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Abstract. In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model
ConvKB advances state-of-the-art models by employing a convolutional neural network, so that it can capture global relationships
and transitional characteristics between entities and relations in knowledge bases. In ConvKB, each triple (head entity, relation,
tail entity) is represented as a 3-column matrix where each column vector represents a triple element. This 3-column matrix is
then fed to a convolution layer where multiple filters are operated on the matrix to generate different feature maps. These feature
maps are then concatenated into a single feature vector representing the input triple. The feature vector is multiplied with a weight
vector via a dot product to return a score. This score is then used to predict whether the triple is valid or not. Experiments show
that ConvKB obtains better link prediction and triple classification results than previous state-of-the-art models on benchmark
datasets WN18RR, FB15k-237, WN11 and FB13. We further apply our ConvKB to a search personalization problem which aims
to tailor the search results to each specific user based on the user’s personal interests and preferences. In particular, we model
the potential relationship between the submitted query, the user and the search result (i.e., document) as a triple (query, user,
document) on which the ConvKB is able to work. Experimental results on query logs from a commercial web search engine
show that ConvKB achieves better performances than the standard ranker as well as strong search personalization baselines.

Keywords: Knowledge base completion, Convolutional neural network, ConvKB, Link prediction, Triple classification, Search
personalization

1. Introduction applications such as semantic searching and ranking

[21, 38, 60], question answering [17, 66] and ma-

Large-scale knowledge bases (KBs), such as YAGO chine reading [61]. However, the KBs are still incom-

[41], Freebase [3] and DBpedia [25], are usually plete, i.e., missing a lot of valid triples [40, 55]. There-

databases of triples representing the relationships be- fore, much research work has been devoted towards

tween entities in the form of fact (head entity, relation, knowledge base completion or link prediction to pre-
tail enti.ry) denoted as (h, 1, 1), e.g., (Melbourne., cityOf, dict whether a triple (A, 1, t) is valid or not [4].

Australia). These KBs are useful resources in many Many embedding models have proposed to learn

vector or matrix representations for entities and rela-

*Corresponding author. E-mail: dai.nguyen @monash.edu. tions, obtaining state-of-the-art (SOTA) link prediction
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results [35]. In these embedding models, valid triples
obtain lower implausibility scores than invalid triples.
Let us take the well-known embedding model TransE
[5] as an example. In TransE, entities and relations
are represented by k-dimensional vector embeddings.
TransE employs a transitional characteristic to model
relationships between entities, in which it assumes that
if (h, 1, t) is a valid fact, the embedding of head entity
h plus the embedding of relation r should be close to
the embedding of tail entity ¢, i.e. v, + v, = v, (here,
vi, v, and v, are embeddings of A, r and ¢ respectively).
That is, a TransE score ||v, + v, — v,||, of the valid
triple (h, 1 t) should be close to 0 and smaller than
a score ||vy + v — vy||, of an invalid triple (h’, 7,
t’). The transitional characteristic in TransE also im-
plies the global relationships among same dimensional
entries of v, v, and v;. Other transition-based mod-
els extend TransE to use additional projection vectors
or matrices to translate head and tail embeddings into
the relation vector space, such as: TransH [54], TransR
[27], TransD [19], STransE [33] and TranSparse [20].
Furthermore, DISTMULT [62] and ComplEx [48] use
a tri-linear dot product to compute the score for each
triple. Recent research has shown that using relation
paths between entities in the KBs could help to get
contextual information for improving KB completion
performance [16, 26, 29, 32, 47]. See other embedding
models for KB completion in Nguyen [31].

Recently, convolutional neural networks (CNNs),
originally designed for computer vision [24], have sig-
nificantly received research attention in natural lan-
guage processing [9, 22]. CNN learns non-linear fea-
tures to capture complex relationships with a remark-
ably less number of parameters compared to fully
connected neural networks. Inspired from the suc-
cess in computer vision, Dettmers et al. [10] proposed
ConvE—the first model applying CNN for KB com-
pletion. In ConvE, only v, and v, are reshaped and then
concatenated into an input matrix which is fed to the
convolution layer. Different filters of the same 3 x 3
shape are operated over the input matrix to output fea-
ture map tensors. These feature map tensors are then
vectorized and mapped into a vector via a linear trans-
formation. Then this vector is computed with v, via a
dot product to return a score for (A, 1 t). See a formal
definition of the ConvE score function in Table 1. It is
worth noting that ConvE focuses on the local relation-
ships among different dimensional entries in each of v;,
or v,, i.e., ConvE does not observe the global relation-
ships among same dimensional entries of an embed-
ding triple (vy, v,, v;), so that ConvE ignores the transi-

tional characteristic in transition-based models, which
is one of the most useful intuitions for KB completion.
In this paper, we present ConvKB—a novel embed-
ding model which proposes a novel use of CNN for
the KB completion task. In ConvKB, each entity or re-
lation is associated with an unique k-dimensional em-
bedding. Let v;, v, and v, denote k-dimensional em-
beddings of A, r and ¢, respectively. For each triple (h,
1, t), the corresponding triple of k-dimensional embed-
dings (v, v,, v,) is represented as a k X 3 input matrix.
This input matrix is fed to the convolution layer where
different filters of the same 1 x 3 shape are used to ex-
tract the global relationships among same dimensional
entries of the embedding triple. That is, these filters are
repeatedly operated over every row of the input matrix
to produce different feature maps. The feature maps
are concatenated into a single feature vector which is
then computed with a weight vector via a dot product
to produce a score for the triple (h, 7 t). This score is
used to infer whether the triple (4, 1, ¢) is valid or not.
Our contributions in this paper are as follows:

— We introduce ConvKB—a novel embedding model
of entities and relationships for knowledge base
completion. ConvKB models the relationships
among same dimensional entries of the embed-
dings. This implies that ConvKB generalizes tran-
sitional characteristics in transition-based embed-
ding models.

— We evaluate ConvKB on two benchmark datasets
WNI8RR [10] and FB15k-237 [45], and show
that ConvKB obtains better link prediction perfor-
mance than previous SOTA embedding models.
In particular, ConvKB obtains the best mean rank
and the highest Hits@10 on WN18RR, and pro-
duces the highest mean reciprocal rank and high-
est Hits@10 on FB15k-237.

— We also evaluate ConvKB for triple classification
on two benchmark datasets WN11 and FB13 [40].
The goal is to classify whether a given triple is
valid or not. ConvKB also does better than previ-
ous SOTA models, obtaining the best and second
best accuracies on WN11 and FB13, respectively.

— We adapt ConvKB to search personalization
where the search results for a query from a user
are driven toward the personal needs of that user
by exploiting historical interactions (e.g., submit-
ted queries, clicked documents) between the user
and the system [1, 18, 42, 43, 56]. Our general
aim is to re-rank the documents returned by the
search system in such a way that the more rel-
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evant documents are ranked higher. More spe-
cially, we train our ConvKB to measure a score
for each triple (query, user, document), and to
reward higher plausibility scores for more rele-
vant documents. We then verify this application
of ConvKB on the query logs of a commercial
web search engine. Experimental results show
that ConvKB significantly improves the ranking
quality over the strong baselines.

The paper is organized as follows. We provide re-
lated work in Section 2. We then describe our proposed
model ConvKB in Section 3. We evaluate and compare
ConvKB with previous models on the link prediction
and triple classification tasks in Section 4. The appli-
cation of ConvKB to search personalization is intro-
duced in Section 5. The conclusion is finally presented
in Section 6.

2. Related work

TransH [54] extends TransE to allow entities play-
ing different roles in different relations. Each relation
r is associated with a relation-specific hyperplane w,,
and then the embeddings of / and ¢ are projected to this
hyperplane. The TransH score function is defined as:

fTransH (h, r, t) = thl +v,— vtl”[:
where v, = v, — wlv,w,andv,| =v, — w/v,w, are
the projected embeddings of z and  on w, respectively.

TransR [27] extends TransH to perform projections
where each relation r is associated with a projection
matrix W, which is used to map entity embeddings
into the vector space of relations:

fTransR (h» r, t) = ||erh + Vy — ert”p

Both TransH and TransR use only one vector or ma-
trix to perform projections, ignoring the fact that head
and tail entities have different properties to each re-
lation. Therefore, head and tail entities should be as-
sociated with their own projection vectors or ma-
trices as presented in direct extensions of TransH
and TransR such as TransD [19], STransE [33], Ipp-
TransD [65], TransR-FT [12], TranSparse [20] and
ITransF[59]. The transitional characteristics in these
transition-based models can be intuitively defined as:
if (h, r,t) is a valid fact, the projected embedding of h
plus the embedding of r is close to the projected em-
bedding of ¢. This reflects global relationships among
same dimensional entries of projected entity embed-
dings with relation embedding. In our ConvKB model,

Table 1

The score functions in previous models and in our ConvKB model.
Il denotes the p-norm of v. (vj,,v,,v:) = 3, v, vV, denotes a
tri-linear dot product. ¥ = Re(v) — iIm(v) with Re(v) and Im(v)
corresponding to the real and imaginary parts of the complex-valued
vector v, and ¢ denoting the square root of -1. In addition, g denotes
a non-linear function. * denotes a convolution operator. - denotes a
dot product. concat denotes a concatenation operator. ¥ denotes a 2D
reshaping of v. £ denotes a set of filters.

Model ‘ The score function f (h, 1, 1)

TransE Ve + v - vl

DISTMULT | {(v;,v,,v;)

ComplEx Re ((vn, V1, ¥1))

ConvE g (vec (g (concat (v, v,) * Q)) W) - v,
Our ConvKB | concat (g ([vi, v,,vi] * ) - W

each filter with the shape of 1 x 3 is responsible for
mapping head, tail and relation embeddings to the rela-
tion vector space. So ConvKB can generalize the tran-
sitional characteristics in the transition-based models.
DISTMULT [62] and ComplEx [48] use a tri-linear
dot product to compute the score for each triple. See
formal definitions of DISTMULT and ComplEx in Ta-
ble 1. In addition, NTN [40] uses a bilinear tensor
operator into a neural network to compute the triple
score. Recent approaches also show that using rela-
tion paths between entities in the KBs could help
to get contextual information for improving the KB
completion performance [16, 26, 32, 47]. For exam-
ple, PTransE-ADD [26] and TransE-cOMP [16] rep-
resent each path by summing up the embeddings of
all relations in the path, while Bilinear-CcOMP [16] and
PRUNED-PATHS [47] represent each relation in the
path by a matrix and directly use matrix multiplication
to modeling relation path. Some approaches also incor-
porate textual mentions derived from a large external
corpus for improving the performance [14, 45, 46, 53].
See other methods for learning from KBs in [31, 35].

3. Proposed ConvKB model

A knowledge base G is a collection of valid factual
triples in the form of (head entity, relation, tail en-
tity) denoted as (h,r,t) such that h,t € Eandr € R
where £ is a set of entities and R is a set of relations.
Embedding models aim to define a score function f
giving an implausibility score for each triple (h,r,1)
such that valid triples receive lower scores than invalid
triples. Table 1 presents score functions in previous
SOTA models.
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Figure 1. Process involved in the proposed ConvKB (with k = 4 and 7 = 3 for illustration purpose).

We denote the dimensionality of embeddings by k
such that each embedding triple (v, v,, v,) are viewed
as a matrix A = [v;,v,,v,] € R¥3. And A;, € R*3
denotes the i-th row of A. Suppose that we use a fil-
ter o € R*3 operated on the convolution layer. w
is not only aimed to examine the global relationships
between same dimensional entries of the embedding
triple (v, v,, v;), but also to generalize the transitional
characteristics in the transition-based models. w is re-
peatedly operated over every row of A to finally gen-
erate a feature map v = [vy, vy, ..., vx] € RF as:

vi=g(w-A;.+b)

where b € R is a bias term and g is a non-linear acti-
vation function such as ReLU.

Our ConvKB uses different filters € R'*3 to gener-
ate different feature maps. Let €2 and 7 denote the set
of filters and the number of filters, respectively, i.e. T =
|€2|, resulting in 7 feature maps. These 7 feature maps
are concatenated into a single vector € R™>1 which is
then computed with a weight vector w € R™>! via a
dot product to give a score for the triple (A, r, t). Figure
1 illustrates the computation process in ConvKB.

Formally, we define the ConvKB score function f as
follows:

Sf(h,r,t) = concat (g ([vi, v, vi] * Q)) - W

where € and w are shared parameters, independent of
h, r and ¢t; * denotes a convolution operator; and concat
denotes a concatenation operator.

If we only use one filter w (i.e. using 7 = 1) with
a fixed bias term b = 0 and the activation function
g(x) = |x| or g(x) = x% and fix 0 = [1,1,—1]
and w = 1 during training, ConvKB reduces to the
plain TransE model [5]. So our ConvKB model can
be viewed as an extension of TransE to further model
global relationships.

We use the Adam optimizer [23] to train ConvKB
by minimizing the loss function £ [48] with L, regu-
larization on the weight vector w of the model:

L= Z log (1 + exp (l(h’m) - f(h,r, t)))
(hr)e{gUg’}

A
+ Zlwl3
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Input: knowledge base G, set of entities £, set of relations R, set of filters €2, weight vector w, batch size
batch_size, Lo-regularizer A, boolean init_filter_normal, pre-trained entity and relation k-dimensional

embeddings produced by TransE [5].
// Initialize variables.
for e € £ do

| v. < embeddings_by_TransE(e)

for r € R do
| v, < embeddings_by_TransE(r)

// Using a truncated normal distribution with init_filter_normal = True while
using [0.1,0.1,—0.1] with init_filter_normal = False.

for w € Q2 do
| Initialize(w, init_filter_normal)

V6 V6
VX941 (/kx[Q[+1
// Optimization step.
for epoch = 1, 2, ..., 200 do
fori=1,2,. 191

** batch_size

w < uniform (—

+1do

invalid_batch = {}
for (h,r,t) € vaild_batch do

batch < vaild_batch U invalid_batch
for (h,r,1) € batch do

if (h,r,1) is valid then
| Ly =1

else
L Ly = —1

Sample a vaild_batch of batch_size triples (h, r, t) from G.

| invalid_batch « invalid_batch U sample_invalid_triple(%, r, 1)

Compute f (h,r,t) = concat (g ([vy, v, v/] x)) - w

Compute gradient V Lyucn Wor.t batch: V35, coaen 108 (14 exp (s - f (B 11))) + 5[|W]13
| Update entity and relation embeddings, weight vector w and filters w.r.t V Lpgcn.

Algorithm 1: Parameter optimization for ConvKB in the KB completion.

. . 1 for (h,r,t) € G
in which, [, ;) = { —1for (h,r,t) € G

here G’ is a collection of invalid triples generated by
corrupting valid triples in G. We use the common
Bernoulli trick [27, 54] to generate the head or tail en-
tities for invalid triples. For each relation r, let n;, de-
note the averaged number of head entities per tail en-
tity whilst 7, denote the averaged number of tail enti-
ties per head entity. Given a valid triple (h,r,t) of re-
lation r, we then generate a new head entity 4’ with

probability nrl’m to form an invalid triple (%', r,t) and

a new tail entity ¢/ with probability mi—’m to form an
invalid triple (h, r,t"). Algorithm 1 details the learning

process of our ConvKB model.

4. KB completion evaluation

We evaluate ConvKB on two KB completion tasks:
the link prediction task [S] and the triple classifica-
tion task [40]. We use benchmark datasets WN18RR
[10] and FB15k-237 [45] for link prediction, and
datasets FB13 and WN11 [40] for triple classification.
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Table 2

Statistics of the experimental datasets. In both WN11 and FB13,
each validation and test set also contains the same number of incor-
rect triples as the number of correct triples. It is to note that the FB13
test set is filtered to only contain 7 relations taken from 13 relations
appearing in the FB13 training set.

Dataset |E| | R| #Triples in train/valid/test

FB15k-237 | 14,541 237 272,115 17,535 20,466
WNI18RR |40,943 11 86,835 3,034 3,134

FB13 75,043 13 316,232 5908 23,733
WN11 38,696 11 112,581 2,609 10,544

WN18RR and FB15k-237 are subsets of two common
datasets WN18 and FB15k [5], respectively. As noted
by Toutanova and Chen [45], WN18 and FB15k are
easy because they contain many reversible relations.
So knowing relations are reversible allows us to easily
predict the majority of test triples, e.g. state-of-the-art
results on both WN18 and FB15k are obtained by us-
ing a simple reversal rule as shown in Dettmers et al.
[10]. Therefore, WN18RR and FB15k-237 are created
to not suffer from this reversible relation problem in
WN18 and FB 15k, for which the knowledge base com-
pletion task is more realistic. It is also worth noting that
when constructing datasets FB13 and WN11, Socher
et al. [40] filtered out triples from the test set if either
or both of their head and tail entities also appear in the
training set in a different relation type or order. Table
2 gives statistics of the experimental datasets.

4.1. Link prediction

4.1.1. Task description

In the KB completion or link prediction task [5], the
purpose is to predict a missing entity given a relation
and another entity, i.e, inferring & given (r,7) or infer-
ring ¢ given (h, r). The results are calculated based on
ranking the scores produced by the score function f on
test triples. Following Bordes et al. [5], for each valid
test triple (A, r, 1), we replace either & or ¢ by each of
other entities in £ to create a set of corrupted triples.
We use the “Filtered” setting protocol [5], i.e., not tak-
ing any corrupted triples that appear in the KB into
accounts. We rank the valid test triple and corrupted
triples in ascending order of their scores.

We employ three common evaluation metrics: mean
rank (MR), mean reciprocal rank (MRR), and Hits@ 10
(i.e., the proportion of the valid test triples ranking in
top 10 predictions). Lower MR, higher MRR or higher
Hits @10 indicate better performance. We report the fi-

nal scores on the test set for the model obtaining the
highest Hits@10 score on the validation set.!

4.1.2. Training protocol

We use the common Bernoulli trick [27, 54] to
generate the head or tail entities when sampling in-
valid triples. We also use entity and relation embed-
dings produced by TransE to initialize entity and re-
lation embeddings in ConvKB.? We train TransE us-
ing a grid search of hyper-parameters: the dimension-
ality of embeddings k € {50,100}, SGD learning rate
€ {le=*,5e74,1e73,5¢73}, [;-norm or l,-norm, and
margin y € {1,3,5,7}. The highest Hits@10 scores
on the validation set are when using /;-norm, learning
rate at 5e~ 4,y = 5 and k = 50 for WN18RR, and using
[;-norm, learning rate at 5e~4, vy =1 and k = 100 for
FB15k-237.

To learn our model parameters including entity and
relation embeddings, filters w and the weight vector w,
we use Adam [23] and select its initial learning rate
€ {5e75,1e7°,5¢7°,1e7*,5¢*}. We use ReLU as
the activation function g. We fix the batch size at 256
and set the Ly-regularizer A at 0.001 in our objective
function. The filters w are initialized by a truncated
normal distribution or by [0.1, 0.1, —0.1]. We select the
number of filters T € {50, 100, 200, 400, 500}. We run
ConvKB up to 200 epochs and use outputs from the
last epoch for evaluation. The highest Hits@ 10 scores
on the validation set are obtained when using k = 50,
7 = 500, the truncated normal distribution for filter
initialization, and the initial learning rate at le=* on
WNI18RR; and k = 100, 7 = 50, [0.1,0.1, —0.1] for
filter initialization, and the initial learning rate at 5e~6
on FB15k-237.

4.1.3. Main experimental results

Table 3 compares the experimental results of our
ConvKB model with previous published results, using
the same experimental setup. Table 3 shows that Con-
vKB obtains the best MR and highest Hits@ 10 scores
on WN18RR and also the highest MRR and Hits@ 10
scores on FB15k-237.

ConvKB does better than the closely related model
TransE on both experimental datasets, especially on
FB15k-237 where ConvKB gains significant improve-

'Some previous works also reported Hits@ 1. However, the for-
mulas of MRR and Hits@ 1 show a strong correlation between these
two scores. So using Hits@1 does not really reveal any additional
information for this task.

2We employ a TransE implementation available at: https://
github.com/datquocnguyen/STransE
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Table 3

Link prediction results on WN18RR and FB15k-237 test sets. MRR and H@ 10 denote the mean reciprocal rank and Hits@ 10 (in %), respectively.
[*]: Results are taken from Dettmers et al. [10] where Hits@10 and MRR are rounded to 2 decimal places on WNI18RR. The last 4 rows
report results of models that exploit information about relation paths (KBzgy, R-GCN+ and Neural LP) or textual mentions derived from a large
external corpus (Node+LinkFeat). The best score is in bold, while the second best score is in underline.

WNI18RR FB15k-237
Method
MR MRR H@10 | MR MRR H@I10

IRN [39] - - - 211 - 46.4

KBGAN [7] - 0.213 48.1 - 0.278 45.8

DISTMULT [62] [*] 5110 043 49 254  0.241 41.9

ComplEx [48] [*] 5261 044 51 339 0.247 428

ConvE [10] 5277 046 48 246 0316 49.1

TransE [5] (our results) | 3384 0.226 50.1 347 0.294 46.5

Our ConvKB model 2554 0248 525 257 0396 51.7

KB rn [14] - - - 209 0.309 49.3

R-GCN+ [37] - - - - 0.249 41.7

Neural LP [63] - - - - 0.240 36.2

Node+LinkFeat [45] - - - - 0.293 46.2

Predicting head Predicting tail
100 ‘ ‘ 100 : ‘ ‘
00 TransE [ 0 ConvKB ‘ 00 TransE[] 0 ConvKB o«
80| 1 s0f ] i
o 6 2z EF . s 60f  Za 20
9 T o2 M i
T 40| S 1E 40f .
20 - . B 20 - ~ B
0 T T ﬂ\ T 0 T m\ﬂ T T
1-1 1-M M-1 M-M 1-1 1-M M-1 M-M

Figure 2. Hits@10 (in %) on the FB15k-237 test set w.r.t each relation category.

ments of 347 — 257 = 90 in MR (which is about
26% relative improvement) and 0.396 — 0.294
0.102 in MRR (which is 34+% relative improvement),
and also obtains 51.7% — 46.5% 5.2% absolute
improvement in Hits@10. Previous work shows that
TransE obtains very competitive results [26, 32, 36,
48]. However, when comparing the CNN-based em-
bedding model ConvE with other embedding models,
Dettmers et al. [10] did not experiment with TransE.
We reconfirm previous findings that TransE in fact is a
strong baseline model, e.g., TransE obtains better MR
and Hits@ 10 than ConvE on WN18RR.

ConvKB obtains better scores than ConvE on both
datasets (except MRR on WNI18RR and MR on
FB15k-237), thus showing the usefulness of taking
transitional characteristics into accounts. In particu-
lar, on FB15k-237, ConvKB achieves improvements of
0.394 — 0.316 = 0.078 in MRR (which is about 25%
relative improvement) and 51.7% — 49.1% = 2.6%
in Hits@ 10, while both ConvKB and ConvE produce
similar MR scores. ConvKB also obtains 25% rela-
tively higher MRR score than the relation path-based
model KB zy on FB15k-237. In addition, ConvKB
gives better Hits@10 than KB gy, however, KB gy



8 D.Q. Nguyen et al. / A CNN-based Model for Knowledge Base Completion and Its Application to Search Personalization

50
[T TransE D0 ConvKB ||~ %Triples in Test —e— %Triples in Train ’

33
g8

=
5 &

Hits@10

%Triples w.r.t each relation

00 TransEDD ConvKB |[—— %Triples in Test —e— %Triples in Train |

0.5

30.90.1

/- 40

30

=7 043

o
2
=
2%

0.4

0.29

] 0.3

] 0.28

20

] 0.21
%Triples w.r.t each relation

FIERE=1 e 10
- S
.6[}3.6 & - iﬂ
0.7
T T ’_‘\
. & & &
& & T 3 S
b & & & S
& & o &S
$ & F
Y
& D
& &

Figure 3. Hits@10 and MRR on the WN18RR test set w.r.t each relation. The right y-axis is the percentage of triples corresponding to relations.

gives better MR than ConvKB. We plan to extend Con-
vKB with relation path information to obtain better
link prediction performance in future work.

Following Bordes et al. [5], we explore the Hits@ 10
results on the FB15k-237 test set corresponding to the
relation categories. For each relation r, we calculate
the averaged number 77, of heads per tail and the av-
eraged number 7, of tails per head. If 7, <1.5 and
n; <1.5, r is classified as one-to-one (1-1). If n, <1.5
and n, >1.5, r is classified as one-to-many (1-M). If
n, =1.5and i, <1.5, ris classified as many-to-one (M-
1).If n, >1.5 and i, >1.5, r is classified as many-to-
many (M-M). We find that 17, 26, 81 and 113 relations
are classified as 1-1, 1-M, M-1 and M-M, respectively.
And 0.9%, 6.3%, 20.5% and 72.3% of the FB15k-237
test triples have their relations classified as 1-1, 1-M,
M-1 and M-M, respectively.

Figure 2 shows the Hits@ 10 results for separately
predicting head and tail entities on the FB15k-237 test
set with respect to (w.r.t.) each relation category. We
find that ConvKB is outperformed by TransE in 1-1 as
1-1 relations are relatively rare. We also find that both
TransE and ConvKB are easier to predict entities on
the relational “side 1” triples (i.e., predicting head en-
tities in 1-1 and 1-M, and predicting tail entities in 1-
1 and M-1). However, TransE is not good at predict-
ing head entities in M-1 and M-M where TransE ob-
tains the Hits@10 scores of 9.9% and 39.8%, while
ConvKB is better in achieving the Hits@ 10 scores of
38.6% and 47.5%, respectively. A reason is probably
that ConvKB could bring a generalization of project-
ing the embedding triples into the vector space of rela-
tions rather than TransE. Hence, this helps ConvKB to
better modeling M-1 and M-M relations.

For a more concrete example, Figure 3 presents
Hits@10 and MRR scores on WN18RR w.r.t. each re-
lation type. member_meronym and hypernym are 1-M
and M-1 relations, respectively. We find that TransE
encounters a difficulty when dealing with these rela-
tion types. E.g., for 1,251 triples containing the rela-
tion hypernym from 3,134 test triples in the WN18RR
test set, TransE only obtains the Hits@10 and MRR
scores of 17.4% and 0.076 respectively, while ConvKB
performs better than TransE and gets the Hits@ 10 and
MRR scores of 22.5% and 0.121 respectively. In sum-
mary, figures 2 and 3 show that ConvKB are better at
modeling 1-M, M-1 and M-M relations than TransE.

4.2. Triple classification

4.2.1. Task description

The triple classification task aims to predict whether
a given triple (h,r,t) is valid or not [40]. Each rela-
tion r is associated with a threshold 0,. For an unseen
test triple (A, r, 1), if its score is below 6, then it will be
classified as valid, otherwise invalid. Following Socher
et al. [40], the relation-specific threshold 6, is obtained
by maximizing the micro-averaged classification accu-
racy on the validation set.

4.2.2. Training protocol

Similar to the training protocol in Section 4.1.2,
we sample invalid triples using the common Bernoulli
trick and also train TransE to produce entity and re-
lation embeddings for initializing embeddings in Con-
vKB. The best accuracies obtained by TransE on the
validation set are when using /;-norm, learning rate at
0.01, ¥ =7 and k = 50 for WN11, and using />-norm,
learning rate at 0.01, y = 1 and k = 100 for FB13. We
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Table 4

Accuracy results (in %) on the WN11 and FB13 test sets. The last 4
rows report accuracies of the models that use relation paths or incor-
porate with a large external corpus. The best score is in bold while
the second best score is in underline. “Avg.” denotes the averaged
accuracy over two datasets.

Method WNI11 FB13 | Avg.
NTN [40] 70.6 87.2 | 78.9
TransH [54] 78.8 83.3 | 81.1
TransR [27] 85.9 82.5 | 84.2
TransD [19] 86.4 89.1 | 87.8
TransR-FT [12] 86.6 829 | 84.8
TranSparse-S [20] 86.4 88.2 | 873
TranSparse-US [20] 86.8 87.5 | 87.2
ManifoldE [57] 87.5 87.2 | 874
TransG [58] 87.4 873 | 874
IppTransD [65] 86.2 88.6 | 87.4
TransE [5] (our results) 86.5 87.5 | 87.0
Our ConvKB model 87.6 88.8 | 88.2
TransE-NMM [32] 86.8 88.6 | 87.7
TEKE_H [53] 84.8 84.2 | 84.5
Bilinear-COMP [16] 77.6 86.1 | 81.9
TransE-COMP [16] 80.3 87.6 | 84.0

then use a grid search to choose the hyper-parameter
for ConvKB. We monitor the accuracy after each train-
ing epoch, and obtain the best accuracies on validation
set when using k = 50, 7 = 200, the truncated nor-
mal distribution for filter initialization, and the initial
learning rate at 5¢~% on WN11; and k = 100, T = 200,
also the truncated normal distribution for filter initial-
ization, and the initial learning rate at 5¢ > on FB13.

4.2.3. Main results

Table 4 presents the accuracy results of our ConvKB
model and previous published results on the WN11
and FB13 datasets. On WNI11, ConvKB obtains an
accuracy of 87.6% which outperforms all other mod-
els. On FB13, ConvKB gains a second highest accu-
racy of 88.8% which is 0.3% outperformed by TransD.
Compared to TransE, ConvKB absolutely improves by
1.1% on WN11 and 1.3% on FB13. Overall, ConvKB
yields the best performance averaged over these two
benchmark datasets. This also indicates the generaliza-
tion of ConvKB over different datasets.

Regarding to TransE, Table 4 demonstrates that
we obtain very competitive accuracies of 86.5% and
87.5% on WNI11 and FB13 respectively. On WNI11,

100

_ By
‘ 00 TransElE ConvKB ‘ ‘ —e— %Triples in Test —e— %Triples in Train ‘

.4

=
3
>

30

95.

Accuracy (%)
%Triples w.r.t each relation

Figure 4. Accuracy results on the FB13 test set w.r.t each relation.
The right y-axis is the number of triples corresponding to relations.

TransE is comparable with TransD, TransR-FT and
TranSparse-S while it scores better than IppTransD
and TransE-coMP. On FB13, TransE performs slightly
better than ManifoldE and TransG while it achieves
similar scores in comparison with TransE-COMP and
TranSparse-US. Note that TransR, TranSparse-S/US
and TransD also perform the embedding initialization
using TransE outputs (but these models do not report
their TransE accuracy results). Hence, these models
might get better results when using our TransE results
as shown in this paper.

Figure 4 visualizes the accuracy results of different
relations on FB13 for TransE and ConvKB. Relations
institution and profession can be categorized as M-M
where ConvKB is about 2.3% absolute higher accu-
racy than TransE, while remaining relations can be cat-
egorized as M-1. In short, Figure 4 shows that Con-
vKB performs equal to or better than TransE for all 7
relations in the FB13 test set.

5. Application for search personalization

Search personalization, an important feature of
commercial search engines, has been recently attracted
much attention from both academia [6, 8, 11, 28, 30,
49, 51, 64] and industry (e.g., Bing, Google, Airbnb
[15]). Unlike classical searching methods, personal-
ized search systems utilize the historical interactions
such as submitted queries and clicked documents be-
tween a user and the systems to tailor returned search
results to the needs of that user [1, 18, 42, 43, 56].
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Table 5
Basic statistics of the dataset [51].
# users 106
#distinct queries 6,632
#SAT clicks 8,052

#distinct documents 33,591

That historical information can be used to build the
user profile, which is crucial to effective personaliza-
tion [42, 43, 50, 52].

Given a user, a submitted query and the documents
returned by a search system for that query, our ap-
proach is to re-rank the returned documents so that the
more relevant documents should be ranked higher. Fol-
lowing Vu et al. [S1], we represent the relationship be-
tween the submitted query, the user and the returned
document as a (h, r, t)-like triple (query, user, docu-
ment). The triple captures how much interest a user
puts on a document given a query. Therefore, we can
also evaluate the effectiveness of our ConvKB model
for the search personalization task.

We evaluate ConvKB using the search results re-
turned by a commercial search engine. We use the
same dataset of query logs of 106 anonymous users
from Vu et al. [51]. A log entity consists of a user iden-
tifier, a query, top-10 returned documents ranked by
the search engine and clicked documents along with
the user’s dwell time. Vu et al. [51] employed the SAT
criteria [13] to identify whether or not a clicked docu-
ment is relevant from the query logs (i.e., a SAT click).
They then assigned a relevant label to a returned docu-
ment if it is a SAT click and also assigned irrelevant la-
bels to the remaining top-10 documents. The rank po-
sition of the relevant labeled documents is used as the
ground truth to evaluate the search performance before
and after re-ranking. As a result, the dataset contains
8,052 valid triples (query, user, relevant document) in
which 5,658, 1,184 and 1,210 valid triples are used
for training, validation and test, respectively. Table 5
presents the dataset statistics.

5.1. Evaluation protocol

Our ConvKB model is used to re-rank the original
list of top-10 documents returned by the commercial
search engine as follows: (1) We train ConvKB and use
the trained model to calculate a score for each triple
(question, user, document). (2) We then sort the scores
in the ascending order to achieve a new ranked list. To

evaluate the performance, we use two common metrics
in document ranking: MRR and Hits@1.?

5.2. Training protocol

5.2.1. Query and document embedding initialization

We initialize query and document embeddings for
ConvKB and the baseline TransE, then fix query and
document embeddings (i.e. not updating these embed-
dings) during training.

To initialize document embeddings, we follow Vu
et al. [51] to train a LDA topic model [2] with 200 top-
ics only on the relevant documents (i.e., SAT clicks)
extracted from the query logs. We then use the trained
LDA model to infer the probability distribution over
topics for each document. We use the topic propor-
tion vector of each document as its document em-
bedding (i.e. K = 200). In particular, the z"* element
(z =1,2,...,k) of the vector embedding for document
dis:v,; = P(z | d) where P(z | d) is the probability of
the topic z given the document d.

We also represent each query by a probability dis-
tribution vector over topics. Let D, = {d1,d>, ..., d,}
be the set of top n ranked documents returned for
a query g (here, n = 10). The 7" element of the
vector embedding for query ¢ is defined as in [51]:
Ve = i AP(z | d;), where 4; = ﬁ;],l is the
exponential decay function of i which is the rank of d;
in D,. And ¢ is the decay hyper-parameter (0 < § < 1).

5.2.2. Hyper-parameter tuning

Similar to the training protocol presented in Section
4.1.2, we run model up to 200 epochs and perform a
grid search to choose optimal hyper-parameters on the
validation set. Following Vuetal. [51], we use 6 = 0.8.
We also monitor the MRR score after each training
epoch and obtain the highest MRR score on the val-
idation set when using the margin at 5, [;-norm and
learning rate at 5¢~3 for TransE; and using 7 = 500,
the truncated normal distribution for filter initializa-
tion, and the initial learning rate at 5e ~* for ConvKB.

5.3. Results

Table 6 presents the experimental results of Con-
vKB, TransE and the previous published results of
other strong baselines, in which ConvKB obtains high-
est MRR and Hits@1 scores. In particular, ConvKB

3We re-rank the list of top-10 documents returned by the search
engine, so all models obtain the same Hits@ 10 scores.
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Table 6

Experimental results on the test set. * denotes the results reported in
Vuetal. [51]. SE: The original rank is returned by the search engine.
CI: This baseline use a personalized navigation method based on
previously clicking returned documents [44]. SP: A search personal-
ization method makes use of the short-term profiles [1, 50]. The sub-
scripts denote the relative improvement over the baseline TransE.

Model MRR Hits@1 (%)
SE [x] 0.559 38.5

CI [44] [x] 0.597 41.6

SP [1, 50] [] 0.631 45.2
TransE [5] [x] 0.645 48.1
STransE [33] [*] 0.656 50.1
TransE (our results) | 0.669 50.9

Our ConvKB model | 0.75011219% 59.94177%

does significantly better than TransE with relative im-
provements at 12.1% for MRR and 17.7% for Hits@1.
It is probably because our model not only can cap-
ture richer relational characteristics within the triple
but also generalize the transitional relationships be-
tween embeddings of user queries and relevant docu-
ments for user profiles. We also obtain higher TransE
results than those reported in Vu et al. [51]. The rea-
son is that for each valid triple, rather than using only
one invalid triple as in [51], we take into account its
all invalid triples to train TransE (each valid or invalid
triple contains a relevant- or irrelevant-labelled docu-
ment, respectively).

6. Conclusion

In this paper, we propose a novel embedding model
ConvKB for the knowledge base completion task.
ConvKB applies the convolutional neural network to
explore the global relationships among same dimen-
sional entries of the entity and relation embeddings, so
that ConvKB generalizes the transitional characteris-
tics in the transition-based embedding models. Exper-
imental results show that our ConvKB model outper-
forms other state-of-the-art models on two benchmark
datasets WN18RR and FB15k-237 for the link predic-
tion task, and on two other benchmark datasets WN11
and FB13 for the triple classification task. ConvKB
obtains the best mean rank and the highest Hits@10
on WNI18RR and obtains the highest mean reciprocal
rank and Hits@10 on FB15k-237. In addition, Con-
vKB produces the best accuracy on WN11 and the sec-
ond best accuracy on FB13. Moreover, we show the

effectiveness of ConvKB for search personalization, in
which ConvKB outperforms the strong baselines on
the query logs of a commercial web search engine.

In the future work, we plan to extend ConvKB
with relation path information to achieve better perfor-
mance. We will also adapt ConvKB to other personal-
ization tasks where we can model each task as a triple
relationship, e.g. in personalized query suggestion or
auto-completion.

Our ConvKB implementation is available at: https:
//github.com/daiquocnguyen/ConvKB.
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