
Semantic Web 0 (0) 1 1
IOS Press

HDTcrypt: Compression and Encryption of
RDF Datasets
Javier D. Fernández a,b,*, Sabrina Kirrane a, Axel Polleres a,b and Simon Steyskal a,c

a Institute for Information Business, Vienna University of Economics and Business, Austria
E-mail: {javier.fernandez,sabrina.kirrane,axel.polleres,simon.steyskal}@wu.ac.at
b Complexity Science Hub Vienna, Austria
c CT RDA BAM CON-AT, Siemens AG, Austria
E-mail: simon.steyskal@siemens.com

Editor: Ruben Verborgh, Ghent University – imec, Belgium
Solicited reviews: Wouter Beek, VU University Amsterdam, The Netherlands; Miel Vander Sande, Ghent University – imec, Belgium; One
Anonymous Reviewer

Abstract. The publication and interchange of RDF datasets online has experienced significant growth in recent years, promoted
by different but complementary efforts, such as Linked Open Data, the Web of Things and RDF stream processing systems.
However, the current Linked Data infrastructure does not cater for the storage and exchange of sensitive or private data. On the
one hand, data publishers need means to limit access to confidential data (e.g. health, financial, personal, or other sensitive data).
On the other hand, the infrastructure needs to compress RDF graphs in a manner that minimises the amount of data that is both
stored and transferred over the wire. In this paper, we demonstrate how HDT – a compressed serialization format for RDF – can
be extended to cater for supporting encryption. We propose a number of different graph partitioning strategies and discuss the
benefits and tradeoffs of each approach.

Keywords: RDF, HDT, compression, encryption, linked data protection

1. Introduction

In recent years, we have seen an increase in the
amount of structured data published online using the
Resource Description Framework (RDF), in a manner
that not only lends itself to data integration but also5

supports data exchange. Although Linked Data pub-
lishers focus on exposing and linking open data, there
are scenarios where individuals and organisations need
to store and share sensitive or private data. Addition-
ally, there are number of regulations concerning the fi-10

nancial, medical, personal, or otherwise sensitive data
that require companies to employ strong data protec-
tion mechanisms, such as encryption and anonymisa-
tion. In order to ensure confidentially it is necessary to

*Corresponding author. E-mail: javier.fernandez@wu.ac.at.

encrypt the data not only when it is in transit but also15

when it is at rest. In such scenarios, where multiple
users have different access rights to different parts of
the data, users should only be able to access the data
they are allowed to access.

When it comes to Linked Data protection, to date20

research has focused on the encryption of partial RDF
graphs using eXtensible Markup Language (XML) en-
cryption techniques [19–21] or proposing strategies for
querying encrypted RDF data [30]. One of the primary
challenges of existing encryption strategies is that they25

result in a verbose serialization that prevents their use
at scale. RDF compression is an emerging research
area that focuses on reducing the space requirements
of traditional RDF serializations. One approach to ef-
ficient data exchange is a (binary) RDF serialization30

format known as HDT (Header Dictionary Triples)

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:\protect \protect \T1\textbraceleft javier.fernandez,sabrina.kirrane,axel.polleres,simon.steyskal\protect \protect \T1\textbraceright @wu.ac.at
mailto:simon.steyskal@siemens.com
mailto:javier.fernandez@wu.ac.at

2 Fernández et al. / Compression and Encryption of RDF Datasets

[16] that can be used to compress large datasets in a
manner than can be queried without prior decompres-
sion [37]. Together encryption and compression mech-
anisms could be used to cater for the compact storage35

and efficient exchange of confidential data.
In this paper, we combine “compression+encryp-

tion” functionality for RDF datasets, thus allowing
service providers to store and share confidential data
while reducing storage and bandwidth usage. In par-40

ticular, we propose HDTcrypt, an extension of HDT to
represent encrypted datasets for multiple users with
different access rights (i.e. users can only access par-
ticular subgraphs of the RDF dataset). To do so, we
assume a service provider defines the different “ac-45

cess restricted” subgraphs of a dataset, and we inves-
tigate different partitioning strategies to better capture
and represent the redundancy (i.e. repeated triples and
terms) between them in HDT.

The contributions of our paper can be summarised50

as follows, we: (i) demonstrate how HDT compres-
sion can be extended to cater for encrypted RDF data;
(ii) examine a number of alternative partitioning strate-
gies that can be used to reduce the number of dupli-
cates in encrypted HDT (referred to as HDTcrypt); and55

(iii) compare different partitioning strategies in terms
of bandwidth and performance. Experiments show that
each of our partitioning strategies is able to achieve
space savings over the compression baseline (up to
31%), and are comparable in terms of query perfor-60

mance. We present different space/performance trade-
offs and discuss how partitioning strategies are influ-
enced both by the number of access restricted sub-
graphs and the distribution of triples across subgraphs.

The rest of the paper is structured as follows: In Sec-65

tion 2 we discuss related work on RDF encryption and
compression. Section 3 provides the necessary back-
ground information on HDT and Section 4 describes
how compression can be combined with encryption.
Section 5 details the different partitioning strategies70

that can be used in conjunction with graph based en-
cryption. In Section 6 we evaluate using both real-
world and synthetic RDF datasets and discusses the
trade-off between space and performance. Finally, we
conclude and highlight future work in Section 7.75

2. Related Work

When it comes to encryption and RDF, the focus to
date has been on proposing strategies for the partial
encryption of RDF graphs [19–21] or the querying of

encrypted data [30]. Giereth [20, 21] demonstrate how80

XML based encryption techniques can be used to en-
crypt confidential data in an RDF-graph, while all non-
confidential data is left as plaintext. Gerbracht [19]
built on this work by examining how encryption tech-
niques can be used to encrypt RDF elements and RDF85

subgraphs, in a manner that reduces the storage over-
head. Kasten et al. [30] in turn discuss how data can
be encrypted and queried according to SPARQL tri-
ple patterns. However this proposal suffers from scal-
ability problems given that each triple is encrypted90

multiple times depending on whether or not access
to the subject, predicate and/or object is restricted. A
recent work by Fernández et al. [13] uses Predicate-
based Encryption [31] to enable controlled access to
encrypted RDF data, i.e., data providers can generate95

query keys based on (triple-)patterns, whereby one de-
cryption key can decrypt all triples that match its as-
sociated triple pattern. In the database and cloud com-
munity, Searchable Symmetric Encryption (SSE) [10]
has been extensively applied to store and search data100

in a secure manner. SSE techniques focus on the en-
cryption of outsourced data such that an external user
can encrypt their query and subsequently evaluate it
against the encrypted data. The more recent Fully Ho-
momorphic Encryption (FHE) [18] technique allows105

any general circuit/computation over encrypted data,
however it is prohibitively slow for most operations
[7, 42]. None of these works examine the interplay be-
tween encryption and compression, which is the focus
of our present paper. In particular, we investigate dif-110

ferent HDT compression strategies for RDF datasets,
which are organised into different RDF graphs that
need to be encrypted with different keys. However, our
approach could be adapted to work with partially en-
crypted graphs.115

Following the categorization in [39], an RDF com-
pressor can be classified as either syntactic or seman-
tic. Syntactic compressors try to detect redundancy at
the serialisation level, whereas semantic compressors
try to eliminate logical redundancies. HDT was de-120

signed as a binary serialisation format for RDF graphs,
but its optimised encodings means that HDT also ex-
cels as a syntactic RDF compressor [16, 37]. In HDT
RDF data is encoded into two main data-driven com-
ponents: a Dictionary that maps all distinct terms in the125

dataset to unique identifiers (IDs) (reducing symbolic
redundancy), and a triple component that encodes the
inner RDF structure as a compact graph of IDs (re-
ducing structural redundancy). This kind of redun-
dancy is also addressed in k2-triples [1]. However, in130

Fernández et al. / Compression and Encryption of RDF Datasets 3

the case of k2-triples the authors perform a predicate-
based partition of the dataset into disjoint subsets of
(subject, object) pairs. These subsets are highly com-
pressed as (sparse) binary matrices that also allow for
efficient data retrieval. RDF compression can also ben-135

efit from semantic redundancy. Theoretic foundations
of exploiting logical redundancies with respect to rules
and grammars have been investigated by [41] and [35],
respectively. In particular, the recent compressor gRe-
Pair [35] reports the best compression ratios over the140

structure of RDF graphs (i.e. the graph after ID re-
placement), to the best of our knowledge.

Likewise, Joshi et al. [28] use rules to discard triples
that can be inferred from others, and they only en-
code these “primitive triples”. In doing so they reduce145

the number of triples and consequently save space.
The authors also propose a combination of seman-
tic and syntactic compression, by integrating their ap-
proach with syntactic HDT compression techniques.
Interestingly the results were similar to those obtained150

by simply using HDT. Recently, Wu et al. [39] have
proposed SSP, a hybrid syntactic and semantic com-
pressor. Their evaluation demonstrates that SSP+bzip2
is slightly better than HDT+bzip2. Other approaches,
like HDT-FoQ [37] or WaterFowl [9] also enable com-155

pressed data to be retrieved without the need for de-
compression. Both techniques, based on HDT serial-
ization, report competitive performance at the price
of using more space than other compressors such as
k2-triples or gRePair.We also use HDT compression,160

however specifically we examine the syntactic redun-
dancy between RDF graphs that need to be encrypted
separately, and propose and evaluate four alternative
HDT compression strategies. The exploitation of se-
mantic redundancies within HDT is out of scope and165

left for future work (for more details on semantic com-
pression and HDT we refer the reader to the work by
Hernández-Illera et al. [26]).

3. Preliminaries

Before we present our approach, we need to intro-170

duce some concepts and terminology from RDF and
HDT. Thereafter, in Section 4, we propose a general
mechanism to extend HDT with encryption, termed
HDTcrypt.

As usual, an RDF Graph G is a finite set of triples175

from I ∪ B× I × I ∪ B∪ L, where I, B, L denote IRIs,
blank nodes and RDF literals, respectively [24]. Fig-
ure 1 shows an example of an RDF graph representing

two individuals ex:Bob and ex:Alice, and the project
ex:pastProject of the latter. In this paper, we discuss180

different ways to compress and encrypt such datasets,
using HDT a particular compression format for RDF
graphs.

Fig. 1. Example of an RDF graph G.

HDT [16] is a binary, compressed serialization for-
mat for optimized RDF storage and transmission,185

which also allows certain lookups and queries over
compressed data. It is therefore very suitable for the
efficient exchange and querying of large datasets. HDT
encodes an RDF graph G into three components: the
Header component H holds metadata, including rele-190

vant information necessary for discovery and parsing;
the Dictionary component D is a catalogue that en-
codes all RDF terms in G and maps each of them to
a unique identifier; the Triple component T compactly
encodes G’s graph structure as tuples of three IDs that195

are used to represent the directed labelled edges in an
RDF graph.

Figure 2 shows the Dictionary component (a), the
underlying graph structure (b) and the final Triple com-
ponent (c) for the previous RDF graph G (Figure 1).200

3.1. HDT Dictionary Component D

This component organises the terms in a graph G ac-
cording to their positions in RDF triples, thus we also
write D(G) to denote the dictionary component con-
structed from graph G: the section SO manages terms205

occurring both as subject and object, and maps them
to the ID-range [1, |SO|], where |SO| is the num-
ber of such terms acting as subject and object. Sec-
tions S and O comprise terms that only occur as sub-
jects or objects, respectively. Both sections are mapped210

from |SO|+1, ranging up to |SO|+|S| and |SO|+|O|,

4 Fernández et al. / Compression and Encryption of RDF Datasets

Fig. 2. HDT Dictionary and Triples for our full graph G.

respectively. Finally, section P organises all predicate
terms, which are mapped to the range [1, |P|]. It
is worth noting that no ambiguity is possible once we
know the role (i.e. the position in a triple, being sub-215

ject, predicate or object) played by the corresponding
ID. For further details, we refer to [38]. For conve-
nience, we write id(x,D) for the particular ID assigned
to an RDF term x, whereas we refer to all IDs and RDF
terms mapped in a dictionary component D as ids(D)220

and terms(D), respectively. Note that, for simplicity,
we omit the “role” parameter in these functions, which
should be provided in case the terms in subjects (or
objects) and predicates are not disjoint [38]. Also, it is
worth mentioning that in the original HDT proposal,225

blank nodes are treated exactly as any other term [16],
considering an optional skolemization of blank nodes
as a pre-processing step.

3.2. HDT Triple Component T

This component encodes the structure of the RDF230

graph after ID substitution, taking into consideration
a particular dictionary D, thus, we write T (G,D) to
denote a triple component that was constructed from
the triples in G using the IDs in dictionary D. More
concretely, RDF triples are encoded as groups of three235

IDs: (ids idp ido), where ids, idp, and ido are the
IDs of the corresponding subject, predicate, and object
terms in the dictionary. T organises all triples into a
forest of trees, one per different subject: the subject is
the root; the middle level comprises the ordered list of240

predicates reachable from the corresponding subject;
and the leaves list the object IDs related to each (sub-
ject, predicate) pair. This underlying representation (il-
lustrated in Figure 2b) is effectively encoded follow-

ing the BitmapTriples approach [16]. It comprises two245

sequences: Sp and So, concatenating all predicate IDs
in the middle level and all object IDs in the leaves, re-
spectively; and two bitsequences: Bp and Bo, which are
aligned with Sp and So respectively, using a 1-bit to
mark the end of each list (Figure 2c). In practice, each250

ID in Sp and So is encoded with a fixed-length encod-
ing, using log(n) bits, where n is the maximum ID in
the sequence [16]. Again, we use ids(T) to refer to all
IDs used in a triple component T .

3.3. HDT Header Component H255

The HDT Header includes (i) the machine-readable
metadata that is necessary to process an HDT file (for-
mat metadata); and (ii) additional human-readable in-
formation to describe the dataset (usually in the form
of VoID1 descriptions). The format metadata is mainly260

focused on characterising the dictionary and triple for-
mats. In general, an HDT file of a graph G consists
of a single header H, dictionary D and triples T ,
HDT (G) = (H,D,T). Nonetheless, the HDT specifi-
cation [15] is flexible and allows for several dictionar-265

ies or triple components to be specified in H as soon
as the interpretation of their relationship is provided in
the header. It was envisaged that this would be used to
split huge RDF graphs into several chunks or streams,
where a sequential order of the components is assumed270

by default [15]. In the following section we exploit and
expand this feature to encode a partition of the graph
G with several dictionaries and triples.

1http://www.w3.org/TR/void/

http://www.w3.org/TR/void/

Fernández et al. / Compression and Encryption of RDF Datasets 5

4. HDTcrypt: Extending HDT for Encryption

We introduce HDTcrypt, an extension of HDT that275

involves encryption of RDF graphs. We first define
the notion of access-restricted RDF datasets and the
implications for HDT (Section 4.1). Then, we show
an extension of the HDT header component to cope
with access-restricted RDF datasets (Section 4.2),280

which leads to the final HDTcrypt encoding. Finally, as
HDTcrypt can manage several HDT Dictionary compo-
nents, we describe the required operations to integrate
different Dictionary components within an HDT col-
lection (Section 4.3). These operations will be the basis285

to represent the shared components between access-
restricted datasets efficiently, addressed in Section 5.

4.1. Representing access-restricted RDF datasets

We consider hereinafter that users wishing to pub-
lish access-restricted RDF datasets divide their com-290

plete graph of RDF triples G into (named) graphs, that
are accessible to other users, i.e. we assume that access
rights are already materialised per user group in the
form of a set (cover) of separate, possibly overlapping,
RDF graphs, each of which are accessible to different295

sets of users.
Borrowing terminology from [25], an access re-

stricted RDF dataset (or just “dataset” in the follow-
ing) is a set DS = {G, (g1,G1), . . . , (gn,Gn)} con-
sisting of a (non-named) default graph G and named300

graphs s.t. gi ∈ I are graph names, where in our set-
ting we require that {G1, . . . ,Gn} is a cover2 of G. We
further call DS a partition of G if Gi ∩G j = ∅ for any
i 6= j; 1 6 i, j 6 n. Note that from any dataset DS ,
a canonical partition DS ′ can be trivially constructed305

(but may be exponential in size) consisting of all non-
empty (at most 2n− 1) subsets G′S of triples t ∈ G cor-
responding to an index set S ∈ 21,...,i such that G′S =
{t | t ∈

⋂
i∈S Gi ∧ ¬∃S ′ : (S ′ ⊃ S ∧ t ∈

⋂
j∈S ′ G j)}.

Figure 3 shows an example of such a dataset com-310

posed of three access-restricted subgraphs (or just
“subgraphs” in the following) G1, G2, G3 for the pre-
vious full graph G (Figure 2a). Intuitively, this cor-
responds to a scenario with three access rights: users
who can access general information about projects in315

an organisation (graph G1); users who have access to
public email accounts and relations between members
in the organisation (graph G2); and finally, users who

2In the set-theoretic sense.

can view personal information of members, such as
the salary and personal email accounts (graph G3).320

As can be seen, the triple (ex:Alice foaf:mbox "al-
ice@example.org") is repeated in subgraphs G2 and
G3, showing a redundancy which can produce sig-
nificant overheads in realistic scenarios with large-
scale datasets and highly overlapping graphs. Canoni-325

cal partitioning groups these triples into disjoint sets so
that no repetitions are present. In our example in Fig-
ure 3, the set G′{2,3}, which can simply be written as
G′23, holds this single triple, (ex:Alice foaf:mbox "al-
ice@example.org"), hence this triple is not present in330

G′2 and G′3. In this simple scenario, G′1 is equivalent to
G1 as it does not share triples with other graphs.

Thus, we consider hereinafter an HDT collection
corresponding to a dataset DS denoted by HDT (DS) =
(H,D, T) as a single H, plus sets D = {D1, . . . ,Dn},335

T = {T1, . . . ,Tm} of dictionary and triple compo-
nents, respectively, such that the union of triple com-
ponents encodes a cover of G, i.e. the overall graph of
all triples in the dataset DS . We do not assume that
there is a one-to-one correspondence between individ-340

ual triple components in T and graphs in DS ; dif-
ferent options of mapping subgraphs to HDT compo-
nents will be discussed in Section 5 below. The re-
lation between the dictionaries and the triple compo-
nents (in other words, which dictionaries are used to345

codify which triple components) is also flexible and
must be specified through metadata properties. In our
case, we assume H = {R,M} to contain a relation
R ⊆ D × T , which we call the dictionary-triples map
with the implicit meaning that dictionary components350

encode terms used in the corresponding triple compo-
nents, and M is comprised of additional header meta-
data (as mentioned above, the header contains a va-
riety of further (meta-)information in standard HDT
[15], which we skip for the considerations herein). It is355

worth noting that we do not prescribe that either D or T
do not overlap. However, it is clear that one should find
an unambiguous correspondence to decode the terms
under ids(T).

Thus, we define the following admissibility condi-360

tion for R. An HDT collection is called admissible if:

– ∀Di,D j ∈ D : (Di,T), (D j,T) ∈ R ∧ i 6= j =⇒
terms(Di) ∩ terms(D j) = ∅

– ∀T ∈ T : i ∈ ids(T) =⇒ ∃(D,T) ∈ R ∧ i ∈
ids(D)365

For any admissible HDT collection HDT we define
the T -restricted collection HDT T as the collection ob-

6 Fernández et al. / Compression and Encryption of RDF Datasets

Fig. 3. An access-restricted RDF dataset such that G comprises three separate access-restricted subgraphs G1, G2, G3; the graph’s canonical
partition is comprised of four non-empty subgraphs G′1,G

′
2,G
′
3,G
′
23, whereas the terms in these graphs can be partitioned into five non-empty

subsets corresponding to the dictionaries D′1,D
′
2,D
′
3,D
′
23,D

′
123.

tained from removing: (i) all triple components T ′ 6= T
from HDT ; (ii) the corresponding D′ such that (D′,T ′)
is in R and (D′,T) is not in R; and (iii) the relations370

(D′,T ′) from R. Thus allowing an HDT collection to
be filtered by erasing all dictionary and triple compo-
nents that are not required for T .

4.2. HDTcrypt encoding

We now introduce the final encoding of the HDTcrypt375

extension. HDTcrypt uses AES (Advanced Encryption
Standard) [11] to encrypt the D and triple components
of an HDT collection and extends the header H with
a keymap kmap : Dcrypt ∪ Tcrypt 7→ I that maps en-
crypted components to identifiers (IRIs), which denote380

AES keys that can be used to decrypt these compo-
nents.

Thus, HDTcrypt = (H,Dcrypt, Tcrypt) where H =
{R, kmap,M}, R ⊆ Dcrypt×Tcrypt, and the components
in Dcrypt and Tcrypt are encrypted with keys identified385

in kmap.
The operations to encrypt and decrypt the dic-

tionary and triples are described as follows. First,
the operation encrypt takes one or more dictionary
and triples and encrypts the components with a given390

key. Formally, we write encrypt(c, keycrypt) = ccrypt,
where c ∈ D ∪ T to denote the component ccrypt ∈
Dcrypt ∪ Tcrypt obtained by encrypting c with the key
keycrypt. While, we add an identifier of the components
to the header metadata. In other words, id(ccrypt) 7→395

IRI(keycrypt) is added to the kmap, where id denotes
the ID of the component in Dcrypt and Tcrypt and IRI a
unique identifier for the symmetric key.

For the decryption, it is assumed that an authorized
user u has partial knowledge about these keys, i.e. they400

have access to a partial function keyu : Iu 7→ K that
maps a finite set of “user-owned” key IDs Iu ⊆ I
to the set of AES (symmetric) keys K. The decryp-
tion simply takes the given compressed component(s)
and performs the decryption with the given symmetric405

key. Formally, we write decrypt(ccrypt, keycrypt) = c,
where ccrypt ∈ Dcrypt ∪ Tcrypt to denote the compo-
nent c ∈ D ∪ T obtained from decrypting ccrypt with
the key keycrypt = key(kmap(ccrypt)). Further we write
decrypt(HDTcrypt, Iu) to denote the non-encrypted410

HDT collection consisting of all decrypted dictionary
and triple components of HDTcrypt which can be de-
crypted with the keys in {keyu(i) | i ∈ Iu}. In other
words, the T -restriction of HDTcrypt is defined analo-
gously to the above-said.415

4.3. Integration operations

Finally, we define two different ways of integrat-
ing dictionaries D1, . . . ,Dk ∈ D within an HDT col-
lection: D-union and D-merge. In the former, we re-
place dictionaries with a new dictionary that includes420

the union of all terms. In the latter, we establish one of
the dictionaries as the dictionary baseline and rename
the IDs of the other dictionaries.

4.3.1. D-union
The D-union is only defined for D1, . . . ,Dk ⊆ D425

if the following condition holds on R: ∀(Di,T) ∈ R :
(¬∃D j 6∈ D1, . . . ,Dk such that (D j,T) ∈ R). In other
words, we can perform a D-union if all T -components

Fernández et al. / Compression and Encryption of RDF Datasets 7

Fig. 4. HDTcrypt−A, create and encrypt one HDT per partition.

depending on dictionaries in the set D1, . . . ,Dk only
depend on these dictionaries. Then, we can define430

a trivial D-union of HDT wrt. D1, . . . ,Dk, written
HDTD1∪...∪Dk , as follows:

– replace {D1, . . . ,Dk} dictionaries with a single
dictionary D1...k = D1 ∪ . . . ∪ Dk, such that
∀x ∈ terms(D1) ∪ . . . ∪ terms(Dk)435

∗ x ∈ terms(D1...k)
∗ id(x,D1...k) is obtained by sequentially num-

bering the terms in terms(D1) ∪ . . . ∪
terms(Dk) upon an (arbitrary) total order,
e.g., lexicographically ordering the terms440

(as it is done in HDT dictionaries by de-
fault).

– replace all (Di,T) ∈ R, i ∈ {1, . . . , k}, with new
(D1...k,T ′) relations, where T ′ is obtained from T
by replacing the original IDs from Di with their445

corresponding new IDs in D1...k.

4.3.2. D-merge
In the more general case where the condition for D-

unions does not hold on D1, . . . ,Dk ⊆ D, we can de-
fine another operation, D-merge, written HDTD1.....Dk .450

We start with the binary case, where only two dictio-
naries D1 and D2 are involved; HDTD1.D2 is obtain as
follows:

– replace D1 and D2 with a single D12 = D1 .D2,3

such that455

∗ ∀x ∈ terms(D1) : id(x,D12) = id(x,D1)

3We use the directed operator . instead of ∪ here, since this oper-
ation is not commutative.

∗ ∀x ∈ terms(D2)\ terms(D1) : id(x,D12) =
id(x,D2) + max(ids(D1))

– replace all (D1,T1) ∈ R with (D12,T1)
– replace all (D2,T2) ∈ R with (D12,T ′2), where460

T ′2 is obtained from T2 by analogous ID changes.
D-merge can then be trivially generalized to a se-
quence of dictionaries assuming left-associativity of .
operator. That is, HDTD1.D2.....Dk = HDT((D1.D2)....).Dk .

For convenience, we extend the notation of T (G,D)465

from Section 3.2 to D-unions and D-merges: let
(D1, . . . ,Dk) be a sequence of dictionaries and G an
RDF graph such that terms(G) =

⋃
Di∈(D1,...,Dk)

terms(Di).
Then we will write T (G, (D1∪. . .∪Dk)) and T (G, (D1.
. . . .Dk)) for the triples part generated from G accord-470

ing to the combined dictionary ((D1 ∪D2)∪ . . .)∪Dk

and ((D1 .D2)) .Dk respectively. Finally, we note
that for any admissible HDT collection, both D-union
and D-merge preserve admissibility.

5. Efficient Partitioning HDTcrypt475

After having introduced the general idea of HDTcrypt

and the two different ways of integrating dictionar-
ies within an HDT collection, we now discuss four
alternatives strategies that can be used for distribut-
ing a dataset DS across dictionary and triple com-480

ponents in an HDTcrypt collection. These alternatives,
referred to as HDTcrypt−A, HDTcrypt−B, HDTcrypt−C

and HDTcrypt−D, provide different space/performance
tradeoffs that will be evaluated in Section 6. We note
that HDT behaves differently than the normal RDF485

merge regarding blank nodes in different “partitions”

8 Fernández et al. / Compression and Encryption of RDF Datasets

Fig. 5. HDTcrypt−B, extracting non-overlapping triples.

as, by default, HDT does not rename the blank nodes
to avoid shared labels [27]: the original blank nodes
are skolemized to constants (unique per RDF graph)
and preserved across partitions, so that we do not need490

to consider blank node (re-)naming separately.

5.1. HDTcrypt−A: A Dictionary and Triples per
Named Graph in DS

The baseline approach is straightforward, we con-
struct separate HDT components Di = D(Gi) and495

Ti = T (Gi,Di) per graph Gi in the dataset, see Fig-
ure 4, thereafter each of these components is encrypted
with a respective, separate key, identified by a unique
IRI idi ∈ I, i.e., kmap(Di) = kmap(Ti) = idi and
R = {(Di,Ti) | Gi ∈ DS }. For re-obtaining graph Gi500

a user must only have access to the key corresponding
to idi, and can thereby decrypt Di and Ti and extract
the restricted collection HDT Ti , which corresponds to
Gi. Obviously, this approach encodes a lot of overlaps
in both dictionary and triples parts: that is, for our run-505

ning example from Figure 4, the IRI for ex:alice is en-
coded in each individual D component and the over-
lapping triples in graphs G2 and G3 appear in both T2

and T3 respectively (cf., Figure 4).

5.2. HDTcrypt−B: Extracting non-overlapping Triples510

in DS ′

In order to avoid the overlaps in the triple compo-
nents, a more efficient approach could be to split the
graphs in the dataset DS according to their canonical
partition DS ′ and again construct separate (D,T)-pairs515

for each subset G′S ∈ DS ′, see Figure 5. That is, we
create D′S = D(G′S) and T ′S = T (G′S ,D

′
S) per graph

G′S ∈ DS ′, where S ∈ 21,...,i denotes the index set
corresponding to a (non-empty) subset of DS ′. R in
turn contains pairs (D′S ,T

′
S) and kmap entries for keys520

identified by I′S per G′S used for the encryption/decryp-

tion of the relevant D′S and T ′S . The difference for de-
cryption now is that any user who is allowed access
to Gi must have all keys corresponding to any I′S such
that i ∈ S in order to re-obtain the original graph Gi.525

First, the user will decrypt all the components for
which they have keys, i.e. obtaining a non-encrypted
collection HDT ′ consisting of components D′ =
{D′1, . . . ,D′k}, T ′ = {T ′1, . . . ,T ′k} consisting of the
components corresponding to a partition of Gi. Then,530

for decompressing the original graph Gi, we create
separate T ′S -restricted HDTs, which are decompressed
separately, with GS being the union of the resulting
subgraphs.

5.3. HDTcrypt−C: Extracting non-overlapping535

Dictionaries in DS ′

Note that in the previous approach, we have du-
plicates in the dictionary components. An alternative
strategy would be to create a canonical partition of
terms instead of triples, and create separate dictionar-540

ies D′S ∈ D′ for each non-empty term-subset,4 respec-
tively. Figure 6 shows the canonical partition of terms
in our running example: as can be seen, the original
dictionary is split into five non-empty terms-subsets
corresponding to the dictionaries D′123 (terms shared in545

all three graphs), D′23 (terms shared in graphs G2 and
G3 that are not in D′123) and D′1, D′2, D′3 (terms in either
G1, G2 or G3 resp. and are not shared between graphs).
This partition can be computed efficiently, thanks to
the HDT dictionary D of the full graph G, which we550

assume to be available5. To do so, we keep6 an auxil-

4Again, here S ∈ 21,...,n represents an index set.
5All HDTcrypt strategies are evaluated from an existing full graph

G. Our evaluation in Section 6 also reports the time to create the
HDT representation of the full graph G

6This auxiliary structure is maintained just at compression time
and it is not shipped with the encrypted information.

Fernández et al. / Compression and Encryption of RDF Datasets 9

Fig. 6. HDTcrypt−C , extracting non-overlapping dictionaries.

Fig. 7. Union of dictionaries (in HDTcrypt−C) to codify the non-overlapping dictionaries of a partition.

iary bitsequence per graph Gi (see Figure 6, top left),
each of size terms(D). Then, we iterate through triples
in each graph Gi and, for each term, we search its ID
in D, marking such position with a 1-bit in the bitse-555

quence of Gi. Finally, the dictionaries of the subsets
can be created by inspecting the combinations of 1-bits
in the bitsequences: terms in D′xy···z will be those with a
1-bit in the bitsequences of graphs xy · · · z and 0-bits in
other graphs. For instance, in Figure 6, D′123 is consti-560

tuted only by ex:alice, because it is the only term with
three 1-bits in the bitsequences of G1, G2 and G3. In
contrast, ex:Project1 will be part of D′1 as it has a 1-bit
only in the bitsequence of G1.

The number of triple components in this approach565

are as in HDTcrypt−A, one per graph Gi. However, they
are constructed slightly differently as, in this case, we
have a canonical partition of terms and one user will
just receive the dictionaries corresponding to subsets
that correspond to terms in the graph Gi that they have570

been granted access to. In other words, the IDs used
in each Ti should unambiguously correspond to terms,
but these terms may be distributed across several dic-

tionaries.7 Thus, we encode triples with a D-union (see
Section 4.3) of the D′S such that i ∈ S . That is, for each575

Gi we construct Ti = T (Gi, (
⋃

i∈S D′S)), and add the
respective pairs (D′S ,Ti) in R.

Figure 7 illustrates this merge of dictionaries for the
graph G1 and the respective construction of T (G1, (D′1
∪D′123)). The decompression process after decryption580

is the exact opposite. For decompressing the graph Gi,
the decrypted dictionaries

⋃
i∈S D′S are used to cre-

ate a D-union Di which can be used to decompress
the triples Ti in one go. Finally, as a performance im-
provement at compression time, note that, although585

the canonical partition of terms has to be built to be
shipped in the compressed output, we can actually skip
the creation of the D-union dictionaries to encode the
IDs in the triples. To do so, we make use of the bitse-
quences to get the final IDs that are used in the triples:590

One should note that the ID of a term in a D-union
of a graph Gi is the number of previous 1-bits in the

7Given the partition definition, it is nonetheless true that a term
appears in one and only one term-subset.

10 Fernández et al. / Compression and Encryption of RDF Datasets

bitsequence of Gi (for each SO, S , O, and P section).
For instance, in our example in Figure 7, ex:Project1
is encoded with the ID=2. Instead of creating D1, we595

can see that in the bitsequence of G1 (see Figure 6, top
right) we have two 1-bits in the predicate section up to
the position where ex:Project1 is stored in the original
dictionary, hence its ID=2.

5.4. HDTcrypt−D: Extracting non-overlapping600

Dictionaries and Triples in DS ′

In HDTcrypt−D, we combine the methods of both
HDTcrypt−B and HDTcrypt−C . That is, we first create a
canonical partition of terms as in HDTcrypt−C , and a
canonical partition of triples DS ′ as in HDTcrypt−B.605

Then, we codify the IDs in the subsets of DS ′ with
the IDs from the dictionaries. Note, however, that in
this case there is – potentially – an n:m between the
resulting dictionary and triple components. In other
words, triples in T ′S can include terms that are not610

only in D′S as they may be distributed across sev-
eral term-subsets. For instance, in our running exam-
ple, T ′1 in HDTcrypt−B includes ex:Alice (see Figure
5) which is stored in D′123 in HDTcrypt−C (see Fig-
ure 6). One alternative could be to create a D-union615

of each graph G′S and codify triples in T ′S with the
corresponding IDs. However, it is trivial to see that
this would lead to an exponential number of D-union
dictionaries, one per T ′S component. In addition, we
would need to physically recreate all these dictionar-620

ies at compression time, and also at decompression
time in order to decompress each single graph G′S .
Thus, we perform a D-merge approach (see the defi-
nition in Section 4.3), which fits perfectly with n:m-
relations. This is illustrated in Figure 8. As can be625

seen, triples in each G′S of the canonical partition
are encoded with an appropriate D-merge of term-
subsets. A practical example is shown in Figure 9, rep-
resenting the encoding of graph G′3. As defined in D-
merge, IDs are assigned in order, that is for a merge630

D′1D′k, the IDs in D′k are shifted max(ids(D′1))+
. . . + max(ids(D′k−1)). For instance, in our example,
the predicate ex:salary will be encoded in G′3 with the
ID=2, because its local ID in D′3 is 1, and it has to be
shifted max(ids(D′123)) + max(ids(D′23)) = 1, hence635

its final ID= 1+max(ids(D′123))+max(ids(D′23)) = 2.
Note that here we restrict the dictionaries D′ per sec-
tion (S O, S , O and P). Given the special numbering of
IDs in HDT, where S and O IDs follow from S O as
explained in Section 3.1. This is illustrated in our ex-640

ample, e.g. the object “30K” with local ID=1 in D′3 is

mapped in the D-merge dictionary with 4, as it sums
up all the previous objects and subjects IDs in D′123
and D′23.

It is worth mentioning that no ambiguity is present645

in the order of the D-merge as it is implicitly given
by the partition DS ′ as per the canonical term par-
tition. Thus, the decompression follows the opposite
process: for each graph T ′S in the partition of the
graph Gi, the user processes each ID and, depending650

of the value, they get the associated term in an ap-
propriate term subset. For instance, if the user is ac-
cessing the predicate ID=2 in our example, one can
easily see that 2 > |P123| + |P23|, so dictionary
D′3 has to be used8. The local ID to look at is then655

2 − |P123| − |P23| = 1, hence the predicate ID=1
in D′3 is inspected and then foaf:pastProject is re-
trieved. Finally, note that not all terms in a D-merge
are necessarily used when encoding a particular T ′S .
For instance, in our example in Figure 9, the object660

“bob@example.org” with ID=2 in D′23 (and ID=3 in
the D-merge) is not used in T ′3. However, this ID is
“blocked”: it cannot be used by a different object in
T ′3 as this ID is taken into account when encoding the
present objects (“30K” and “personal@example.org”),665

once we sum the max(ids(D′23)) as explained above.
The same consequence applies to subjects, so that sub-
ject IDs are not necessarily correlative in T ′S . This con-
stitutes a problem for the HDT Bitmap Triples en-
coding (presented in Section 3.2), given that it repre-670

sents subjects implicitly assuming that they are cor-
relative. Thus, HDTcrypt−D has to explicitly state the
ID of each subject, which constitutes a space overhead
and a drawback of this approach, despite the fact that
duplicate terms and triples are avoided. Technically,675

instead of a forest of trees, triples are codified as tuples
of three IDs, using an existing HDT triples representa-
tion called Plain Triples [15].

6. Evaluation

This section evaluates the performance of HDTcrypt680

by comparing each of the aforementioned partition-
ing strategies with respect to the performance of the
algorithms and the size of the compressed encrypted
dataset. We first describe our experimental setup in de-
tail. Then, we present our evaluation results in terms685

of three distinct yet related tasks: (i) performance of

8We abuse notation to denote the cardinality of a set, e.g. |P123|,
as the maximum id represented in such dictionary set.

Fernández et al. / Compression and Encryption of RDF Datasets 11

Fig. 8. HDTcrypt−D, extracting non-overlapping dictionaries and triples.

Fig. 9. Merge of dictionaries (in HDTcrypt−D) to codify the
non-overlapping dictionaries and triples of a partition.

compression and encryption algorithms and size of re-

sulting datasets; (ii) performance of decryption and

decompression algorithms; and (iii) performance of

triple pattern queries9 over the compressed datasets,690

which constitute the basis for SPARQL’s graph pattern

matching [25].

Finally, we provide a summary and discussion of the

results in Section 6.5. Additional experiments can be

found in Appendix A.695

6.1. Experimental Setup

The proof-of-concept HDTcrypt prototype10 uses the
existing HDT-C++ library11 for compression and de-
compression, and standard Java libraries for AES en-
cryption/decryption12.700

The evaluation is performed on three different
datasets, described in Table 1.

First, we selected DBpedia, the well-known RDF
knowledge base extracted from Wikipedia, which was
chosen due to the volume and variety of the data and705

large number of dictionary terms therein. We used two
different versions, DBpedia 3.813 and the latest ver-
sion 2016-1014, which is double the size of the previ-
ous one. Hereinafter, we will use the term DBpedia to
refer to both versions, as the results are comparable.710

Then, we chose a realistic scenario using the config-
uration used in SAFE [32], a query federation engine
with access control. The SAFE dataset includes public
statistical data (referred to as external) and anonymised
clinical data (internal).715

Additionally, in order to test the scalability of the
various partitioning strategies we use the Lehigh Uni-
versity Benchmark (LUBM) [23] data generator to ob-
tain synthetic datasets of incremental sizes from 1,000
universities (LUBM1K, including 0.13 billion triples)720

to 4,000 universities (LUBM4K, 0.53 billion triples).
Table 1 shows the original dataset sizes in plain N-
Triples (NT). In addition, we provide details of the size

9Matching RDF triples in which each component may be a vari-
able

10Source code and all experiment data are available at the
HDTcrypt homepage: https://aic.ai.wu.ac.at/ComCrypt/HDTcrypt/

11https://github.com/rdfhdt/hdt-cpp
12http://docs.oracle.com/javase/8/docs/technotes/guides/security/

crypto/CryptoSpec.html
13http://wiki.dbpedia.org/data-set-38
14http://wiki.dbpedia.org/develop/datasets/

dbpedia-version-2016-10

https://aic.ai.wu.ac.at/ComCrypt/HDTcrypt/
https://github.com/rdfhdt/hdt-cpp
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
http://wiki.dbpedia.org/data-set-38
http://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
http://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10

12 Fernández et al. / Compression and Encryption of RDF Datasets

Table 1
Statistical dataset description

Size (GB)
DATASET TRIPLES |SO| |S| |O| |P| NT NT+gz HDT HDT+gz HDT creation time (m)
DBpedia 3.8 0.43BN 22.0M 2.8M 86.9M 58.3K 61.6 4.9 6.4 2.7 96
DBpedia 2016-10 0.84BN 44.5M 55.9M 225.6M 63.8K 122.0 9.6 12.1 5.0 249

SAFE 0.07BN 171.5K 7.4M 3.6M 346 12.4 0.3 0.6 0.07 10

LUBM1K 0.13BN 5.0M 16.7M 11.2M 18 18.0 0.6 0.7 0.2 18
LUBM2K 0.27BN 10.0M 33.5M 22.3M 18 36.2 1.3 1.5 0.5 36
LUBM3K 0.40BN 14.9M 50.2M 33.5M 18 54.4 1.9 2.3 0.8 57
LUBM4K 0.53BN 19.9M 67.0M 44.7M 18 72.7 2.5 3.1 1.0 78

Table 2
% Duplicates and size of subgraphs.

Size of subgraphs (GB)
SUBGRAPHS DATASET DUP % G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

6
DBpedia 3.8 11.62% 11.6 11.7 11.5 11.7 11.6 11.5
DBpedia 2016-10 11.62% 23.2 23.2 23.0 23.1 23.0 22.5

9
DBpedia 3.8 22.32% 8.9 8.9 8.9 8.8 8.9 8.8 8.8 8.9 8.7
DBpedia 2016-10 22.32% 17.6 17.5 17.5 17.4 17.5 17.5 17.5 17.1 17.4

12
DBpedia 3.8 32.54% 7.6 7.6 7.7 7.6 7.6 7.6 7.7 7.6 7.6 7.6 7.6 7.5
DBpedia 2016-10 32.54% 15.2 15.0 15.2 15.1 15.1 15.1 15.1 15.1 15.1 15.1 14.7 15.2

8 SAFE 0.00% 7.0 3.2 1.9 0.1 0.1 0.1 0.01 0.01

6

LUBM1K 37.89% 14 5.2 5 4.5 1.6 0.6
LUBM2K 37.89% 27 10.7 10.7 8.9 3.1 1.3
LUBM3K 37.89% 39.5 16.1 15.2 13.4 4.6 1.9
LUBM4K 37.89% 52.8 21.4 20.3 17.9 6.1 2.4

9

LUBM1K 38.26% 14 5.2 4.5 3.1 1.6 1.3 0.9 0.6 0.2
LUBM2K 38.26% 27 10.7 8.9 6.2 3.1 2.3 1.9 1.3 0.4
LUBM3K 38.26% 39.5 16.1 13.4 9.2 4.6 3.4 2.8 1.9 0.6
LUBM4K 38.26% 52.8 21.4 17.9 13.0 6.1 4.6 3.7 2.4 0.8

12

LUBM1K 38.10% 8.8 5.1 4.5 4.3 1.5 1.3 1.1 1.1 0.9 0.7 0.6 0.2
LUBM2K 38.10% 17.7 10.1 8.9 8.6 3.1 2.5 2.3 2.1 1.9 1.5 1.3 0.4
LUBM3K 38.10% 26.6 15.2 13.4 12.9 4.6 3.8 3.4 3.2 2.8 2.2 1.9 0.6
LUBM4K 38.10% 35.6 20.3 17.9 17.2 6.1 5.1 4.6 4.2 3.7 3.0 2.4 0.8

of the datasets compressed with gzip, HDT and HDT+gz
(gzip compression over the HDT file). This shows that725

our HDT compression ratios are in line with the orig-
inal proposal [16]. Finally, the last column of the ta-
ble shows the time (in minutes) to compute the HDT
representation of each dataset. In turn, the HDT cre-
ation time for LUBM grows linearly with the num-730

ber of triples. This result is also in accordance with
the HDT technique, which reports linear scalability re-
garding the input size and the terms in the dictionary
(cf. [16]). The two versions of DBpedia also show a
similar behaviour: DBpedia 2016-10 doubles the num-735

ber of triples of DBpedia 3.8 and its dictionary triples
the number of terms. As a result, the HDT creating
time increases 2.6 times.

For the LUBM dataset we group data based on the
rdf:type of resources and use these groupings to gen-740

erate three different subgraph datasets (the size of each
subgraph is shown in Table 2):

– 12 subgraphs, composed of UnderGraduateStu-
dent (G1), Courses (G2), Publication (G3), Grad-
uateStudent (G4), Department (G5), ResearchAs-745

sistant (G6), AssociateProfessor (G7), Teachin-
gAssistant (G8), FullProfessor (G9), Assistant-
Professor (G10), University (G11) and Lecturer
(G12).

– 9 subgraphs, composed of the union of Un-750

derGraduateStudent and GraduateStudent (G1),
Courses (G2), Publication (G3), the union of As-
sistantProfessor, ResearchAssistant, and Teachin-
gAssistant (G4), Department (G5), AssociatePro-
fessor (G6), FullProfessor (G7), University (G8)755

and Lecturer (G9).
– 6 subgraphs, composed of UnderGraduateStu-

dent and GraduateStudent (G1), the union of As-
sistantProfessor, ResearchAssistant, TeachingAs-
sistant, Lecturer, AssociateProfessor, FullProfes-760

Fernández et al. / Compression and Encryption of RDF Datasets 13

sor (G2), Courses (G3), Publication (G4), De-
partment (G5) and University (G6).

When triples represent relations between resources
of different types all incoming/outgoing relations are
replicated in both subgraphs.765

For DBpedia (in the case of both versions), we gen-
erate 6, 9 and 12 subgraphs, each containing randomly
selected triples amounting to 10% of the entire corpus
(thus ensuring overlaps among subgraphs). Triples that
do not appear in any subgraph are subsequently dis-770

tributed evenly among the subgraphs.
In the case of SAFE, the dataset is already organised

in 8 subgraphs, composed of 5 external graphs, includ-
ing statistical data from well-known organisation such
as Eurostat and FAO, and 3 internal graphs including775

aggregated clinical data represented as RDF data cubes
[32].

Given that the complexity of the partitioning is di-
rectly related to the number of duplicates across sub-
graphs, the size of each of the subgraphs and the over-780

all duplicate ratio, as (totalTriples−UniqTriples)
totalTriples , is pre-

sented in column DUP % of Table 2. Note that the
type-based selection of subgraphs in LUBM gener-
ates a skewed distribution of subgraph sizes but similar
duplicate ratio (of approximately 38%) at increasing785

sizes (LUBM1K to LUBM4K). Thus, the comparison
between techniques focuses on the effect of the 6/9/12
subgraphs and the efficiency at large scale. In contrast,
the even distribution of DBpedia is reflected in the sim-
ilar size of its subgraphs. Given that the number of du-790

plicates increase with the number of subgraphs (12%,
22% and 33% for 6/9/12 respectively), the effect of du-
plicates is also evaluated. In SAFE, the already given
8 subgraphs contains few repeated triples (less than
0.01%). Note that the internal subgraphs corresponds795

to graphs G4, G5 and G7 in Table 2, i.e. the public
external information corresponds to the biggest parti-
tions.

In the following we show the performance results of
each of the algorithms (compression and encryption,800

decryption and decompression, integration and query-
ing). Experiments were performed in a –commodity
server– (Intel Xeon E5-2650v2 @ 2.6 GHz, 16 cores,
RAM 180 GB, Debian 7.9.). All of the reported
(elapsed) times are the average of three independent805

executions in a cold cache scenario (caches are empty
at the start of each process).

6.2. Compression and Encryption

Table 3 shows the compression and encryption times
as well as corresponding resulting file sizes15 of the810

datasets for different partitioning strategies, whereas
Table 4 shows the respective number of resulting dic-
tionary and triple components.

The results show that HDTcrypt−C is both the fastest
and also produces the most compact representation815

(only marginally outperformed in space by HDTcrypt−D

in particular LUBM cases). HDTcrypt−C is 37% faster
than the baseline approach HDTcrypt−A in DBpedia
(we refer to the average in both DBpedia versions here-
after), and 40% faster in LUBM. In SAFE, with few820

duplicates, HDTcrypt−C is still 18% faster.
In contrast, HDTcrypt−B is the slowest approach with

a mean of 68% over the baseline, because it needs to
create many dictionaries (e.g. 3904 in DBpedia 2016-
10 as shown in Table 4) with overlapping terms. In825

turn, HDTcrypt−D is highly influenced by the number
of dictionary components, due to the additional com-
plexity of creating the resp. triple components from the
D-merge. Thus, HDTcrypt−D is faster than the baseline
in LUBM with 6 or 9 subgraphs, with few components830

as shown in Table 4, but it shows a worse performance
in LUBM 12 subgraphs, as well as in all DBpedia and
SAFE datasets.

Note that, as stated in Section 5, the creation of
HDTcrypt−B, HDTcrypt−C and HDTcrypt−D assumes that835

the HDT representation of the full graph G is already
computed16. Otherwise, the HDT creation time (re-
ported in Table 1) should be considered as a once-off
overhead. In the worst case (i.e. the conversion is done
for the sole purpose of encrypting a single dataset with840

a particular number of subgraphs), adding this time
would make the HDTcrypt−C perform similarly to the
baseline in LUBM. In DBpedia, with a richer dictio-
nary of terms, HDTcrypt−C would be 35-50% slower
than the baseline.845

Additionally, when compared with the baseline ap-
proach HDTcrypt−A, HDTcrypt−C achieves a mean of
33% space saving in DBpedia and 26% space saving
in LUBM. In general, HDTcrypt−B, HDTcrypt−C and

15Note that encryption produces negligible size overheads on the
compressed files.

16In fact, HDT is becoming popular to store and serve large
datasets by publishers and third parties, and a large portion of
datasets in the Linked Open Data cloud is already available in HDT
thanks to the project LOD Laundromat [3], crawling and serving the
HDT conversion of datasets (http://lodlaundromat.org/wardrobe/).

 http://lodlaundromat.org/wardrobe/

14 Fernández et al. / Compression and Encryption of RDF Datasets

Table 3
Performance of compression and encryption algorithms.

Compression Time (minutes) Encryption Time (seconds) Size (GB)
SUBGRAPHS DATASET crypt-A crypt-B crypt-C crypt-D crypt-A crypt-B crypt-C crypt-D crypt-A crypt-B crypt-C crypt-D

6
DBpedia 3.8 102 197 62 121 98.17 108.84 80.85 91.07 9.64 9.33 7.43 8.59
DBpedia 2016-10 306 565 197 378 144.54 143.06 109.95 123.91 18.91 18.38 14.04 16.25

9
DBpedia 3.8 117 225 72 142 124.65 140.40 98.24 125.94 11.64 10.91 7.92 8.76
DBpedia 2016-10 267 520 175 315 182.61 172.50 113.18 128.33 23.12 21.78 15.00 16.58

12
DBpedia 3.8 131 214 81 152 156.52 245.16 187.90 221.89 13.87 12.49 8.49 8.91
DBpedia 2016-10 300 485 202 326 228.92 201.26 128.29 138.70 27.79 25.11 16.14 16.88

8 SAFE 9 18 8 14 4.07 4.91 4.27 5.20 0.53 0.61 0.53 0.65

6

LUBM1K 34 41 21 33 12.25 11.21 9.85 10.94 1.40 1.08 1.05 1.05
LUBM2K 78 94 47 73 21.88 18.74 17.95 18.24 2.86 2.19 2.15 2.16
LUBM3K 125 143 72 112 32.24 26.82 25.72 26.00 4.35 3.31 3.28 3.30
LUBM4K 169 191 97 151 54.56 33.83 33.17 33.90 5.65 4.45 4.41 4.45

9

LUBM1K 37 42 21 36 12.96 11.93 11.33 11.89 1.44 1.09 1.06 1.04
LUBM2K 78 88 45 73 22.80 19.56 18.97 19.98 2.93 2.21 2.17 2.14
LUBM3K 126 144 71 114 33.79 28.02 27.61 27.58 4.45 3.34 3.31 3.26
LUBM4K 174 194 98 158 60.11 35.66 35.53 35.36 5.97 4.49 4.44 4.42

12

LUBM1K 36 44 23 39 12.78 13.48 12.21 12.98 1.45 1.11 1.06 1.05
LUBM2K 75 94 49 82 23.32 21.62 20.23 21.38 2.96 2.25 2.17 2.15
LUBM3K 116 142 73 126 33.92 29.03 28.35 29.50 4.50 3.41 3.31 3.26
LUBM4K 158 190 99 175 60.80 37.85 38.20 37.36 6.03 4.56 4.44 4.44

Table 4
Number of dictionaries/triples in each approach.

Dictionaries Triples
crypt-C crypt-A crypt-B

SUBGRAPHS DATASET crypt-A crypt-B crypt-D crypt-C crypt-D
6 DBpedia 3.8 6 63 63 6 63
9 DBpedia 3.8 9 510 511 9 510
12 DBpedia 3.8 12 3836 4095 12 3836
6 DBpedia 2016-10 6 63 63 6 63
9 DBpedia 2016-10 9 511 511 9 511
12 DBpedia 2016-10 12 3904 4095 12 3904

8 SAFE 8 32 48 8 32

6 LUBM 6 20 23 6 20
9 LUBM 9 39 64 9 39
12 LUBM 12 55 122 12 55

HDTcrypt−D benefit from having an increasing number850

of overlapping dictionaries/triples, hence the DBpedia
even distribution produces more space savings. For the
same reason, an increasing number of subgraphs leads
to more duplicates and space savings w.r.t the base-
line, e.g. HDTcrypt−C in LUBM achieves 24%, 26%855

and 27% savings with 6, 9 and 12 subgraphs respec-
tively. It is worth mentioning that despite the fact that
HDTcrypt−D isolates the non-overlapping dictionaries
and triples, there is an overhead in the representation
as we do not use Bitmap Triples but Plain Triples (as860

stated in Section 5.4). This is more noticeable in DB-
pedia with long predicate and object lists. It is worth
highlighting that, in SAFE, with almost no duplicates,
only HDTcrypt−C is competitive in space with the base-
line, while HDTcrypt−B and HDTcrypt−D have to pay865

a slight overhead for keeping the different structures,
which cannot leverage the minimal duplication across
subgraphs.

Encryption times are only a small portion of the
publication process, where HDTcrypt−C is generally the870

fastest approach except for DBpedia 3.8 with 12 sub-
graphs and SAFE, for which HDTcrypt−A is the fastest,
and for LUBM3K/LUBM4K with 9 subgraphs as well
as LUBM4K with 12 subgraphs where HDTcrypt−D is
marginally faster. Thus we can conclude that both the875

number of files that need to be encrypted as well as
their respective file sizes influence the overall encryp-
tion time. Finally, it is worth noting that – as expected –
the performance time of the compression and encryp-
tion, as well as the result file sizes show linear growth880

with increasing LUBM datasets.

Fernández et al. / Compression and Encryption of RDF Datasets 15

Table 5
Performance of decryption and decompression algorithms for M6, M9 and M12, i.e., half of the 6/9/12 subgraphs including the smallest/aver-
age/largest subgraphs.

Decryption Time (seconds) Decompression Time (minutes)
SUBGRAPHS DATASET crypt-A crypt-B crypt-C crypt-D crypt-A crypt-B crypt-C crypt-D

M6 DBpedia 3.8 61.56 79.08 64.92 79.80 22 18 14 18
DBpedia 2016-10 108.64 125.36 108.69 127.51 51 46 39 53

M9 DBpedia 3.8 88.64 148.52 111.84 129.31 26 22 17 25
DBpedia 2016-10 146.93 200.97 151.41 171.56 49 45 36 50

M12 DBpedia 3.8 93.10 220.46 195.11 242.85 22 22 17 26
DBpedia 2016-10 160.88 256.05 179.65 206.75 37 34 27 37

M6

LUBM1K 10.82 11.37 9.80 13.74 8 7 5 7
LUBM2K 19.24 22.83 17.15 27.62 16 14 11 15
LUBM3K 28.35 31.65 24.78 45.14 24 20 16 22
LUBM4K 48.56 43.03 33.70 59.46 32 27 21 29

M9

LUBM1K 12.84 13.36 11.86 17.52 8 10 6 8
LUBM2K 22.77 24.47 20.63 33.15 17 21 12 16
LUBM3K 32.94 37.32 30.30 48.95 26 32 18 23
LUBM4K 48.00 52.35 51.36 70.12 34 41 24 32

M12

LUBM1K 10.75 11.54 11.73 15.84 7 6 5 7
LUBM2K 18.50 20.30 18.99 30.40 14 13 10 14
LUBM3K 26.60 31.08 27.00 45.35 21 19 15 20
LUBM4K 36.62 39.48 39.09 66.57 29 25 19 27

Table 6
Performance of decryption and decompression algorithms for M8

L and M8
S in the SAFE dataset.

Decryption Time (seconds) Decompression Time (seconds)
SUBGRAPHS DATASET crypt-A crypt-B crypt-C crypt-D crypt-A crypt-B crypt-C crypt-D

M8
L SAFE 3.98 4.45 4.01 4.70 182 169 118 174

M8
S SAFE 1.01 2.75 1.05 2.14 6 74 4 56

6.3. Decryption and Decompression

According to our use case scenario we assume that
a user has been granted access to more than one named
graph, but not the whole dataset. For a fair compari-885

son, given the skewed size distribution of subgraphs in
LUBM (see Table 2), we set up a scenario where the
user has been granted access to half of the total sub-
graphs, including the smallest, average and largest sub-
graphs. This configuration corresponds to decrypting890

and decompressing the subgraphs referred to as M6 =
{G1,G3,G6}, M9 = {G1,G2,G5,G8,G9} and M12 =
{G1,G2,G6,G7,G11,G12} in the case of 6, 9 and 12
subgraphs respectively. As for the SAFE dataset, we
consider a scenario where a subset of the external and895

internal datasets are accessed. In particular, we also
took half of the datasets, M8

L = {G1,G4,G5}, in-
cluding the largest external dataset G1, and M8

S =
{G4,G5,G6}, of smaller size.

Table 5 shows the time to decrypt and decompress900

each of the respective subgraphs in the case of DB-
pedia and LUBM, while Table 6 shows the results for
SAFE.

Decryption times are almost negligible compared
to the decompression time – similar to encryption vs.905

compression time. Again, the number of files is the
dominating factor, hence HDTcrypt−A is the fastest ap-
proach regarding decryption.

Regarding decompression, (as per compression)
HDTcrypt−C is the fastest approach, achieving a mean910

of 30% time savings in DBpedia and LUBM w.r.t the
baseline HDTcrypt−A. In DBpedia, given the even dis-
tribution, having 6 subgraphs is always slightly faster
than 9 and 12 subgraphs as the latter generates more
duplicates. Regarding the number of graphs in LUBM,915

6 and 12 subgraphs behave similarly, while the decom-
pression of 9 subgraphs is slightly slower. Nonethe-
less, we could verify that the difference between 9 and
12 subgraphs is due to the slightly bigger total file size
produced by M9 in comparison to M12. In turn, the920

difference between 9 and 6 subgraphs is a consequence
of the larger number of generated dictionary/triples be-
tween 9 and 6 subgraphs (as shown in Table 4). As per
compression, there is a linear increase in performance
times with increasing dataset sizes.925

Finally, although the results for the SAFE dataset
(shown in Table 6) follow a similar behaviour, it is

16 Fernández et al. / Compression and Encryption of RDF Datasets

worth mentioning that HDTcrypt−B and HDTcrypt−D

have to pay the price of loading additional structures
(even in the presence of minimal duplication). Results930

show that, while this pays off in the case of the larger
subset like M8

L , for a small subset like M8
S , HDTcrypt−A

and HDTcrypt−C are clearly faster than HDTcrypt−B and
HDTcrypt−D.

6.4. Querying Compressed Data935

One of the main advantages of HDT compression
is that it is possible to perform SPARQL triple pattern
queries directly on the compressed data [37]. Whereas
this also holds for approach HDTcrypt−A, as it already
consists of one file per subgraph, the other approaches940

presented, HDTcrypt−B, HDTcrypt−C and HDTcrypt−D,
split a subgraph in different dictionary (D) and tri-
ple (T) components. For these latter approaches, query
resolution can be done by two strategies:

1. Querying an integrated HDT: This strategy inte-945

grates all the dictionary and triple components of
a subgraph into a new HDT (i.e. converting to the
baseline HDTcrypt−A) which can be then queried.

2. Local query on each dictionary and triple compo-
nent: In this case, the query is performed locally950

in each dictionary and triple component and the
results are then integrated. Note that HDTcrypt−C

is not viable for this strategy as it would require to
perform the D-union of all the dictionaries in or-
der to search the triples IDs, which is then equiv-955

alent to integrating HDTcrypt−C into a new HDT
to be queried.

The following evaluation first inspects the perfor-
mance overhead of the integration required by the for-
mer strategy. Then, we evaluate the query performance960

of the latter. For exemplary purposes, we present the
average results of the DBpedia datasets, while the per-
formance for LUBM and SAFE can be found in Ap-
pendix A.

Note that, although there are a number of strategies965

for querying encrypted data directly (see e.g., [4]), we
consider these orthogonal and leave combining them
with our partitioning for future work.

6.4.1. Integrating dictionary and triple components
into a new HDT970

Following our use case scenario, we assume that a
user has decrypted half of the subgraphs, the i.e. M6,
M9 and M12 subgraphs. Figure 10 shows the time re-
quired by each strategy (i.e. HDTcrypt−B, HDTcrypt−C

and HDTcrypt−D) to integrate their dictionary and tri-975

ple components into one HDT per subgraph (e.g. G1,
G2, G6, G7, G11 and G12 for M12), similarly to the
baseline HDTcrypt−A. This integration is performed as
follows. First, all dictionary components are fed into a
new dictionary, reorganizing the mapping between all980

terms and their corresponding IDs (as defined in Sec-
tion 3.1). This first process is similar to the first step of
the D-union (see Section 4.3.1). Then, we read the tri-
ple components and use the new dictionary to convert
the triples to the new IDs, integrating all of them in a985

single new triple component per subgraph17.
We present the time to integrate the dictionary and

triple components of M12 into the corresponding sub-
graphs (Figure 10 a), for DBpedia. Yet again we see
that HDTcrypt−C is the fastest approach, 29% and 56%990

faster than B and D in DBpedia. In general, all ap-
proaches show a linear increase over dataset sizes, as
shown in Appendix A.

A comparison in terms of number of subgraphs is
shown in Figure 10 b, reporting the times of merging995

M6, M9 and M12 for DBpedia (the trends are similar
for all datasets). As expected, given that the integra-
tion process yields to a partial decompression of the
dictionary and triple components, the integration per-
formance follows the same pattern as the decompres-1000

sion. That is, the even distribution of DBpedia results
in a faster performance for 6 subgraphs, whereas the
excessive duplicates of 12 penalises its performance.

6.4.2. Query Performance
We evaluate the query performance of all partition-1005

ing strategies in our use case scenario. Thus, for each
subgraph in M6, M9 and M12 (and M8

S and M8
L in

SAFE) we first generate 30 random queries for each
triple pattern type18, assuring an even presence of dif-
ferent predicates. Figure 11 shows the average exe-1010

cution time of the selected queries for both DBpedia
versions (the results for LUBM4K and SAFE are pre-
sented in Appendix A). Note that, as shown in the pre-
vious section, the integration into a new HDT results
in a non-negligible time to perform the process. Thus,1015

for HDTcrypt−A, HDTcrypt−B and HDTcrypt−D we fol-
low the strategy where queries are executed locally
in each dictionary and triple component. In contrast,
query execution in HDTcrypt−C would require the D-

17Note that this process slightly differs from the D-union as the
latter only replaces the new IDs in each of the input triple compo-
nent.

18All queries are available at the HDTcrypt repository.

Fernández et al. / Compression and Encryption of RDF Datasets 17

(a) 12 subgraphs (M12) for DBpedia (b) Comparison of 6/9/12 subgraphs (M6, M9 and M12) for DBpedia

Fig. 10. Integration of the dictionary and triple components of M6, M9 and M12 into one HDT per subgraph in DBpedia (average of the
performance in both DBpedia versions).

(a) 6 subgraphs (b) 9 subgraphs

(c) 12 subgraphs

Fig. 11. Performance of Triple Patterns over DBpedia (average of the performance in both DBpedia versions).

union of all the dictionaries to be created, which is1020

then equivalent to integrating HDTcrypt−C into a new
HDT to be queried. As such, the performance time for
HDTcrypt−C is presented as the sum of the time taken to

create one integrated HDT (performed once), as previ-
ously explained in Section 6.4.1, and to subsequently1025

query the integrated HDT (note again that this latter is
equivalent to querying HDTcrypt−A).

18 Fernández et al. / Compression and Encryption of RDF Datasets

Table 7
Summary of performance of different HDTcrypt strategies, where ? ? ? stands for the best performance.

Strategy Comp. & Encryp. Decryp. & Decomp. Querying
Time Size Preconditions Time Time Preconditions

crypt-A ? ? ? None ? ? ? ? None
crypt-B ? ? ? HDT of full graph G ? ? ? ? None
crypt-C ? ? ? ? ? ? HDT of full graph G ? ? ? ? ? Once-off integration to a new HDT
crypt-D ? ? ? ? HDT of full graph G ? ? ? None

Table 8
Influence of the increasing number of subgraphs and duplicates in the performance of different HDTcrypt strategies, where + + + stands for
very positive and −−− for very negative.

Strategy Comp. & Encryp. Decryp. & Decomp. Querying
Time Size Time Time

crypt-A − − − −
crypt-B − + + + − −
crypt-C − + + + − −
crypt-D −−− ++ − −−

Regarding the comparison between our strategies
for partitioning, results show that HDTcrypt−A and
HDTcrypt−B have the best performance for all patterns.1030

This can be attributed to the fact that they benefit from
efficient Bitmap Triples indexes, while HDTcrypt−D

must use Plain Triples (as stated in Section 5.4) that
perform sequential scans to resolve queries. Note that
HDTcrypt−D is only competitive in the case of (?p?)1035

queries (i.e. retrieving all subjects and objects related
to a given predicate), given that most of the triples
are returned and the total time is similar to a full se-
quential scan. In addition, Bitmap Triples indexes are
less efficient for such query types [37]. As previously1040

stated, HDTcrypt−C behaves as HDTcrypt−A but there is
a once-off overhead associated with merging all dictio-
nary and triple components into one HDT (represented
in red in Figure 14).

In turn, it is also worth mentioning that HDTcrypt−B1045

query performance is closer to the baseline HDTcrypt−A

in the scenario with 6 subgraphs. This is mainly due to
the larger number of dictionaries/triples to be queried
in a scenario with a higher number of subgraphs (as
shown in Table 4), which penalises the HDTcrypt−B and1050

HDTcrypt−D methods. In this scenario, HDTcrypt−A is
the most efficient approach for query execution. The
noticeable performance difference against the rest of
the partitioning approaches suggests that the once-off
merging that is required for HDTcrypt−C can be amor-1055

tised if the dataset is meant for intensive querying after
decryption.

6.5. Discussion of the results

Overall, our empirical evaluation showed interesting
results and allows us to draw conclusions on the appli-1060

cability of each strategy. We summarize a ranking of
results for each scenario in Table 7, and we outline the
influence of the increasing number of subgraphs and
duplicates in the data in Table 8, detailed as follows:

– HDTcrypt−C is the most effective technique in1065

terms of compression and decompression times,
as well as compression sizes. In particular, it
achieves additional 26-33% space saving over
the –already compressed– baseline (HDTcrypt−A),
and it is 37-40% faster to compress, and 30%1070

faster to decompress. Note that the impact of
these space and time savings are even more no-
ticeable when dealing with big data. As we no-
ticed, if the original HDT of the full graph is
not available beforehand, then the creation of1075

HDTcrypt−C can take more time than the baseline
(it results in approx. the same time in LUBM and
35-50% slower in DBpedia, with a rich dictionary
of terms), but it keeps the aforementioned notice-
able space savings. In the extreme case of iso-1080

lated subgraphs with few duplicates, as in SAFE,
HDTcrypt−C takes the same space as the baseline
and is still 18% faster to encrypt.

– In contrast, HDTcrypt−C does not allow the user
to directly query the exchanged information. If1085

such a scenario is required, this can be solved
with a once-off conversion from HDTcrypt−C to
HDTcrypt−A. This conversion can be done for any
strategy, but it is indeed faster for HDTcrypt−C .

Fernández et al. / Compression and Encryption of RDF Datasets 19

– HDTcrypt−B and HDTcrypt−D also reduce the size1090

of the baseline (HDTcrypt−A), and can be di-
rectly queried. Results show that HDTcrypt−B and
HDTcrypt−D gain 6-24% and 24-26% space over
the baseline respectively, at the cost of an extra
68% and 23% time for compression (performed1095

only once by the data publisher). In turn, the de-
compression time outperforms the baseline by 7%
and 9% for HDTcrypt−B and HDTcrypt−D respec-
tively. In the extreme case of isolated subgraphs
with few duplicates, as in SAFE, HDTcrypt−B and1100

HDTcrypt−D suffer from a slight space overhead
(15-23%) over the baseline, and non negligible
additional decompressing times.

– The performance of directly querying several
subgraphs in HDTcrypt−B is close to the baseline1105

HDTcrypt−A. Nonetheless, it is penalised at larger
number of partitions (such as 12 in our experi-
ments) and larger number of duplicates (such as
our even distribution in DBpedia). HDTcrypt−D

suffers from the additional problem of perform-1110

ing sequential scans, and is not competitive but
for queries that retrieve large number of results.

– Encryption and decryption times are almost neg-
ligible compared to the compression/decompres-
sion counterparts.1115

– Compression sizes, compression and decompres-
sion times show linear growth with increasing
dataset size.

– In general, an increasing number of subgraphs
leads to more duplicates and more space sav-1120

ings of our novel HDTcrypt−B, HDTcrypt−C and
HDTcrypt−D partitioning approaches over the
baseline HDTcrypt−A. In turn, less data file sizes
result in faster decompression of our novel ap-
proaches. In contrast, the compression time is pe-1125

nalised given that more components have to be
generated. Our experiments also showed that the
number of subgraphs does not have a strong in-
fluence on the query performance, but the skewed
distribution of sizes and the large number of com-1130

ponents (such as in DBpedia) can result in slight
differences between scenarios.

7. Conclusions and Future Work

To date Linked Data publishers have focused on ex-
posing and linking open data, however the Linked Data1135

infrastructure could be extended to cater for the stor-
age and exchange of confidential data. In this paper,

we discussed how HDT compression can be extended
to cater for RDF datasets which needs to be encrypted.
Specifically, we proposed a number of different com-1140

pression strategies that are compatible and demon-
strated the need for careful integration when it comes
to compressed encrypted RDF data. From our evalu-
ation we can see that our proposal HDTcrypt−C out-
performs the other partitioning strategies both in terms1145

of compression and decompression time, and it also
produces the most compact representation, resulting in
26-31% space savings over the –already compressed–
baseline. HDTcrypt−B and HDTcrypt−D also reduce the
size of the baseline significantly. Whereas, when it1150

comes to querying HDTcrypt−A and HDTcrypt−B out-
perform HDTcrypt−C , which incurs additional overhead
as the dictionaries and triples need to be integrated in
order to support querying. Additionally, we note that
compression, decompression and query performance is1155

influenced both by the number of access restricted sub-
graphs and the distribution of triples across subgraphs,
especially in HDTcrypt−D. In future work, we plan to
extend our existing work to cater for querying over en-
crypted compressed data without the need for decryp-1160

tion. Our current work considers basic triple pattern
resolution, while the HDT approach can be used as the
basic engine to resolve full SPARQL queries. Our plan
is to support this possibility on the compressed and en-
crypted data in future work.1165

Acknowledgements

Supported by the European Union’s Horizon 2020
research and innovation programme under grant 731601,
Austrian Science Fund (FWF): M1720-G11, the Aus-
trian Research Promotion Agency (FFG) under grant1170

845638 (SHAPE) and grant 861213 (CitySpin), and
MINECO-AEI/FEDER-UE ETOME-RDFD3:TIN2015-
69951-R. Axel Polleres was supported by the “Distin-
guished Visiting Austrian Chair” program as a visiting
professor hosted at The Europe Center and the Center1175

for Biomedical Research (BMIR) at Stanford Univer-
sity. Special thanks to Ratnesh Sahay for providing the
SAFE dataset.

References

[1] S. Álvarez-García, N. Brisaboa, J.D. Fernández,1180
M.A. Martínez-Prieto and G. Navarro, Compressed Vertical
Partitioning for Efficient RDF Management, Knowl. Inf. Syst.
44(2) (2015), 439–474.

20 Fernández et al. / Compression and Encryption of RDF Datasets

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and
Z. Ives, Dbpedia: A nucleus for a web of open data, in: Proc.1185
of ISWC, 2007.

[3] W. Beek, L. Rietveld, H.R. Bazoobandi, J. Wielemaker and
S. Schlobach, LOD laundromat: a uniform way of publishing
other people’s dirty data, in: Proc. of ISWC, LNCS, Vol. 8796,
Springer, 2014, pp. 213–228.1190

[4] M. Bellare, A. Boldyreva and A. O’Neill, Deterministic
and efficiently searchable encryption, in: Proc. of CRYPTO,
Springer, 2007, pp. 535–552.

[5] D. Brickley, R.V. Guha and (eds.), RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema, W3C Recomm., W3C, 2004.1195
http://www.w3.org/TR/rdf-schema/.

[6] N. Brisaboa, R. Cánovas, F. Claude, M.A. Martínez-Prieto and
G. Navarro, Compressed String Dictionaries, in: Proc. of SEA,
2011, pp. 136–147.

[7] M. Chase and E. Shen, Pattern Matching Encryption., IACR1200
Cryptology ePrint Archive 2014/638 (2014).

[8] L. Costabello, S. Villata, N. Delaforge and F. Gandon, Linked
Data Access Goes Mobile: Context-Aware Authorization for
Graph Stores, in: 5th WWW Workshop on Linked Data on the
Web, 2012.1205

[9] O. Curé, G. Blin, D. Revuz and D.C. Faye, WaterFowl: A Com-
pact, Self-indexed and Inference-Enabled Immutable RDF
Store, in: Proc. of ESWC, LNCS, Vol. 8465, 2014, pp. 302–
316.

[10] R. Curtmola, J. Garay, S. Kamara and R. Ostrovsky, Search-1210
able symmetric encryption: improved definitions and efficient
constructions, in: Proc. of CSS, ACM, 2006, pp. 79–88.

[11] J. Daemen and V. Rijmen, The Design of Rijndael: AES -
The Advanced Encryption Standard, Springer, 2013. ISBN
3540425802.1215

[12] J.D. Fernández, A. Polleres and J. Umbrich, Towards Efficient
Archiving of Dynamic Linked Open Data, in: Proc. of DI-
ACHRON, 2015.

[13] J.D. Fernández, S. Kirrane, A. Polleres and S. Steyskal, Self-
Enforcing Access Control for Encrypted RDF, in: Proc. of1220
ESWC, 2017.

[14] J.D. Fernández, Binary RDF for Scalable Publishing, Exchang-
ing and Consumption in the Web of Data, PhD thesis, Univer-
sity of Valladolid, Spain, 2014.

[15] J.D. Fernández, M.A. Martínez-Prieto, C. Gutiérrez and1225
A. Polleres, Binary RDF Representation for Publication and
Exchange (HDT), W3C Member Submission, 2011. https://
www.w3.org/Submission/HDT/.

[16] J.D. Fernández, M.A. Martínez-Prieto, C. Gutiérrez,
A. Polleres and M. Arias, Binary RDF Representation for1230
Publication and Exchange, J. Web Semant. 19 (2013), 22–41.

[17] J.D. Fernández, M. Arias, M.A. Martínez-Prieto and C. Gutiér-
rez, Management of Big Semantic Data, in: Big Data Comput-
ing, Taylor and Francis/CRC, 2013, Chap. 4.

[18] C. Gentry, Fully homomorphic encryption using ideal lattices.,1235
in: Proc. of STOC, Vol. 9, ACM, 2009, pp. 169–178.

[19] S. Gerbracht, Possibilities to Encrypt an RDF-Graph, in: Proc.
of ICTTA, IEEE, 2008, pp. 1–6.

[20] M. Giereth, On Partial Encryption of RDF-Graphs., in:
Proc. of ISWC, LNCS, Vol. 3729, Springer, 2005, pp. 308–1240
322. ISBN 3-540-29754-5. http://dblp.uni-trier.de/db/conf/
semweb/iswc2005.html#Giereth05.

[21] M. Giereth, PRE4J - A Partial RDF Encryption API for Jena,
ACAD MED 70(3) (2006), 216–223. http://jena.hpl.hp.com/
juc2006/proceedings/giereth/paper.pdf.1245

[22] J.M. Giménez-García, J.D. Fernández and M.A. Martínez-
Prieto, HDT-MR: A Scalable Solution for RDF Compression
with HDT and MapReduce, in: Proc. of ESWC, 2015, pp. 253–
268.

[23] Y. Guo, Z. Pan and J. Heflin, LUBM: A Benchmark for OWL1250
Knowledge Base Systems, JWS 3(2) (2005), 158–182.

[24] C. Gutiérrez, C. Hurtado, A.O. Mendelzon and J. Perez, Foun-
dations of Semantic Web Databases, JCSS 77 (2011), 520–
541.

[25] S. Harris and A. Seaborne, SPARQL 1.1 Query Lan-1255
guage, W3C Recomm., W3C, 2013. http://www.w3.org/TR/
sparql11-query/.

[26] A. Hernández-Illera, M.A. Martínez-Prieto and J.D. Fernán-
dez, Serializing RDF in compressed space, in: Data Compres-
sion Conference (DCC), 2015, IEEE, 2015, pp. 363–372.1260

[27] A. Hogan, M. Arenas, A. Mallea and A. Polleres, Everything
You Always Wanted to Know About Blank Nodes, Journal of
Web Semantics (JWS) (2014), 42–69.

[28] A. Joshi, P. Hitzler and G. Dong, Logical Linked Data Com-
pression, in: Proc. of ESWC, LNCS, Vol. 7882, Springer, 2013,1265
pp. 170–184.

[29] L. Kagal, T. Finin and A. Joshi, A Policy Based Approach to
Security for the Semantic Web, in: Proc. of ISWC, 2003.

[30] A. Kasten, A. Scherp, F. Armknecht and M. Krause, To-
wards search on encrypted graph data, in: Proc. of PrivOn’14,1270
Vol. 1121, CEUR-WS.org, 2013, pp. 46–57.

[31] J. Katz, A. Sahai and B. Waters, Predicate encryption support-
ing disjunctions, polynomial equations, and inner products, J.
Cryptology (2013), 1–34.

[32] Y. Khan, M. Saleem, M. Mehdi, A. Hogan, Q. Mehmood,1275
D. Rebholz-Schuhmann and R. Sahay, SAFE: SPARQL Fed-
eration over RDF Data Cubes with Access Control, Journal of
biomedical semantics 8(1) (2017), 5.

[33] P. Kolari, L. Ding, G. Shashidhara, A. Joshi, T. Finin and L. Ka-
gal, Enhancing Web Privacy Protection through Declarative1280
Policies, in: Proc. of POLICY, 2005.

[34] V. Kolovski, J. Hendler and B. Parsia, Analyzing Web Access
Control Policies, in: Proc. of WWW, 2007.

[35] S. Maneth and F. Peternek, Grammar-based graph compres-
sion, Information Systems 76 (2018), 19–45, ISSN 0306-4379.1285

[36] F. Manola and R. Miller, RDF Primer, W3C Recomm., 2004,
www.w3.org/TR/rdf-primer/.

[37] M.A. Martínez-Prieto, M. Arias and J.D. Fernández, Exchange
and Consumption of Huge RDF Data, in: Proc. of ESWC,
LNCS, Vol. 7295, Springer, 2012, pp. 437–452.1290

[38] M.A. Martínez-Prieto, J.D. Fernández and R. Cánovas, Query-
ing RDF Dictionaries in Compressed Space, SIGAPP Appl.
Comput. Rev. 12(2) (2012), 64–77.

[39] J.Z. Pan, J.M. Gómez-Pérez, Y. Ren, H. Wu and M. Zhu,
SSP: Compressing RDF data by Summarisation, Serialisa-1295
tion and Predictive Encoding, Technical Report, K-Drive,
2014. http://www.kdrive-project.eu/wp-content/uploads/2014/
06/WP3-TR2-2014_SSP.pdf.

[40] S. Pearson and M.C. Mont, Sticky policies: an approach for
managing privacy across multiple parties, Computer 44(9)1300
(2011), 60–68.

http://www.w3.org/TR/rdf-schema/
https://www.w3.org/Submission/HDT/
https://www.w3.org/Submission/HDT/
https://www.w3.org/Submission/HDT/
http://dblp.uni-trier.de/db/conf/semweb/iswc2005.html#Giereth05
http://dblp.uni-trier.de/db/conf/semweb/iswc2005.html#Giereth05
http://dblp.uni-trier.de/db/conf/semweb/iswc2005.html#Giereth05
http://jena.hpl.hp.com/juc2006/proceedings/giereth/paper.pdf
http://jena.hpl.hp.com/juc2006/proceedings/giereth/paper.pdf
http://jena.hpl.hp.com/juc2006/proceedings/giereth/paper.pdf
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.kdrive-project.eu/wp-content/uploads/2014/06/WP3-TR2-2014_SSP.pdf
http://www.kdrive-project.eu/wp-content/uploads/2014/06/WP3-TR2-2014_SSP.pdf
http://www.kdrive-project.eu/wp-content/uploads/2014/06/WP3-TR2-2014_SSP.pdf

Fernández et al. / Compression and Encryption of RDF Datasets 21

[41] R. Pichler, A. Polleres, S. Skritek and S. Woltran, Complex-
ity of redundancy detection on RDF graphs in the presence of
rules, constraints, and queries, SWJ 4(4) (2013).

[42] R. Popa, N. Zeldovich and H. Balakrishnan, Cryptdb: A1305
Practical Encrypted Relational dbms., Technical Report,
MIT-CSAIL-TR-2011-005, 2011. http://hdl.handle.net/1721.
1/60876.

[43] E. Rissanen, Extensible access control markup language
(xacml) version 3.0, OASIS Standard, available at http://docs.1310
oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html, OA-
SIS Committee Specification, 2013.

[44] O. Sacco, A. Passant and S. Decker, An Access Control Frame-
work for the Web of Data, in: Proc. TrustCom, 2011, pp. 456–
463.1315

[45] S. Steyskal and S. Kirrane, If you can’t enforce it, contract
it: Enforceability in Policy-Driven (Linked) Data Markets, in:
Proc. of the Posters and Demos Track SEMANTiCS2015, 2015.

[46] Q. Tang, On Using Encryption Techniques to Enhance Sticky
Policies Enforcement, Technical Report, CTIT University of1320
Twente, 2008. http://eprints.eemcs.utwente.nl/14262/.

[47] H. Van de Sompel, R. Sanderson, M.L. Nelson, L.L. Bal-
akireva, H. Shankar and S. Ainsworth, An HTTP-based ver-
sioning mechanism for linked data, in: Proc. of LDOW, 2010.

http://hdl.handle.net/1721.1/60876
http://hdl.handle.net/1721.1/60876
http://hdl.handle.net/1721.1/60876
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.html
http://eprints.eemcs.utwente.nl/14262/

22 Fernández et al. / Compression and Encryption of RDF Datasets

Appendix A. Additional Performance Results1325

This appendix comprises the performance results for all datasets. See Section 6 for a description of the corpus
and the complete discussion of results.

A.1. Integrating dictionary and triple components into a new HDT

Figure 12 shows the time (in seconds) to integrate the dictionary and triples components of half of the partitions
(M6, M9 and M12 as explained in Section 6) of LUBM into a single HDT per subgraph. We present the time1330

to integrate the dictionary and triple components of M12 into the corresponding subgraphs (Figure 12 a), and a
comparison in terms of number of subgraphs (Figure 10 b). Figure 13 shows the integration of the SAFE dataset for
the two scenarios, M8

L (left) and M8
S (right).

(a) 12 subgraphs (M12) for LUBM (b) Comparison of 6/9/12 subgraphs (M6, M9 and M12) for LUBM4K

Fig. 12. Integration of the dictionary and triple components of M6, M9 and M12 into one HDT per subgraph.

(a) M8
L (left) and M8

S for SAFE

Fig. 13. Integration of the dictionary and triple components of M8
S and M8

L into one HDT per subgraph.

A.2. Querying Compressed Data

Figures 14 and 15 show the performance of the selected Triple Patterns over LUBM4K and SAFE, respectively.1335

Results for smaller datasets of LUBM4K follow the same trends. As in the case of DBpedia, presented in Section 6,
results show that HDTcrypt−A and HDTcrypt−B have the best performance for all patterns, outperforming its results
when few triples are returned, such as (spo) and (sp?) queries. Note that, although HDTcrypt−B has to query more
dictionaries and triple components than HDTcrypt−A, the number of total components is very limited in LUBM (the

Fernández et al. / Compression and Encryption of RDF Datasets 23

number of components is shown in Table 4) and each component is smaller in HDTcrypt−B than in HDTcrypt−A.1340

For instance, the resolution of a (sp?) pattern using HDTcrypt−A for M12 in LUBM4K (see performance results in
Figure 14 a) has to query 6 large triple components (one per subgraph), where duplicated triples can be present. In
contrast, for HDTcrypt−B we could verify that there are 37 triple components in M12, but they are smaller and triples
do not overlap. As for SAFE, note that the dataset is particularly small and has few overlapping triples, hence the
techniques performance similarly, except for the aforementioned additional overheads in HDTcrypt−D.1345

(a) 6 subgraphs (b) 9 subgraphs

(c) 12 subgraphs

Fig. 14. Performance of Triple Patterns over LUBM4K.

Finally, Figure 16 presents the results of a particular scenario designed to evaluate the potential influence of the
number of graphs in a fair manner. Note that, in the previous use case, the number of results could differ in each
subgraph as M6, M9 and M12 include different subgraphs (e.g. ResearchAssistant is included as G6 in M12 but it
is present neither in M9 nor M6). This fact hampers a fair comparison of the query performance, given that the
number of results could differ. This situation is even worse in DBpedia, where each subgraph contains randomly1350

selected triples. Thus, for this particular comparison, we select the University subgraph in LUBM, which is present
in M12 (as G11 in Table 2), M9 (as G8) and M6 (as G6). We then generate 30 random triple pattern queries of
each type (similarly to the previous scenario) and perform such queries on the aforementioned University subgraph.
Figure 16 reports the total performance of all queries for LUBM4K (results are similar for smaller sizes). Note
that HDTcrypt−A reports the same time in all cases and they compress the same subgraph. In general, results are in1355

line with the previous observations regarding the influence of subgraphs for decompression. That is, in general, 12
subgraphs is the fastest approach, whereas the larger size of the files and their duplication ratio place also a burden
on the query performance of 9 subgraphs. Nonetheless, we can find a minor difference in HDTcrypt−D, where the

24 Fernández et al. / Compression and Encryption of RDF Datasets

(a) 8 subgraphs, M8
L (b) 8 subgraphs, M8

S

Fig. 15. Performance of Triple Patterns over SAFE.

case of 6 subgraphs reports the worst performance. A closer look at the generated dictionary and triple components
for the particular University subgraph allows us to conclude that this particular case produced a skewed distribution1360

of sizes in 6 subgraphs. For example, the largest dictionary component takes 75MB, whereas it is only 27MB and
12MB for 9 and 12 subgraphs respectively. Note that although this skewed distribution is also present in DBpedia,
in practice, HDTcrypt−D can be slower with 12 subgraphs than with 6 subgraphs, given that the much larger number
of dictionary and triple components in 12 subgraphs (due to the duplication ratio) are the predominant factor.

Fig. 16. Performance of all Triple Patterns over LUBM4K in the University subgraph.

	Introduction
	Related Work
	Preliminaries
	HDT Dictionary Component D
	HDT Triple Component T
	HDT Header Component H

	HDTcrypt: Extending HDT for Encryption
	Representing access-restricted RDF datasets
	HDTcrypt encoding
	Integration operations
	D-union
	D-merge

	Efficient Partitioning HDTcrypt
	HDTcrypt-A: A Dictionary and Triples per Named Graph in DS
	HDTcrypt-B: Extracting non-overlapping Triples in DS'
	HDTcrypt-C: Extracting non-overlapping Dictionaries in DS'
	HDTcrypt-D: Extracting non-overlapping Dictionaries and Triples in DS'

	Evaluation
	Experimental Setup
	Compression and Encryption
	Decryption and Decompression
	Querying Compressed Data
	Integrating dictionary and triple components into a new HDT
	Query Performance

	Discussion of the results

	Conclusions and Future Work
	Acknowledgements
	References
	Appendix A. Additional Performance Results
	Integrating dictionary and triple components into a new HDT
	Querying Compressed Data

