contains at least one variable.



Fionda, Pirrò, Consens / Querying Knowledge Graphs with Extended Property Paths 7

R1 [[〈α, u, β〉]]G := Ω =
{
µ | dom(µ) = ({α, β} ∩ V) and µ(〈α, u, β〉) ∈ G

}
, card(µ,Ω) = 1

R2 [[〈α, !(u1 | . . . | un), β〉]]G := Ω =
{
µ | dom(µ) =

(
{α, β} ∩ V

)
, ∃u ∈ I such that u /∈

{u1, . . . , un} and µ(〈α, u, β〉) ∈ G
}

and card(µ,Ω) =
∣∣{u | u ∈ I, u /∈ {u1, . . . , un}, µ(〈α, u, β〉) ∈ G

}∣∣
R3 [[〈α, ∧elt, β〉]]G := Ω = [[〈β,elt, α〉]]G
R4 [[〈α,elt1/elt2, β〉]]G := Ω = π{α,β}∩V

(
[[〈α,elt1, ?v〉]]G on [[〈?v,elt2, β〉]]G

)
R5 [[〈α, (elt1|elt2), β〉]]G := Ω = [[〈α,elt1, β〉]]G ∪ [[〈α,elt2, β〉]]G
R6 [[〈xL, (elt)∗, ?vR〉]]G := Ω =

{
µ | dom(µ) = {?vR} and µ(?vR) ∈ ALP1(xL,elt,G)

}
, card(µ,Ω) = 1

R7 [[〈?vL, (elt)∗, ?vR〉]]G := Ω =
{
µ | dom(µ) = {?vL, ?vR} and µ(?vL) ∈ terms(G) and µ(?vR) ∈

ALP1(µ(?vL),elt,G)
}
,

card(µ,Ω) = 1

R8 [[〈?vL, (elt)∗, xR〉]]G := Ω = [[〈xR, (
∧elt)∗, ?vL〉]]G

R9 [[〈xL, (elt)∗, xR〉]]G := Ω =

{
{µ0}, if ∃ µ ∈ [[〈xL, (elt)∗, ?v〉]]G : µ(?v) = xR, and card(µ0,Ω) = 1

∅, otherwise

Fig. 5. Standard query semantics of SPARQL Property Paths, where α, β ∈ (I ∪ L ∪ V); u, u1, ..., un ∈ I; xL, xR ∈ (I ∪ L); ?vL, ?vR ∈ V;
?v ∈ V is a fresh variable.

Function ALP1
(
γ,elt,G

)
Input: γ ∈ (I ∪ L),

elt is a PP expression,
G is an RDF graph.

1: Visited := ∅
2: ALP2

(
γ,elt,Visited,G

)
3: return Visited

Function ALP2
(
γ,elt,Visited,G

)
Input: γ ∈ (I ∪ L), elt is a PP expression,

Visited ⊆ (I ∪ L), G is an RDF graph.
4: if γ /∈ Visited then
5: add γ to Visited
6: for all µ ∈ [[〈?x,elt, ?y〉]]G such that µ(?x) = γ and ?x, ?y ∈ V do
7: ALP2

(
µ(?y),elt,Visited,G

)
Fig. 6. Auxiliary functions used for defining the semantics of PP expressions of the form elt∗.

2.3. Semantics of SPARQL graph patterns

The evaluation of a SPARQL graph pattern P over
an RDF graph G is defined as a function JPKG which
returns a multiset of solution mappings. Let P1,P2,P3

be graph patterns and C be a filter constraint. The eval-
uation of a graph pattern P over a graph G is defined
recursively as follows:

– If P is a triple pattern tp then JtpKG={µ |
dom(µ)=var(tp) and µ(tp) ∈ G} where var(tp)
is the set of variables in tp and the cardinality of
each mapping is 1.

– If P=(P1 AND P2), then JPKG=JP1KG on JP2KG
– If P=(P1 UNION P2), then JPKG=JP1KG ∪ JP2KG
– If P=(P1 OPTIONAL P2), then: then

(a) if P2 is (P3 FILTER C) then JPKG =
JP1KGqyon f (C)JP3KG

(b) else JPKG = JP1KGqyon (true)JP2KG

– If P=(P1 MINUS P2), then JPKG=JP1KG − JP2KG
– If P=(P1 NOT-EXISTSP2), then

J(P1 NOT-EXISTSP2)KG = {µ | µ ∈ JP1KG ∧
Jµ(P2)KG = ∅}

– IfP=(P1 FILTER C), then JP1 FILTER CKG=σ f (C)(JP1KG)

2.4. SPARQL Property Paths

Property paths (PPs) have been incorporated into the
SPARQL standard with two main motivations; first, to
provide explicit graph navigational capabilities (thus
allowing the writing of SPARQL navigational queries
in a more succinct way); second, to introduce the tran-
sitive closure operator ∗ previously not available in
SPARQL. The design of PPs was influenced by earlier
proposals (e.g., PSPARQL [21], nSPARQL [11]).

Definition 11. (Property Path Pattern). A property
path pattern (or PP pattern for short) is a tuple P =
〈α,elt, β〉 with α ∈ (I ∪ L ∪ V), β ∈ (I ∪ L ∪ V),
and elt is a property path expression (PP expres-
sion) that is defined by the following grammar (where
u, u1, . . . , un ∈ I):

elt := u
∣∣ !(u1 | . . . | un)

∣∣∣∣!(ˆu1 | . . . | ˆun)
∣∣ !(u1 | . . . | u j | . . . | ˆuq| . . . |ˆun)

∣∣∣∣ elt/elt ∣∣(elt |elt)
∣∣ (elt)∗

∣∣ ˆelt

The SPARQL standard introduces additional types
of PP expressions [18]; since these are merely syntac-
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Table 2
Syntax of EPPs. 1If omitted is _s; 2If omitted is_o.

epp ::= ‘ˆ’ epp | epp ‘+’ | epp ‘?’ | epp‘∗’ | epp ‘/’ epp | epp ‘|’ epp |
‘(’ epp ‘)’ | [POS]1 test [POS]2 | epp ‘&’ epp | epp ‘∼’ epp |
epp‘{’l, h‘}’ | epp‘{{’l, h‘}}’

test ::= ‘!’ test | test ‘&&’ test | test ‘||’ test | ‘(’ test ‘)’ | base
base ::= iri | ‘TP(’POS ‘,’ epp ‘)’ | ‘T(’ EExp ‘)’

POS ::= ‘_s’ | ‘_p’ | ‘_o’

tic sugar (they are defined in terms of expressions cov-
ered by the grammar given above), we ignore them in
this paper. As another slight deviation from the stan-
dard, we do not permit blank nodes in PP patterns.
PP patterns with blank nodes can be simulated using
fresh variables. The SPARQL standard distinguishes
between two types of property path expressions: con-
nectivity patterns (or recursive PPs) that include clo-
sure (*), and syntactic short forms or non-recursive
PPs (nPPs) that do not include it. As for the evalua-
tion of PPs, the W3C spec. informally mentions the
fact that nPPs can be evaluated via a translation into
equivalent SPARQL basic expressions (see [10], Sec-
tion 9.3). Property path patterns can be combined with
graph patterns inside SPARQL patterns (using PP ex-
pressions in the middle position of a pattern).

2.5. Property Path Semantics

The semantics of Property Paths (PPs) is shown
in Fig. 5. The semantics uses the evaluation function
J〈α,elt, β〉KG, which takes as input a PP pattern and
a graph and returns a multiset of solution mappings.
In Fig. 5 we do not not report all the combinations of
types of patterns as they can be derived in a similar
way. For connectivity patterns the SPARQL standard
introduces auxiliary functions called ALP1 and ALP1
that stand for Arbitrary Length Paths (see Fig. 6); in
this case the evaluation does not admit duplicates (thus
solving a problem in an early version of the semantics
that was based on counting [12, 22]).

3. Extended Property Paths

We now introduce our navigational extension of
SPARQL called Extended Property Paths (EPPs). We
present the syntax in Section 3.1 and the SPARQL-
based formal semantics in Section 3.2.

3.1. Extended Property Paths Syntax

EPPs extend PPs and NREs-like languages with
path conjunction/difference, repetitions and more types

of tests. The idea is to use EPP expressions in the pred-
icate position of a property pattern (Definition 11) in
lieu of PP expressions. The importance of the new fea-
tures considered by EPPs is witnessed by the fact that
some of them (e.g., conjunction) are present in stan-
dards like XPath 2.0 [23]. Nevertheless, to the best of
our knowledge no previous navigational extension of
SPARQL has considered these features. As our goal is
to extend the current SPARQL standard we refer the
reader to Section 7 for a treatment of EPPs as a lan-
guage independent from SPARQL.

Definition 12. (Extended Property Path Pattern).
An extended property path pattern (or EPP pattern for
short) is a tuple EP = 〈α,epp, β〉with α ∈ (I∪L∪V),
β ∈ (I ∪ L ∪ V), and epp is an extended property
path expression (EPP expression) that is defined by the
grammar reported in Table 2.

EPPs introduce the following features: path con-
junction (epp1&epp2), path difference (epp1∼epp2),
path repetitions between l and h times (denoted by
epp{l, h} for set, and epp{{l, h}} for bag semantics).
EPPs allow different types of tests (test) within a
path by specifying the starting/ending positions (POS)
of a test; it is possible to test from each of the sub-
ject, predicate and object positions in triples, mapped
in the EPPs syntax to the position symbols _s, _p
and _o, respectively. Positions do not need to be al-
ways specified; by default a test starts from the sub-
ject (_s) and ends on the object (_o) of the triple be-
ing evaluated. A test (test) can be a simple check
for the existence of a IRI in forward/reverse direc-
tion. EPPs allow to express negated property sets by
using the production test with the difference that
the set of negated IRIs use the symbol ‘||’ as sepa-
rator instead of ‘|’ used by PPs. A test can also be
a nested EPP, i.e., TP(POS,epp), which corresponds
to the evaluation of the expression epp starting from
a position POS (of the last triple evaluated) and re-
turns true if, and only if, there exists at least one
node that can be reached via epp. In a test of type
T, EExp (not reported here for sake of space) extends
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Table 3
EPPs SPARQL-based semantics. The function ET handles tests. Π(POS, t) projects the element in position POS of a triple t ∈ G. Moreover,
u ∈ I; ?vL, ?vR ∈ V and ?vn ∈ V is a fresh variable. Evaluate is a function that checks if the triple t satisfies EExp.

R1 [[〈?vL, ˆepp, ?vR〉]]G := [[〈?vR, epp, ?vL〉]]G

R2 [[〈?vL, epp1/epp2, ?vR〉]]G := π{?vL ,?vR}

(
[[〈?vL, epp1, ?v〉]]G on [[〈?v, epp2, ?vR〉]]G

)
R3 [[〈?vL, (epp)∗, ?vR〉]]G :=

{
µ | dom(µ) = {?vL, ?vR}, µ(?vL) ∈ terms(G) and µ(?vR) ∈ EALP1(µ(?vL), epp,G, 0, ∗)

}
, card(µ,Ω) = 1

R4 [[〈?vL, (epp)+, ?vR〉]]G :=
{
µ | dom(µ) = {?vL, ?vR}, µ(?vL) ∈ terms(G) and µ(?vR) ∈ EALP1(µ(?vL), epp,G, 1, ∗)

}
, card(µ,Ω) = 1

R5 [[〈?vL, (epp)?, ?vR〉]]G :=
{
µ | dom(µ) = {?vL, ?vR}, µ(?vL) = µ(?vR) or µ ∈ [[〈?vL, (epp), ?vR〉]]G}, card(µ,Ω) = 1

R6 [[〈?vL, (epp1| epp2), β〉]]G := [[〈?vL, epp1, ?vR〉]]G ∪ [[〈α, epp2, ?vR〉]]G

R7 [[〈?vL, epp1& epp2, ?vR〉]]G := [[〈?vL, epp1, ?vR〉]]G on [[〈?vL, epp2, ?vR〉]]G

R8 [[〈?vL, epp1 ∼ epp2, ?vR〉]]G := [[〈?vL, epp1, ?vR〉]]G − [[〈?vL, epp2, ?vR〉]]G

R9 [[〈?vL, epp{{l, h}}, ?vR〉]]G :=
⋃h

i=l[[〈?vL, epp
i, ?vR〉]]G

R9’ [[〈?vL, epp{l, h}, ?vR〉]]G :=
{
µ | dom(µ) = {?vL, ?vR}, µ(?vL) ∈ terms(G) and µ(?vR)∈EALP1(µ(?vL), epp,G, l, h)

}
, card(µ,Ω)=1

R10 [[〈?vL, POS1 test POS2, ?vR〉]]G := ET J?vL POS1 test POS2 ?vRKG

R11 ET J?vL POS1 u POS2 ?vRKG :=
{
µ | dom(µ) = {?vL, ?vR}, µ(?vL) = Π(POS1, t), µ(?vR) = Π(POS2, t), t.p = u, t ∈ G

}
,

card(µ,Ω)=|{t | t ∈ G, t.p = u, µ(?vL) = Π(POS1, t), µ(?vR) = Π(POS2, t)}|
R12 ET J?vL POS1 TP(POSn, eppn) POS2 ?vRKG :=

{
µ | dom(µ) = {?vL, ?vR}, ∃ µ′∈JΠ(POSn, t) eppn ?vnK, dom(µ′) = {?vn},

µ(?vL)=Π(POS1, t), µ(?vR)=Π(POS2, t), t ∈ G
}
, card(µ,Ω)=|{t | t ∈ G, ∃µ′∈JΠ(POSn, t) eppn ?vnK,

dom(µ′) = {?vn}, µ(?vL) = Π(POS1, t), µ(?vR) = Π(POS2, t)}|
R13 ET J?vL POS1 T(EExp) POS2 ?vRKG :=

{
µ | dom(µ) = {?vL, ?vR}, µ(?vL) = Π(POS1, t), µ(?vR) = Π(POS2, t), t ∈ G,

Evaluate(EExp, t) = true
}
, card(µ,Ω)=|{t | t ∈ G, Evaluate(EExp, t) = true,

µ(?vL) = Π(POS1, t), µ(?vR) = Π(POS2, t)}|
R14 ET J?vL (POS1 test1 POS2) && (POS1 test2 POS2) ?vRKG := ET J?vL (POS1 test1 POS2)?vRKGonET J?vL (POS1 test2 POS2)?vRKG

R15 ET J?vL (POS1 test1 POS2) || (POS1 test2 POS2) ?vRKG := ET J?vL (POS1 test1 POS2)?vRKG∪ET J?vL (POS1 test2 POS2)?vRKG

R16 ET J?vL POS1 !test POS2 ?vRKG :=
{
µ | dom(µ) = {?vL, ?vR}, µ(?vL) = Π(POS1, t), µ(?vR) = Π(POS2, t), t ∈ G} −

ET J?vL POS1 test POS2?vRKG

the production [110] in the SPARQL grammar 5 where
BuiltInCall6 is substituted with a new production
called Extended-BuiltInCall, which enables to
use in EPPs tests available in SPARQL as built-in con-
ditions also augmented with positions (POS). Built-
in conditions are constructed using elements of the
set I ∪ L and constants, logical connectives (¬, ∧,
∨), (in)equality symbol(s) (=,<,>,6,>), unary (e.g.,
isURI,) and binary (e.g., STRSTARTS) functions.
Tests can also be combined by using the logical op-
erators AND (&&), OR (||) and NOT (!). We refer to
non-recursive EPPs (nEPPs) as those expressions that
do not include closure operators (i.e., ∗ and +) and
set-semantics repetitions ({l, h}). The reader can refer
to the Website of the EPPs project7 for further details
about the implementation.

3.1.1. Positions and Tests
To clarify the intuition behind tests and positions,

we introduce the function Π(POS, t), which projects
the element in position POS of a triple t. If we have
t=〈u1,p1,u2〉, the test T(_p=p1) it is translated to

5http://www.w3.org/TR/sparql11-query/#rExpression
6http://www.w3.org/TR/sparql11-query/#rBuiltInCall
7http://extendedpps.wordpress.com

start end start end start end start end

start endstart end

start nested EPP start end

Fig. 7. Expression in Example 4 with positions.

Π(_p, 〈u1,p1,u2〉)=p1 that checks p1=p1, and, in
this case, returns true; however, it returns false for
T(_o=u3). Fig. 7 shows the expression from Exam-
ple 4 including default positions and positions to
traverse backward edges. Note that the subexpres-
sion (_o:leaderParty_s) means that the edge
:leaderParty is traversed from the object to the
subject and, thus, backward.

3.2. Extended Property Paths Semantics

We now introduce the semantics of EPPs in terms of
SPARQL. We use the function J〈α,epp, β〉KG where
instead of a PP expression elt now appears an EPP
expression epp. This semantics lays the foundations
for the translation algorithm (see Section 4) that given
a (concise) nEPP expression produces a semantically
equivalent (more verbose) SPARQL query. In the se-
mantics shown in Table 3 we only report the case
α, β ∈ V (and use the symbols ?vL and ?vR to de-

http://www.w3.org/TR/sparql11-query/#rExpression
http://www.w3.org/TR/sparql11-query/#rBuiltInCall
http://extendedpps.wordpress.com
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Function EALP1
(
γ,epp,G, l, h

)
Input: γ ∈ I, epp is an EPP expression,

G is an RDF graph, l, h are integer s.t. h 6 l
1: Visited = ∅
2: i = 0
3: Γ = {γ}
4: while i < l do
5: Γ̄ = ∅
6: for all u ∈ Γ do
7: Γ̄ = Γ̄ ∪ {µ(?y) | µ ∈ [[(〈?x,epp, ?y〉)]]G such

that µ(?x) = u, ?x, ?y ∈ V}
8: i = i + 1
9: Γ = Γ̄

10: if h = ∗ then
11: EALP2

(
Γ,epp,Visited,G, h

)
12: else
13: EALP2

(
Γ,epp,Visited,G, h-l

)
14: return Visited

Function EALP2
(
Γ,epp,Visited,G, h

)
Input: Γ ⊆ I, epp is an EPP expression, Visited ⊆ I,

G is an RDF graph, h is an integer
1: for all u ∈ Γ s.t. u /∈ Visited do
2: add u to Visited
3: if h =∗ or h > 0 then
4: Γ̄ = {µ(?y) | µ ∈ [[(〈?x,epp, ?y〉)]]G, such that

µ(?x) = u, ?x, ?y ∈ V}
5: if Γ̄ 6= ∅ then
6: if h = ∗ then
7: EALP2

(
Γ̄,epp,Visited,G, ∗

)
8: else
9: EALP2

(
Γ̄,epp,Visited,G, h-1

)

Fig. 8. Auxiliary functions used to define the semantics EPP expressions.

note the left and right variable in the pattern); the other
cases (e.g., α ∈ I, β ∈ V) are similar. We denote with
t a triple 〈s, p, o〉 ∈ G; t.x with x ∈{s, p, o} is used
to access an element of the triple. Finally, the notation
eppi is a shorthand for the concatenation (i.e., via the
operator ’/’) of epp i times. A peculiar construct of
EPPs is the test POS1 test POS2, which is handled at
a high level by rule R10. In particular tests make usage
of the semantic function ET , which handles the differ-
ent kinds of tests via rules R11-R16. Moreover, POS1

and POS2 denotes the positions (i.e., subject _s, pred-
icate _p or object _o) of the elements of a triple that
have to be projected. We now provide some examples
of R11-R13 by using the graph in Figure 1.

Example 13. Consider the following EPP expression:
_o :leaderParty _s. This type of test is han-
dled via rule R11 in Table 10 and considers all
triples t∈G where :leaderParty appears in pred-
icate position. In the set of mapping obtained by
applying rule R11 on such triples, the left variable
(i.e, ?vL) is bound to the object (since POS1=_o)
while the right variable (i.e, ?vR) to the subject
(since POS2 = _s). In particular, the set of map-
pings is: {(?vL → :Democratic_Party, ?vR →
:Rome), (?vL → :Democratic_Party, ?vR →
:Florence), (?vL → :Socialist_Party, ?vR →
:Carrara)}.

Example 14. Consider the following EPP expression:
_s TP(_o,:leaderParty) _o, which is handled
via rule R12 in Table 10. In this case, the triples
t ∈ G considered are those such that from their

object, the EPP :leaderParty has a solution
(∃ µ′∈JΠ(POSn, t) eppn ?vnK). In more detail, these
triples have one among :Rome, :Florence or
:Carrara in the object position (in particular, are
the two triples 〈:Rome,:airbus,:Florence〉 and
〈:Florence,:italo,:Carrara〉). To obtain the
set of mappings from these triples, the left variable in
rule R12 (i.e, ?vL) will be bound to their subject (since
POS1=_s) and the right variable (i.e, ?vR) to their ob-
ject (since POS2 = _o). Overall, the set of mappings
is:{(?vL → :Rome, ?vR → :Florence), (?vL →
:Florence, ?vR → :Carrara)}.

Example 15. Consider the following EPP expression:
_s T(_o>400000) _p handled via rule R13 in Ta-
ble 10. The set of triples t ∈ G that are of interest
in this case are those in which the object has a value
greater than 400000 (Evaluate(EExp, t) = true).
These are: 〈:Rome,::population,2874034〉,
〈:Murcia,:population,436870〉 and
〈:Miami,:population,419777〉. In the set of map-
pings obtained applying rule R13 on these triples,
the left variable (i.e, ?vL) is bound to the subject
(since POS1=_s) and the right variable (i.e, ?vR) to
the predicate (since POS2 = _p). The set of mappings
is: {(?vL → :Rome, ?vR → :population), (?vL →
:Murcia, ?vR → :population),

(?vL → :Miami, ?vR → :population)}.

Closure and Repetitions. The closure operators ‘*’
and ‘+’ and set-semantics repetitions ({l, h}) use the
function EALP1 (Extended Arbitrary Length Paths)
shown in Fig. 8, which extends the ALP1 function
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Table 4
Fragments of SPARQL, using the SELECT query form, considered in this paper.

Fragment on ( AND ) ∪ ( UNION ) − ( MINUS ) FILTER PP EPP ALP1 EALP1
S{./} x

S{./,∪,FILTER} x x x
S{./,∪,−,FILTER} x x x x

S{./,∪,FILTER,ALP1} x x x x
S{./,∪,−,FILTER,EALP1} x x x x x

S{./,∪,PP} x x x
S{./,∪,EPP} x x x

S{./,∪,FILTER,PP,ALP1} x x x x x
S{./,∪,FILTER,EPP,EALP1} x x x x x

defined in the W3C spec. (see Fig. 6). In particular,
EALP1 handles the set-semantic repetitions of an EPP
expression epp between a minimum l and a maximum
h of times. The closure operators ‘*’ and ‘+’ are han-
dled by setting l = 0 (respectively, l = 1) and h = ∗.
EALP1 uses the global variable Visited to keep track
of the nodes already checked that belong to the results.
The main task carried out by EALP1 is to skip the first
l − 1 navigational steps so that the results are stored
in Visited starting from the step l via EALP2. We now
further clarify the behavior of EALP1 and EALP2.

Example 16. Consider the expression :Carrara
(:twinned)∗ ?e evaluated according to EALP1 on
the graph in Figure 1. As the expression involves the
closure operator, EALP1 is called with the following
parameters: EALP1

(
:Carrara,:twinned,G, 0,∗

)
.

EALP1 initializes the global variable Visited to the
empty set and the variable Γ to the set {:Carrara}
(lines 1 and 3). The while cycle is never executed
as l = 0. Since h =∗ the function EALP2 is called
as: EALP2

(
{:Carrara},:twinned,∅,G,∗

)
. At

this point, when the for cycle starts we have that
Γ = {:Carrara} and Visited = ∅ (line1).
Then, :Carrara is added to Visited (line 2) and
the set Γ̄ is computed, which includes all nodes
reachable from text:Carrara by traversing a
:twinned edge (line 4), that i, Γ̄={:Grasse}. At
this point, EALP2 is called again with the parameters:
EALP2

(
{:Grasse},:twinned, {:Carrara},G,∗

)
(line

6); Γ contains one IRI (i.e., :Grasse) and the for
cycle is executed only once: :Grasse is added to
Visited (line 2) and Γ̄ = {:Migliarino, :Murcia}
(line 4). EALP2 is called again with the parameters:
EALP2

(
{:Migliarino, :Murcia}, :twinned, {:Carrara, :Grasse},G,∗

)
(line 6). This time Γ contains two IRIs (i.e., :Migliarino
and :Murcia) and the for cycle is executed twice one
for each such IRIs. With :Migliarino we have that
Γ̄ = ∅ and EALP2 is not called anymore.

With :Murcia we have that Γ̄ = {:Miami} and
EALP2 is called as: EALP2

(
{:Miami},:twinned,

{:Carrara, :Grasse, :Migliarino, :Murcia},G,∗
)
.

Since Γ contains one IRI only (i.e., :Miami) the for
cycle is executed only once: :Miami is added to
Visited, Γ̄ = ∅ and EALP2 is not called anymore.
Since Visited is a global variable, the result of the ex-
ecution is: {:Carrara,:Grasse,:Migliarino,
:Murcia,:Miami}. J

Example 17. Consider the EPP expression :Carrara
(:twinned){1, 2} ?e evaluated on the graph in
Figure 1. This time EALP1 is called with the pa-
rameters: EALP1

(
:Carrara,:twinned,G, 1, 2

)
.

EALP1 initializes the global variable Visited to the
empty set and the variable Γ to the set {:Carrara}
(lines 1 and 3). The while cycle is executed for one it-
eration only since l = 1. The set Γ̄ is computed starting
from :Carrara; in this case it is Γ̄={:Grasse}.
EALP2 will be called on this set. In particular, since
h = 2 the function EALP2 is called with the following
parameters: EALP2

(
{:Grasse},:twinned,∅,G, 1).

The for cycle is executed only once, since Γ =
{:Grasse} and Visited = ∅ (line1). After the
execution Γ̄ = {:Migliarino,:Murcia} and
EALP2 is called again as: EALP2

(
{:Migliarino,

:Murcia},:twinned, {:Grasse},G, 0). As h =
0 :Migliarino and :Murcia are added to Vis-
ited; however, the for cycle will not be executed. The
result is {:Grasse,:Migliarino,:Murcia}. J

3.3. Fragments of SPARQL Considered

In the remainder of the paper we will focus on the
SELECT query form and consider the SPARQL frag-
ments shown in Table 4. These fragments are built
using combinations of: (i) the operators on ( AND ), ∪
( UNION ), − ( MINUS ), FILTER; (ii) the functions ALP1
and EALP1 (introduced in Section 3.2); (iii) PP and
EPP languages.
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4. Translation of nEPPs into SPARQL

The goal of this section is to formalize and describe
a translation algorithm that given a non-recursive
EPPs (nEPP) translates it into a SPARQL query. Our
approach follows the same line of thought as the
SPARQL standard for the translation of non-recursive
property paths (nPPs) into SPARQL queries. As a by-
product, our study formalizes the informal procedure
mentioned in the W3C specification for non-recursive
PPs (see [10], Section 9.3) and does it for a more ex-
pressive language.

4.1. Translation Algorithm: an overview

We now provide an overview of the translation algo-
rithm At. The algorithm takes as input a nEPP pattern
P=〈α,epp, β〉 and produces a semantically equivalent
SPARQL query Qe. The algorithm involves three main
steps: (i) building of the operational tree; (ii) propaga-
tion of variables and terms along the nodes of the op-
erational tree; (iii) application of the translation rules.
Each of the three steps is discussed in detail in the fol-
lowing three subsections.

4.1.1. Operational Tree
Let P=〈α,epp, β〉 be a nEPP pattern and τP be the

parse tree associated to the expression epp. Let T =
{root, ˆ,&,∼, |, /,iri,TP,T,test, ||,&&, !}8 be
the set of node types, Ω = {b,e,m,s,p,o} and ∆ =
{pos1,pos2,pos} be two sets of attributes. The op-
erational tree πP = (V, E, type, id, ω, δ) associated to
the pattern P is a binary, ordered, labeled, rooted tree,
where V is the set of nodes, E ⊂ V × V the set of
edges, type : V → T is a function that associates to
each node a type, id a function that associates to each
node a unique identifier,ω : V×Ω→ U∪L∪V a func-
tion that associates to a pair (v, a), such that v ∈ V and
a ∈ Ω a URI, a literal or a variable identifier. Finally,
δ : V ×∆ → {_s, _p, _o} is a function that associates
to a pair (v, a), such that v ∈ V and a ∈ ∆ a position
symbol. The nodes of the operational tree can be sub-
divided in two categories: operational nodes that are
labeled with the syntactic symbols ˆ,&,∼, |, /, and test
nodes that are labeled with u,TP,T(EExp),test, !,
||,&&, !. Figure 9 reports, for each type of node, its set
of attributes (i.e., the domain of the functions ω and δ).
The attributes b (start) and e (end) denote the starting

8Note that the ? and {{·}} syntactic operators are omitted since
they are only syntactic sugar and can be rewritten by using | and /.

and ending points of the operation represented by each
operational node. Concatenation nodes (/) have the ad-
ditional attribute m that maintains the join variable.

Node Attributes

root
^
/
&
~
|
/

test
TP
T
iri
&&
||
!

id  b  e  m  s  p  o pos1 pos2  pos  

 X  X  X          
 X  X  X          
 X  X  X  X         
 X  X  X          

 X  X  X          

 X  X  X          

 X  X  X          
 X           X  X  X  X   X          
 X           X  X  X            X          

 X           
 X           X  X  X                
 X           X  X  X                
 X           X  X  X                

X  X  X                

 X           X  X  X                

Fig. 9. Node attributes in the operational tree.

Test nodes have attributes s, p, o denoting the sub-
ject, predicate and object of the triple on which the
test is to be checked. Additionally, since the test node
test encodes a triple traversal it has also the at-
tributes start (POS1) and end (POS2) that can be val-
ued with _s, _p or _o, denoting the position of begin-
ning and ending of the traversal. Finally, test nodes TP
have the additional attribute POS (also valued with one
among _s, _p or _o) that indicates the beginning of the
existential test wrt the last triple.

The root r of πP is a special node of type root hav-
ing id(r) = 0 and attributes b (start) and e (end) val-
ued with the pattern endpoints, that is, ω(r,b) = α and
ω(r,e) = β. To build the operational tree, the nodes of
the parse tree τP are visited according to a pre-order
traversal, that is, the parent first, then the left child and
finally the right child, if one exists. In what follows, the
function parent indicates the parent of a node. More-
over, the function coor applied to each node of τP re-
turns exactly one node of πP . For each node v of τP
visited, we have:

(1) If v is the root of τP , then a node c is added as
the only child of r with id(c) = 0_0. If v is a
left child of some node of τP , a node c is added
as the left child of corr(parent(v)) and id(c) =
id(parent(c)) + “_0”. If v is a right child of some
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node of τP , then a node c is added as the right child
of corr(parent(v)) with id(c) = id(parent(c)) +
“_1”. Furthermore:

(1.1) If v is an operational node, then c has the
same type of v and all its attributes are
initialized with fresh variables. Moreover,
corr(v)=c.

(1.2) If v is a test node and corr(parent(v))=c′′ is
an operational node, then c has type test,
its attributes s,p,o are initialized with fresh
variables and pos1 and pos2 are set to be
equal to the position used in the test (or to the
default positions if they are omitted). More-
over, a node c′ is added as the only child
of c with the same type of v and id(c′) =
id(c) + “_0”. Moreover, its attributes s, p
and o are initialized with fresh variables. If
type(c′) = TP then the attribute pos is ini-
tialized with the value specified in the exis-
tential test. Note that corr(v) = c′.

(1.3) If v is a test node, and c′=corr(parent(v)) is
a test node, then c has the same type of v and
all its attributes are initialized with fresh vari-
ables. We have that corr(v)=c.

The operational tree for the nEPP pattern of Exam-
ple 2 is shown in Fig. 11 (a). Fresh variables for the
attributes of a node n are generated using the template:
?X+_+id(n), where X∈ {b,e,m,s,p,o}, with + de-
noting string concatenation.

4.1.2. Propagation of Variables and Terms
Given an operational tree for a pattern P , each of

its nodes has attributes valued with variables or terms.
The translation algorithm takes care of propagating
these variables and terms during the generation of
the SPARQL query associated to P via the Procedure
Propagate (Fig. 10), which takes as input a node
(the root at the beginning) and propagates values to its
children. As an example, Fig. 11 (b) shows the opera-
tional tree after the propagation on the tree in Fig. 11
(a). An an example, by looking at R2 in the EPPs se-
mantics shown in Table 3, we notice that path con-
catenation (/) makes usage of the join operator; specif-
ically, it requires to introduce a fresh join variable in
the translation. The propagation algorithm guarantees
that both children of the concatenation node use the
same join variable by applying the propagation rules
reported in Fig. 10 (lines 25-30). By looking at Fig 11,
such rules translates in the fact that the attribute b of
node 0_0_0 of Fig. 11 (b) is propagated to the attribute

Function Propagate
(
n)

Input: n, a node of the operational tree.
Result: update

n’s children attributes.
1: Let ni=n.child(i)
2: if n is a test node then
3: if n is TP then
4: if n1 is a test node then
5: n1.POS1=n.POS
6: else n1.b=n.POS
7: else
8: if n.POS1 = _s and n.POS2 = _o then
9: ni.X=n.X, i ∈ {1, 2}, X ∈ {s,p,o}

10: else if n.POS1 = _s and n.POS2 = _p then
11: ni.s=n.s, ni.p=n.o, ni.o=n.p i ∈ {1, 2}
12: else if n.POS1 = _p and n.POS2 = _s then
13: ni.s=n.p, ni.p=n.o, ni.o=n.s i ∈ {1, 2}
14: else if n.POS1 = _p and n.POS2 = _o then
15: ni.s=n.p, ni.p=n.s, ni.o=n.o i ∈ {1, 2}
16: else if n.POS1 = _o and n.POS2 = _s then
17: ni.s=n.o, ni.p=n.p, ni.o=n.s i ∈ {1, 2}
18: else if n.POS1 = _o and n.POS2 = _p then
19: ni.s=n.o, ni.p=n.s, ni.o=n.p i ∈ {1, 2}
20: else if n is ^ then
21: if n1 is a test node then
22: n1.POS1=n.e; n1.POS2=n.b
23: else n1.b=n.e; n1.e=n.b
24: else if n is / then
25: if n1 is a test node then
26: n1.POS1=n.b; n1.POS2=n.m
27: else n1.b=n.b; n1.e=n.m
28: if n2 is a test node then
29: n2.POS1=n.m; n2.POS2=n.e
30: else n2.b=n.m; n2.e=n.e;
31: else
32: if ni is a test node, i ∈ {1, 2} then
33: ni.POS1=n.b; ni.POS2=n.e
34: else ni.X=n.X , X ∈ {b,e}
35: ∀i Propagate

(
ni)

Fig. 10. Propagation of variables and terms.

s of node 0_0_0_0; the attribute e of node 0_0_0 is
propagated to the attribute e of node 0_0_0_1; and the
value of the attribute m (that is a fresh variable) is prop-
agated to the attribute o of node 0_0_0_0 and to the
attribute s of the node 0_0_0_1.

Furthermore, the propagation phase also ensures
that the test are executed on the correct position of
the triple and that the endpoints are correctly selected
by applying the rules reported in Fig. 10 lines 8-19.
By looking at Fig 11, the rule in lines 16-17 trans-
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Table 5
Translating nEPPs into SPARQL (code). EBC extends SPARQL BuiltInCall with EPPs tests also augmented with positions (POS). nEPPs
with double-brace path repetitions (epp{{l,h}}) are first translated into equivalent nEPPs via unions of concatenations.

Rm ΘP(root):=‘SELECT’ root.b root.e ‘WHERE {’ΘP(root.child(1))‘}’
R0 Γ(n) :=n.s n.p n.o‘.’

R1 ΘP(nˆ) :=ΘP(n.child(1))

R2 ΘP(n/) :=ΘP(n.child(1)) ΘP(n.child(2))

R3 ΘP(n|) :=‘{’ΘP(n.child(1))‘}UNION{’ΘP(n.child(2))‘}’
R4 ΘP(n&) :=ΘP(n.child(1)) ΘP(n.child(2))

R5 ΘP(n∼) :=‘{’ΘP(n.child(1))‘}MINUS{’ΘP(n.child(2))‘}’
R6 ΘP(ntest):= Θt(n.child(1))

R7 Θt(nu) :=Γ(n) ‘FILTER(’n.p‘=’u‘)’

R8 Θt(nEBC):=Γ(n) ‘FILTER’ EBC
R9 Θt(nTP) :=Γ(n) ‘FILTER EXISTS’{ΘP(n.child(1))‘}’
R10 Θt(n!) :=Γ(n) ‘MINUS{’ Θt(n.child(1))‘}’
R11 Θt(nˆ) :=Θt(n.child(1))

R12 Θt(n&&) :=Θt(n.child(1)) Θt(n.child(2))

R13 Θt(n||) :=‘{’Θt(n.child(1))‘}UNION{’Θt(n.child(2))‘}’

lates in the fact that the attribute s of node 0_0_0_0
of Fig. 11 (b) is propagated to the attribute o of node
0_0_0_0_0; the attribute p of node 0_0_0_0 is prop-
agated to the attribute p of node 0_0_0_0_0; and the
value of the attribute o is propagated to the attribute s
of node 0_0_0_0_0.

4.1.3. Generating SPARQL code
The last step of the translation algorithm takes as in-

put the result of the previous phases, that is, an opera-
tional tree where all attribute values are filled with the
correct values (i.e., RDF terms, fresh variables and the
variables or terms α and β derived from the nEPP pat-
tern in input). At this point, to generate the SPARQL
code for a given nEPP pattern, the translation algo-
rithm leverages the translation rules shown in Table 5.
The translation uses two functions: ΘP(·) that handles
general nEPP expressions and Θt(·) that handles tests.

The translation algorithm applies the rules starting
from the root and proceeding via a pre-order depth-
first traversal of the operational tree. In a nutshell,
the translation proceeds as follows: rule Rm generates
the outermost part of the final SPARQL query; more-
over, it projects the variables stored in the attributes
root.b and root.e; for sake of presentation we as-
sume that α, β ∈ V in the input pattern P=〈α,epp, β〉.
Path concatenation is handled via rule R2 and is se-
mantically dealt with via the join operator (R2 in Ta-
ble 3). Each of the two operands of the join is one

of the children of the node labeled with / in the op-
erational tree. The join operator is also used to han-
dle path conjunction (R4). The difference with path
concatenation resides in the usage of the variables; in-
deed, by looking at Table 3 we note that concatenation
makes usage of a (fresh) join variable stored in the at-
tribute m of the concatenation node of the operational
tree, while path conjunction is evaluated from the same
endpoints for both conjuncts. In the same spirit, we
note that path difference (R5) is translated by using the
− operator in the SPARQL algebra (see Table 3) that
syntactically corresponds to the MINUS operator. Path
union (R3), which uses the union operator from the
SPARQL algebra, is translated using its SPARQL syn-
tactic counterpart, that is, UNION. Reverse path (R1)
is handled by switching, in the propagation phase, n’s
variables when propagated to its child node n.child(1).
Tests are handled by a combination of FILTER and
FILTER EXISTS along with UNION to deal with
disjunction of tests, join to deal with conjunction of
tests and MINUS to deal with negated tests. To given a
hint, a nEPP pattern containing a single triple pattern
of the for 〈?b, u,?e〉 where u ∈ I in translated via
rule R7 as SELECT ?b ?e WHERE {?b ?p_0_0
?e.FILTER(?p_0_0=u)} where ?p_0_0 is a vari-
able automatically generated. A nEPP pattern con-
taining a EBC (Extended-BuiltInCall) is translated via
rule R8 by using a FILTER expression applied to
the specified EBC. For example, the nEPP pattern
〈?b,_s T(isLiteral(_o)) _o,?e〉 is translated as
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root b=?x
e=?y

id=0

~

id=0 0_
b=?x
e=?y

/

:country :country

b=?x
id=0 0 0_

e=?y

_

s=?x

o=?m 0 0 0
p=?p 0 0 0 0_ _ _ _

id=0 0 0 0_ _

pos =_s1
pos =_o2

_

__ _

s=?x
id=0 0 0 0 0_ _ _ _

o=?m 0 0 0
p=?p 0 0 0 0_ _ _ _

__ _

/

:region :region

b=?x
id=0 0 1_

e=?y

_

s=?x

o=?m 0 0 1
p=?p 0 0 1 0_ _ _
id=0 0 1 0_ _

pos =_s1
pos =_o2

_

_
_ _ _

s=?x
id=0 0 1 0 0_ _ _ _

o=?m 0 0 1
p=?p 0 0 1 0_ _ ___

_ _ _

s=?y
id=0 0 1 1 0_ _ _

p=?p 0 0 1 1_ _ _ _
o=?m 0 0 1_ _ _

o=?y

pos =_s2
pos =_o1

id=0 0 0 1_ _

p=?p 0 0 0 1_ _ _ _
s=?m 0 0 0_ _ _

_

s=?y
id=0 0 0 1 0_ _ _

p=?p 0 0 0 1_ _ _ _
o=?m 0 0 0__ _

_

o=?y

pos =_s2
pos =_o1

id=0 0 1 1_ _

p=?p 0 0 1 1_ _ _ _
s=?m 0 0 1_ _ _

_

_

root b=?x
e=?y

id=0

~

id=0 0
b=?b 0 0
e=?e 0 0

/

:country :country

b=?b 0 0 0
id=0 0 0

e=?e 0 0 0

s=?s 0 0 0 0

o=?o 0 0 0 0
p=?p 0 0 0 0_ _ _ _

id=0 0 0 0_ _

pos =_s1
pos =_o2

_

__ _

s=?s 0 0 0 0 0
id=0 0 0 0 0_ _ _ _

o=?o 0 0 0 0 0
p=?p 0 0 0 0 0_ _ _ _ _

__ _

/

:region :region

b=?b 0 0 1
id=0 0 1

e=?e 0 0 1

s=?s 0 0 1 0

o=?o 0 0 1 0
p=?p 0 0 1 0_ _ _
id=0 0 1 0_ _

pos =_s1
pos =_o2

_

_
_ _ _

s=?s 0 0 1 0 0
id=0 0 1 0 0_ _ _ _

o=?o 0 0 1 0 0
p=?p 0 0 1 0 0_ _ _ _ _

_ _ _

s=?s 0 0 1 1 0
id=0 0 1 1 0_ _ _

p=?p 0 0 1 1 0_ _ _ _
o=?o 0 0 1 1 0_ _ _

o=?o 0 0 0 1

pos =_s2
pos =_o1

id=0 0 0 1_ _

p=?p 0 0 0 1_ _ _ _
s=?s 0 0 0 1_ _ _

_

s=?s 0 0 0 1 0
id=0 0 0 1 0_ _ _

p=?p 0 0 0 1 0_ _ _ _
o=?o 0 0 0 1 0__ _

_

o=?o 0 0 1 1

pos =_s2
pos =_o1

id=0 0 1 1_ _

p=?p 0 0 1 1_ _ _ _
s=?s 0 0 1 1_ _ _

_

_

_ _ _

_

_ _

_ _

_
_

_

_ _
_
_

_

_

_ _

_ _ _ _

_ _ _ _ _

__

_ _ _ _ _
_

__

_ _
_ _ _

_ _ _

_ _ _ _

_

_ _ _ _ _

__

_

____

_
__

_ _ _ _ _

Before propagation

After propagation

(a)

(b)

m=?m 0 0 0_ __
m=?m 0 0 1_ __

m=?m 0 0 0_ __
m=?m 0 0 1_ __

Fig. 11. Operational tree for Example 2 before (a) and after (b) the propagation phase.

SELECT ?b ?e WHERE
{?b ?p_0_0 ?e.FILTER(isLiteral(?e))}
where the parameter of the isLiteral BuiltInCall
is substituted during the translation with the variable
?e. Nested nEPPs are handled via rule R9 and are ba-
sically existential tests; test whether the nested nEPP
has a solution (see also rule R12 in Table 3).

Example 18. (Translating nEPPs into SPARQL).
Consider the nEPP pattern in Example 2. The corre-
sponding operational tree is reported in Fig. 11 (a).
The operational tree obtained after the application of
the procedure Propagate is shown in Fig. 11 (b).
As an example, by looking at the operational node
with id=0_0_0 and labeled with / in Fig. 11 (a) and
(b) we can see that Propagate updated the values
of the attributes s and o of its children 0_0_0_0 and
0_0_0_1 with values in the attributes b and e of 0_0_0.
Applying the translation rules to the operational tree
in Fig. 11 (b) means starting from root (node 0)
and triggering rule Rm (see Table 5), which generates
the outermost part of the final SPARQL translation:
ΘP(0)=SELECT ?x ?y WHERE{ΘP(0_0∼) }. Then,

the node with id=0_0 and labeled with ∼ is visited;
this triggers R5: ΘP(0_0∼)=
‘{’ΘP(0_0_0/)‘}’ MINUS ‘{’ΘP(0_0_1/)‘}’. The trans-
lation uses MINUS to reflect the semantics of EPPs
dealing with path difference while test (e.g., 0_0_0_0)
is reflected via the FILTER operator. Visiting the node
0_0_0 triggers R2. The translation continues with:

ΘP(0_0_0/)= ΘP(0_0_0_0test)ΘP(0_0_0_1test);
ΘP(0_0_0_0test)=Θt(0_0_0_0_0:country);
Θt(0_0_0_0_0:country)= ?x ?p_0_0_0_0 ?m_0_0_0.
FILTER(?p_0_0_0_0 = :country).

The translation continues until no more nodes of the
operational tree have to be visited and gives:
SELECT ?x ?y WHERE {
{?x ?p_0_0_0_0 ?m_0_0_0.
?y ?p_0_0_0_1 ?m_0_0_0.

FILTER(?p_0_0_0_0=:country)
FILTER(?p_0_0_0_1=:country)}
MINUS
{?x ?p_0_0_1_0 ?m_0_0_1.
?y ?p_0_0_1_1 ?m_0_0_1.
FILTER(?p_0_0_1_0=:region)
FILTER(?p_0_0_1_1=:region)} }
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Table 6
Languages and translations into SPARQL for plain RDF.

Navigational Core Extended Processor Fragment SPARQL Fragment
p ∈ I No R1 in Fig. 5 S{./}

nPP No R1-R5 in Fig. 5 S{./,
⋃
,FILTER}

nEPP No R1-R2, R5-R9, R11-R16 in Table 3 S{./,
⋃
,−,FILTER}

PP No Fig. 5 S{./,
⋃
,FILTER,ALP1}

EPP Yes Table 3 S{./,
⋃
,−,FILTER,EALP1}

Discussion about the Translation
Conciseness. EPPs enable to write navigational queries
in a more succinct way as compared to SPARQL
queries using triple patterns and/or union of graph pat-
terns. Given a nEPPs expression containing a number
of fragments (e.g., concatenation, union, predicates) it
is interesting to note that its corresponding translation
in SPARQL is always more verbose. Consider for in-
stance the nEPPs pattern ?x p1/p2 ?y; here, con-
catenation avoids to explicitly deal with intermediate
variables besides the expression endpoint. Its transla-
tion in SPARQL, that is, ?x p1 ?a. ?a p2 ?y
includes 2 instances of the new variable ?a. Generally,
the number of variables necessary to translate a nEPPs
into an equivalent SPARQL query is a function of the
size of its operational tree. Not only the elimination of
intermediate variables increases the succinctness of the
expression, but it also eliminates causes of errors when
writing queries as one has to check the consistency of
variable names.

Uniqueness of the translation. The translation algo-
rithm implements one of infinitely many possible (cor-
rect) mappings from a nEPP expression epp into a
SPARQL query Qepp. Each node in the operational
tree of epp has one equivalent fragment in Table 5. It
is easy to see that by adding an arbitrary number of
“&& true” fragments to FILTERs (in Table 5) we
can make versions of the translation that produce in-
finitely many other (correct) translations.

Benefits. EPPs coupled with the translation proce-
dure bring a significant practical advantage as com-
pared to other navigational extensions of SPARQL
(e.g., nSPARQL, cpSPARQL). On one hand, nEPPs
can be evaluated over existing SPARQL processors.
On the other hand, the machinery presented in this pa-
per could potentially extend the SPARQL standard in
an elegant and non-intrusive way; one would need to
use our translation algorithm instead of that currently
used by the SPARQL standard.

4.2. SPARQL and Navigational Queries

By analyzing the translation algorithm presented
in the previous section and the translation rules re-
ported in Table 5, it is possible to identify the precise
SPARQL fragment that can express nEPPs.

Lemma 19. nEPPs can be expressed in the SPARQL
fragment S{./,

⋃
,−,FILTER}, which uses AND, UNION,

MINUS, FILTER and SELECT.

In the remainder of this section we analyze for dif-
ferent navigational cores, the SPARQL fragment nec-
essary for its rewriting. The results of the analysis are
reported in Table 6. The table shows in the first col-
umn (Navigational Core) the navigational core, that
is, the type of expression allowed in the predicate po-
sition of triple patterns; it can be a predicate p, a non-
recursive property path (nPP), a property path (PP),
a non-recursive EPP (nEPP), and an EPP. The sec-
ond column (Exended Processor) indicates whether
the evaluation requires changes into the SPARQL pro-
cessors. The third and fourth column represents the
SPARQL fragment needed for the rewriting. The sim-
plest case (row 1) does not use regular-expression-like
extensions and thus no rewriting is needed. The sec-
ond and fourth rows consider non-recursive and recur-
sive property paths, respectively. These cases are han-
dled, as per W3C specification, via a rewriting into
SPARQL and the ALP1 procedure, respectively. The
third and last rows concern nEPPs and full EPPs, re-
spectively. While the former can be translated into
SPARQL queries (as shown in the previous section)
and evaluated on existing processors, the latter requires
the usage of the EALP1 procedure shown in Fig. 8,
currently not available in existing processors.

The most interesting result that emerges from the
table is the fragment S{./,

⋃
,FILTER} of the current

SPARQL standard is already expressive enough to cap-
ture nEPPs. Hence, the current W3C standard could
readily benefit from the more expressive language of
nEPPs without any impact on current SPARQL pro-
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cessors. In the following proposition we also mention
an even stronger result that can be derived if we drop
set-semantics path repetitions in EPPs (R9’ in Table 3).

Proposition 20. The full EPPs language can be incor-
porated in SPARQL using the ALP1 procedure with
the only difference that for the evaluation of the pattern
at line 6 in ALP2 (see Fig. 5) the translation discussed
in Section 4 has to be used instead of the translation
currently used by the standard.

5. Query-Based Reasoning on Existing SPARQL
Processors

The aim of this section is twofold. First, we study
the support that EPPs can give to querying under en-
tailment regimes (Section 5.1) with particular empha-
sis on how to support the entailment regime on existing
SPARQL processors (Section 5.2). Second, we provide
novel results about the expressiveness of the SPARQL
standard in terms of query-based reasoning when con-
sidering different navigational cores (Section 6.2).

5.1. Capturing the Entailment Regime

In this paper we focus our attention on the ρdf
fragment [19, 24]. This fragment considers a subset
of RDFS vocabulary consisting in the following ele-
ments: rdfs:domain, rdfs:range, rdfs:type,
rdfs:subClassOf, rdfs:subPropertyOf that
we denote with dom, range, type, sc, and sp, re-
spectively. Authors [19] showed that the ρdf seman-
tics is equivalent to that of full RDFS when one fo-
cuses on this fragment. Note that ρdf does not con-
sider datatypes that would allow to obtain inconsis-
tent graphs. When considering SPARQL under the ρdf
entailment regime, not only the explicit triples in the
RDF graph G have to be taken into account but also
triples that can be derived from G by the inference
rules shown in Table 7. The application of each in-
ference rule enables to obtain a sequence of graphs
G1,G2,G3, ...Gk with Gi+1 \Gi 6= ∅ ∀i ∈ [1, ...k− 1].
When Gk+1 \ Gk = ∅, that is, when the graph is un-
changed, the application of the rules stops. The graph
Gk is called the closure of G indicated by cl(G).

Definition 21. (SPARQL and query-based reason-
ing). Given a SPARQL pattern P and an RDF graph
G, the evaluation of P over G under the ρdf seman-
tics is denoted by JPKρdf

G , while JPKcl(G) denotes the
evaluation of P over the closure of G.

The intended meaning of two semantics differs with
respect to the data graph on which the evaluation is
performed. In particular, JPKρdf

G means that P is evalu-
ated on the original data graph G, and the results pro-
vided should include those generated by considering
the ρdf rules. On the other hand, JPKcl(G) means that
P is evaluated on the materialization of the closure of
G obtained by applying the ρdf rules. Of course, we
expect JPKρdf

G =JPKcl(G) to hold.
Most of existing SPARQL processors handle (vari-

ants of) ρdf reasoning in the following way: first, com-
pute and materialize the finite polynomial closure of
the graph G and then perform query answering on the
closure via RDF simple entailment regime [25]. It is
interesting to point out that materializing all data by
computing the closure cl(G) may cause a waste of
space in case most of cl(G) is never really used for
query answering, apart from the cost of computation
and maintenance after updates. Having a mechanism
to support entailment regimes while avoiding the com-
putation of cl(G) beforehand can bring a major advan-
tage. Our goal is to study query-based reasoning, that
is, the possibility to rewrite a query into another query
that captures ρdf inferences.

Similarly to nSPARQL [11], cpSPARQL [21] and
others approaches (e.g., [26, 27]), we identified for
each inference rule in the fragment considered, ρdf in
our case), an EPP expression encoding it. The transla-
tion rules are shown in Table 8. Whenever one wants to
adopt the ρdf entailment regime, it is enough to rewrite
the input pattern according to these translation rules.
The result of the evaluation of the rewritten pattern on
G is the same as the result that would be obtained by
first computing the closure cl(G) and then evaluating
the pattern before the rewriting.

Lemma 22. (ρdf and SPARQL). Given a triple pat-
tern (α,p, β) with α, β ∈ I ∪ V and p ∈ I, then for
every graph G we have that J(α,p, β)Kρdf

G =
J((α,Φ(p), β))KG=J(α,p, β)Kcl(G).

Sketch. The proof follows from the fact that rules in
Table 8 encode the reasoning rules shown in Table 7.
This is immediate to see for rules R1-R4. R5 is com-
posed by the union of three expression, each capturing
one of the three possible ways (shown in Fig. 12 (a)-
(c)) to derive a type in RDFS and corresponding to
rules Subclass (a), Domain and Range in Table 7. The
first sub-expression in R5 captures the rule in Fig. 12
(a); a new type can be derived by finding triples of
the form (z,type, x) and possibly (via *) traveling up
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Table 7
The ρdf rule system. Capital lettersA, B, C, X , and Y , stand for meta-variables to be replaced by actual terms in UL.

1. Subclass:

(a) (A,sc,B) (X ,type,A)
(X ,type,B) (b) (A,sc,B) (B,sc,C)

(A,sc,C)

2. Subproperty:

(a) (A,sp,B) (X ,A,Y)
(X ,B,Y) (b) (A,sp,B) (B,sp,C)

(A,sp,C)

3. Domain:
(A,dom,B) (X ,A,Y)

(X ,type,B)

4. Range:
(A,range,B) (X ,A,Y)

(Y ,type,B)

Table 8
Enconding of ρdf inference rules via EPPs.

Rule ρdf Translation (Φ(·))
R1 sc Φ(sc)= sc+

R2 sp Φ(sp)= sp+

R3 dom Φ(dom)= dom

R4 range Φ(range)= range

R5 type Φ(type)= type/sc∗ | (T(true)_p/sp∗ /dom/sc∗) | (_o T(true)_p/ sp∗ /range/sc∗ _o)
R6 p /∈ {sc, sp, dom,

range, type}
Φ(p)= (TP(_p,sp∗/sp&&T(_o=p)) || T(_p=p))
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Fig. 12. RDFS inference rules. R5 in Table 8 captures rules (a)-(c) while R6 in Table 8 capture rule (d).

(via sc) the super-classes of x, which is the type of z.
The second sub-expression captures the rule depicted
in Fig. 12 (b); a new type can be derived by navigat-
ing from the subject x to the predicate p and all its pos-
sible super-properties (via ∗) and then by finding the
dom (i.e., a class) of such predicates, and all possible
super-classes (via ∗). A similar reasoning applies for
the third sub-expression in R5, which captures the in-

ference rule shown in Fig. 12 (c). As for rule R6 in Ta-
ble 8, it captures the rule in Fig. 12 (d) corresponding
to the rule Subproperty (a) in Table 7. We can notice
that the EPP encoding this inference rule includes the
union (via ||) of two tests. The second test just checks
for triples where p is the predicate; the first performs
an existential test (i.e., it uses the nested EPP construct
TP) composed by a conjunction (via &&) of two tests,
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the first moves to the predicate position of a triple and
travels up the property hierarchy (via *) while the sec-
ond checks that the object of the triple reached is actu-
ally p.

We observe that our translation rules are indeed
a translation into the language of EPPs of the NRE
expressions that have been shown to capture all the
RDFS inferences in Perez et al. [11] (Lemma 5.2).
Lemma 22 shows that for an arbitrary pattern there
exists a rewriting allowing to capture ρdf inferences.
Moreover, it is easy to see that the rewriting can be
constructed by using the translation rules in Table 8
in linear time in the size of the pattern. However, in
this case (and similarly to nSPARQL and PSPARQL)
one would need to use an EPPs processor to capture
the inferred triples. This clearly hinders the usage of
this machinery in existing processors. Therefore, the
research question that we face now is how to support
query-based reasoning on existing processors.

5.2. Query-based Reasoning on Existing Processors

The idea behind our approach, follows from the ob-
servation that closure operators appearing in Table 8
only involve single predicates i.e., sc+, sc∗, sp+,
sp∗. Such type of expressions are property paths that
(taken alone) can be evaluated via the ALP1 proce-
dure defined in the W3C standard, and implemented
in existing processors. Therefore, we need to rewrite
the EPPs in Table 8 into SPARQL queries where re-
cursive property paths with single predicates are used.
We apply a small variation to the translation algorithm
presented in Section 4; the variation consists in leav-
ing untouched (single) predicates involving the closure
operator (*) used in Table 8. We refer to this variant of
the translation algorithm as At

ρ(·).

Lemma 23. Given a triple pattern P=〈α,p, β〉 with
α, β∈I∪V and p ∈ I, J〈α,p, β〉Kcl(G)=JAt

ρ〈α,Φ(p), β〉KG

Proof. The result follows from Lemma 22 which
shows that the EPPs rewriting of the ρdf inference
rules (via Φ(p)) allows to infer the triples in the frag-
ment, and the nEPPs to SPARQL translation (needed
in the At

ρ(·) part).

The above result tells us that an algorithm to per-
form query-based reasoning works in three steps: (i)
apply the translation function Φ(·); (ii) apply the trans-
lation At

ρ(·) over the result of step (i); (iii) evalu-
ate the SPARQL query resulting from (ii) on existing
SPARQL processors.

6. Expressiveness Analysis

The aim of this section is to provide novel re-
sults about the expressive power of EPPs as compared
to PPs (Section 6.1) and the expressiveness of the
SPARQL standard in terms of ρdf reasoning when con-
sidering different navigational cores (Section 6.2).

6.1. Expressive Power of Extended Property Paths vs.
Property Paths

We now investigate the expressiveness of EPPs as
compared to PPs. We use the evaluation functionJ·KG

to denote either the evaluation of a PP elt (Fig. 5) or
EPP epp (Table 3). The semantics of the evaluation
will be clear from the context. In the next theorem we
prove that the language of EPPs is strictly more expres-
sive than PPs9. By using the graph in Fig. 13, we will
show that there exists an EPP pattern, which is able to
distinguish between the node :b and the nodes :c and
:d. The same does not hold for PPs; indeed, any PP
pattern that provides :b as an answer will provide at
least an additional answer (either :c or :d). The ratio-
nale behind this result is that PP patterns are not able
to tell apart the conjunction of two predicates from the
two predicates alone.

Theorem 24. There exists an EPP pattern 〈α,epp, β〉
that cannot be expressed as a PP pattern 〈α,elt, β〉.

:a :b
:p

:q

:c:p

:d:q

:q

:p:p

:p

:p

:p

:q

:q

:q:q

Fig. 13. Graph used to prove Theorem 24.

9Even if such result could be obtained by adapting standard re-
sults about NREs, we provide, for the sake of completeness, a com-
plete constructive proof.
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Proof. Consider the EPP pattern π1 = 〈?b, (:p&:q)∗,?e〉
and the graph G in Fig. 13. Let Πsel f =

{
{?b→x,?e→x |

x ∈ {:a,:b,:d,:c}}
}

. We have that Jπ1KG =
Πsel f ∪{{?b→:a,?e→:b}, {?b→:b,?e→:a}}. It
is immediate to see that the multiset Πsel f is obtained
by evaluating the base step of the closure (:p &:q)∗

while the other mappings derive from the evaluation
of (:p &:q) (step 1 of the closure). Moreover, no
other mappings can be obtained by evaluating fur-
ther closure steps. We claim that for every PP pattern
π2=〈?b,elt,?e〉 the following property holds: either
Jπ2KG=∅ or Jπ2KG AJπ1KG. The proof of the theorem
relies on the following claim.

Claim 25. Consider the graph G in Fig. 13. For
every PP pattern 〈?b,elt,?e〉 we have that either
J〈?b,elt,?e〉KG=∅ or J〈?b,elt,?e〉KG w Πsel f .

Proof. We proceed by induction on the construction of
the PP expression elt. We start with the base cases:

c1. If elt is of the form elt = u∈I then: (i) if
u=:p or u=:q then J〈?b, u,?e〉KG A Πsel f be-
cause of the self-loops at each node ; (ii) other-
wise J〈?b, u,?e〉KG = ∅.

c2. If elt is elt=!(u1|...|un) or elt=!(ˆu1|...|ˆun)
then: (i) if :p /∈ {u1, . . . , un} or :q /∈ {u1, . . . , un}
then J〈?b,elt,?e〉KG A Πsel f because of the
self-loops present at each node; (ii) otherwise
J〈?b,elt,?e〉KG = ∅.

c3. If elt is of the form elt=!(u1|...|u j|ˆu j+1|...|ˆun)
then J〈?b, !(u1|...|u j|ˆu j+1|...|ˆun)?e〉KG= J〈?b,
!(u1|...|u j),?e〉KG∪J〈?b, !(ˆu j+1|...|ˆun),?e〉KG.
Hence, the claim holds because of point c2 above.

Let elt1, elt2 be PP expressions; assume that
it holds that either: (i) J〈?b,elti,?e〉KG=∅ or (ii)
J〈?b,elti,?e〉KG w Πsel f for i ∈ {1, 2}. We now
proceed with the inductive step and consider the other
types of PP expressions.

c4. If elt is of the form elt = elt1 | elt2 then
J〈?b,elt1 | elt2,?e〉KG=J〈?b,elt1,?e〉KG ∪
J〈?b,elt2,?e〉KG and the claim follows from
the properties of the algebra.

c5. If elt is of the form elt = elt1/elt2 then
J〈?b,elt1/elt2,?e〉KG=J〈?b,elt1,?m〉KG on
J〈?m,elt2,?e〉KG and the claim follows from
the properties of the algebra.

c6. If elt is of the form elt = (elt1)∗ then
J〈?b, (elt1)∗,?e〉KG w Πsel f as a consequence
of the evaluation of the base step of the Kleene
operator.

c7. If elt is of the form elt = ˆ(elt1) then
J〈?b, ˆ(elt1),?e〉KG=J〈?e,elt1,?b〉KG and the
claim follows from the properties of the algebra./

By relying on Claim 25, the proof of the theorem
continues by induction on the construction of the PP
expression elt. We start with the base cases:

t1. If elt is of the form elt=u∈I then:

t1.1. if elt=:p then J〈?b,:p,?e〉KG=
Πsel f∪{{?b→:a,?e→:c},
{?b→:a,?e→:b},{?b→:b,?e→:a}}.
The answer is a superset of Jπ1KG because
of the mapping {?b→:a,?e→:c}.

t1.2. if elt=:q then J〈?b,:q,?e〉KG=
Πsel f∪{{?b→:a,?e→:d}, {?b→:a,?e→:b},
{?b→:b,?e→:a}}AJπ1KG. The answer
is a superset of Jπ1KG because of the map-
ping {?b→:a,?e→:d}.

t1.3. otherwise, we have that J〈?b, u,?e〉KG = ∅
for all u /∈ {:p,:q}.

In what follows we will focus our attention on the extra
answers only that makes JeltKG a superset of Jπ1KG.

t2. If elt is of the form elt=!(u1|...|un) then:

t2.1. if :q /∈ {u1, ..., un} then
J〈?b, !(u1|...|un),?e〉KG w J〈?b,:q,?e〉KG.
Then the result follows from point t1.2.

t2.2. if :p /∈ {u1, ..., un} then
J〈?b, !(u1|...|un),?e〉KG w J〈?b,:p,?e〉KG.
Then the result follows from point t1.1.

t2.3. if :p,:q ∈ {u1, ..., un} then
J〈?b, !(u1|...|un),?e〉KG=∅.

t3. If elt is of the form elt=!(ˆu1|...|ˆun) then:

t3.1. if :q /∈ {u1, ..., un} then
J〈?b, !(ˆu1|...|ˆun),?e〉KG w J〈?b, ˆ:q,?e〉KG =
Πsel f ∪ {{?b→:d,?e→:a}, {?b→:a,
?e→:b}, {?b→:b,?e→:a}}. The an-
swer is a superset of Jπ1KG because of the
mapping {?b→:d,?e→:a}.

t3.2. if :p /∈ {u1, ..., un} then
J〈?b, !(ˆu1|...|ˆun),?e〉KG w J
〈?b, ˆ:p,?e〉KG = Πsel f∪{{?b→:c,?e→:a},
{?b→:a, ?e→:b}, {?b→:b,?e→:a}}.
The answer is a superset of Jπ1KG because
of the mapping {?b→:c,?e→:a}.

t3.3. if :p,:q ∈ {u1, ..., un} then
J〈?b, !(ˆu1|...|ˆun),?e〉KG=∅.

t4. If elt is of the form elt=!(u1|...|u j|ˆu j+1|...|ˆun)
then:
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t4.1. if :p /∈ {u1|...|u j} then
J〈?b, !(u1|...|u j|ˆu j+1|...|ˆun),?e〉KG w
J〈?b,:p,?e〉KG. Then the result follows
from point t1.1.

t4.2. if :p /∈ {u j+1|...|un} then
J〈?b, !(u1|...|u j|ˆu j+1|...|ˆun),?e〉KG w
J〈?b, ˆ:p,?e〉KG. Then the result follows
from point t3.2.

t4.3. if :q /∈ {u1|...|u j} then
J〈?b, !(u1|...|u j|ˆu j+1|...|ˆun),?e〉KG w
J〈?b,:q,?e〉KG. Then the result follows
from point t1.2.

t4.4. if :q /∈ {u j+1|...|un} then
J〈?b, !(u1|...|u j|ˆu j+1|...|ˆun),?e〉KG w
J〈?b, ˆ:q,?e〉KG. Then the result follows
from point t3.1.

t4.5. otherwise we have that
J〈?b, !(u1|...|u j|ˆu j+1|...|ˆun),?e〉KG = ∅.

Let elt1 and elt2 be two PP expressions and assume
that it holds that either: (i) J〈?b,elti,?e〉KG=∅ or:
(ii) J〈?b,elti,?e〉KG A Jπ1KG for i ∈ {1, 2}. We now
proceed with the inductive step and consider the other
types of PP expressions.

t5. If elt is of the form elt=elt1 | elt2 then
J〈?b, (elt1|elt2),?e〉KG=J〈?b,elt1,?e〉KG∪
J〈?b,elt2,?e〉KG. Hence, if either elt1 or
elt2 are not empty, the presence of at least an
additional answer follows from the properties of
the algebra.

t6. If elt is of the form elt=elt1/elt2 then
J〈?b, (elt1/elt2),?e〉KG=
J〈?b,elt1,?m〉KGonJ〈?m,elt2,?e〉KG. Hence,
if both elt1 and elt2 are not empty, the pres-
ence of at least an additional answer follows from
the properties of the algebra.

t7. If elt is of the form elt=(elt1)∗ then
J〈?b, (elt1)∗,?e〉KG the result follows from the
monotonicity of transitive closure.

t8. If elt is of the form elt=ˆ(elt1) then
J〈?b, ˆ(elt1),?e〉KG=J〈?e,elt1,?b〉KG.
If J〈?e,elt1,?b〉KG = ∅ then
also J〈?b, ˆelt1,?e〉KG = ∅. Otherwise, by in-
ductive hypothesis we have that:
(i) J〈?e,elt1,?b〉KG w Πsel f and thus
J〈?b, ˆ(elt1),?e〉KG w Πsel f ;
(ii) {{?e→:a,?b→:b}, {?e→:b,?b→:a}} @
J〈?e,elt1,?b〉KG and thus {{?b→:a,?e→:b},
{?b→:b, ?e→:a}} @ J〈?b, ˆ(elt1),?e〉KG.
To conclude, note that there exists a mapping
{?e→x,?b→y}∈J〈?e,elt1,?b〉KG with x, y∈{:a,:b

:d,:c}, x 6= y, such that if x=a implies y6=b
and if x=b implies y6=a. Thus, the mapping
{?b→y,?e→x}∈J〈?b, ˆ(elt1),?e〉KG and
{?b→y,?e→x} /∈Jπ1KG.

To continue our expressiveness analysis, we now
show that using EPPs as navigational core in SPARQL
increases the expressive power of the language.

Theorem 26. There exists a S{./,
⋃
,EPP} query that can-

not be expressed as a S{./,
⋃
,PP} query.

Proof. Consider the following S{./,
⋃
,EPP,} query:

Qe=SELECT ?b ?e WHERE {?b (:p &:q)∗ ?e.}

and the graph G in Figure 13. Let us indicate by
π = 〈 ?b, (:p &:q)∗, ?e〉 the EPP pattern in Qe.
By evaluating Qe over G we obtain the set of map-
pings

{
{?b→x,?e→x | x ∈ {:a,:b,:d,:c}}

}
∪{

{?b→:a,?e→:b}, {?b→:b,?e→:a}
}

(in the
following we will indicate as Πsel f =

{
{?b→x,?e→x |

x ∈ {:a,:b,:c,:d}} the set of self-loop map-
pings). We will show that the query Qe cannot be
expressed by any S{./,

⋃
,PP} query Q̄ of the form

SELECT ?b ?e WHERE{P}, where P is a pattern
as defined in Section 2. We claim that for every pat-
tern P (in the fragment S{./,

⋃
,PP}) the following prop-

erty holds: either JPKG=∅ or JPKG AJπKG. Note that if
JPKG AJπKG holds it also holds that JPKG AΠsel f . We
prove the theorem by structural induction on the con-
struction of the pattern P built by using the constructs
in the fragment S{./,

⋃
,PP}. We start with the base case:

Base: If P = 〈?b,elt,?e〉 is a single prop-
erty path pattern then in virtue of Theorem 24
we have that either J〈?b,elt,?e〉KG = ∅ or
J〈?b,elt,?e〉KG w JπKG.
Inductive step: Consider now the case of P con-
taining two patterns P1 and P2 such that either
JPiKG = ∅ or JPiKG A JπKG A Πsel f holds for
i ∈ {1, 2}.

– If P = P1 AND P2 then JP1 AND P2KG =
JP1KG on JP2KG. If at least one of the two
evaluations is empty then we can conclude
JP1 AND P2KG = ∅. Otherwise, if the eval-
uation of both P1 and P2 is not empty, than
all the additional answers in JP1KG and JP2KG

will not be discarded due to the fact that
JP1KG A Πsel f , JP2KG A Πsel f and from the
properties of the algebra. Thus we can con-
clude that JP1 AND P2KG A JπKG holds.
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Table 9
Languages and their translation into SPARQL for reasoning.

Navigational Core Extended Processor Reference in the Semantics SPARQL Fragment
p ∈ I No R1 in Fig. 5 S{./,

⋃
,FILTER,PP,ALP1}

nPP No R1-R5 in Fig. 5 S{./,
⋃
,FILTER,PP,ALP1}

nEPP No R1-R2, R5-R9, R11-R16 in Table 3 S{./,
⋃
,FILTER,PP,ALP1}

PP Yes Fig. 5 S{./,
⋃
,FILTER,EPP,EALP1}

EPP Yes Table 3 S{./,
⋃
,FILTER,EPP,EALP1}

– If P = P1 UNIONP2 then JP1 UNIONP2KG =
JP1KG ∪ JP2KG. Hence, if the evaluation of
both P1 or P2 is empty then we can conclude
JP1 AND P2KG = ∅. Otherwise, if the evalua-
tion of either P1 or P2 is not empty, the pres-
ence of at least an additional answer follows
from the properties of the algebra.

6.2. Expressiveness of SPARQL for Query-Based
Reasoning

We now study the expressiveness of SPARQL in
terms of ρdf reasoning when considering various nav-
igational cores. Table 9 mimics the expressiveness
study in Table 6 where the second column describes
the language produced to support query-based reason-
ing as described in Section 5. We can notice that, in
general, supporting reasoning requires a more expres-
sive language in the rewriting. For the basic case p ∈ I,
the query must be rewritten by applying rule R6 in Ta-
ble 8; this requires the usage of EPP constructs such
as nesting (TP), (conjunction of) tests (T), and closure
(sp∗). Clearly, the presence of closure requires the us-
age of ALP1 that was not required in the case of plain
RDF (first row in Table 6).

Interestingly, when considering more expressive
forms of navigational patterns such as non-recursive
property paths (nPP), and non-recursive EPPs (nEPP),
the fragment needed to capture ρdf in the transla-
tion remains the same. The situation changes when
moving to navigational patterns with recursion, that
is, PP and EPP. In this case, the current SPARQL
standard is not enough expressive to capture query-
based ρdf reasoning. To give an intuition, consider the
query ?s (p1/TP(_p,p2))∗ ?e where p1,p2 ∈ I and
?s,?e ∈ V . It follows from Theorem 26 that this
type of recursive queries cannot be evaluated under
the simple RDF entailment regime via ALP1 although
they can be evaluated via EALP1 defined for EPPs.
If this negative result holds for plain RDF clearly
it also holds for the ρdf entailment regime. The in-

teresting point is that by observing Table 9 one can
note that S{./,

⋃
,FILTER,EPP,EALP1} is the only close lan-

guage with respect to ρdf reasoning for the rewriting
shown in Table 8. We point out that our rewriting into
SPARQL for plain RDF and ρdf require the same ex-
pressiveness. Practically speaking substituting the cur-
rent ALP1 procedure with the EALP1 procedure for
EPPs would allow full EPPs support for both the plain
and ρdf entailment regime.

We want to mention that there could be other rewrit-
ings for reasoning using PPs. For instance, Bischof et
al. [27] focus on a fragment of OWL. Authors point out
how the support for owl:symmertricProperty
is not possible by using PPs due to the limited ex-
pressiveness of this language. This limitation can be
overcome by using EPPs (and EALP1) and other nav-
igational extensions of SPARQL like NREs [16]. We
again note that the crucial difference between EPPs
and NREs is that the focus of the former is to give a re-
ceipt about how to extend the SPARQL standard, and
how the standard currently support query-based rea-
soning, with a more powerful navigational core while
NREs/nSPARQL depart from the standard (they have
been defined before the introduction of PPs). We leave
the study of how EPPs can be coupled with the ap-
proach proposed by Bischof et al. [27] as a future
work.

7. iEPPs: a SPARQL-independent Language

The aim of this section is to study EPPs as an in-
dependent language. The advantage of defining EPPs
as a navigational language independent from SPARQL
stems from the fact that the SPARQL-based semantics
and translation discussed in Section 3.2 and Section 4
only apply to KGs based on RDF while the proposed
language can be used to query arbitrary KG. To this
end, we give a set-based Semantics in Section 7.1 and
present an evaluation algorithm along with a complex-
ity analysis in Section 7.2.
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Table 10
Set-based semantics for EPPs.

R1 EJˆeppKG := {(u,v) : (v,u) ∈ EJeppKG}
R2 EJepp1/epp2KG := {(u,v) : ∃w s.t. (u,w) ∈ EJepp1KG ∧ (w,v) ∈ EJepp2KG}
R3 EJ(epp)∗KG := {(u,u) | u ∈ nodes(G)} ∪

⋃∞
i=1 EJeppiKG | epp1 = epp ∧ eppi = eppi−1/epp

R4 EJ(epp)+KG :=
⋃∞

i=1 EJeppiKG | epp1 = epp ∧ eppi = eppi−1/epp

R5 EJ(epp)?KG := {(u,u) | u ∈ nodes(G)} ∪ EJeppKG

R6 EJ(epp1|epp2)KG := {(u,v) : (u,v) ∈ EJepp1KG ∨ (u,v) ∈ EJepp2KG}
R7 EJ(epp1&epp2)KG := {(u,v) : (u,v) ∈ EJepp1KG ∧ (u,v) ∈ EJepp2KG}
R8 EJ(epp1 ∼ epp2)KG := {(u,v) : (u,v) ∈ EJepp1KG ∧ (u,v) /∈ EJepp2KG}
R9 EJepp{l, h}KG :=

⋃h
i=l EJeppiKG | epp1 = epp ∧ eppi = eppi−1/epp

R10 EJPOS1 test POS2KG := {(Π(POS1,t),Π(POS2,t))) | t ∈ G ∧ ET JtestKtG}
R11 ET JuKtG := true if Π(_p,t) = u,false otherwise
R12 ET JT(EExp)KtG := Evaluate(EExp,t)

R13 ET JTP(POS,epp) KtG := true if ∃ v : (Π(POS,t), v) ∈ EJeppKG,false otherwise
R14 ET Jtest1&&test2 KtG := ET Jtest1 KtG ∧ ET Jtest2 KtG
R15 ET Jtest1||test2 KtG := ET Jtest1 KtG ∨ ET Jtest2 KtG
R16 ET J!test KtG := ¬ET Jtest KtG

7.1. Formal Semantics of EPPs based on sets

The semantics of EPPs based on sets for both recur-
sive and non-recursive EPPs is shown in Table 10. It
leverages two evaluation functions. The first, EJeppKG

given an epp expression and a graph G returns the
pairs of nodes that are linked by paths conforming to
epp. The second ET JtestKtG, given a test test, a
graph G and a triple t∈ G, returns true if the triple
satisfies the test and false otherwise. The seman-
tics follows the same spirit of other navigational lan-
guages like NREs [16] although EPPs offer more fea-
tures (e.g., path conjunction and path difference).

7.2. Evaluation Algorithm

The aim of this section is to study whether the se-
mantics in Table 10 can be implemented in an effi-
cient way. In what follows we show an efficient eval-
uation algorithm, that has been implemented in a cus-
tom query evaluator, and discuss its complexity. The
presented evaluation algorithm for iEPPs expressions
is similar to those of other navigational languages such
as nested regular expressions [16] and NautiLOD [14].
The algorithm starts by invoking EVALUATE, which
receives as input a graph G, an expression epp and a
node n. If epp is non recursive (i.e., it does not con-
tain the closure operators ‘+’ and ‘∗’) then it is given
as input to the function BASE, which considers the var-

ious forms of syntactic expressions. For recursive ex-
pressions the algorithm uses the function CLOSURE.
Finally, the boolean function EVALTEST handles the
different types of test.

Function EVALUATE
(
n,epp,G)

Input: node n, expression epp, graph G; Output:
node set Res.

1: if epp = (epp1)∗ then
2: return CLOSURE(n,epp1,G, {}, 0, ∗)
3: else if epp = (epp1)+ then
4: return CLOSURE(n,epp1,G, {}, 1, ∗)
5: else if epp = (epp1){l, h} then
6: return CLOSURE(n,epp1,G, {}, l, h)
7: else
8: return BASE(n,epp,G))

Function CLOSURE
(

n, epp,G, Res, l, h)

Input: node n, EPPs expression epp, graph G, node set Res, lower bound l,
upper bound h; Output: node set Res.

1: S = {n}
2: for all i ∈ {1, ..., l} do
3: S ′ =

⋃
n∈S EVALUATE(n, epp,G)

4: S = S ′

5: i = l + 1
6: while S 6= ∅ AND (h = ∗ OR i <= h) do
7: S ′ = ∅
8: while S 6= ∅ do
9: n = extractNode(S ) /* delete the node n from S */

10: if n /∈ Res then
11: Res = Res ∪ {n}
12: S ′ = S ′ ∪ EVALUATE(n, epp,G)
13: i = i + 1
14: S = S ′

15: return Res
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Function BASE
(

n, epp,G)

Input: node n, EPPs expression epp, graph G; Output: node set Res.
1: if epp = ˆepp1 then
2: return EVALUATE(n, reverse(epp1),G)
3: if epp = epp1|epp2 then
4: return EVALUATE(n, epp1,G) ∪ EVALUATE(n, epp2,G)
5: if epp = epp1/epp2 then
6: Res′ := EVALUATE(n, epp1,G)
7: Res = ∅
8: for all nodes n′ ∈ Res′ do
9: Res = Res ∪ EVALUATE(n′, epp2,G)

10: return Res
11: if epp = epp1&epp2 then
12: return EVALUATE(n, epp1,G) ∩ EVALUATE(n, epp2,G)
13: if epp = epp1 ∼ epp2 then
14: return EVALUATE(n, epp1,G) \ EVALUATE(n, epp2,G)
15: if epp = epp1? then
16: return {n} ∪ EVALUATE(n, epp1,G)
17: if epp = POS1 test POS2 then
18: Res = ∅
19: for all triple t ∈ G do
20: if EVALTEST(n, POS1, POS2, t, test,G) then
21: Res=Res ∪ {Π(POS1, t),Π(POS2, t)} /* Π(POS1, t) = n*/
22: return Res

Function EVALTEST
(

n, POS1, POS2, t, test,G)

Input: node n, position POS1, position POS2, triple t, test, test,graph G;
Output: true if t satisfy test.

1: if test = test1&&test2 then
2: return EVALTEST

(
n, POS1, POS2, t, test1,G) ∧

∧EVALTEST
(

n, POS1, POS2, t, test2,G)
3: if test = test1||test2 then
4: return EVALTEST

(
n, POS1, POS2, t, test1,G) ∨

∨EVALTEST
(

n, POS1, POS2, t, test2,G)
5: if test =!test1 then
6: return ¬EVALTEST

(
n, POS1, POS2, t, test1,G)

7: if test = u then
8: return Π(POS1, t) = n ∧ Π(_p, t) = u
9: if test = TP(POS, epp) then

10: return Π(POS1, t) = n ∧ EVALUATE(Π(POS, t), epp,G) 6= ∅
11: if test = T(EExp) then
12: return Π(POS1, t) = n ∧ EvalSPARQLBuilt-in(EExp, t)

The result of the evaluation of an iEPP expression
epp from a node n is a set of nodes nr where nodes nr

are reachable from n via paths satisfying epp. To study
the complexity of the evaluation algorithm we intro-
duce the decision problem EVALEPPS, which takes as
input an EPP expression e, a pair of nodes (s, r) and a
graph G and asks whether (s, r) ∈ [[e]]G.

Theorem 27. The EVALEPPS problem can be solved
in time O(|G| · |epp|) + cEExp, where cEExp is the cost
of evaluating built-in conditions.

Proof. We assume G to be stored by its adjacency list.
In particular, for each q ∈ terms(G), a Hashtable is
maintained where the set of keys is the set of predi-
cates p such that there exists a triple in G having as
subject q and as predicate p, and the set of values are
lists of objects o reachable by traversing p-predicates
from q. We assume that given q and a predicate p the
set of nodes reachable can be accessed in time O(1).

An additional Hashtable is used for inverse navigation,
that is, for navigation starting on the object and ending
on the subject. Both structures use space O(|G|). Let
|epp| be the size of the iEPP expression epp.

The function EVALUATE is recursively called on
each sub-expression of the epp in input; if such sub-
expressions are not recursive (i.e., do not contain ‘∗’,
‘+’), EVALUATE is invoked at most O(|epp|) times.
The base cases (lines 17-21 of function BASE) require
to consider at most all the edges for all the nodes; this
can be done in time O(|G|). If epp is recursive, the
function CLOSURE is executed at most O(nodes(G))
times; the procedure EVALUATE is invoked for each
node in the worst case. When evaluating a subexpres-
sion from a node we use memoization to store its result
(i.e., the set of reachable nodes) thus avoiding to re-
compute the same expression from the same node mul-
tiple times. Memoization guarantees that the total time
required by CLOSURE is O(|epp| · |G|). As for nested
expressions, memoization enables to mark nodes of the
graph satisfying a given subexpression. Path conjunc-
tion and difference, corresponding to intersection and
difference of sets of nodes respectively (line 12 and
14 of BASE), can be computed in time O(|G|) by us-
ing a (prefect) hash function as the graph is known be-
forehand. As for tests, their cost is constant for log-
ical operators and simple URI checking. The com-
plexity is parametric wrt the cost of other SPARQL-
based built-in conditions EExp (cEExp). Finally, ob-
serve that with memoization the space complexity is
O(|epp| · nodes(G)2).

8. Experimental Evaluation

This section reports on an experimental evaluation
meant to investigate different aspects of the EPPs lan-
guage discussed in the previous sections. Section 8.1
investigates the overhead of our translation algorithm,
presented in Section 4, and compares it with that of
translations routinely performed by existing SPARQL
processors. Then, in Section 8.2 we discuss perfor-
mance in terms of query evaluation time. We compare
the running time of a custom processor implementing
the evaluation algorithm for iEPPs, presented in Sec-
tion 7, with the running time of a SPARQL processor.
Finally, in Section 8.3 we discuss the impact of using
query-based reasoning, presented in Section 5, both in
terms of running time and number of results.

All the experiments have been performed on an Intel
i5 machine with 8GBs RAM. Results are the average
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Fig. 14. Time (ms) of the translation overhead of Jena ARQ (SPARQLtoAlgebra) and nEPPs (nEPPtoSPARQL) vs number of path steps.

of 5 runs (queries were ran in a random order each
time) after the top and bottom outliers are removed.

8.1. Translation Performance

Our primary objective is to make practical the im-
mediate adoption of EPPs as a query language for
KGs. This objective is fulfilled by using our translation
from nEPPs to SPARQL as front end to any existing
SPARQL processor. To investigate the performance of
the translation algorithm presented in Section 4, we
show that our nEPPs to SPARQL translation performs
comparably to the existing translations routinely per-
formed by SPARQL processors.

We compared our translation algorithm with the
SPARQL syntax to SPARQL algebra (referred to as
SPARQLtoAlgebra) translation performed by ARQ10.
We used 28 queries generated in two steps. We started
with three base expressions (Q1-Q3) plus a fourth one
combining them (Q4). Q4 includes all the nEPPs con-
structs; concatenation, path conjunction, path differ-
ence, path test, and logical tests with all the logical
operators. Second, we generate increasingly longer
expressions Qk

i by concatenating Q(k−1)
i /Q(k−1)

i , up
to k=6. The resulting Q6

i fragments involve the con-
catenation of 64 path steps. The running times of the
nEPPtoSPARQL and SPARQLtoAlgebra transla-
tions, for each query, are shown in Figure 14. Our

10http://jena.apache.org/documentation/query/algebra.html

translation performs similarly (slightly faster) than
ARQ’s existing initial phase, and this behavior shows
a consistent trend in two dimensions (Qk

i expressions
use more EPP constructs for increasing i, and become
exponentially longer for increasing k). To give a sense
of the length of the expressions, we observe that Q6

4

is a 19K characters long nEPPs expression (with an
operational tree containing over one thousand nodes),
while the Q6

4 SPARQL translation is 133K characters
long after filter elimination (the original translation is
∼239K characters).

While this suggests that the cost of our approach
could be up to twice the cost of a direct nEPPs to al-
gebra translation, keep in mind that we are comparing
initial phases of query processing and these are typi-
cally much faster than subsequent phases. As an exam-
ple, in Jena ARQ the SPARQLtoAlgebra transla-
tion is followed by an algebra to algebra optimization
phase [28]. The remaining pre-processing phases (par-
ticularly those using dataset statistics) can be far more
expensive than this initial phase. To give another ex-
ample, if we consider Virtuoso, we observe that the ini-
tial SPARQL to SQL translation phase is followed by
a more expensive cost based SQL optimization phase.
Hence, the impact of our translation on the running
time is negligible as compared to the total running time
and other kinds of translations routinely performed by
SPARQL processors.
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Fig. 15. Query time for simple and ρdf-entailment comparing iEPPs and Jena ARQ.

8.2. Custom Processor vs. SPARQL Translation

We now discuss the performance, in terms of run-
ning time, of the custom EPPs processor implement-
ing the iEPPs evaluation algorithm discussed in Sec-
tion 7.2 against the translation-based approach de-
scribed in Section 4. This experiment gives insights
about the pros and cons of evaluating EPPs into exist-
ing SPARQL processors as compared to the usage of a
custom query processor.

We considered a portion of FOAF obtained from
the BTC2012 dataset11 by traversing from the URI
of T. Berners-Lee (TBL) foaf:knows predicates up
to distance 4. This dataset including ∼4M triples has
been loaded in memory by using Jena ARQ. We cre-
ated 4 groups Qi, i ∈ {1,..., 4} of similar nEPP ex-
pressions each with 3 queries; this gives a queryset
Q =

⋃4
i=1 Qi of a total of 12 queries. For each epp∈Q

we generated the corresponding SPARQL query Sepp
via the translation algorithm. To investigate the perfor-
mance also when including the query-based reasoning
capabilities discussed in Section 5, we translated each
epp into another query eppρ and each Sepp into an-
other query Sρepp. At this point, the original query epp
and its reasoning-aware variant eppρ are evaluated via
the custom processor while the translated Sepp query
and its reasoning-aware variant Sρepp via Jena ARQ.

Fig. 15(a) shows the comparison when executing
the queries without considering reasoning capabilities
(i.e., under simple entailment). Fig. 15(b) shows results
when considering the ρdf entailment regime.

For Q1, which contains queries asking for friends of
TBL at distance 1, 2 and 3, the custom processor per-
forms better than Jena at distance 1 and 2; at distance
3 times are comparable. Q2 additionally considers a
test based on nesting. Again, the custom processor per-

11http://km.aifb.kit.edu/projects/btc-2012

forms better at distance 1 and 2; at distance 3 it shows
a higher running time. In Q3, which considers path
difference (e.g., exclusive friends at various distances)
the custom processor performs consistently better. Fi-
nally, in Q4 that includes conjunction (to ask for mu-
tual friends at various distances) the custom processor
performs better at distance 1 and 2 and obtains a higher
running time at distance 3. These experiments suggest
that for real-world data and natural queries (e.g., mu-
tual friends) working with SPARQL-translated nEPPs
and using existing processors (Jena in this case) is a
bit less efficient than using the custom query proces-
sor. Note that the custom processor works in mem-
ory similarly to nSPARQL and other SPARQL naviga-
tional extensions. This clearly limits the applicability
of these approaches on real-world graphs that typically
do not fit into main memory and underlines the ad-
vantage to adopt our rewriting approach into SPARQL
queries that can be evaluated on existing SPARQL pro-
cessors capable of handling large graphs.

The huge advantage of using nEPPs is that naviga-
tional queries can be written in a succinct way. Anec-
dotally, while the nEPPs asking for mutual friends
(simple entailment) at distance 3 contains ∼200 char-
acters, the SPARQL query (obtained from the transla-
tion) contains∼700 characters; moreover, writing nav-
igational queries directly in SPARQL requires to deal
with a large number of variables that need to be consis-
tently joined. The situation is even worse when consid-
ering path repetitions that can be easily captured by the
nEPPs syntax but require the union of several queries
when using SPARQL. The number of results ranges
from∼50 to∼8000 for the simple entailment and from
∼150 to ∼14500 for the ρdf entailment, respectively.

8.3. Query-Based Reasoning

We now move to a larger scale evaluation of the
query-based reasoning approach described in Sec-

http://km.aifb.kit.edu/projects/btc-2012
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tion 5. The overall goal is to investigate the overhead
of executing queries via the query-based reasoning ap-
proach as compared to plain RDF. Moreover, we also
investigate the number of results returned.

Among the ρdf inference rules (see Table 5) we con-
sidered the two most interesting, that is, R5 that al-
lows to derive new rdf:type information and R6
that allows the derivation of generic (sub)properties.
Deriving new rdf:type information is particularly
useful in efficient query processing via type-aware
graph transformations [29]. The other rules in Ta-
ble 5 either derive schema information (e.g., R3-R4)
or can be captured via PPs (e.g., R1). For simple
RDF, each query was executed as it is. Under the
ρdf entailment, each query was first rewritten as de-
scribed in Section 5.2. The prototypical EPP expres-
sion has the form entity prop ?y, where prop∈
{rdf:type,dbo:genre,
dbo:location,yago:hasLocation}. For in-
stance, the EPP dbp:Tracy_Mann rdf:type ?y
retrieves asserted RDF types for the entity Tracy
Mann. When rewriting this query we could also get
inferred RDF types. We tested the performance of the
query-based reasoning approach featured by EPPs on
existing SPARQL processors (both local and remote)
as shown in Table 11.

Table 11
Datasets used for the evaluation of query-based reasoning.

Dataset Triples Availability
LinkedMDB 12 6M local SPARQL endpoint

Yago13 400M local SPARQL endpoint

DBpedia 412M remote SPARQL endpoint14

LDCache 22B remote SPARQL endpoint15

DBpedia is a large dataset with limited RDFS us-
age, Yago/LDCache makes extensive usage of RDFS
predicates while LinkedMDB does not use RDFS.
LinkedMDB and Yago have been loaded into a Blaze-
Graph16 instance while DBpedia and LDCache have
been accessed via their Virtuoso17 SPARQL endpoints.
Figs. 16 (a)-(c) report the running times on the RDFS
rule R5 on 50 different queries that count the number
of results by randomly picking 50 entities in DBpedia,
Yago and LinkedMDB, respectively. Results are avail-

12http://linkedmdb.org
13www.mpi-inf.mpg.de/yago
14http://dbpedia.org/snorql
15http://lod.openlinksw.com/sparql
16https://www.blazegraph.com/download
17http://virtuoso.openlinksw.com

able in Appendix A. We observe that the overhead of
the translation is reasonable and there are a few excep-
tions (in DBpedia) where plain RDF query execution
takes more time. As expected, there is some variation
in DBpedia while the overhead is larger in Yago. Note
that query answering under entailment regime in some
cases, takes less time; this can be explained by the fact
that it requires the usage of the ALP1 procedure that
may perform better than the standard evaluation tech-
nique in some cases. To show that even without addi-
tional inference the overhead is minimal, we tested R5
also on LinkedMDB (that does not have schema).

The advantage of using the entailment regime is evi-
dent when looking at the average number of results, re-
ported in the inner boxes in Figs. 16 (a)-(c). As an ex-
ample, on DBpedia it increases from 13 to 27. The av-
erage ratio in terms of time for all queries is 1.7, 11.3,
and 1.7 for DBpedia, Yago and LinkedMDB, respec-
tively. As expected, the larger the ratio the larger the
number of results. Figs. 16 (d)-(f) further investigate
the benefit of query-based reasoning.

We created 150 additional queries for R6; 100
for DBpedia by considering two properties, that is,
dbpo:genre and dbpo:location, and 50 for
LDCache by picking the property yago:hasLocation
(note that we used a property from Yago’s schema
since it is contained in LDCache). By looking at R5 in
Table 8 it can be noted that the translation of an EPP
under the entailment regime requires the union of three
queries; hence, the resulting EPP is translated into a
SPARQL query using (three) UNION. On the other
hand, the translation of an EPP to capture R6 requires
a single query that will be translated in SPARQL using
FILTER (to capture tests).

In other words, queries using R5 are more involved
than those using R6. R6 has less overhead than R5; this
also reflects on the average ratio of time that now is
1.15 for dbpo:genre, 1.44 for dbpo:location
and 1.05 for yago:hasLocation. By looking at
the average number of results (reported in the in-
ner boxes) it can be observed that plain RDF did
not provide any result while our query-based reason-
ing approach allowed to get results. To be more spe-
cific, in DBpedia results have been obtained not via
the property dbpo:genre, but via the more gen-
eral property dbpo:literaryGenre. This allowed
to discover, for instance, that Night Surf (one
seed entity) is a post-apocalyptic short story. In LD-
Cache, while the query returned zero results when us-
ing yago:hasLocation, it returned results via the
more general property yago:placedIn (via R6).

http://linkedmdb.org
www.mpi-inf.mpg.de/yago
http://dbpedia.org/snorql
http://lod.openlinksw.com/sparql
https://www.blazegraph.com/download
http://virtuoso.openlinksw.com
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Fig. 16. Query time for simple and ρdf entailment over different datasets. Average number of results reported in the inner boxes.

Comparison with Closure Computation. An addi-
tional advantage of the query-based approach is that it
can benefit from space optimization if one would work
with the transitive reduction18 of a graph [30] that re-
moves edges derivable from ρdf-reasoning. In contrast,
if one wants to precompute the closure (the currently
used approach) one would need to materialize the full
closure of the RDF graph under consideration, which
would require cubic space in the worst case [25]. This
become prohibitive for large KGs like DBPedia, Yago
and many other. Indeed, we did measure in a local copy
of (a subset of) Yago the space and the time of the clo-
sure. Starting from 400M triples the closure doubled
the number of triples (giving 853M triples) and took
3.5h of computation.

18Tools like Slib19 can compute the reduction of RDF graphs.

9. Related Work

The idea of graph query languages is to use (variants
of) regular expressions to express (in a compact way)
navigational patterns (e.g., [13, 31–33]). Angles and
Gutierrez [34], and Wood [35] provide surveys on the
topic while Barceló provides a detailed overview of re-
search in the field [36] while Angles et al. [7] describe
a recent proposal. Our goal with EPPs is to extend the
navigational core of SPARQL (i.e., PPs) and make the
extension readily available into existing SPARQL pro-
cessors.

9.1. SPARQL Navigational Extensions

Proposals to extend SPARQL with navigational fea-
tures have been around from some time. Notable ex-
amples are PSPARQL [21] and nSPARQL [16] that
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tackled this problem even before the standardization
of property paths (PPs) as SPARQL navigational core.
From the practical point of view, the need for RDF
navigational languages is witnessed by projects like
Apache Marmotta20 that incorporates a simple nav-
igational language that borrows ideas from XPath.
Since our main goal is to extend the navigational core
of SPARQL we focus on the comparison between
EPPs and other SPARQL navigational extensions.
We compare EPPs with PPs, cpSPARQL [21], rec-
SPARQL [15], RDFPath [37], nSPARQL-NREs [16],
and star-free Nested Regular Expressions (sfNREs)
that extends NREs with negation [38]. Table 12 sum-
marizes the results of the comparison; we considered
the following language features: path conjunction (&),
path difference (∼), negation of tests (!), nesting (TP),
tests over nodes (T), usage of positions (POS), path
repetitions ({l,h}), entailment regime, and closure op-
erator (*). Additionally, we consider how expressions
in each of the languages are evaluated, the support for
reasoning (we focus on RDFS and in particular the ρdf
fragment [19]) and the support for query-based rea-
soning (QBR); finally, we also report whether the lan-
guage is implemented.

RDFPath is more focused on specific types of
queries (i.e., shortest paths) and their efficient imple-
mentation in MapReduce and it is the language hav-
ing less features than all the other languages con-
sidered. Path conjunction/difference are natively sup-
ported only by EPPs and sfNREs while nSPARQL,
cpSPARQL and rec-SPARQL require the usage of the
SPARQL algebra (i.e., . for conjunction). Neverthe-
less, this does not allow to use path conjunction inside
the closure operator where the number path conjunc-
tion evaluations is apriori not bound. As a side note, we
also mention that queries that resort to the SPARQL
algebra for conjunction are more verbose. Finally,
nSPARQL, cpSPARQL and rec-SPARQL do not sup-
port path difference. Test negation (!) is only supported
by PPs (e.g., via negated property sets) and EPPs; nest-
ing is supported by all languages but PPs and rec-
SPARQL. However, only EPPs allow to test node val-
ues in a nested expression (see Example 6). Node tests
are supported in limited form by cpSPARQL; EPPs al-
low logical combination of tests representing nesting
and tests representing (in)equalities of node values. As
a matter of fact, none of these extensions can express
the Italian exclusive friends query mentioned in the

20http://marmotta.apache.org

Introduction. EPPs support path repetitions; this fea-
ture (called curly brace form) is in the agenda of the
SPARQL working group21. rec-SPARQL also supports
repetitions of more verbose queries since the motiva-
tion behind rec-SPARQL is not to provide a concise
syntax. Nevertheless, rec-SPARQL requires an ad-hoc
query processor.

A crucial difference between EPPs and related re-
search is that we tackle the problem of extending the
SPARQL language in the least intrusive way. We show
that there exists a precise fragment of SPARQL that
is expressive enough to capture non recursive EPPs
(nEPPs), that is, EPPs that do not use closure oper-
ators (i.e., * and +). Therefore, following the same
line of the SPARQL standard where non-recursive PPs
are translated into SPARQL queries, we devised a
translation from (concise) nEPPs into (more verbose)
SPARQL queries. The advantage of this approach wrt
previous navigational extensions of SPARQL (e.g.,
[16, 21, 39]) that require the usage of ad-hoc query
processors is that nEPPs can be evaluated on existing
SPARQL processors.

Reasoning is not supported by PPs, sfNREs, RDF-
Path, and rec-SPARQL. Along the same line of NREs
(and nSPARQL) and cpSPARQL, we focus on how
EPPs can support SPARQL queries with embedded
reasoning capabilities [28]. We focus on the ρdf frag-
ment [19], which captures the main semantic func-
tionalities of RDFS. We show that certain classes of
SPARQL queries can be rewritten into queries that
capture ρdf semantic functionalities, and thus can be
evaluated on existing SPARQL processors. This is
again a significant advantage as compared to previ-
ous attempts (e.g., nSPARQL [16]) that require ad-hoc
processors.

Another difference with related proposals concerns
the implementation of the language. To foster the
adoption of EPPs and show its feasibility, we make
EPPs available to users and developers in different
forms: (i) as an implementation independent from
SPARQL; (ii) as a front-end to SPARQL endpoints (for
nEPPs) and (iii) as an extension to the Jena library.
Further information along with pointers to the source
code is available on the EPPs’s website22.

Finally, our study includes two novel expressive-
ness aspects. The first concerns the expressive power
of the current SPARQL standard in terms of naviga-

21http://www.w3.org/2009/sparql/wiki/Future_Work_Items
22http://extendedpps.wordpress.com

http://marmotta.apache.org
http://www.w3.org/2009/sparql/wiki/Future_Work_Items
http://extendedpps.wordpress.com
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Table 12
Comparison of EPPs with other navigational extensions of SPARQL.

Lang
Features (Native Support)

& ∼ TP ! T POS {l,h} * Eval Reasoning QBR Impl
EPPs X X X X X X X X SPARQL + EALP1 X X X

PPs limited limited SPARQL +ALP1 X

cpSPARQL X X Ad-hoc X X

rec-SPARQL Ad-hoc X

RDFPath limited Ad-hoc X

NREs X X Ad-hoc X

sfNREs X X X X X SPARQL

tional features (see Section 6). We show that the lan-
guage of EPPs is more expressive than SPARQL PPs;
as a by-product we show that using EPPs as naviga-
tional core in SPARQL increases the expressive power
of the whole SPARQL language. The second aspect
concerns the expressiveness of SPARQL also in terms
of query-based reasoning capabilities when consider-
ing the ρdf entailment regime (see Section 5). We show
that our translation allows to evaluate queries enhanced
with reasoning capabilities on existing SPARQL pro-
cessors. We also show that EPPs is the only closed lan-
guage in this respect and that in general, rewriting a
query to capture the entailment regime requires a more
expressive language in the rewriting.

9.2. Other Navigational Languages

Besides SPARQL navigational extensions there ex-
ist other graph languages like GraphQL [40] the Face-
book query language. However, this language departs
from the SPARQL standard and it is not clear how
reasoning is supported. We also mention logic-based
languages like TriAL [41], TriQ [42], GxPAth [43],
and NEMODEQ [44]. Since these languages depart
from the SPARQL standard, query evaluation cannot
be done on existing SPARQL processors. On the con-
trary, our primary focus is on extending the current
navigational core of the SPARQL standard by keep-
ing compatibility and allowing query evaluation on ex-
isting SPARQL processors also under the ρdf entail-
ment regime. Indeed, none of the above proposals has
focused on the expressiveness of the current SPARQL
standard in terms of navigational features. Ditto for
the support of the ρdf entailment regime on existing
SPARQL processors. We also mention work on graphs
with data (e.g., [43]). This line of research: (i) does
not adopt the RDF standard data model; (ii) does not
consider SPARQL, which is the focus of this paper;
(iii) does not deal with entailment regimes. Our work

is also related to: (i) Ontology Based Data Access [26],
where a (conjunctive) query is rewritten into a (set
of) queries that fully incorporate the schema informa-
tion. In this case the schema is treated separately and
is needed in the rewriting; (ii) approaches that rewrite
queries to capture entailment regimes like Bischof et
al. [27]; (iii) approaches independent from SPARQL
such as Stefanoni et al. [45] that study conjunctive
and navigational queries over OWL 2 EL. Another re-
cent line of research studied the problem of introduc-
ing recursion into SPARQL [15]. Our approach has
different objectives. We focus on EPPs, a more ex-
pressive language than PPs; we provide a precise ac-
count of those fragments that can be executed on ex-
isting SPARQL processors and those that cannot, with
or without considering the (ρdf) entailment regime.
Hence, our study is more focused on expressiveness
wrt SPARQL. Moreover, our approach is readily avail-
able and has been experimentally evaluated. The com-
parison with navigational languages for the Web of
data (e.g., [14, 46–49]) is orthogonal to our goal.
We also want to mention recent research that studied
problems related to SPARQL property paths, includ-
ing containment and subsumption [50]. We performed
a similar study for EPPs. Results range from undecid-
ability for the full EPPs to 2-EXPTIME for the positive
queries [51].

9.3. CONSTRUCT Query Forms

Reutters et. al [15] proposed to enhance the ex-
pressive power of SPARQL via the introduction of re-
cursions in a similar way to SQL. The idea is to al-
ternate CONSTRUCT queries (that materialize in a
graph the portion of data needed in each recursive call)
and SELECT queries to project only parts of inter-
est. This approach, which is currently not available
in standard SPARQL implementations could be used
to materialize the portion of the graph needed to cap-
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ture RDFS inferences. Both data materialization and
changes required to SPARQL processors (to support
recursion) go against the idea of EPPs that provide ex-
pressive SPARQL navigational queries (also under the
ρdf entailment regime) with no materialization and no
changes to existing SPARQL processors.

10. Concluding Remarks

We introduced EPPs, a significant extension of
property paths, the current navigational core of SPARQL,
the standard query language for querying KGs based
on RDF. We underlined several practical advantages
of adopting such extension. Our study also offers in-
teresting theoretical observations, among which: (i)
we identified a precise fragment of SPARQL that
can capture non-recursive EPPs thus providing an in-
direct analysis of the navigational expressiveness of
SPARQL; (iii) we have studied the expressiveness of
EPPs as compared to PPs; (iii) we have also studied
the expressiveness of SPARQL with respect to the ρdf
entailment regime when considering different navi-
gational cores, and identified those that can be sup-
ported on existing processors and those that require
changes. Overall, we think that the practical and theo-
retical contributions of our work can help pave the way
toward extending the navigational core of SPARQL
and incorporate query-based reasoning capabilities. A
promising direction of future work is to study how op-
timization techniques devised for SPARQL property
paths [52] can be applied to extended property paths.
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Table 13
DBpedia results for R5 (rdf:type)

Result Count Time(ms)
Seed Entity QId No reasoning ρdf No reasoning ρdf
dbp:%EC%83%AE Q1 0 2 86 122
dbp:Texas_(Lasse_Stefanz_album) Q2 9 45 86 747
dbp:Abul_Qasim_ibn_Mohammed_al-Ghassani Q3 35 46 95 526
dbp:Emiko_Tsukada Q4 9 16 94 118
dbp:Airbus_Military_S.A.S. Q5 1 1 95 124
dbp:Variazh Q6 26 60 86 561
dbp:Ralph_Golen__2 Q7 10 24 95 166
dbp:Thomas_Richardson_(Middlesbrough) Q8 9 20 87 111
dbp:Lex_Richardson Q9 41 59 95 137
dbp:Tracy_Mann Q10 25 36 105 275
dbp:Montaigut,_Puy-de-D%C3%B4me Q11 18 38 84 137
dbp:(18651)_1998_FP11 Q12 0 2 86 121
dbp:Sumida_River Q13 18 38 103 123
dbp:Contact,_Nevada Q14 22 40 992 136
dbp:1962âĂŞ63_West_Ham_United_F.C._season Q15 0 1 99 652
dbp:Vecherniy_Bishkek Q16 20 37 102 482
dbp:Basilides,_Cyrinus,_Nabor_and_Nazarius Q17 14 25 86 180
dbp:Cyrtolepis Q18 0 2 95 113
dbp:Yoxford Q19 19 40 94 108
dbp:Mass_Destruction_(video_game) Q20 25 65 85 114
dbp:Marian_Kozovy Q21 3 3 86 111
dbp:Aghuzbon,_Savadkuh Q22 9 36 84 116
dbp:Eero_Saari Q23 2 2 85 124
dbp:The_Reason_Why_I’m_Talking_S–t Q24 9 47 94 110
dbp:Geelong_West_Football_Club Q25 11 14 115 111
dbp:V1_500m_at_the_2011_Pacific_Games Q26 0 3 388 119
dbp:Little_Negro_Bu-ci-bu Q27 16 34 93 122
dbp:NTV-NBC Q28 0 2 976 145
dbp:Maridi_Airport Q29 12 18 102 118
dbp:Korokchi Q30 10 36 94 116
dbp:Haki_St%C3%ABrmilli Q31 26 39 91 126
dbp:G%C3%B6rel_Crona Q32 9 23 98 132
dbp:Lord_Lisle Q33 2 2 92 114
dbp:Category:1841_in_Portugal Q34 1 3 102 113
dbp:Nhill Q35 25 46 89 107
dbp:Koeberliniaceae Q36 10 12 853 118
dbp:Probulov Q37 24 48 90 137
dbp:Pauline_Pepinsky Q38 9 16 998 132
dbp:Acorda_Therapeutics Q39 23 40 836 118
dbp:Armagetron_Advanced Q40 31 65 435 115
dbp:Didihat Q41 29 57 334 115
dbp:Brook_Glacier Q42 13 20 100 120
dbp:Western_Union_(schooner) Q43 23 44 88 110
dbp:Fearon Q44 0 2 95 117
dbp:Scaphella_neptunia Q45 8 11 87 116
dbp:Sebadani_Dam__2 Q46 8 33 87 155
dbp:Derek_Gaudet__5 Q47 10 24 96 112
dbp:John_Orsino Q48 50 68 99 129
dbp:Holy_orders Q49 1 6 342 115
dbp:Our_Lady_of_Lourdes_School_(disambiguation) Q50 1 1 506 487
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Table 14
Yago results for R5 (rdf:type)

Result Count Time(ms)
Seed Entity QId No reasoning ρdf No reasoning ρdf
yago:A_Hard_Road Q1 9 18 306 428
yago:A_Pizza_Tweety_Pie Q2 3 19 18 202
yago:A_Word_in_Your_Ear Q3 3 25 18 179
yago:Aap_Ke_Deewane Q4 4 19 20 152
yago:Abbo_II_of_Metz Q5 6 31 18 282
yago:Abdul_Ilah_Khatib Q6 11 57 18 282
yago:About_Face_(film) Q7 3 18 18 147
yago:Aerolysin Q8 1 12 19 126
yago:Affair_in_Trinidad Q9 9 25 20 201
yago:Agni_Yudham Q10 4 19 18 150
yago:Agricola_(book) Q11 3 17 17 178
yago:Ahmed_Hadid_Al_Mukhaini Q12 7 23 21 159
yago:AIDS_Action_Committee_of_Massachusetts Q13 3 13 18 115
yago:AIDS_Sutra Q14 1 13 18 176
yago:Aigen Q15 1 12 20 125
yago:AÃŕgue_Longue Q16 3 12 24 177
yago:Aisha_Dee Q17 5 26 18 264
yago:Al_Jalahma Q18 2 9 22 135
yago:Alan_Dowding Q19 12 36 20 227
yago:Alan_Smith_(Welsh_footballer) Q20 5 27 17 249
yago:Alarilla Q21 3 19 16 188
yago:Albert_Dubois-Pillet Q22 8 35 17 222
yago:Albert_Glover Q23 1 22 17 249
yago:Alec_Soth Q24 8 42 24 274
yago:Aleksandr_Rymanov Q25 7 29 16 252
yago:AlÃĺne Q26 3 12 17 190
yago:Alexandra_Feodorovna_(Charlotte_of_Prussia) Q27 14 51 16 276
yago:All_About_Anna Q28 9 25 18 192
yago:All_That_I_Am_(Santana_album) Q29 8 16 19 155
yago:All_the_Way..._A_Decade_of_Song Q30 18 26 19 161
yago:Almost_a_Gentleman Q31 6 21 16 126
yago:Along_the_Way_(TV_series) Q32 3 25 17 166
yago:Ambush_Bay Q33 7 22 15 144
yago:Aminabad,_Sindh Q34 1 14 24 201
yago:Ampang_Park_LRT_station Q35 0 0 20 18
yago:And_Hell_Will_Follow_Me Q36 6 15 16 155
yago:Andalusian_horse Q37 3 12 15 136
yago:Andre_Norton_Award Q38 5 12 15 138
yago:Andy_Jones_(producer) Q39 2 23 15 260
yago:Andy_Valmorbida Q40 2 25 16 279
yago:Anema_(lichen) Q41 1 15 15 197
yago:Aneta_PospÃ ÅąilovÃą Q42 3 29 20 265
yago:Angela_Chalmers Q43 11 40 20 250
yago:Angola_Fire_Department_(Louisiana) Q44 1 18 15 191
yago:Anna_Catharina_von_BÃd’rfelt Q45 3 28 15 270
yago:Annapurna_High_School Q46 5 21 15 190
yago:Annet,_Isles_of_Scilly Q47 8 22 15 200
yago:Annette_Sikveland Q48 7 41 16 264
yago:Aonghas_ÃŞg_of_Islay Q49 4 32 8 279
yago:Aqualillies Q50 2 21 21 239
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Table 15
LinkedMDB results for R5 (rdf:type)

Result Count Time(ms)
Seed Entity QId No reasoning ρdf No reasoning ρdf
lmdb-actor:1 Q1 2 2 98 99
lmdb-actor:10 Q2 2 2 28 61
lmdb-actor:10000 Q3 2 2 27 63
lmdb-actor:10001 Q4 2 2 26 57
lmdb-actor:10009 Q5 2 2 29 51
lmdb-actor:1001 Q6 2 2 27 51
lmdb-actor:10010 Q7 2 2 29 60
lmdb-actor:10013 Q8 2 2 26 73
lmdb-actor:10014 Q9 2 2 32 58
lmdb-actor:10016 Q10 2 2 25 51
lmdb-actor:10017 Q11 2 2 36 56
lmdb-actor:10018 Q12 2 2 26 59
lmdb-actor:10023 Q13 2 2 39 51
lmdb-actor:10027 Q14 2 2 29 67
lmdb-actor:10029 Q15 2 2 31 63
lmdb-actor:10030 Q16 2 2 40 90
lmdb-actor:10034 Q17 2 2 41 125
lmdb-actor:10035 Q18 2 2 41 64
lmdb-actor:10038 Q19 2 2 45 80
lmdb-actor:10039 Q20 2 2 30 49
lmdb-film:10504 Q21 1 1 41 54
lmdb-film:10508 Q22 1 1 34 51
lmdb-film:10510 Q23 1 1 36 50
lmdb-film:10894 Q24 1 1 49 47
lmdb-film:10895 Q25 1 1 41 48
lmdb-film:10896 Q26 1 1 37 44
lmdb-film:10897 Q27 1 1 36 54
lmdb-performance:108172 Q28 1 1 28 43
lmdb-performance:108173 Q29 1 1 35 74
lmdb-performance:108174 Q30 1 1 37 42
lmdb-performance:108175 Q31 1 1 36 44
lmdb-performance:108176 Q32 1 1 35 44
lmdb-performance:108177 Q33 1 1 24 44
lmdb-performance:108178 Q34 1 1 28 44
lmdb-mc:1810 Q35 1 1 29 43
lmdb-mc:1811 Q36 1 1 23 41
lmdb-mc:1812 Q37 1 1 29 49
lmdb-mc:1817 Q38 1 1 24 50
lmdb-mc:1819 Q39 1 1 26 40
lmdb-mc:1820 Q40 1 1 30 40
lmdb-mc:1822 Q41 1 1 23 46
lmdb-mc:1823 Q42 1 1 23 40
lmdb-mc:1826 Q43 1 1 30 42
lmdb-mc:1828 Q44 1 1 23 47
lmdb-mc:1830 Q45 1 1 22 47
lmdb-mc:1838 Q46 1 1 23 45
lmdb-producer:10111 Q47 1 1 24 42
lmdb-producer:10112 Q48 1 1 24 43
lmdb-producer:10113 Q49 1 1 25 44
lmdb-producer:10114 Q50 1 1 22 42
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Table 16
DBpedia results for R6 on the predicate dbo:genre

Result Count Time(ms)
Seed Entity QId No reasoning ρdf No reasoning ρdf
dbp:Night_Surf Q1 0 1 554 864
dbp:The_Last_Man Q2 0 1 90 142
dbp:Metro_2035 Q3 0 1 92 110
dbp:The_Last_Ship_(novel) Q4 0 1 114 131
dbp:Taronga Q5 0 1 99 129
dbp:The_Third_World_War_(novel) Q6 0 1 99 128
dbp:The_Sending Q7 0 3 100 100
dbp:Desecration_(novel) Q8 0 3 100 108
dbp:The_Girl_Who_Owned_a_City Q9 0 3 99 121
dbp:The_Sword_of_the_Lady Q10 0 2 98 156
dbp:Shikari_in_Galveston Q11 0 3 107 113
dbp:Fitzpatrick’s_War Q12 0 2 101 118
dbp:Sykom Q13 0 3 110 124
dbp:So_This_Is_How_It_Ends Q14 0 1 139 109
dbp:On_the_Beach_(novel) Q15 0 1 126 131
dbp:The_Postman Q16 0 1 101 123
dbp:Swan_Song_(novel) Q17 0 1 99 106
dbp:The_Children’s_Hospital Q18 0 1 123 98
dbp:Piter_(novel) Q19 0 1 99 116
dbp:Mutants_in_Orbit Q20 0 1 107 110
dbp:Zone_One Q21 0 3 89 100
dbp:Apollyon_(novel) Q22 0 3 92 120
dbp:Armageddon_(novel) Q23 0 3 89 118
dbp:Assassins_(LaHaye_novel) Q24 0 3 98 105
dbp:Glorious_Appearing Q25 0 3 90 109
dbp:Left_Behind_(novel) Q26 0 2 97 128
dbp:Nicolae_(novel) Q27 0 3 90 97
dbp:The_Indwelling Q28 0 3 95 113
dbp:The_Mark_(novel) Q29 0 3 127 103
dbp:The_Rapture_(novel) Q30 0 3 103 115
dbp:The_Remnant_(novel) Q31 0 3 106 97
dbp:The_100_(novel) Q32 0 4 89 106
dbp:Caesar’s_Column Q33 0 1 102 99
dbp:Pandemia_(book) Q34 0 4 89 99
dbp:The_Maze_Runner Q35 0 3 101 111
dbp:The_Road Q36 0 1 94 116
dbp:Warm_Bodies Q37 0 4 116 105
dbp:Blood_Red_Road Q38 0 1 100 96
dbp:The_Twelve_(novel) Q39 0 6 111 131
dbp:Dies_the_Fire Q40 0 3 98 105
dbp:The_Walking_Dead Q41 0 0 98 127
dbp:The_Passage_(novel) Q42 0 6 99 155
dbp:Metro_2033_(novel) Q43 0 1 107 163
dbp:Metro_2034 Q44 0 1 104 105
dbp:Fever_Crumb_Series Q45 0 3 98 103
dbp:Mutants_of_the_Yucatan Q46 0 1 98 109
dbp:Road_Hogs Q47 0 1 96 115
dbp:Brother_in_the_Land Q48 0 2 90 115
dbp:_Rise_of_the_Governor Q49 0 2 126 102
dbp:Cannibal_Reign Q50 0 1 133 110
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Table 17
DBpedia results for R6 on the predicate dbo:location

Result Count Time(ms)
Seed Entity QId No reasoning ρdf No reasoning ρdf
dbp:Bayou_Corne_sinkhole Q1 0 2 518 752
dbp:Lake_Ophelia_National_Wildlife_Refuge Q2 0 1 89 186
dbp:Calcasieu_Lake Q3 0 4 87 210
dbp:Lacassine_National_Wildlife_Refuge Q4 0 3 86 187
dbp:Sabine_Pass_Lighthouse Q5 0 2 96 229
dbp:Sabine_National_Wildlife_Refuge Q6 0 1 97 104
dbp:Grand_Lake_(Louisiana) Q7 0 1 105 103
dbp:East_Cove_National_Wildlife_Refuge Q8 0 1 119 118
dbp:Cameron_Prairie_National_Wildlife_Refuge Q9 0 1 95 125
dbp:Catahoula_National_Wildlife_Refuge Q10 0 4 95 139
dbp:Sandy_Lake,_Louisiana Q11 0 1 96 129
dbp:Chicot_State_Park Q12 0 2 96 138
dbp:Louisiana_State_Arboretum Q13 0 2 88 140
dbp:Bogue_Chitto_State_Park Q14 0 2 96 181
dbp:Great_Salt_Plains_State_Park Q15 0 3 86 184
dbp:Salt_Plains_National_Wildlife_Refuge Q16 0 1 91 187
dbp:Great_Salt_Plains_Lake Q17 0 1 86 183
dbp:Tilicho_Lake Q18 0 2 94 208
dbp:Berney_Ar_railway_station Q19 0 0 95 127
dbp:St_Nicholas,_Blakeney Q20 0 1 104 109
dbp:Blakeney_Windmill Q21 0 1 86 126
dbp:Bracknell_railway_station Q22 0 2 103 108
dbp:Crowthorne_railway_station Q23 0 2 96 103
dbp:Martins_Heron_railway_station Q24 0 2 86 103
dbp:Fort_Cobb_State_Park Q25 0 3 95 126
dbp:Lake_Ellsworth_(Oklahoma) Q26 0 4 95 126
dbp:Red_Rock_Canyon_State_Park_(Oklahoma) Q27 0 3 87 113
dbp:Fort_Cobb_Reservoir Q28 0 1 95 99
dbp:Caister-on-Sea_railway_station Q29 0 2 95 98
dbp:Caister_Camp_Halt_railway_station Q30 0 2 86 110
dbp:Chalk_Farm_tube_station Q31 0 3 95 134
dbp:Roundhouse_(venue) Q32 0 3 89 101
dbp:Cockfosters_tube_station Q33 0 3 95 98
dbp:Trent_Park Q34 0 1 97 121
dbp:Pelion_Gap Q35 0 4 93 103
dbp:Rio_Cinema_(Dalston) Q36 0 2 96 117
dbp:Dalston_Kingsland_railway_station Q37 0 3 94 130
dbp:Dalston_Junction_railway_station Q38 0 3 85 101
dbp:Eltead_Woods_railway_station Q39 0 0 96 112
dbp:Fort_Arbuckle_(Oklahoma) Q40 0 2 85 157
dbp:Perry_Island_(Queensland) Q41 0 1 86 119
dbp:Turtle_Head_Island Q42 0 1 105 127
dbp:Gunnersbury_station Q43 0 3 86 140
dbp:Kew_Bridge_railway_station Q44 0 4 86 140
dbp:Harold_Wood_railway_station Q45 0 3 145 165
dbp:Hatch_End_railway_station Q46 0 3 105 137
dbp:Green-Works Q47 0 2 86 99
dbp:St_John_the_Baptist,_Hoxton Q48 0 2 121 142
dbp:Hoxton_railway_station Q49 0 3 103 167
dbp:Great_Plains_State_Park Q50 0 3 85 97
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Table 18
LDCache results for R6 on the predicate yago:hasLocation

Result Count Time(ms)
Seed Entity QId No reasoning ρdf No reasoning ρdf
yago:Aberdeen Q1 0 2 518 752
yago:A._Reyrolle_&_Company Q2 0 1 89 186
yago:AD_Torreforta Q3 0 4 87 210
yago:AFI_Conservatory Q4 0 3 86 187
yago:ALZ_(steelworks) Q5 0 2 96 229
yago:APSA_Colombia Q6 0 1 97 104
yago:ASFA_Soccer_League Q7 0 1 105 103
yago:ASTM_International Q8 0 1 119 118
yago:ATP_Challenger_Guangzhou Q9 0 1 95 125
yago:ATP_Challenger_La_Serena Q10 0 4 95 139
yago:A_Home_at_the_End_of_the_World_(film) Q11 0 1 96 129
yago:A_Sharp_Intake_of_Breath Q12 0 2 96 138
yago:Aabach_(Afte) Q13 0 2 88 140
yago:Aacay_Organization Q14 0 2 96 181
yago:Aach,_Baden-WÃijrttemberg Q15 0 3 86 184
yago:Aachen_Central_Station Q16 0 1 91 187
yago:Aaniiih_Nakoda_College Q17 0 1 86 183
yago:Aaronsburg_Historic_District Q18 0 2 94 208
yago:Aavahelukka_Airfield Q19 0 0 95 127
yago:Abandoned_Pennsylvania_Turnpike Q20 0 1 104 109
yago:Abashiri_Quasi-National_Park Q21 0 1 86 126
yago:Abbeville_Historic_District_(Abbeville,_South_Carolina) Q22 0 2 103 108
yago:Abel_I._Smith_Burial_Ground Q23 0 2 96 103
yago:Abel_Iturralde_Province Q24 0 2 86 103
yago:Abenteuermuseum_(SaarbrÃijcken) Q25 0 3 95 126
yago:Aberdeen_Historic_District_(Aberdeen,_South_Dakota) Q26 0 4 95 126
yago:Aberfan_disaster Q27 0 3 87 113
yago:AbukumaExpress Q28 0 1 95 99
yago:Academy_of_Korean_Studies Q29 0 2 95 98
yago:Academy_of_the_Canyons Q30 0 2 86 110
yago:Accra_Sports_Stadium Q31 0 3 95 134
yago:Acheron,_Victoria Q32 0 3 89 101
yago:Acheron_Boys_Home Q33 0 3 95 98
yago:Achimota_School Q34 0 1 97 121
yago:Acme,_Washington Q35 0 4 93 103
yago:Acquaviva_Picena Q36 0 2 96 117
yago:AdOn_Network Q37 0 3 94 130
yago:Ada,_Croatia Q38 0 3 85 101
yago:Adabay_River Q39 0 0 96 112
yago:Adaganahalli Q40 0 2 85 157
yago:Adair,_Idaho Q41 0 1 86 119
yago:Adak,_Alaska Q42 0 1 105 127
yago:Adak_Airport Q43 0 3 86 140
yago:Adakanahalli Q44 0 4 86 140
yago:Adakatahalli Q45 0 3 145 165
yago:Adalin_River Q46 0 3 105 137
yago:Adam’s_Green Q47 0 2 86 99
yago:Adam_&_Steve Q48 0 2 121 142
yago:Adam_Airport Q49 0 3 103 167
yago:Adam_Orris_House Q50 0 3 85 97
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